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Abstract

Coalescent theory combined with statistical modeling allows us to estimate effective
population size fluctuations from molecular sequences of individuals sampled from a
population of interest. When sequences are sampled serially through time and the
distribution of the sampling times depends on the effective population size, explicit
statistical modeling of sampling times improves population size estimation. Previous
work assumed that the genealogy relating sampled sequences is known and modeled
sampling times as an inhomogeneous Poisson process with log-intensity equal to a linear
function of the log-transformed effective population size. We improve this approach in
two ways. First, we extend the method to allow for joint Bayesian estimation of the
genealogy, effective population size trajectory, and other model parameters. Next, we
improve the sampling time model by incorporating additional sources of information in
the form of time-varying covariates. We validate our new modeling framework using a
simulation study and apply our new methodology to analyses of population dynamics
of seasonal influenza and to the recent Ebola virus outbreak in West Africa.

1 Introduction

Phylodynamic inference—the study and estimation of population dynamics from genetic
sequences—relies upon data sampled in a timeframe compatible with the evolutionary dy-
namics under question [Drummond et al. [2003]. One important class of phylodynamic
methods seeks to estimate magnitudes and changes in a measure of genetic diversity called
the effective population size, often considered proportional to the census population size
[Wakeley and Sargsyan, 2009] or number of infections in epidemiological contexts [Frost and
Volz, 2010]. One subtle and often ignored complication of phylodynamic inference occurs
when there is a probabilistic dependence between the effective population trajectory and the
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temporal frequency of collecting data samples, such as in case of sampling infectious disease
agent genetic sequences with increasing urgency and intensity during a rising epidemic. This
issue of preferential sampling was studied in depth by Karcher et al.| [2016] in the limited con-
text of a known, fixed genealogy reconstructed from the genetic data, revealing that sampling
protocols that (implicitly) depend on effective population size cause model misspecification
bias in models that do not account for the possibility of preferential sampling. Here, we
extend the work of [Karcher et al. [2016] and develop a Bayesian framework for accounting
for preferential sampling during effective population size estimation directly from sequence
data rather than from a fixed genealogy. We also propose a more flexible model for sequence
sampling times that allows for inclusion of arbitrary time-dependent covariates and their
interactions with the effective population size.

Methods for estimating effective population size from genealogical data and genetic se-
quence data have evolved from the earliest low dimensional parametric methods, such as
constant population size |Griffiths and Tavaré, 1994b| and exponential growth models |Grif-
fiths and Tavaré), [1994b, Drummond et al., [2002], to more flexible, nonparametric or highly
parametric methods based on change-point models and Gaussian process smoothing [Drum-
mond et al., 2005, [Heled and Drummond| 2008, Minin et al.l 2008, Palacios and Minin)
2013, 2012} |Gill et al., [2013] 2016]. Most coalescent-based methods condition on the times
of sequence sampling, rather than include these times into the model, leaving open the pos-
sibility of model misspecification if preferential sampling over time is in play. [Volz and Frost
[2014] and Karcher et al. [2016] introduced coalescent models that include sampling times
as random variables, whose distribution is allowed to depend on the effective population
size. In particular, Karcher et al.| [2016] propose a method that models sampling times as
an inhomogeneous Poisson process with log-intensity equal to an affine transformation of
the log-transformed effective population size. In the presence of preferential sampling, this
sampling-aware model demonstrates improved accuracy and precision compared to standard
coalescent models due to eliminating an element of model misspecification and incorporating
an additional source of information to estimate the effective population trajectory.

The main limitations of the approach of Karcher et al.| [2016] are a reliance on a fixed,
known genealogy and lack of flexibility in the preferential sampling time model that currently
does not allow the relationship between effective population size and sampling intensity to
change over time. We address the issue of fixed-tree inference by implementing a preferen-
tial sampling time model in the popular phylodynamic Markov chain Monte Carlo (MCMC)
software package BEAST [Suchard et al., 2018]. This allows us to perform inference directly
from genetic sequence data, appropriately accounting for genealogical uncertainty, using a
wide selection of molecular sequence evolution models and well tested phylogenetic MCMC
transition kernels. Additionally, we implement a tuning parameter free elliptical slice sam-
pling transition kernel |Murray et al. [2010] for high dimensional effective population size
trajectory parameters, which allows us to update these parameters efficiently.

We also address the issue of an inflexible preferential sampling time model by incorpo-
rating time-varying covariates into the model. We model the sampling times as an inhomo-
geneous Poisson process with log-intensity equal to a linear combination of the log-effective



population size and any number of functions of time. These functions can include time
varying covariates and products of covariates and the log-effective population size, referred
to as interaction covariates. The addition of covariates into the sampling time model allows
for incorporating additional sources of information into the relationship between effective
population size and sampling intensity. One example of time-varying covariates includes an
exponential growth function to account for a continuous decrease in sequencing costs that
results in increased intensity of genetic data collection over time. In the context of endemic
infectious disease surveillance, it is likely important to account for seasonality when model-
ing changes in genetic data sampling intensity, motivating inclusion of periodic functions as
time varying covariates in the preferential sampling model.

We validate our methods first by simulating genealogies and sequence data and confirming
that our methods successfully reconstruct the true effective population trajectories and true
model parameters. We briefly simulate data in a fixed-tree context to demonstrate the
fundamentals of incorporating covariates into the sampling time model and what bias is
introduced by model misspecifications. We proceed to simulate genetic sequence data and
demonstrate that our model successfully functions when we estimate effective population
size trajectory and other parameters directly from sequence data. We also use simulations
to test a combination of the two extensions of the preferential sampling model and work
with covariates while sampling over genealogies during the MCMC. Finally, we use our
method to analyze two real-world epidemiological datasets. We analyze a USA/Canada
regional influenza dataset [Zinder et al., 2014] to determine if exponential growth of genetic
sequencing or seasonal changes in sampling intensity are important to adjust for during
effective population size reconstruction. We also analyze data from the recent Ebola outbreak
in Western Africa to determine if preferential sampling has taken place and whether time-
varying covariates or interaction covariates improve the phylodynamic inference.

2 Methods

2.1 Sequence Data and Substitution Model

Consider an alignment y = {y;;}, i =1,...,n, j = 1,...,1, of n genetic sequences across [
sites, collected from a well-mixed population at sampling times

s={s;i}irq, 51>...>8,=0.

The following example shows an alignment of n = 5 samples across [ = 10 sites, sampled at
distinct times between time 7 and time O—with time understood to be time before the latest



sample:

y1 = ACATGAGCTT, s; =7
yo = ACTTGACCTG, s =4
y3 =TCTTGACCTT, s3 =2
vy = AAATCTGCGT, sy =1
ys = AGATGTGCAT, s5 = 0.

All of the individual sequences share a common ancestry, which can be represented by a
bifurcating tree called a genealogy—illustrated in Figure [I]
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Figure 1: Illustration of an example heterochronous genealogy with n = 5 lineages.
Sampling times s1, ..., S5 and coalescent times tq, ..., t5 are marked below the genealogy, and
sequence data yq,...,ys are marked at their corresponding tips.

We assume that sequence data y are generated by a continuous time Markov chain
(CTMC) substitution model that models the evolution of the genetic sequence along the
genealogy g. According to this model, alignment sites are independent and identically dis-
tributed, with a transition matrix @ controlling the CTMC substitution rates between the
different nucleotide bases. Some relaxation of these assumptions is possible [Shapiro et al.
2005]. Different substitution models are then defined by different parameterizations of
[Hein et al., [2004]. It is simple to simulate from these models, and we can efficiently com-
pute the probability of the observed sequence data vy,

Pr(y | g,90),
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using Felsenstein’s pruning algorithm [Felsenstein|, 1973, [1981].

2.2 The Coalescent

Recall that we assume that the n sampled sequences share a common ancestry, which can be
represented by a bifurcating tree called a genealogy—illustrated in Figure [I The branching
events of the tree g = {t;}*=!',t; > ... > t,_1 (with ¢ greater the farther back in time an
event occurs) are called coalescent events. The times associated with the tips of the tree
s = {si}l"y, s1 > ... > s, are called sampling times or sampling events. If all of the
sampling events are simultaneous, the sampling is called isochronous. Assuming that the
population evolves according to the Wright-Fisher model of genetic drift and that the size
of the population is not changing, Kingman [1982] derived a probability density for an
isochronous genealogy, where the population size plays the role of a parameter of this density.
Since the Wright-Fisher model is a simplified representation of the evolutionary process,
the above parameter is called the effective population size, N.. Later extensions to the
coalescent model incorporated variable effective population size N, (t) [Griffiths and Tavaré,
1994b] and the ability to evaluate densities of genealogies with heterochronously sampled
tips—genealogies with non-simultaneous sampling times |[Felsenstein and Rodrigo, (1999).
Given sampling times s and effective population size trajectory N(t), we would like to
define the probability density for a particular genealogy g. We use the term active lineages,
n(t), to refer to the difference between the number of samples taken and the number of
coalescent events occurred between times 0 and ¢. To illustrate, in Figure [I} n(t) can be
seen as the number of horizontal lines that a vertical line at time ¢ will cross. Suppose we
partition the interval (s,,?;), from the most recent sampling event to the time to most recent
common ancestor (TMRCA), into intervals I; ;, with constant numbers of active lineages. Let

Ac(t) = (”g)) /Ne(t). Then the coalescent density evaluated at genealogy g is

Pr(g | Ne(t),s) o< [ ] [Xe(tur) exp —/)\c(t)dt . (1)

Lk

2.3 Population Size Prior

Note that without further assumptions the effective population size trajectory function N,(t)
is infinite-dimensional, so inference about N, (¢) without some manner of constraint is in-
tractable. A number of approaches, reviewed in the Introduction, have been suggested to
address this fact. Here, we take a regular grid approach that was used before in multiple
studies [Palacios and Minin) 2012, (Gill et al., 2013, [2016] [Karcher et al., 2016]. To re-
view, we approximate N.(t) with a piecewise constant function, N, (t) = exp[v(t)], where
y(t) =7 vilpesy and Ji, ..., J, are consecutive time intervals of equal length. In con-
texts where the genealogy is known, we choose intervals that perfectly cover the interval
between the TMRCA and the latest sample. However, in contexts where the genealogy is



estimated from sequence data, the TMRCA is not necessarily fixed. To address this, we
choose equal intervals that extend to a fixed point in time and append an additional interval
that extends from that point infinitely back in time. This allows us to estimate the effective
population trajectory with user-defined resolution over a window that extends back in time
as far as the user chooses. The choice of the end point of the grid is up to the user, but it
is advisable to choose a point that is farther back in time than an a priori estimate of the
TMRCA in order to extend the high-resolution grid to cover the entire true genealogy.

The population size trajectory N, (t) is parameterized by a potentially high dimensional
vector ¥ = (71,...,7). We assume that a priori v follows a first order Gaussian random
walk prior with precision hyperparameter x: ~; | v;i_1 ~ N (y;_1, 1/K) or, equivalently, that
i — Vi1 ~ N(0,1/k), for i = 2,...,p. We use a Gaussian prior on the first element:
v ~ N(0, 05). Finally, we assign a Gamma(c, 3) hyperprior to k.

2.4 Preferential Sampling Model with Covariates

Karcher et al| [2016] model times at which sequences are collected as a Poisson point pro-
cess with intensity A¢(f) equal to a log-linear function of the log effective population size.
Although it is realistic to assume that the larger the population, the more members of the
population gets sequenced, other factors may influence the distribution of sequence sampling
times. For instance, decreasing sequencing costs may result in increasing sequence sampling
intensity even if the population size remains constant. We propose an extension to the sam-
pling model that allows for the incorporation of time-varying covariates as additional sources
of information. Suppose we have one or more real-valued functions, F = {f2(t), ..., fm(t)}.
We let

log As(t; F) = Bo + Biy(t) + Bafolt) + ... 4 Bnfun(t) + [02fa(t) + ... + S fr ()] (), (2)

where we may set any or all of the s, ..., 3, or d, ..., d,, to zero if we want to avoid modeling
effects of certain covariates or their interactions with the log-population size. Notice that
we reserve fi(t) for v(t) = log[N.(t)], which is the covariate that is always present in our
model. We also point out that even though Equation ({2)) is written in continuous time, in
practice we assume that both the sampling intensity As(f) and our time varying covariates
are piecewise constant, with changes occurring at the grid points specified in Subsection [2.3]
We assign independent N(0, 02) priors for all components of the preferential sampling model

parameter vector B = (8o, 51, .- Bms 02y« -+, O ).

2.5 Posterior Approximation with MCMC

Having specified all parts of our data generating model, we are now ready to define the
posterior distribution of all unknown variables of interest:

Pr(g,~v,x,8,0|y,s,F) xPr(y | g,0)Pr(g | v,s) Pr(s | 7,8, F) Pr(v | k)

x Pr(k) Pr(8) Pr(0), 3)



where all probabilities and probability densities on the righthand side of equation ({3)) are
defined in the previous subsections. Figure [2] illustrates conditional dependencies of model
parameters and data in a graph form.

Figure 2: Dependency graph for the phylodynamic model parameters and data.
Dependencies labeled 1 are explored in section 2.1 those labeled 2 are explored in section
[2.2] those labeled 3 are explored in section and those labeled 4 are explored in section
2.4l The dashed lines between ~, 3, F and s represent preferential sampling.

When the distribution of sampling times does not depend on the effective population size
trajectory (in our model, this happens when 5 = 0 and Jy = - -+ = d,,, = 0), the posterior
takes the following form:

Pr(g,v,%,0,8 |y,s,F) < Pr(y | g, 0) Pr(g | v,s) Pr(v|x) Pr(x) Pr(0)
ocPr(g,';,’/i,9|y,s)

x Pr(s | B, F) Pr(B).

«xPr(Bls,F)

The factorization above demonstrates that when - is absent from the Pr(s | -) term, joint
and separate estimations of effective population size parameters v and preferential sampling
model parameters @ will yield identical results. Moreover, in this case estimation of sampling
model parameters can be dropped from the analysis entirely, since typically these parameters
would be considered nuisance. If we drop preferential sampling, our model specifications
reduces to the Bayesian skygrid model of (Gill et al. [2013], with the corresponding posterior:

Pr(g,7, 5,0 [ y,s) o« Pr(y | g,0) Pr(g | v,8) Pr(y|s) Pr(x) Pr(6). (4)

We approximate posteriors and by devising MCMC algorithms, implemented in
the software package BEAST [Suchard et al., |2018|, that target these distributions. We
update model parameters in blocks — 1) genealogy g, 2) substitution parameters 6, 3) pop-
ulation size parameters =, 4) random walk prior precision &, 5) preferential sampling model
parameters 3 — keeping parameters outside of the block fixed. We update the genealogy
and substitution model parameters via the default BEAST Markov kernels. We update the
log effective population latent field « via an elliptical slice sampler (ESS) operator |[Murray
et al., 2010, Lan et al., 2015, which takes advantage of the Gaussian prior distribution of
the latent field to perform efficient updates. Informally, it does this by sampling a set of

7



parameter values from the prior and iteratively moving the values closer to the current val-
ues via elliptical interpolation if the coalescent likelihood falls below a random, but small,
neighborhood of the current likelihood. Because the stepwise differences of the log effective
population size trajectory, A~y, are modeled as independent Gaussians with precision x, and
because we give k a Gamma(c, () hyperprior, we update x using a Normal-Gamma Gibbs
update kernel with full conditional

1
Kk | Ay ~ Gamma 04—1-2,5—1—52(%—%_1)2 ,
i=2

where p is the number of parameters in the latent field. For our sampling conditional model
with posterior (4]), we finish here and refer to the method as ESS/BEAST, abbreviated
when appropriate as ESS. For our sampling-aware model with the posterior , we update
components of the preferential sampling model parameter vector 3 with univariate Gaussian
random walk Metropolis-Hastings kernels. We refer to the method as SampESS/BEAST,
abbreviated when appropriate as SampESS.

3 Implementation

We implemented INLA-based, fixed-genealogy BNPR-PS method with simple covariates in
R package phylodyn (https://github.com/mdkarcher/phylodyn). The package has also
MCMC functionality that can handle inference from a fixed genealogy with simple and
interaction sampling model covariates. See phylodyn vignettes for more details. MCMC
for direct inference from sequence data is available in the development branch of software
package BEAST (https://github.com/beast-dev/beast-mcmc). We provide examples of
how to specify our preferential sampling models in BEAST xml files at https://github.com/
mdkarcher/BEAST-XML.

4 Results

4.1 Simulation Study
4.1.1 Inference Assuming Fixed Genealogy

In Section [2.4] we proposed an extended sampling time model that incorporated time-varying
covariates. We perform a simulation study to confirm the ability of our method to recover
the true effective population trajectory and model coefficients with covariates affecting the
sampling intensity. We begin here with fixed genealogies and move on to direct inference
from sequence data in the next section.

We start with the inhomogeneous Poisson process sampling model with log-intensity as
in Equation [2] If we restrict all fs and ds to be zero aside from [y, the model collapses to
homogenous Poisson process sampling (equivalently, uniformly sampling a Poisson number
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Figure 3: Effective population size reconstruction for BNPR, BNPR-PS, and
BNPR-PS with simple covariates. The dotted black line represents the true effective
population trajectory. The solid colored line represents the marginal posterior median ef-
fective population trajectory inferred by BNPR (yellow), BNPR-PS (blue), and BNPR-PS
with simple covariates (purple), and the gray region represents the corresponding pointwise
95% credible intervals for the effective population trajectory. The log sampling intensity was
1.557 4+ ~(t) — 0.025¢.

of points across the sampling interval). If we allow (31 to be nonzero, the model becomes the
sampling-aware model of Karcher et al.| [2016]. If we allow additional /s, each corresponding
to a fixed function of time, to be nonzero (but not ds) we say that the model includes simple
or ordinary covariates.

For computational efficiency in this simulation study, we build upon the methods of
Karcher et al. [2016], including Bayesian Nonparametric Population Reconstruction (BNPR)
which uses integrated nested Laplace approximation (INLA) to efficiently approximate the
marginal posterior for fixed-genealogy data, and Bayesian Nonparametric Population Re-
construction with Preferential Sampling (BNPR-PS) which does the same but includes our
sampling time model (without covariates). We incorporate our extended sampling time
model into BNPR-PS, but due to constraints in the INLA R package, upon which BNPR-PS
relies, we can only include simple covariates.

Because our sampling time model is an inhomogeneous Poisson process, it is straight-
forward to simulate sampling times. We use a time-transformation method |Cinlar} |1975|
pages 98-99], which, informally, treats the waiting times between events as transformations
of exponential waiting times based on the intensity function following the previous event.
Because the coalescent likelihood is sufficiently similar to an inhomogeneous Poisson process,
we can use a similar time-transformation technique to generate the coalescent events of sim-
ulated genealogies |Slatkin and Hudson), 1991]. We implement these methods for simulating
sampling times and coalescent times in R package phylodyn |Karcher et al., [2017].

In Figure[3], we illustrate BNPR, BNPR-PS, and BNPR-PS with simple covariates applied
to a single simulated genealogy with sampling events distributed according to log-intensity



Model Coef QO0.025 Median Q0.975 Truth
{v(t)} v(t) 1.67 1.99 2.34 1.0
{v(t),—t} ~(t) 0.86 1.01 1.16 1.0

—t 0.040 0.047 0.053  0.050

Table 1: Summary of simulated fixed-tree data inference. Posterior distribution
quantile summaries for BNPR-PS with no covariates (model: {v(¢)}) and BNPR-PS with
an ordinary covariate (model: {~(t), —t}).

1.56+7(t) —0.05t, resulting in 1013 tips, where y(t) = log[Ne26(t)] and N, 4 ,(t) is a family of
functions that approximate seasonal changes in effective population size, defined as follows:

2+ 18/(1 + exp{a[3 + (t + 0 (mod 12)) — 12]}), if ¢+ o (mod 12) > 6. 5)

" {2 +18/(1 + exp{a[3 — (t + o (mod 12))]}), if t + 0 (mod 12) <6,
e,a,0 —

We see that BNPR (the sampling conditional model) suffers from the kind of model
misspecification induced bias illustrated in |Karcher et al., [2016]. BNPR-PS with no ad-
ditional covariates beyond ~y(t) = log[N.(t)], in contrast, suffers even more strongly from
a misspecified sampling model. Table [I| shows that the model fails to correctly infer the
coefficient of ~(¢). This illustrates the care one must take in choosing parameterizations of
the sampling model. BNPR-PS with simple covariates, v(t) and —t, the correctly-specified
model, produces a reconstruction of the effective population trajectory that is very close
to the true trajectory used to simulate the data. Table [1| shows that the true values of
the sampling model coefficients are within 95% Bayesian credible intervals produced by our
inference method with the correctly specified model.

4.1.2 Direct Inference from Sequence Data

We simulate several genealogies and DNA sequences from different sampling scenarios in
order to evaluate how well our population reconstruction and parameter inference performs.
Given a sampling model and, optionally, an effective population size trajectory, we generate
sampling times within a sampling window. We generate sampling and coalescent times for a
genealogy using the same time-transformation methods as for our fixed-tree simulations. We
simulate the topology of the genealogy by proceeding backward in time, adding an active
lineage at each sampling time and joining a pair of active lineages uniformly at random
at each coalescent event. We provide an implementation of this tree-topology simulation
method in phylodyn. We generate simulated sequence alignments using the software Seq-
Gen |Rambaut and Grassly, 1997], using the Jukes-Cantor 1969 (JC69) [Jukes et al., [1969]
substitution model. We set the substitution rate to produce an expected 0.9 mutations per
site, in order to produce a sequence alignment with many sites having one mutation, and
some sites having zero or multiple mutations. For all of our simulations, we use the same
seasonal effective population trajectory, N.ag6(t), as for our fixed-tree simulations.

First, we simulate a genealogy with 200 tips and sequence data with 1500 sites and
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Figure 4: Effective population size reconstructions for four sequence data sim-
ulations, all based on the same seasonal effective population size trajectory.
Upper left: Uniform sampling times, sampling-conditional posterior. Upper right: Sam-
pling frequency proportional to effective population size, sampling-aware posterior. Lower
left: Sampling frequency proportional to effective population times a time-covariate (exp(t)),
sampling- and covariate-aware posterior. Lower right: Sampling frequency proportional to
effective population size with a sampling spike, sampling- and covariate-aware posterior.
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uniform sampling times and apply both of our sampling-conditional methods. We apply
the INLA-based fixed-tree BNPR from |Karcher et al., 2016] to the true genealogy, and we
apply the MCMC-based tree-sampling ESS/BEAST (specified above) to the sequence data.
In Figure || (upper left), we compare the truth with the resulting pointwise posterior medians
and credible intervals. The two methods’ results are mutually consistent, with additional
uncertainty in the tree-sampling method (visible in the wider credible intervals) due to
having to estimate the genealogy jointly with other model parameters. We see similar results
comparing BNPR-PS with SampESS/BEAST in Figure {4| (upper right), where we sample
sequences (1500 sites) with sampling times generated from an inhomogeneous Poisson process
with intensity proportional to effective population size (log-intensity 2.9 + v(¢)) resulting in
170 samples and infer using a sampling model with log-intensity By + B17(t). We also see
similar results in Figure {4 (lower left), where we add time as an additional covariate and
sample sequences (1500 sites) with log-intensity 3.35 + () — 0.5¢, resulting in 199 samples,
and perform inference using a sampling model with log-intensity 5o+ 817(t) + 2+ (—t). Table
shows that SampESS does a reasonable job at reconstructing the true model coefficients,
though the credible interval for —¢ includes 0.

We also simulate a genealogy and sequence data (1500 sites) with log-intensity 1.89 +
Y(t) + (t) - lic5,, resulting in 210 samples. This produces an interval we refer to as a
sampling spike which requires the use of an interaction covariate. Because of design limita-
tions of the R implementation of INLA, we are limited in how we may implement interaction
covariates in BNPR-PS. Therefore, in Figure [4| (lower right) we plot SampESS/BEAST with
the correct interaction covariate (and a corresponding ordinary covariate) against BNPR-PS
with no covariates. We see SampESS (with covariates) perform better than BNPR-PS (with-
out covariates) at reconstructing the correct trajectory. We also see that our method, using
the full covariate model, with log-intensity 3o+ 517(t)4B2- Licpo.5,1)+02-7(t) - Licpo.5,1), Produces
a 95% Bayesian credible interval for the coefficient of the ordinary covariate that contains
the true value (8 = 0), while the true value of the interaction covariate coefficient (6o = 1)
is correctly inside the 95% Bayesian credible interval produced by SampESS/BEAST.

Model Coef Q0.025 Median QO0.975 Truth
{7(t)} v(t) 0.98 1.42 2.16 1.0
{y(t), -t} 0) 0.75 1.06 155 1.0
—1 -0.06 0.44 0.94 0.5
{’}/(t), 1t6[0.5,1]7 1t€[0.5,1] : ’}/(t)} ’}/(t) 0.72 1.26 2.14 1.0
Ligpo5,1) -9.01 -1.50 1.64 0.0
Liejo.s,1) - (1) 0.13 1.75 5.75 1.0

Table 2: Summary of simulated sequence data inference Posterior distribution quan-
tile summaries for SampESS with no covariates (model: {v(¢)}), SampESS with an ordinary
covariate (model: {7y(t),—t}), and SampESS with both an ordinary and interaction covariate

(model: {v(t), lic0.51], Lecps,1) - v(t)})-
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4.2 Seasonal Influenza Example

We reanalyze the H3N2 regional influenza data for the USA /Canada region as analyzed with
fixed-tree methods in [Karcher et al., 2016]. The data contain 520 sequences aligned to form
a multiple sequence alignment with 1698 sites of the hemagglutinin gene. This dataset is
a subset of the dataset of influenza sequences from around the world analyzed in [Zinder
et al), 2014]. We use ESS/BEAST with our tree-sampling MCMC targeting posterior (|4
to analyze these data and mark the pointwise posterior median and 95% credible region in
black, summarized in Figure |5| (upper row). We observe a seasonal pattern consistent with
flu seasons observed in the temperate northern hemisphere [Zinder et al., 2014]. Our results
are also consistent with previous fixed-tree method results but with larger credible interval
widths due to correctly accounting for genealogical uncertainty in our analysis.

We apply our sampling-aware model SampESS/BEAST to the USA/Canada influenza
data, following the posterior from Equation . We used several different log-sampling-
intensity models. The simplest one has log-intensity Sy + 517(t) (abbreviated {v(¢)}) and is
summarized in Figure (upper left). We include a time term in one model, with log-intensity
Bo + B1y(t) + B2 - (—t) (abbreviated {7(t),—t}) summarized in Figure [5 (upper center). We
use seasonal indicator functions in the final model, defined as,

Lyinter(t) = Lt mod 1.0)€[0,0.25)
Tautumn (t) = I(t mod 1.0)€[0.25,0.5)+
Tsummer (t) = I(t mod 1.0)€[0.5,075) 5

with ¢ measured in decimal calendar years (going forward in time). This results in the
log-intensity By + 517(t) + Bolwinter (t) + 53 Lautumn (t) + Balsummer (t) (abbreviated {v(t), Lyinter,
Loutumns Isummer } ), sSummarized in Figure |5 (upper right).

We summarize the sampling model coefficient results for each model in Table [3. The
{7(t)} model corresponds to the preferential sampling model of Karcher et al. [2016], but
has noticeably different estimates. We attribute this to the differences between the fixed-tree
(with a tree inferred using a constant effective population size BEAST model), INLA-based
approach of [Karcher et al. [2016], and the tree-sampling MCMC-based approach of this
paper. We also note that the {(t), —t} model does not perform better (or even noticeably
differently) than the {v(¢)} model. The coefficient summary for {(¢), —t} bears this out,
because the 95% Bayesian credible interval for the coefficient for —¢ contains 0. This is
expected as each year has approximately the same number of sequences, so there should be
no exponential growth of sampling intensity. We do observe differences in the {7y(t), Iyinter,
Loutumns Tsummer } model. The coefficient of ~(¢) is close to 1.0, which is the easiest value to
interpret under preferential sampling, suggesting a baseline sampling rate proportional to
effective population size. The coefficients for the indicators suggest increased sampling in the
flu season intervals, as compared to the summer intervals and especially the spring intervals—
with spring treated as a baseline rate without an indicator for the sake of identifiability. We
also fit a model with seasonal indicator covariates and their interactions with the log-effective
population size, but do not find any support for including the interaction covariates into the
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Model Coef Q0.025 Median Q0.975

()} v(t) 1.11 1.45 2.01
{~(t), -t} v(t) 1.21 1.52 2.00
—t -0.10 -0.02 0.07
{7<t)7 [Winteh [autumm [summer} ’Y(t) 0.72 0.92 1.21
Linter 1.91 2.79 3.83

Lvtumn 1.88 2.85 3.85
Loomer 0.44 1.52 2.58

Table 3: Summary of USA /Canada influenza data inference. Posterior distribution
quantile summaries for SampESS with no covariates (model: {v(¢)}), SampESS with an
ordinary covariate (model: {7(¢),—t}), and SampESS with seasonal indicator covariates

(model: {’)/(t), ]winter, -[autumn) -[Summer})‘

preferential sampling model (see Appendix A.1).

We observe the seasonality of our estimates of the effective population size trajectory.
In Figure [0, we superimpose the twelve years of estimates per model, and plot the poste-
rior median annual estimate. We note that the sampling aware models all show increased
seasonality compared to the sampling conditional model. We also note that the 2008-2009
flu season stands out on the seasonality plot for having a peak in the summer months of
2009, particularly in the preferential sampling models. This behavior is most likely due to a
misspecification of our model for sampling intensity. This misspecification is expected given
the first documented emergence of the HIN1 strain in the United States in April of 2009
and the resulting, unaccounted in our model, increased surveillance of all influenza strains
in summer 2009 [CDC|, 2010]. Higher than usual sampling intensity in summer 2009 makes
our preferential sampling models conclude that the effective population size during this time
period must be also elevated. Also, note that the estimated effective population size of H3N2
strain during 2009/2010 flu season is markedly lower than during most of other seasons. This
is in line with the HINT1 strain successfully competing with the H3N2 strain, resulting in the
lower prevalence of the latter.

To check adequacy of the preferential sampling models, we compare the posterior dis-
tributions of sampling intensities obtained via our BEAST implementation of BNPR-PS
with a nonparametric INLA-based estimate of the sampling rate (using a method similar
to BNPR-PS without the coalescent likelihood or covariates). Figure [5| (lower row) shows
the comparison. The methods produce very similar estimates, with the BEAST/MCMC
methods having thinner credible intervals due to incorporating additional information from
the coalescent likelihood. We also performed posterior predictive checking, described in Ap-
pendix B.1, but found that this method lacked power to discriminate among preferential
sampling models (see Appendix B.2.2).

14



Sampling—aware: y(t)

Sampling—aware: y(t), -t

Sampling—aware: Y(1), lyinter, lautumn, lsummer

8 | samp-cond. cred. intervals 3 3
é T Samp-cond. estimate . é é T
S S S
e 3 3
c — -
o
=
1o = = o
S 9 % %
2 3 ] 3
% 8 8 8
= F T T
£ 3 g g
()
E — e — —
?u - : Samp-aware estimate ?u a?) B
- Samp-aware cred. intervals Sampling events - Sampling events - Sampling events
[ ] - AN NN N "E BN B [ ] - AN NN N "E BN W [ - AN N MmN "E BN ®
T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T
2000 2002 2004 2006 2008 2010 2012 2000 2002 2004 2006 2008 2010 2012 2000 2002 2004 2006 2008 2010 2012
< < <
o o o
& Samp-only cred. intervals b o
— . — —
Samp-aware cred. intervals
S S ]
IS T T
B & K 3
(o))
£
a o o (=
== =] S |
+ T T
O [ o
7, %al — —
N : Samp-aware estimate «~ o
‘ID _| Samp-only estimate CIJ "T’ i
) Sampling events ) Sampling events 7} Sampling events
-~ [ ] - - eE meEE 'E mm om | [ ] - meE meEm " mm om | [ - AN N MmN "E BN ®
T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T
2000 2002 2004 2006 2008 2010 2012 2000 2002 2004 2006 2008 2010 2012 2000 2002 2004 2006 2008 2010 2012
Time Time Time

Figure 5: Effective population size and sampling rate reconstructions for the USA
and Canada influenza dataset. Upper row: Dashed lines and dotted black lines are the
pointwise posterior effective population size estimates and credible intervals of the sampling-
conditional model. The blue lines and the light blue regions are the pointwise posterior
effective population size estimates and credible intervals of that column’s sampling-aware
model. Lower row: Dashed lines and dotted black lines are the pointwise posterior sampling
rate estimates and credible intervals of a nonparametric sampling-time-only model. The
blue lines and the light blue regions are the pointwise posterior sampling rate estimates and
credible intervals of that column’s sampling-aware model.
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Figure 6: Effective population size seasonal overlay for the USA and Canada
influenza dataset. The light blue lines are the pointwise posterior estimates for each year,
and the dark blue line is the median annual estimate. Upper left: Sampling-conditional
posterior. Upper right: Sampling-aware posterior with only log-effective population size ~y(t)
informing the sampling time model. Lower left: Sampling- and covariate-aware posterior,
with v(t) and —t. Lower right: Sampling- and covariate-aware posterior, with ~(¢) and
seasonal indicators Iyinter, Lautumn, Lsummer-
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4.3 Ebola Outbreak

Next, we analyze a subset of the Ebola virus sequences arising from the recent Western
Africa Ebola outbreak (as collated in [Dudas et al |2017]). The data consist of 1610 aligned
whole genomes, collected from mid-2014 to mid-2015. The resulting alignment has 18,992
sites. The dataset represents over 5% of known cases of Ebola detected during that outbreak,
providing an unprecedented insight into the epidemiological dynamics of an Ebola outbreak.
We consider two subsets of the data, corresponding to the samples from Sierra Leone and
Liberia. For Sierra Leone, we subsampled 200 sequences, chosen uniformly at random out
of 1010 samples for computational tractability. For Liberia, we use the entire collection of
205 sequences obtained from infected individuals in this country.

We begin by applying ESS/BEAST method with no preferential sampling to the Sierra
Leone dataset. We use MCMC to target our tree-sampling posterior from Equation (4]) and
depict the pointwise posterior median effective population curve, N,(t), with a black dashed
line and its corresponding 95% credible region boundaries with black doted lines, shown in all
panels of the first row of Figure[7] The resulting effective population size trajectory visually
resembles a typical epidemic trajectory of prevalence or incidence that peaks in Autumn of
2014. Next, we apply our sampling-aware model SampESS/BEAST to the Ebola data, tar-
geting with MCMC the posterior from Equation . We use several different log-sampling-
intensity models. The simplest model, abbreviated as {7(t)}, has log-sampling-intensity
Bo+ F17y(t). We include a ¢ term in our next sampling model, abbreviated as {y(t), —t}, with
log-intensity Sy + 517(t) + B2 - (—t). This model postulates that even if the effective popula-
tion size remains constant, the sampling intensity is growing or declining exponentially. We
make —t an interaction covariate as well in the next model, abbreviated {v(t), —t, —t-~(¢)},
resulting in the log-sampling-intensity Sy + S17(t) + 52 - (—t) + d2y(t) - (—t). For the final
model, we include —t and —t? as ordinary covariates, abbreviated {~(t), —t, —t?}, with log-
sampling-intensity By + S17(t) + B2 - (—t) + B3 - (—t?). The resulting posterior distribution
summaries of the effective population size trajectory are shown in blue in the upper row of
Figure[7]

Having concluded that posterior predictive checks are underpowered in our setting (see
Appendix B.2.3), we judge preferential sampling model fit using lessons learned during sim-
ulation studies conducted by |[Karcher et al.| [2016]. One important observation made by
Karcher et al.| [2016] is that ignoring preferential sampling produces little bias when esti-
mating N, (t) when population size is increasing. Even during the N,(t) declines the bias is
relatively small. Therefore, if the sampling model is not misspecified, we expect conditional
and sampling aware models to differ mostly in the width of their credible intervals, and
not in posterior medians of N.(t). According to this metric, the {~(¢), —t,—t - ~v(¢)} and
{~(t), —t, —t*} models show reasonable agreement with the conditional conditional model
when reconstructing N,(t) (see first row of Figure 7)), with the {~(t), —t, —t-y(¢)} model per-
forming the best. Another measure of goodness of fit is agreement of nonparametric estimate
of sampling intensity and the one produced by preferential sampling models. By this metric,
the quadratic model {~(t), —t, —t?} outperforms the interaction model {~(t), —t, —t - v(t)}.
The main difference between the interaction and quadratic models is that the interaction
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model suggests that the strength of preferential sampling (power of N, (¢)) was linearly
increasing over time, while the quadratic model points to a quadratically time varying mul-
tiplicative factor in front of N.(¢). Parameter estimates of all models fit to the Sierra Leone
data are summarized in Table [4l

As another way to compare adequacy of preferential sampling models, we overlay our
reconstructed effective population size trajectories and Ebola weekly incidence time series.
We use a sum of confirmed and probable case counts from the supplementary data of Du-
das et al. [2017]. Assuming a susceptible-infectious-removed (SIR) model, an approximate
structured coalescent model, and taking into account the fact that the number of susceptible
individuals never decreased appreciably during the Ebola outbreak, we can interpret effec-
tive population size as a quantity proportional to Ebola incidence [Volz et al.l 2009, Frost
and Volz, 2010]. Figure shows aligned incidence time series and posterior summaries of
effective population size for all considered coalescent models. All models produce reasonable
agreement between incidence and effective population size during the increase of incidence.
However, the end of the outbreak is captured better by preferential sampling models, with
the quadratic model {y(t), —t, —t*} outperforming the other preferential sampling models.

Model Coef Q0.025 Median QO0.975
{7(t)} v(t) 0.28 0.46 0.71
{7(t), -t} v(t) 0.30 0.49 0.83
—1 -0.58 0.27 1.46
{v(t),—t,—t-~v(t)} ~(t) 1.01 1.76 3.32
—1 -0.88 0.18 1.02
—t-y(t)  0.89 165  3.11
{~(t), —t, —t?} v(t) 0.47 1.00 1.80
—t 2.02 9.05 20.63
—2 -13.08 -5.58 -1.09

Table 4: Summary of Sierra Leone Ebola sequence data inference. Posterior distri-
bution quantile summaries for SampESS with no covariates (model: {y(t)}), SampESS with
an ordinary covariate (model: {7y(t), —t}), SampESS with both an ordinary and interaction
covariate (model: {vy(t),—t,—t - ~v(t)}), and SampESS with linear and quadratic ordinary
covariates (model: {y(t), —t, —t*}).

We apply the same models to the Liberia Ebola dataset, summarized across the upper
row of Figure [§ and in Table [f] We note that the {y(t)} and {v(¢), —t} models perform
very similarly, but the {v(¢), —t} model has slightly wider pointwise credible intervals in
places. This is consistent with the coefficients, as the credible interval for the —t term
contains 0. The {v(t), —t, —t - v(t)} model has even wider pointwise credible intervals, and
the credible intervals for the coefficients all contain 0. This suggests that in Liberia, of the
three sampling-aware models, the sampling model most consistent with the data is simple
preferential sampling. We also note that in the {7(¢)} model, the median estimate for the
coefficient for y(t) is close to 1.0, suggesting direct proportional sampling.
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Figure 7: Effective population size and sampling rate reconstructions for the Sierra
Leone Ebola dataset. Upper row: Dashed lines and dotted black lines are the pointwise
posterior effective population size estimates and credible intervals of the sampling-conditional
model. The blue lines and the light blue regions are the pointwise posterior effective pop-
ulation size estimates and credible intervals of that column’s sampling-aware model. Lower
row: Dashed lines and dotted black lines are the pointwise posterior sampling rate estimates
and credible intervals of a nonparametric sampling-time-only model. The blue lines and the
light blue regions are the pointwise posterior sampling rate estimates and credible intervals
of that column’s sampling-aware model.
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Figure 8: Effective population size and sampling rate reconstructions for the
Liberia Ebola dataset. Upper row: Dashed lines and dotted black lines are the pointwise
posterior effective population size estimates and credible intervals of the sampling-conditional
model. The blue lines and the light blue regions are the pointwise posterior effective pop-
ulation size estimates and credible intervals of that column’s sampling-aware model. Lower
row: Dashed lines and dotted black lines are the pointwise posterior sampling rate estimates
and credible intervals of a nonparametric sampling-time-only model. The blue lines and the
light blue regions are the pointwise posterior sampling rate estimates and credible intervals
of that column’s sampling-aware model.
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Model Coef Q0.025 Median QO0.975

) 7 053 078  1.20
{v(t), —t} v(t) 0.53 0.81 1.23
—1 -3.39 -0.74 1.84
(Y1), —t, —t -~ (D)} A1) 0.07 040 151
—t -3.26 -0.31 2.67

—tey(t) 298  -1.21  1.20

Table 5: Summary of Liberia Ebola sequence data inference. Posterior distribution
quantile summaries for SampESS with no covariates (model: {v(¢)}), SampESS with an
ordinary covariate (model: {y(¢), —t}), and SampESS with both an ordinary and interaction
covariate (model: {v(t),—t,—t-~v()}).

As in the previous section, we compare the sampling rates we derive from our BEAST
runs to a nonparametric INLA-based estimate of the sampling rate. Figures [7] (lower row)
and |8 (lower row) show the comparisons. The two methods produce very similar estimates,
and again the sampling-aware methods have thinner credible intervals due to incorporating
additional information from the coalescent likelihood.

All coalescent models produce reasonable agreement between estimated effective popula-
tion size trajectories and Ebola incidence time series in Libera (see Appendix Fig . The
model without preferential sampling looks the best in this comparison, mostly because the
incidence curve does not support multiple “ups” and “downs” in effective population size
trajectories estimated under the preferential sampling models.

5 Discussion

Currently, few phylodynamic methods incorporate sampling time models in order to address
model misspecification and take advantage of the additional information contained in sam-
pling times in preferential sampling contexts. Even fewer methods implement sampling time
models by appropriately integrating over genealogies relating the sampled genetic sequences
and performing inference directly from these sequence data. We extend previous sampling
time models to incorporate time-varying covariates in order to allow the sampling model to
be more flexible under different scientific circumstances. We implement this sampling time
model into the MCMC software BEAST, and also implement an elliptical slice sampler into
BEAST for efficient MCMC draws of grid-based effective population size parameterizations.

However, the additional flexibility of the sampling time model comes with additional
uncertainty around which set of covariates is the best one for a given scientific context.
Unfortunately, posterior predictive checks |Gelman et al. |1996] — taking a model with a
posterior sample of parameters estimated from data, using the same model and estimated
parameters to simulate new data, and comparing the observed data and the simulated data
— lacked sufficient power to discriminate between models in all of our applications. Including
a residual term to absorb sampling times model misspecification can be a fruitful avenue of
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future research. However, care will need to be taken to preserve parameter identifiability.

Another approach to extending and increasing the flexibility of the sampling model is to
decouple the fixed temporal relationship between effective population size and sampling in-
tensity. Introducing an estimated lag parameter to the sampling time model would allow for
cause-and-effect phenomena and delays to be accounted for within the model. Incorporating
an estimated lag parameter would also allow for an additional avenue of model verification.
Under most imaginable circumstances, if there is a relationship between the effective pop-
ulation size and sampling frequency, changes to the population size would effect sampling
frequency with zero or positive delay. Estimating a credibly negative lag would be a possible
indicator that some element of the model or data is worth re-examining.

In terms of flexibility, the ideal sampling time model would be a separate Gaussian
latent field distinct from the (log) effective population size. However, methods for primarily
phylodynamic inference with this feature would suffer from severe identifiability problems.
One approach that would retain most of the flexibility of the separate Gaussian field while
also retaining the identifiability of the original model would be to model the (log) effective
population size and sampling intensities as correlated Gaussian processes. Estimating the
correlation parameter between the two processes would allow for estimation of the preferential
sampling strength.
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A Appendix: Additional Sequence Data Results

A.1 Seasonal Influenza

We consider one additional model for the USA /Canada influenza data with log-intensity,

BO + 517@) + 52[Winter(t) + BSIautumn(t) + B4Isummer<t)
+ 52]winter(t) : ’7(75) + 531autumn(t) . 7(75) + 64]summer(t) . 7(75),

abbreviated {7( )7 winter ]autumna ]summera Iwinter : ’}/(t), ]autumn ' V(t), ]summer ' ’Y(t)}, Oor more
succinctly as {v(t), Iwinters Lautumn, Lsummer, interactions}. The results are summarized in
Figure and Table . We see that only the coefficients for (), Iyinter, and Lyytumn
have credible intervals that do not contain zero, suggesting that additional terms are not
necessary.

A.2 Ebola Outbreak

We consider three additional models for our subsample of 200 sequences from the Sierra
Leone Ebola outbreak data with log-intensities,

Bo + Biy(t) + B2+ (—t) + B - (—1t?)
§89(1) - (1) + (1) - (—), and
Bo + Bry(t) + 27 (t) - (—t) + dgy(t) - (=),

abbreviated as {y(t), —t, —t2, —t-y(t), —t*-~(t)}, and {~(t), —t-v(t), —t*-y(t)}, respectively.
The results are summarized in Figure and Table [A-2] We see that the coefficients for
v(t), —t, and —t* tend to have credible intervals that do not contain zero (except for the
interaction-only model {(t), —t - y(t), —t? - v(t)}), but the other terms do not, suggesting
that the additional terms are not necessary.

Model Coef Q0.025 Median QO0.975
{7(t), Lyinters Lautumn, Tsummer, interactions} ~(t) 0.64 1.20 1.97
Iyinter 1.83 3.48 5.58
Tyutumn 1.31 3.16 5.28
Isummer -0.15 2.08 4.52
Linter - (1) -1.08 -0.29 0.34
Iautumn V(t) ‘100 —014 053

Lmmer - (1) -1.24 024  0.92

Table A-1: Summary of USA /Canada influenza data inference. Posterior distribution
quantile summaries for SampESS with seasonal indicator and interaction covariates (model:

{7( ) winter Iautumna Isummervlnteracmons}>
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Figure A-1: Effective population size and sampling rate reconstructions for the
USA and Canada influenza dataset. Upper row: Dashed lines and dotted black lines
are the pointwise posterior effective population size estimates and credible intervals of the
sampling-conditional model. The blue line and the light blue region are the pointwise poste-
rior effective population size estimates and credible intervals of that column’s sampling-aware
model. Lower row: Dashed lines and dotted black lines are the pointwise posterior sampling
rate estimates and credible intervals of a nonparametric sampling-time-only model. The
blue line and the light blue region are the pointwise posterior sampling rate estimates and
credible intervals of that column’s sampling-aware model.
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Figure A-2: Effective population size and sampling rate reconstructions for the
Sierra Leone Ebola dataset. Upper row: Dashed lines and dotted black lines are the
pointwise posterior effective population size estimates and credible intervals of the sampling-
conditional model. The blue line and the light blue region are the pointwise posterior effective
population size estimates and credible intervals of that column’s sampling-aware model.
Lower row: Dashed lines and dotted black lines are the pointwise posterior sampling rate
estimates and credible intervals of a nonparametric sampling-time-only model. The blue line
and the light blue region are the pointwise posterior sampling rate estimates and credible
intervals of that column’s sampling-aware model.
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Model Coef Q0.025 Median QO0.975
{v(t), —t, —t2, —t - y(t), —t* - v(t)} ~(¢) 0.71 2.20 4.69
—t 1.21 9.75  20.29
—t2 -12.67 -6.00  -0.79
—t-(t) -2.72 0.95 6.49
—t2 () -2.64 0.72 3.26
{v(#), =t -~(t),—t*-~v()} y(t) -3.00 -1.39 2.08
—t-~y(t)  -11.30 -6.59 2.00
—t2-~()  -0.16 4.90 8.16

Table A-2: Summary of Sierra Leone

Ebola sequence data inference.

Posterior

distribution quantile summaries for SampESS with models: {y(t), —t, —t2, —t-y(t), —t*>~(¢)},

and {’Y(t)v —t- V(t)a —t* V(t)}'



B Appendix: Model Checks and Model Selection

B.1 Methods

B.1.1 Transformed Exponentials

Suppose random variable X ~ Exp(1), and thus its PDF is fx(z) = exp(—z). Define
gxa(u) = [;' A(t)dt for nonnegative A(-) integrable on [0,00). Then gy(u) is monotonic non-
decreasing, so g; '(+) is well-defined almost everywhere. If we let U = g, (X), then the PDF
of U'is fu(u) = AMu) exp(— [ A(t)dt).

We then have two useful results. If we wish to sample U, we may do so by sampling
an Exp(1) random variable X, then apply the transformations U = g;'(X), which will
result in the desired distribution. There generally is not an explicit, closed-form solution for
g~ 1(+), but it can be implicitly solved using root-finding methods and, if necessary, numerical
integration. Conversely, if we wish to recover the original Exp(1) random variable X from
U, we can apply the transformations X = g,(U).

B.1.2 Heterochronous Coalescent Time Transformation

Consider the heterochronous coalescent model, as presented in Section [2] of the main text.
Griffiths and Tavaré|[1994a] show that for isochronous data, the sequence of coalescent events
of a genealogy (and allowing variable effective population size) is a continuous time Markov
chain and that the function A,(t), representing the number of distinct ancestors at time ¢
and called the ancestral process, is a pure death process starting at value n at time 0 and
decreasing by one at every coalescent event proceeding into the past.

We seek to extend this framework to allow heterochronous genealogies as well. Consider
a Wright-Fisher population with population N (i), i generations in the past. We assume
that sampled individuals cannot be ancestors to future sampled individuals, so if we sample
an individual at generation i, we segregate that individual from the other N (i) individuals
in the population until the sampled individual “selects” an ancestor in generation ¢ 4 1, at
which point the usual Wright-Fisher process proceeds until another individual is sampled
farther in the past. Suppose we have a fixed schedule of n individuals sampled at generations
g1 < g2 < ... < g,, and we consider any particular generation ¢, having counted k coalescent
events between generation 0 and generation i. Let b; = )" 1j5,> represent the number
of individuals that are sampled farther into the past than generation i. In an isochronous
scenario, b; would be 0 for all 7, and the number of distinct lineages at generation ¢ would be
n — k. However, here we suppose that b; > 0. We see that if there are no individuals sampled
at generations ¢ or ¢ + 1, then this iteration of the Wright-Fisher process is identical to an
iteration of an isochronous Wright-Fisher process with the same population and n — k — b;
distinct lineages. If there is an individual sampled at generation i + 1, the outcome is the
same since we can safely ignore the (segregated) sampled individual until iterating from
generation ¢ 4+ 1 to ¢ + 2. If there is an individual sampled at generation ¢, then we consider
the (segregated) sampled individual to be an additional distinct lineage, but we see the
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iteration still behaves as if it were an iteration of an isochronous Wright-Fisher process with
n — k — b; distinct lineages.

We now switch to continuous time, applying our heterochronous distinct lineage counts
into the results from [Griffiths and Tavaré, 1994a]. Let b(t) = >"", 15,54 be the count of
samples that occur farther into the past than time ¢. Let B,(t) = n — k(t), where k(t) is
the number of coalescent events between time 0 and time t. Under isochronous sampling,
B,(t) = A,(t) is the ancestral process. Under heterochronous sampling, B, (t) is merely
the pure death process that is directly analogous to A,(t). Substituting our results from
the heterochronous Wright-Fisher process into the key results reveals the transition rates for

By(1),

(’ g@))N(t)mo(h) j=i—1
Pr(Bu(t+h)=j|Ba(t) =1) = 41— (T3) Fhgh +o(h), j=i
0 otherwise,

and the joint density for the Markov chain of coalescent events,

t—
n k—1

Pr(g | No(t),8) = [ [Melter)exp | / o

k=2 tr

where Ay (t) = (“40) o1

Following the results from |Griffiths and Tavaré, 1994a], we note that the terms in the
product are in the form of transformed exponentials, and can be sampled by transforming
n — 1 independent, identically distributed (i.i.d.) Exp(1) random variables. Finally, we note
that we can recover these exact n — 1 i.i.d. Exp(1) random variables by applying the inverse

transformation.

B.1.3 Coalescent Posterior Predictive Check

We consider the Bayesian approach for phylodynamic analysis laid out in Section [2| of the
main text. Similar to |Gelman et al. [1996]’s mixed predictive distribution approach, we
simulate data and certain latent variables from our models, informed by our posterior sample,
in order to judge how well those models adhere to observed and inferred realities In the
context of our posterior with no sampling time model, we replicate {y;"}X, and {g/"}¥,
according to this joint posterior,

Pr(y™?, g"? ~,k,0 | y,s) « Pr(y™ | g"",0) Pr(g"" | v,s) Pr(v,%,0 | y,s), (6)

simulating from the coalescent Pr(g™” | «,s) and (if necessary, see below) the substitution
model Pr(y™P | g™P). We sample the final term on the right side via MCMC.

With posterior-sampled replicates available, we construct a discrepancy D.. [Gelman et al.|
1996|, |Sinharay and Stern, 2003| on the observables and the inferred latent variables. Let
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G(g,~v) be the transformation (explored in the previous section) that, given the correct
effective population trajectory, and valid assumptions for the coalescent model, will produce
a sample of n — 1 i.i.d. Exp(1)-distributed random variables. Let K be the Kolmogorov-
Smirnov statistic [Massey Jr, [1951],

Kexp)(€) = sup [Fe(x) — Faxp)(2)], (7)

z€R

where Fg(x) is the empirical cumulative distribution function (ECDF) of e, and Fyyp(1)()
is the true cumulative distribution function (CDF) of the Exp(1) distribution. We define

Dc(yv g,5,7%, ’l{) = KEXP(1)<G(g7 7))

Then when we run MCMC, we then compare the observed discrepancies,

{Dc(ya i S, Yy ’l{i)}ij\ih

to the replicate discrepancies,

{Dc(y;“ep7 g;ep7 S, 71’7 ’{i) z]'VZI'

Note that the D, we constructed does not depend on y™P, so we can save computation time
by not simulating y™P | g'P. If we wish to check the sampling-aware posterior with the
sampling time model, the replicate posterior remains mostly the same as in Equation [6] but
the final term becomes Pr(v, x, 3,60 | y,s, F) to match the sampling-aware posterior.

One method we have to compare the observed and replicate discrepancies is the posterior
predictive p-value [Gelman et all 1996]. We calculate the posterior predictive p-value by
finding the proportion of MCMC iterations where the replicated discrepancy values are larger
than its corresponding observed discrepancy value. The smaller the posterior predictive p-
value, the more unusual the observed data is in the context of the chosen model. Note that
this posterior predictive p-value does not have the usual frequentist p-value properties such
as uniformity under a null model. However, values close to 50% suggest that the current
model is adequate, and for discrepancies that become larger as the observed data becomes
less likely given a set of parameters, the posterior predictive p-value tends to be smaller, to
some degree, under under inadequate models [Gelman et al. [1996].

B.1.4 Sampling Posterior Predictive Checks
Similarly to the previous section, we replicate {y;"}¥,, {g;"}Y,, and {s;"}Y, according

i
to this joint posterior,

Pr(y™, g"? s"". 7,5, 8,0 | y,s) oc Pr(y™ | g") Pr(g™ | v, 8") Pr(s"" | 7, 8)

X Pr(’77 H? /6’ 9 ’ y? S)7 (8)
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with Pr(v,k,8,0 | y,s) sampled via MCMC. We simulate from the sampling model
Pr(s™P | 4, 5), and, if necessary, the coalescent Pr(g"P | ,s), and the substitution model
Pr<yrep ‘ grep)‘

Suppose we divide the sampling interval into a grid K, ..., K, potentially the same grid
as used by grid-based priors for the effective population trajectory. The sampling model is
inhomogeneous Poisson, so we can bin the numbers of sampling times within each interval
my,...,my, each with expected values E; = [, K, As(t)dt. A common approach to problems

with independent Poisson bins is a Chi-squared test with statistic y? = 22:1 (m’E—El)Q [Pear-
son, 1900]. We can then define a discrepancy

m; — EJZ 2
DXQ(Y7g7sv'77K') :Z%a (9)

i=1

for m; and FE; derived from s as above.

B.2 Results
B.2.1 Simulation Study

Genealogy Inference We perform a simulation study in order to explore the capabilities
of the posterior predictive checks proposed above in Sections [B.1.3 and [B.1.4. We begin
with a simplified version of the phylodynamic data-to-inference methodology. Here we take
genealogies to be our observed data (and move on to inference based on observed sequence
data in the next section). We simulate sampling times according to inhomogeneous Poisson
processes with different intensity trajectories via a time-transformation method [Cinlar, |1975]
as we implemented in our R package phylodyn [Karcher et al., 2017]. Give sampling time
data, we simulate from the coalescent model using a similar time-tranformation method for
the coalescent [Slatkin and Hudson, [1991], again as implemented in phylodyn. For all of our
fixed-tree simulations, we use an effective population size trajectory designed to mimic the
seasonal effective population size changes of a seasonal disease such as influenza in North
America |Zinder et al., 2014], defined as follows:

(u—D) if Lo
N e By med 12) <6, 0)
e,l,u,p,0 - l+ (u,l) lf t+o (mOd 12) > 6
Texp{2[3+(52 (mod 12)—-12]}’ P )

Specifically, we use N 10,100,12,0(¢) which is most comparable to an influenza effective pop-
ulation size trajectory as measured in units of weeks, with ¢ = 0 representing the summer
effective population size minimum. We compare the results of our posterior predictive checks
across different sampling scenario and choice-of-posterior combinations.

In our first scenario, we simulate 500 sampling times, distributed according to a uniform
distribution between ¢ = 0 and t = 24 (weeks), and simulate a genealogy with effective
population size Ne 10100.12,0(t). We infer the underlying effective population size trajectory
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Figure B-1: Effective population size inference and coalescent posterior predictive
check for fixed-tree simulations. The dashed black line represents the true effective
population trajectory. The solid blue line represents the posterior median effective pop-
ulation trajectory inferred by fixed-tree MCMC and the light blue region represents the
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corresponding pointwise 95% credible intervals for the effective population trajectory.

Post. Pred. p-val

Scenario Sampling Model Coalescent Sampling
Uniform Conditional 0.58 —
Proportional Aware: ~(t) 0.59 0.72
Unrelated Conditional 0.46 —
Unrelated Aware: (1) 0.00 0.15

Table B-1: Posterior predictive p-values for simulated fixed-tree data.
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intensity. The solid blue line represents the posterior median sampling intensity inferred
by fixed-tree MCMC, and the light blue region represents the corresponding pointwise 95%
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with a sampling-conditional posterior using a Markov chain Monte Carlo (MCMC) method
with an elliptical slice sampling transition kernel (ESS) [Murray et al.,|2010] as implemented
in phylodyn (illustrated in the first row, first column of Figure We use the MCMC
output to generate replicate coalescent data as laid out in Section and calculate our
coalescent discrepancy D, for the observed MCMC results as well as for the replicated results.
We plot the discrepancy comparison in the second row, first column of Figure [B-1, and note
that the posterior predictive p-value is 0.58, which is close to 0.5, correctly suggesting that
the model is adequate.

We proceed with several additional scenarios. We simulate 514 sampling times between
t =0 and t = 24 (weeks), distributed proportionally to the effective population size, with
sampling log-intensity log[A.(t)] = —0.97 4+ N¢10,100,12,0(t). We infer the underlying effective
population size trajectory with a sampling-aware posterior (illustrated in the second column
of Figure B-1), with sampling time model log[As(t)] = By + B1 - ¥(t). We calculate the
posterior predictive p-value as 0.59, again correctly suggesting adequacy. We also simulate
509 sampling times between t = 0 and ¢t = 48 (weeks), distributed proportionally to a
piecewise constant function P(t) (illustrated in the second column of Figure unrelated
to the effective population size, with log-sampling intensity log[A.(¢)] = —1.67 + P(t). We
infer the underlying effective population size trajectory using two different methods. We
use the sampling-conditional method (illustrated in the third column of Figure and
the sampling-aware method (illustrated in the fourth column of Figure with sampling
log-intensity log[As(¢)] = Bo+ f1-y(t). The sampling-conditional posterior predictive p-value
becomes 0.46, suggesting that this method (which only considers the coalescent model) does
produce an adequate estimate of the effective population size trajectory. The sampling-aware
posterior predictive p-value becomes zero, suggesting that this method produced a very poor
estimate of the effective population size trajectory (very visible in Figure . This is likely
due to the sampling time model mistaking fluctuations in sampling intensity for information
about the effective population size trajectory, illustrating the importance of model checking
when the true sampling model is uncertain.

For our sampling-aware scenarios, we apply our sampling time posterior predictive check
as well. Our chi-squared sampling discrepancy D, . generates a posterior predictive p-value
of 0.72, correctly suggesting a good fit. The unrelated sampling scenario also produces a
sampling posterior predictive p-value. We see a relatively low posterior predictive p-value of
0.15, reacting to differences between the true and inferred sampling intensity trajectories.

Sequence Data Inference Now, we expand the scope of our simulation study to be based
on simulated sequence alignment data instead of a known genealogy. In this section, all of our
examples will be based on an effective population size trajectory of Ne 1 10.1,05(t), mimicking
the trajectory of a seasonal disease as measured in units of years. Similar to the previous
section, we generate sampling times and genealogies according to different sampling scenarios
and the coalescent, respectively. Given a genealogy, we simulate sequence data using the
software SeqGen |[Rambaut and Grassly, |1997] using the Jukes-Cantor 1969 [Jukes et al.
1969] substitution model to generate 1500 sites. We set the substitution rate to produce an
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Figure B-3: Effective population size inference and coalescent posterior predictive
check for sequence data simulations. The dashed black line represents the true effective
population trajectory. The solid blue line represents the posterior median effective popula-
tion trajectory inferred by BEAST, and the light blue region represents the corresponding
pointwise 95% credible intervals for the effective population trajectory.

Post. Pred. p-val

Scenario Sampling Model Coalescent Sampling

Uniform Conditional 0.51 —
Proportional Conditional 0.50 —
Increasing Aware: ~(t) 0.47 0.56
Unrelated Aware: v(t) 0.17 0.46

Table B-2: Posterior predictive p-values for simulated sequence data.
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Figure B-4: Sampling intensity inference and sampling time posterior predictive
check for sequence data simulations. The dashed black line represents the true sampling
intensity. The solid blue line represents the posterior median sampling intensity inferred
by BEAST, and the light blue region represents the corresponding pointwise 95% credible
intervals for the sampling intensity.
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expected 0.9 mutations per site, in order to produce a sequence alignment with many sites
having one mutation and some sites having zero or multiple mutations.

For our first simulation, we distribute 200 sampling times uniformly between ¢ = 0 and
t = 2 (years). We infer the underlying genealogy and effective population size trajectory
using the software BEAST [Suchard et al., 2018] with an elliptical slice sampling transition
kernel (ESS) [Murray et all 2010] as implemented in Section [2| with a sampling-conditional
posterior. Finally, we generate replicate genealogies as in the previous section, and we calcu-
late our coalescent discrepancy D, for the observed BEAST results as well as the replicates.
In Figure (first column), we see that the effective population estimate is close to the
true trajectory, and when we compare the observed and replicate discrepancies, we calcu-
late a posterior predictive p-value of 0.51, corroborating the model’s adequacy. Next, we
distribute 170 sampling times between ¢ = 0 and ¢t = 2 (years) with sampling log-intensity
log[Ac(t)] = 2.904+ Ne1.10.1,05(t). We infer the underlying genealogy and effective population
size trajectory using the sampling-conditional model and calculate discrepancies as above.
Note this is a model misspecification applying a sampling-conditional model to a preferential
sampling sampling scenario in the style of [Karcher et al., 2016]. Unfortunately, the posterior
predictive p-value (0.50) does not detect this mismatch, as the bias effective population size
estimate is hard to visually detect in Figure |B-3

In our third scenario, we distribute 199 sampling times between ¢ = 0 and ¢ = 2 (years)
with increasing sampling log-intensity log[A.(t)] = 3.35 — 0.5t + Ne1.101,05(t). We infer as
above, but targeting the sampling-aware posterior with sampling log-intensity log[As(¢)] =
Bo + [ - y(t). This is again a misspecification, as the model cannot recover the —0.5¢
term. However, the posterior predictive check does not clearly detect the mismatch, with a
posterior predictive p-value of 0.47. Our sampling posterior predictive check does not detect
the misspecification either, with a posterior predictive p-value of 0.56. In our final scenario,
we distribute 222 sampling times between ¢ = 0 and ¢ = 2 (years) with a sampling log-
intensity log[A.(t)] = 2.84 4+ P'(t) (P'(t) illustrated in Figure [B-4] second column) unrelated
to the effective population size. We target the sampling-aware posterior, with sampling log-
intensity log[As(t)] = Bo + 51 - v(t). The model reconstructs the effective population size
trajectory poorly, and this is successfully reflected in the posterior predictive p-value of 0.17.
However, our sampling posterior predictive check does not detect the misspecification, with
a posterior predictive p-value of 0.46.

B.2.2 Seasonal Influenza

We apply our posterior predictive check methods to the North American subset of global
H3N2 influenza |Zinder et al.) 2014]. The data contains 520 sequences aligned to form a
multiple sequence alignment with 1698 sites of the hemagglutinin gene. We use the same
sequence data BEAST framework as the previous section, choosing four different specific sam-
pling time models. We use a sampling-conditional model with no sampling time model, a
simple log-linear sampling time model, and sampling models with different sets of covariates,
including I,,(t) = I(t mod 1)c[0,0.25) @s an indicator function for winter, I,(t) = I(; mod 1)c[0.25,0.5)
as an indicator function for autumn, and Is(t) = It mod 1)c[0.5,075) as an indicator function
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Figure B-5: Effective population size inference and coalescent posterior predictive
check for seasonal influenza data. The solid blue line represents the posterior median
effective population trajectory inferred by BEAST, and the light blue region represents the
corresponding pointwise 95% credible intervals for the effective population trajectory.
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Figure B-6: Sampling intensity inference and sampling time posterior predictive
check for seasonal influenza data. The dashed black line represents the true sampling
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Post. Pred. p-val

Sampling Model Coalescent Sampling

Conditional 0.47 —

Aware: ~(?) 0.48 0.29

Aware: ~(t), —t 0.47 0.32

Aware: y(t), Ly, Iy, I 0.49 0.16

Aware: Y(t), Lo, Lo, I, {Io, I, I} - y(t)  0.49 0.16

Table B-3: Posterior predictive p-values for seasonal influenza data.

for summer.

Figure [B-5| shows the inferred effective population size trajectories and coalescent pos-
terior predictive checks for the models. All estimated trajectories follow a similar seasonal
trajectory, and the discrepancy comparison suggests that the estimated trajectory produces
reasonable results with large posterior predictive p-values (Table[B-3)). Figure shows the
inferred sampling intensities compared against a nonparametric sampling time-only estimate
of the sampling intensity, as well as sampling posterior predictive checks for the four mod-
els. The sampling posterior predictive check produces moderate-to-low posterior predictive
p-values, suggesting some model inadequacy manifesting in the sampling intensity estimates.

B.2.3 Ebola Outbreak

Next, we analyze a subset of sequence data from the recent African Ebola outbreak |[Dudas
et al) 2017]. We use the same sequence data BEAST framework as the previous section,
choosing four different specific sampling time models. We use a sampling-conditional model
with no sampling time model, a simple log-linear sampling time model, and several additional
sampling-aware models with different sets of covariates.

Figure [B-7] shows the inferred effective population size trajectories and coalescent poste-
rior predictive checks for the four models. All estimated trajectories follow a similar effective
population size trajectory that visually resembles a typical time trajectory of prevalence or
incidence that peaks in Autumn of 2014. The discrepancy comparison suggests that the esti-
mated trajectory produces reasonable results with large posterior predictive p-values (Table
[B-4)). Figure shows the inferred sampling intensities compared against a nonparametric
sampling time-only estimate of the sampling intensity, as well as sampling posterior pre-
dictive checks for the four models. The sampling posterior predictive check produces small
posterior predictive p-values (Table , suggesting notable model inadequacy manifesting
in the sampling intensity estimates.
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Figure B-7: Effective population size inference and coalescent posterior predictive
check for Sierra Leone Ebola data (part 1). The solid blue line represents the pos-
terior median effective population trajectory inferred by BEAST, and the light blue region
represents the corresponding pointwise 95% credible intervals for the effective population
trajectory.

Sampling Model

Post. Pred. p-val
Coalescent Sampling

Conditional 0.48
Aware: ~(?) 0.47
Aware: ~(t), —t 0.50
Aware: ~(t), —t,—t - y(t) 0.50
Aware: ~(t), —t, —t 0.48
Aware: v(t), —t, —t* {—t, —t*} - y(t) 0.51
Aware: ~y(t), {—t, —t*} - v(¢) 0.51

0.15
0.18
0.06
0.31
0.17
0.22

Table B-4: Posterior predictive p-values for Sierra Leone Ebola data.
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Figure B-8: Effective population size inference and coalescent posterior predictive
check for Sierra Leone Ebola data (part 2). The solid blue line represents the pos-
terior median effective population trajectory inferred by BEAST, and the light blue region
represents the corresponding pointwise 95% credible intervals for the effective population
trajectory.
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Figure B-9: Sampling intensity inference and sampling time posterior predictive
check for Sierra Leone Ebola data (part 1). The dashed black line represents the true
sampling intensity. The solid blue line represents the posterior median sampling intensity
inferred by BEAST, and the light blue region represents the corresponding pointwise 95%
credible intervals for the sampling intensity.
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Figure B-10: Sampling intensity inference and sampling time posterior predictive
check for Sierra Leone Ebola data (part 2). The dashed black line represents the true
sampling intensity. The solid blue line represents the posterior median sampling intensity
inferred by BEAST, and the light blue region represents the corresponding pointwise 95%
credible intervals for the sampling intensity.
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Figure C-1: Comparison of effective population size reconstructions with incidence
data in Sierra Leone. The solid blue line represents the posterior median effective popu-
lation trajectory inferred by BEAST, and the light blue region represents the corresponding
pointwise 95% credible intervals for the effective population trajectory. The solid black line
shows the observed incidence scaled by a constant so it is on the same scale as the effective
population size.

C Appendix: Ebola incidence data

As we explain in Section 4.3, we compare estimated effective population size trajectories with
observed incidence data. We multiplied incidence count by 0.01 — a number determined
by trial-and-error, to bring incidence and effective population size to the same scale — and
plot effective population size posterior summaries and incidence counts for Sierra Leone and

Liberia in Figures and

C-1



Sampling—Conditional Sampling—aware: y(t) Sampling—aware: y(t), -t Sampling—aware: y(t), —t, —t*y(t)

8 8 8 8
F F BEAST estimate | & T
[CRS] - - -
N
n
c
S8 8 8 8
= T T A 7 T A
83 & & &
>
=%
o
Qo o o o
PR 4 o A 9 9 J
S o o 7| Observed incidence / [ o
=1 - 1 -
|5} 7
g BEAST cred. intervals
W g g 3 g
o sampling events | L, 7 sampling events | & | Sampling events | L, 7 Sampling events
B - omm u — - oms u = - omm = B - u
T T T T T T T T T T T T
July 2014 October 2014 January 2015 July 2014 October 2014 January 2015 July 2014 October 2014 January 2015 July 2014 October 2014 January 2015

Figure C-2: Comparison of effective population size reconstructions with incidence
data in Liberia. See Figure caption for the legend explanation.
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