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Abstract 

Validation of Multiparametric Magnetic Resonance Imaging Techniques for 

Evaluating the Prostate 

by 

Olga Starobinets 

Prostate cancer is extremely common. With recent advancements in cancer detection, an 

increasing number of men at a younger age face the difficult choice between delaying potentially 

life-saving interventions and seeking curative treatments, which are typically accompanied by a 

host of side effects. Non-invasive disease characterization is a promising step toward identifying 

patient-specific cancer management strategies. Due to the excellent performance of anatomic 

imaging and the ability to characterize physiologic properties via functional imaging modalities, 

multiparametic magnetic resonance imaging (mpMRI) has the potential to make a significant 

impact on the way prostate cancer is viewed by both patients and clinicians.  

This thesis will introduce multiparametric MR imaging in the context of prostate 

anatomy. It will address the issues of aligning MR imaging to the whole-mount histopathology 

images (commonly regarded as a reference standard) and discuss characterization and 

stratification of prostatic lesions based on mpMR imaging. This work will also introduce a semi-

automatic approach to lesion segmentation on histopathology and report on the prostate cancer 

composition in the radical prostatectomy population. Furthermore, this thesis will investigate the 

prevalence of “sparse” prostatic lesions, discussing their clinical significance and exploring 

mpMRI capabilities to detect these cancers. Finally, this work will examine the influence of 

prostate treatments, specifically 5-alpha reductase inhibitors (often used to treat benign prostatic 
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hyperplasia), on the structure of prostatic tissues, their effect on the appearance of prostatic 

tissues on mpMRI, and what role such treatments play in our ability to properly detect 

malignancies post treatment.  
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CHAPTER 1 

Introduction  

Prostate cancer (PCa) is the second leading cause of cancer-related deaths among 

American men. In 2017 over 160,000 of the US men will be diagnosed with prostate cancer, with 

almost 27,000 men dying from the disease.3 Prostate cancer is extremely heterogeneous; some 

cancers are indolent and can safely remain untreated for decades, while other prostatic 

malignancies are quick to progress and generally require intervention. Considering the often-

indolent nature of the disease and the fact that definitive treatments for PCa are often associated 

with a host of side effects ranging from incontinence to impotence,5 active surveillance (AS) has 

emerged as a preferred option for management of localized low-risk prostate cancer. Active 

surveillance is an approach based on monitoring prostate cancer while postponing definitive 

treatments. Despite several reassuring large-cohort, long-term studies indicating the safety of 

active surveillance7,8 and studies showing the positive effects of active surveillance on the 

quality of life,9,10 AS is still an underutilized management option with >80% of US men eligible 

for AS choosing to pursue curative treatment instead.13 This reluctance likely stems from anxiety 

over misdiagnosed cancer and worry over missed progression to high-risk disease. These 

concerns are understandable since the current, conventional methods for diagnosing and tracking 

prostate cancer, consisting of digital rectal exam (DRE), prostate specific antigen (PSA) testing, 

and ultrasound guided prostate biopsies, come with a host of limitations and may result in under-

grading and under-staging of PCa.14 The ushering of the active surveillance era puts a more 

urgent emphasis on our ability to accurately locate, characterize, and monitor the disease. 

Multiparametric magnetic resonance imaging (mpMRI), a noninvasive imaging technique that 

can be used to identify and locate prostate cancer, offers an appealing alternative to the 
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conventional methods for PCa diagnosis. In this thesis, we introduce multiparametric MR 

imaging in the context of prostate anatomy and address some of the challenges associated with 

tissue characterization using mpMRI and issues involved in validation of mpMR imaging for 

accurate PCa diagnosis. 

In Chapter 3, we present a semi-automatic software-based method of registering in vivo 

prostate MR images to digital histopathology for unmolded prostates, as well as prostates that 

have been molded prior to fixation to simulate distortion due to the endorectal coil. Accurate 

mapping between in-vivo MRI and digitized pathology is extremely important in establishing 

validity of imaging findings. The presented software was shown to successfully morph 

histology-based prostate images into corresponding MR images. Percent overlap improved from 

80.4±5.8% prior to morphing to 99.7±0.62% post morphing. Molded prostates had a smaller 

distance between landmarks (1.91±0.75mm) versus unmolded (2.34±0.68mm), indicating a 

better alignment of internal structures within the prostate, but this did not reach statistical 

significance.  

The study presented in Chapter 4 characterized prostate cancers and validated mpMRI in 

detecting PCa and predicting PCa aggressiveness by correlating mpMRI findings with whole-

mount histopathology. Logistic regression (LR) was used to identify optimal combinations of 

parameters to separate benign from malignant tissues, clinically significant disease from PCa 

considered clinically unimportant, as well as low-risk from high-risk PCa within the peripheral 

and the transition zones of the prostate. MpMRI was shown to provide excellent separation 

between benign tissues and PCa, and across PCa tissues of different aggressiveness. The final 

models prominently featured spectroscopy and dynamic contrast-enhanced (DCE)-derived 
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metrics (two modalities often undervalued in mpMRI acquisition) underlining their importance 

within a comprehensive mpMRI exam. 

Chapter 5 presents a new semi-automatic technique for lesion segmentation, accurate 

region contouring and region area estimation on whole-mount histopathology slides. The chapter 

describes the development of a software-based segmentation procedure and covers the user 

initialized gradient vector flow (GVF) active contouring technique used to obtain accurate cancer 

region outlines. This approach was shown to perform well even when applied to “subjective” 

contours (such as dotted outlines). Additionally, this technique was demonstrated to be robust to 

the variations in user initialization and to perform well for regions within a wide range of sizes. 

The coefficients of variation computed as part of a repeatability study were small ranging from 

0.0018 to 0.0166, indicating the overall robustness of the technique. 

In Chapter 6 we establish the incidence and Gleason grading of sparse lesions on whole-

mount histopathology in post-prostatectomy samples, identify the imaging characteristics of 

sparse cancers on mpMRI modalities, and discuss their clinical implications. Based on the 

histopathology findings, sparse cancers were found to be entirely low grade in the transition zone 

and predominantly low-grade (83%) in the peripheral zone and thus overall likely pose limited 

malignant potential for spread and progression. On imaging, sparse low-grade cancers and sparse 

higher-grade disease were shown to have similar imaging characteristics to dense low-grade 

PCa. However, statistically significant differences were found between sparse low-grade cancers 

and benign tissues on several imaging modalities within the peripheral zone, indicating the value 

of mpMRI for focal treatment planning. 

Chapter 7 discusses the effects of treatments on prostate mpMR imaging; more 

specifically, this study investigated how 5α-reductase inhibitors (often prescribed for patients 
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with enlarged prostates due to benign prostatic growth) affect the discrimination between low-

grade prostate cancer and benign tissues on mpMRI. A better separation between low-grade 

cancerous and benign regions was observed for prostatic tissues exposed to 5-ARIs for the 

majority of the MR measures of interest and overall with an mpMRI approach. Additionally, a 

reduction in the coefficient of variation was noted for most of the MR measures in the treated 

cohort when compared to the untreated group. Of clinical interest, these findings suggest that 

pretreatment with 5-ARI may facilitate a better discrimination of low-grade prostate cancer from 

benign tissues with mpMRI.  

Chapter 8 provides a summary of the findings and their clinical implications. It also 

discusses potential future directions and applications for mpMRI.  
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CHAPTER 2 

Background 

Parts of Section 2.2 of the following chapter are reprinted from “Practical aspects of 

prostate MRI: hardware and software considerations, protocols, and patient preparation” by Olga 

Starobinets, Natalie Korn, Sonam Iqbal, Susan M Noworolski, Ronald Zagoria, John 

Kurhanewicz, and Antonio C Westphalen. The manuscript was published in Abdominal 

Radiology in May 2016 (41(5): 817-830). Olga Starobinets, Natalie Korn, and Sonam Iqbal 

conducted the literature review and co-wrote the publication. Susan Noworolski, Ronald Zagoria, 

and John Kurhanewicz edited the manuscript. Antonio Westphalen defined the scope of the 

review and supervised the project. 

2.1 Prostate Cancer  

One in 7 men in the US will be diagnosed with prostate cancer during his lifetime3. While 

more men are being diagnosed at a younger age (with mean age of diagnosis shifting from 70 to 

65 years old in the past 30 years15), over the last few decades there has been a significant decline 

in PCa mortality. Between 1991 and 2005, prostate cancer mortality declined by 42% from 103 

to 60 deaths per 100,000 men among 50–84 year old males.16 This trend can be attributed to the 

improvements in PCa treatments (explaining 22-33% of the mortality decline) but more 

significantly to the introduction of the prostate antigen specific (PSA) screening.16 However, the 

story of PSA screenings is not without controversy. According to a recent study PCa 

overdiagnosis estimates range from 1.7% to 67%.17 A 2009 study published in the New England 

Journal of Medicine found that 1410 men would need to be screened and 48 additional cases of 

prostate cancer would need to be treated to prevent one death from prostate cancer.18 To mitigate 

overdiagnosis and overtreatment of clinically insignificant prostate cancer, in 2012, US 
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Preventative Services Task Force (USPSTF) issued a recommendation against using PSA-based 

screening for prostate cancer in men regardless of age.19 To understand the low sensitivity of 

PSA screening one has to take a closer look at the prostate gland and the processes that take 

place there.  

The prostate is a small muscular gland located in the pelvis, surrounded by the rectum 

posteriorly and the bladder superiorly, with urethra running through its center (Figure 2.1). The 

prostate produces and secretes about 30% of the seminal fluid. In line with its function, the gland 

is made up of two primary tissues: glandular tissue (facilitates secretion) and fibromuscular 

tissue (contracts to expel fluids during ejaculation).  

 

 

 

 

 

 

The prostate is typically divided into the peripheral zone, the central zone, the transition 

zone, and the fibromuscular stroma (Figure 2.2). The majority of prostate cancers (70-80%) 

originate in the peripheral zone with the transition and the central zones responsible for the rest.20 

Adenocarcinomas of the prostate are not believed to originate in the anterior fibromuscular 

stroma; however, cancers originating within the PZ, CZ, or TZ may invade the fibromuscular 

Figure 2.1: Anatomy of male reproductive and urinary systems, showing the prostate gland. 
A prostate is a walnut sized gland that typically continues to grow throughout a man’s life. When 
enlarged the prostate may obstruct the urine flow by constricting the urethra running through the 
center of the gland. Large nerve bundle surround the prostate on both sides. In order to preserve 
erectile function, bilateral nerve sparing is desirable during prostatectomy. 
Adapted from https://www.ncbi.nlm.nih.gov/ 
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stromal tissues.21 The transition zone is also the site of origin for benign prostatic hyperplasia 

(BPH), benign growth that can significantly increase the size of the gland, compressing the 

peripheral zone and constricting the urethra, often resulting in lower urinary tract problems. 

Additionally, high-grade prostatic intraepithelial neoplasia (high-grade PIN or HGPIN), often 

seen as a precursor to prostate cancer, is estimated to occur in 15% of men in the 40-49 age 

group, with HGPIN prevalence continuing to rise with age.22 Finally, atrophy and prostatitis, 

inflammation of the prostate (chronic and acute), round up the list of common processes taking 

place within the prostate gland (Figure 2.2).  

 

 

 

 

 

 

 

 

 

 

Figure 2.2: Zonal anatomy of the prostate gland with zonal prevalence for disease states.  
The majority of cancer lesions occur in the peripheral zone of the gland, fewer cancers are found in 
the transition zone and almost none arise in the central zone. Chronic inflammation is more 
prevalent than acute inflammation and can be prominent in both the peripheral and the transition 
zones. Most benign prostate hyperplasia (BPH) lesions develop in the transition zone. High-grade 
PIN is mostly found in the peripheral zone. The various patterns of prostate atrophy are also much 
more commonly found in the peripheral zone, with fewer occurring in the transition zone and only 
occasional atrophic region found within the central gland.  
The figure is adapted from a paper by Angelo M. De Marzo et al. Inflammation in Prostate 
Carcinogenesis. Nat. Rev. Cancer. 2007 Apr; 7(4): 256-269.1  
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How do these processes relate to the sensitivity of the PSA testing? PSA is a glycoprotein 

produced in the epithelium of the prostate. Under normal circumstances, very little PSA is 

secreted into the blood stream. However, in the presence of BPH,23,24 atrophy,25 prostatitis,23,24 or 

prostate cancer26 the PSA levels in the blood become elevated, indicating the overall presence of 

atypical processes but limiting the usefulness of PSA as a PCa biomarker.  

Fortunately, PSA testing is not the only tool urologists have available for diagnosing 

prostate cancer. Digital rectal exams involve physicians inserting a finger into the rectum and 

feeling the prostate (that lies in front of the rectum) for any lumps or anomalies. Predictably, the 

prostate area accessible for evaluation through such means is rather limited. A recent large-scale 

study demonstrated a limited value of DRE especially in the setting of normal PSA.27 PSA 

testing and DRE examination are considered noninvasive; suspicious findings on these 

modalities typically trigger transrectal ultrasound (TRUS)-guided biopsy. Gleason grading 

assigned to the detected malignant prostatic tissues is one of the most powerful predictors of 

patient outcome.28 

Around 1.3 million prostate biopsies are performed in the United States every year.29 

Prostate biopsy involves the removal of small tissue samples (typically 10-16 cores are collected) 

with a needle inserted through the rectal wall under the guidance of an ultrasound. Following the 

procedure a pathologist assigns a Gleason score to the biopsy specimen.30 The Gleason grading 

system is based on the histology patterns of the cancer cells in the stained prostatic tissue 

sections (Figure 2.3).11,31 The five basic grade patterns are used to generate a Gleason score, 

which can range from 2 to 10, by adding the primary grade pattern and the secondary grade 

pattern. The primary and the secondary patterns correspond to the predominant and the second 

most common patterns found in the tissue. Due to this comprehensive grading scheme, prostate 
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biopsy serves as a standard reference for histological diagnosis of prostate cancer. Nevertheless, 

prostate biopsies have their drawbacks.  

 

 

Due to a largely random and limited sampling, with less than 1% of the prostate sampled 

during the biopsy, prostate cancer may remain undetected (more than 30% of prostate cancers 

are missed on TRUS biopsies32) or the Gleason score of the tumor may be underestimated. 

Gleason score might be underestimated in as many as 45% of biopsied cases when compared to 

Gleason grading on post-prostatectomy samples.32 Additionally, prostate biopsies are not 

indolent procedures. Complications due to prostate biopsies include pain, infections, prostatitis, 

cystitis, sepsis, endocarditis, gastrointestinal hemorrhage, hematuria, and urinary symptoms.33   

While limitations associated with PSA testing and the invasive nature combined with 

sampling errors of TRUS-guided biopsies paint a grim picture as to the state of PCa screening, 

eliminating PCa screening altogether is a dangerous prospect. Gulati et al. used a simulation 

Figure 2.3: Prostate cancer Gleason grading. 
Gleason grades reflect the degree of differentiation of 
prostate cancer. Gleason grades 1 and 2 closely resemble 
normal prostatic glands. Gleason pattern 2 is characterized 
by an increase in variability in gland size and shape, as well 
as increased infiltrations of stroma in-between the glands 
than is seen for pattern 1. Gleason pattern 3 is the most 
common grade and is associated with modern level of 
differentiation. The glandular structure is still recognizable; 
however, the glands are misshapen, haphazardly spaced, 
demonstrating irregular extensions into the stroma. Gleason 
grade 4 is characterized by poorly differentiated cancer 
growth, with infiltrative fused masses forming chains or 
strands of malignant epithelial cells. Gleason grade 5 is the 
most poorly differentiated pattern, typically forming solid 
sheets of malignant cells, often with a necrotic core. To 
better characterize prostatic cancer, instead of assigning a 
single Gleason patter, a Gleason Score, which is the sum of 
the two most common Gleason grades associated with the 
tumor (ranging from 2 to 10) is assigned instead11. 
Adapted from Gleason DF. Classification of prostatic 
carcinoma. Cancer Chemother Rep. 1966;50:125–128.12 
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model to predict that discontinuing PSA screening in the US would increase prostate cancer 

mortality by 13-20% when compared to continued screening.34 Clearly, an alternative approach 

is warranted. Imaging (such as provided via mpMRI scans) offers the best alternative means of 

detecting PCa and differentiating indolent disease from the more aggressive, lethal cancers. By 

evaluating the entire gland, MRI addresses some of the limitations associated with TRUS-guided 

biopsies and offers an alternative to strictly ultrasound-guided biopsies through the possibility of 

both imaging-based disease detection and MR/ultrasound fusion prostate biopsies.35  

2.2 Multiparametric MRI 

2.2.1 Introduction  

Magnetic resonance imaging has been used in medicine since the 1980s; however, 

multiparametric MRI has only recently been introduced into a routine clinical practice for the 

diagnosis of prostate cancer. MpMRI of the prostate encompasses various sequences, including 

T1- and T2-weighted MR imaging, diffusion-weighted imaging (DWI), proton magnetic 

resonance spectroscopic imaging (1H-MRSI), and dynamic contrast enhanced (DCE) MRI,36,37 

shown in Figure 2.4. 

As such, in addition to the anatomic data, the mpMRI exam offers information about the 

microscopic mobility of water (Brownian motion), biochemical characteristics, neovascularity, 

and cellular structure of the prostatic tissue. Since these characteristics are different for 

malignant and benign tissues, high-resolution mpMRI provides valuable data that helps to 

characterize the extent and biological behavior of prostate cancer. Owing to these capabilities, 

MR imaging of the prostate is increasingly being used to assist patients and clinicians to make 

management decisions.38-42 
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The mpMRI exam offers a comprehensive assessment of prostatic tissues using an array 

of metrics that can be tailored according to the patient’s clinical need. Among the main patient-

Figure 2.4: Examples of some of the images acquired as part of mpMRI scan. 
An untreated 78 year-old man with serum PSA of 9.8 ng/ml showing a a) coil-corrected T2-weighted 
FSE image, b) MRSI choline metabolite map created in SIVIC2, c) rFOV ADC map (b=0, 600 
sec/mm2), d) coil-corrected rFOV DWI  (b=1350 sec/mm2), and DCE-derived semiquantitative 
parameters of e) enhancement slope, and f) washout slope. Subsequent TRUS–MRI fusion‐guided 
biopsy revealed a Gleason 4+3 lesion in the left apex. The cancer region is indicated by the arrow. 
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specific factors that determine optimal mpMRI performance is the patient treatment history.43 

The imaging metrics most relevant to diagnosis may change for imaging patients after 

radiation,44,45 focal brachytherapy,46 hormone treatment,47,48 and/or surgery.47,49,50 Additionally, 

implants associated with abdominal and pelvic comorbidities—such as hip replacements 51,52 or 

lumbar fusions53 can significantly affect image quality for certain modalities.  

2.2.2 Hardware and Software Considerations 

Multiparametric prostate imaging was initially implemented on 1.5 Tesla (1.5T) 

scanners.54-62 To acquire scans with diagnostic value, both a pelvic phased array and an 

endorectal coil (ERC) were used in combination.63 In prostate MR imaging, ERCs provide a 

significant improvement in signal-to-noise ratio (SNR) and spatial resolution when compared to 

pelvic phased array coils alone.64 This has a profound impact on the quality of the SNR-starved 

functional imaging; i.e., 1H-MRSI and DWI. Traditional ERCs use a balloon-filled coil that 

achieves nine-fold SNR improvement over a phased-array alone.64 After insertion into the 

rectum, the balloon is inflated, with 40-80 ml of either an inert fluid that matches the 

susceptibility of the prostatic tissues, e.g. perflurocarbon (PFC) or barium sulfate,64 or 

alternatively with air or water. Using an inert fluid instead of air or water improves the 

homogeneity of the magnetic field and decreases susceptibility artifacts between the rectum and 

the prostate.65,66 These inflatable ERCs provide better coverage, are associated with fewer 

motion artifacts, and are faster to position when compared to rigid coils.64 Using either a rigid or 

an inflatable ERC creates an inhomogeneous reception profile which results in higher signal 

intensity (SI) near the rectal wall and may hinder cancer detection in the peripheral zone. 

Fortunately, this signal nonuniformity can be easily rectified using readily available coil-

correction software.67 
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The introduction of 3-Tesla (3T) clinical scanners presented an opportunity to enhance 

image quality by trading the increased SNR for improvements in spatial and temporal 

resolutions, decreasing the necessity of an ERC. However, the SNR increase provided by an 

ERC can only be partially replaced by a two-fold SNR improvement associated with doubling 

the magnet strength. Nevertheless, with advances in pulse sequence design, several groups 

reported that studies done solely with 6 to 32 phased array surface coils at 3T yielded 

comparable images as the exams conducted with 1.5T scanners with an endorectal coil.68-72 

Comparison studies with and without ERC at 3T have shown increased sensitivity (0.45, no ERC 

and 0.75, with ERC) and positive predictive value (0.64, no ERC and 0.80, ERC) for prostate 

cancer detection73 (Figure 2.5). However, considering patient discomfort, patient preparation, 

costs, coil placement time, and anatomical distortion associated with ERCs, the use of ERCs in 

prostate imaging is still being actively debated.  

 

 

 

 

 

 

 

Figure 2.5: T2-weighted images demonstrating differences between acquisitions with and without 
ERC. 
An untreated 66 year-old man with no prior biopsies and serum PSA of 7.9 ng/ml. Oblique axial 
FSE T2-weigthed images acquired with the same protocol, resulting in 0.35x0.35x3mm in-plane 
resolution a) with an endorectal coil and b) without an endorectal coil. This patient was scanned 
twice in three months in anticipation of the MR-guided biopsy. We observe a noticeably increased 
noise in the image without an ERC, as well as diminished delineation between nodules inside the 
gland. 
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2.2.3 Localizer images 

Patients are usually scanned in the supine position to maximize patient comfort and 

minimize respiratory-induced prostate motion between acquisitions. However, when an ERC is 

not used, the prone position may be a better alternative for some men. Imaging patients in the 

prone position can result in higher respiratory motion artifacts, but may be necessary to facilitate 

comfort for certain patients.74,75 MR imaging of the prostate begins with a low-resolution 3-plane 

localizer ‘scout’. These images are used to locate the prostate and establish the orientation of the 

coils in relation to the gland prior to scanning.  

2.2.4 T1-weighted MR imaging 

 A multiparametric MR imaging exam of the prostate typically includes an axial large 

field-of-view T1-weighted scan of the entire pelvis to assess regional lymph nodes for abnormal 

size, shape, or intensity. Identification of these lymph nodes is facilitated by the T1 contrast 

between the high signal intensity of visceral fat and lower signal intensity of large or irregularly 

shaped lymph nodes.76 To ensure that lymph nodes in the drainage pathway are imaged during 

the exam, the T1-weighted scan prescription extends superiorly to the aortic bifurcation.77 T1-

weighted imaging is also used to diagnose post-biopsy hemorrhage, which demonstrates high 

signal intensity.76 Hemorrhage often has low T2 signal intensity, mimicking cancer, and may 

introduce significant artifact on DWI and 1H-MRSI, and confound results from DCE MR 

imaging. For this reason, an interval of at least 6 weeks between the most recent prostate biopsy 

and the MRI scan is recommended.78,79 In addition, T1-weighted images may offer an 

opportunity to detect osseous metastases.  

2.2.5 T2-weighted MR imaging 
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Multiplanar high-resolution two-dimensional (2D) fast spin-echo (FSE) T2-weighted MR 

images provide exquisite soft-tissue contrast and excellent depiction of zonal anatomy, and are 

the backbone of MR imaging of the prostate. As mentioned earlier, the majority of prostate 

cancers are adenocarcinomas that arise within the peripheral zone. Most have low signal 

intensity against the background of the bright peripheral zone tissue. Similarly to peripheral zone 

cancers, transition zone lesions usually have low signal intensity on T2-weighted MR images, 

but can be difficult to distinguish from benign tissue, in particular in the presence of BPH. T2-

weighted MR imaging is also the main sequence utilized to assess locoregional spread of 

cancer;80,81 the diagnostic accuracy, though, is higher when it is combined with other functional 

sequences.82 Prognosis, management, and treatment options of prostate cancer are greatly 

affected by cancer stage, in particular by the presence of extra prostatic extension (EPE) and/or 

seminal vesicle invasion (SVI). 

High-resolution 2D FSE T2-weighted images are acquired in the true sagittal plane, as 

well as the oblique axial (Figure 2.4a) and oblique coronal planes of the prostate.83 Slice 

thickness of ≥3mm, without a gap, and the in-plane dimension of ≤0.7mm (phase) × ≤0.4mm 

(frequency) are typically used. For most patients a field-of-view of 12-18 cm allows for the 

inclusion of the entire gland and seminal vesicles. High-resolution 3D FSE T2-weighted MR 

imaging has emerged as a promising technique, allowing for the acquisition of isotropic images 

and saving time by reducing the number of sequences that need to be obtained. However, the 

quality of the 3D sequence may be limited if acquired on older or low-field magnets. While the 

T2 contrast is not the same as seen in 2D acquisitions, it is clinically acceptable.84 Westphalen et 

al. showed that the preference for the 2D or 3D FSE MR images varies widely among 

radiologists, but without differences in their ability to delineate the anatomy and identify 
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cancer.85 This same study did find differences in image sharpness and presence of some artifacts. 

The 2D FSE images were sharper than the 3D ones, but demonstrated more artifacts (Figure 2.6).  

 

 

 

 

 

 

2.2.6 Diffusion-weighted MR imaging 

DWI exploits the random motion of water molecules in biological tissues (Brownian 

motion) to characterize disease. These images are primarily utilized to calculate apparent 

diffusion coefficient (ADC) maps (Figure 2.4c). The glandular structure of the normal peripheral 

zone of the prostate compared to the shrunken glands or tightly packed cancerous tissue defines a 

well-established contrast between healthy and tumor tissue on DWI and the corresponding ADC 

maps.86 Perhaps not surprisingly, DWI has been shown to increase the sensitivity and specificity 

of multiparametric MR imaging for the detection of prostate cancer.87-89 It has also been shown 

to improve the assessment of tumor aggressiveness when combined with conventional T2-

weighted imaging, with an inverse relationship between the ADC map intensity and the Gleason 

score.90 A threshold of approximately 850×10
–6 mm

2
/s has been used to distinguish between 

low- and high-grade tumors.91 Yet, because of substantial overlap of ADC values seen in BPH 

Figure 2.6: Comparison of 2D and 3D FSE T2-weighted MR images. 
An untreated 61 year-old man with biopsied Gleason 3+3 prostate cancer and serum PSA of 5.6 ng/ml 
showing an oblique axial a) T2-weighted FSE anatomic image and b) T2-weighted CUBE anatomic 
image. The phase-encoding direction aliasing artifact present in the FSE image is not present in the 
CUBE image. However, the CUBE image is noticeably blurred in comparison to the FSE. 
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and cancers, and variability across the various imaging platforms and due to different acquisition 

parameters, a qualitative visual assessment may be preferred. 

Adequate characterization of the random motion of water requires information about its 

movement in multiple directions. Accordingly, DWI is usually comprised of at least three 

separate acquisitions, each measuring diffusion in a different direction. Due to this unique 

sequence structure, DWI is particularly prone to artifact from patient motion between directional 

acquisitions. To mitigate this problem, images are usually acquired with an echo-planar imaging 

(EPI) pulse sequence, designed to decrease scan time. 

For pelvic cancer detection on 3T scanners, the b-value is generally divided into mid 

(between 500 and 800 s/mm2) and high (between 1000 and 2500 s/mm2) b-values (Figure 

2.4d).92,93 Scanning on older magnets usually excludes b-values above 1000 s/mm2 due to limits 

in gradient hardware. Using a lower b-value emphasizes extracellular effects in the resulting 

ADC maps, whereas using a high b-value emphasizes intracellular motion. Recently, it has 

become popular to utilize more than one b-value for the assessment of prostate cancer. Imaging 

with a mid-range b-value will normally have a greater SNR, which can result in finer resolution 

and a decreased number of signal averages per image. However, a high b-value acquisition 

reduces the signal from normal prostatic tissue, increasing the sensitivity to abnormal cellular 

environments.94 One method of gaining the advantage of contrast of a high b-value while still 

having the high SNR and fine resolution of a lower b-value acquisition is to extrapolate and 

compute the theoretical image output for higher b-values.95 These images show higher SNR than 

traditional DWI collected with the equivalent high b-values, and can be utilized on older 1.5T 

scanners where gradient hardware may not allow acquisition with high b-values.96 
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In addition to more heavily diffusion weighted images, a low b-value image is acquired 

with a b-value in the range of 0 -100 s/mm2.97 This image serves as a reference, to fit a slope to 

the signal per b-value per direction, which is combined to define the ADC map. Additionally, the 

lower b-values aid in removing the effect of perfusion on the resulting ADC map. 

DWI is heavily affected by susceptibility artifacts, which increase in magnitude with 

higher field strength.98 Images acquired with EPI, in particular, suffer from severe susceptibility 

artifact at the interfaces of tissue with air, blood, or fecal matter in the rectum. Performing a 

rectal enema before the exam reduces susceptibility artifact from air or fecal matter in the 

rectum.99,100 A promising recent development for artifact reduction is reduced field-of-view 

imaging, which has been shown to improve image quality and contrast between tumor and 

healthy tissue, as well as to decrease susceptibility artifact in prostate DWI (Figure 2.7).101 

2.2.7 Proton magnetic resonance spectroscopic imaging 

Proton magnetic resonance spectroscopic imaging is a technique used to study in-vivo 

cellular metabolism, and has been established as a powerful technique for assessing patients with 

prostate cancer. Benign and malignant tissues can be differentiated based on the metabolic 

changes associated with prostate cancer.102,103 Normal prostatic glandular epithelial cells produce 

Figure 2.7: Comparison of reduced and full FOV ADC maps. 
An untreated 74 year-old man with biopsied Gleason 3+3 prostate cancer and serum PSA of 6.85 
ng/ml. An oblique axial a) T2-weighted FSE anatomic image, b) rFOV ADC map, and c) full FOV 
ADC map show the advantages of the rFOV method for distinguishing boundaries of the prostate and 
BPH nodules within the prostate. We also see susceptibility artifact from a node of fecal matter or air 
in the medial rectum, which significantly blurs the rectal wall on c) and less so on b). 
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and secrete high levels of citrate (2.5-2.7ppm).104,105 Prostate cancer disrupts the epithelial tissues 

and triggers a metabolic shift from citrate production to citrate oxidation; the overall effect is a 

substantial reduction in citrate levels in malignant prostate tissues (Figure 2.8).106-108  

Furthermore, increased cell density and elevated cell membrane turnover leads to 

increased levels of choline (3.21ppm) in prostate cancer (Figure 2.4b).109-111 Creatine (3.02ppm) 

is another metabolite of interest; it is maintained at a relatively constant level in both healthy and 

malignant prostatic tissues and serves as an internal reference.108 Lastly, some groups found it 

informative to track metabolic changes associated with polyamine.103 Polyamines (especially 

spermine) are found in healthy prostate epithelial cells, and similar to citrate, their levels are 

dramatically reduced in prostate cancer.112 

 Due to the multifocal nature of prostate cancer, a high-resolution metabolic mapping of 

the entire prostate is required for accurate cancer localization and diagnosis. The 1H-MRSI 

acquisition has evolved from single voxel spectroscopy to 3D 1H-MRSI that is typically 

acquired using phase encoding in all three directions, but is time-consuming. Improvements in 

pulse sequence design have enabled the acquisition of metabolic information from the entire 

prostate at high resolution within less than 7 minutes with voxel sizes ranging from 0.2cm3 to 0.5 

Figure 2.8: Example of magnetic resonance spectra in benign and malignant prostate tissues. 
An untreated 78 year-old man with serum PSA of 9.8 ng/ml. MRSI demonstrating highly elevated 
choline (right panel) in the left apex (LA), drastically different from the contralateral healthy tissues 
(left panel) in the right apex (RA) that demonstrate the presence of citrate without elevated choline. 
Subsequent TRUS–MRI fusion‐guided biopsy revealed a Gleason 4+3 lesion in the left apex. 
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cm3, making 1H-MRSI a clinically feasible technique.113,114 These include using flyback echo-

planar readout gradients to improve efficiency and robustness to errors and non-uniform 

undersampling, and compressed sensing to accelerate the acquisition.115,116 A number of 

techniques have been used to reduce the negative effects of periprostatic fat, including outer 

volume saturation (OVS) with very selective suppression (VSS) pulses,117 band selective 

inversion with gradient dephasing (BASING)118,119 and spectral-spatial radiofrequency 

pulses.120,121 

The 1H-MRSI sequence is usually prescribed off the axial T2-weighted MR images with 

a volume selected to maximally cover the prostate while excluding the seminal vesicles, 

periprostatic fat, and as much of the rectum as possible. Standard post-processing involves zero-

filling, apodization using Gaussian or Lorentzian filtering, and Fourier transform of the free 

induction decay signal, as well as baseline and phase corrections.2,122-124  

Interpretation of 1H-MRSI data is often done on a voxel-by-voxel basis, which can be 

time consuming and introduce interobserver variability. An alternative approach to review these 

metabolites is to observe peak area ratios, such as the choline+creatine to citrate ratio within each 

voxel: choline and creatine are typically combined due to signal overlap. In 2004, Jung et al. 

proposed a standardized scoring system for peripheral zone tissues based on metabolic data, 

ranging from 1 (definitely normal) to 5 (definitely cancer).125 And in 2007, Futterer et al. 

introduced standardized thresholds for differentiation of benign and malignant tissues in the 

peripheral zone and central gland of the prostate.126 Several studies reported significant 

correlations between peak area ratios and Gleason scores;127,128 yet, interpretation can be 

hindered by choline contamination from the seminal vesicles or urethra,108,129 or by 

prostatitis,130,131 which can result in false positive findings. 
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2.2.8 Dynamic Contrast-Enhanced MR Imaging 

Dynamic contrast-enhanced MR imaging (DCE MRI) follows the time course of tissue 

enhancement post contrast agent injection to evaluate the properties of tissue microstructure and 

neovascularity. Prostate cancer brings about changes in the cellular structure of the tissues, 

which result in altered interactions of the tissues with the injected contrast. It is believed that MR 

contrast agents do not reach the lumen of the healthy glandular tissues.132,133 Conversely, prostate 

cancer is marked by the loss of the basement membrane outside the glandular epithelial cells, 

which allows the contrast to enter the glands, resulting in a greater and faster tissue enhancement 

seen in DCE studies. In addition to continuing alterations in tissue microstructure, prostate 

cancer progression is also associated with neoangiogenesis.134-138 The rapid growth and division 

of tumor vasculature results in disorganized, irregularly shaped, immature vessels.139-141 DCE 

takes advantage of the unique characteristics associated with the abnormal tumor vasculature to 

assess aggressiveness of the disease. The usefulness of DCE in detecting, localizing, and staging 

prostate cancer is well documented in literature.87,142-146 Additionally, several studies have 

reported promising findings on the utility of DCE parameters in discriminating prostate cancer 

based on aggressiveness of the disease.147,148 While DCE is an invaluable sequence in certain 

instances where other acquisition sequences will show artifact (i.e. for patients with hip 

replacements), DCE results might be confounded by the presence of prostatitis in the peripheral 

zone 36,39,149 or by mixed BPH nodules in the transition zone.21,36,39,150 

DCE imaging is often done with a 3D Fast Spoiled Gradient Echo (3D-FSPGR) pulse 

sequence. T1-weighted images are collected before, during, and after administration of a contrast 

agent. A DCE scan is often preceded by a T1 mapping, a measurement of the native tissue 

relaxation time (T10) obtained using a series of volume acquisitions with variable flip angle 
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values. Once the native T1 mapping is complete, several pre-contrast dynamic T1-weighted 

volumes are acquired to establish a baseline. The contrast agent is administered as an intravenous 

bolus at a rate of 2-4 ml/s followed by a 20 ml saline flush using a power injector. To ensure 

patient safety, patient’s kidney function should be evaluated prior to contrast injection. Estimated 

glomerular filtration rate (eGFR) based on the blood creatinine levels are often used as indicators 

of kidney health. Once injected, the contrast agent does not penetrate the healthy prostate glands 

but collects in the extravascular extracellular space (EES), where it serves to shorten local 

relaxation times, producing high signal intensity on T1-weighted images. The contrast is cleared 

from the blood via renal excretion.  

DCE MRI studies typically utilize weight adjusted (0.1 mmol/kg of body weight) 

paramagnetic gadolinium chelate gadopentetate dimeglumine (Magnevist), gadobutrol 

(Gadovist), or gadodiamide (Omniscan).151 Aiming for a reasonable spatiotemporal resolution, a 

five-minute DCE acquisition yields dynamic imaging with a temporal resolution in the range of 

3-10 seconds, a spatial resolution in the range of 0.7 x 0.7mm to 1.9 x 1.9mm with a slice 

thickness of 3-4mm.60,95,147,148,150,152-156 Compressed sensing techniques have been implemented 

into DCE sequences to improve spatiotemporal resolution or increase the coverage. Recently, 

Rosenkrantz et al. reported the use of a high spatiotemporal resolution DCE technique GRASP 

(Golden-angle Radial Sparse Parallel), which allows for image acquisition with spatial resolution 

of 1.1 x 1.1 x 3.0 mm and temporal resolution of 2.3s.157 

Tissue enhancement observed during DCE can be interpreted either by visually 

inspecting the raw images (qualitative approach) or by using semi-quantitative or quantitative 

methods.158-161 The qualitative analysis of the DCE images162-164 is based on the premise that the 

blood vessels recruited by the prostate tumors are leaky.165,166 When the contrast is injected, the 
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cancerous tissues demonstrate early and rapid enhancement followed by a quick washout, which 

is noticeably different from a slow and steady enhancement observed for normal tissues. An 

observer may evaluate regions of interest within the prostate by categorizing the overall 

enhancement as: 1) persistent - a steady enhancement, usually indicative of benign pathology, 2) 

plateau – the initial uptake is followed by a constant enhancement, slightly suspicious for 

malignancy, 3) washout – a sharp uptake is followed by a steep washout, strongly suspicion for 

malignancy (Figure 2.9). While the qualitative approach is quick and intuitive, it fails to 

comprehensively assess heterogeneous tissues and is inherently subjective and difficult to 

standardize among imaging centers.  

 

Semi-quantitative analysis characterizes the enhancement curve on a voxel by voxel basis 

by calculating curve parameters such as maximum enhancement slope (Figure 2.4e), time to 

peak, peak enhancement, washout slope (Figure 2.4f), and area under the curve.148,167 Although 

this approach is extensively used in the assessment of DCE-MRI, the semi-quantitative 

parameters provide little physiologic insight into behavior of the tumor vessels and the 

usefulness of the computed metrics can be limited when comparing data across different imaging 

protocols. Normalization to muscle has been suggested to aid in generalization of semi-

quantitative parameters.132  

Figure 2.9: Enhancement curves associated with 
DCE imaging. 
Three main types of overall enhancement seen in 
prostate tissues: persistent enhancement, 
typically indicative of benign pathology (green); 
plateau, slightly suspicious for malignancy 
(blue); and washout, strongly suspicious for 
malignancy (red). 
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The final approach to analyzing DCE images aims to estimate physiologically 

interpretable, kinetic parameters by fitting pharmacokinetic models to the enhancement 

curves.144,168,169 The most common is the two-compartmental model. The two compartments are 

the plasma space of the vasculature and the interstitial space between the prostate cells. The two 

main parameters derived from such models are Ktrans (the volume transfer constant between 

plasma and extracellular space, expressed in units of min-1) and ve (the fractional volume of 

extracellular space per unit volume of tissue).146,170-173 While Ktrans maps offer diagnostically 

valuable information, acquiring stable measurements from quantitative analysis remains a 

challenge. Quantitative methods are affected by a number of variables such as changes in cardiac 

output, accurate tissue T1 and arterial input function (AIF) measurements, as well as the 

underlying assumptions made by the software packages. Accuracy of T1 measurements is greatly 

aided by T10 mapping.174 Ideally, the AIF (the concentration of the contrast agent in the feeding 

blood supply) is measured for each individual patient in the femoral artery.175-177 Unfortunately, 

in a clinical setting, the required temporal resolution may be difficult to achieve. A common 

approach is to use a population-averaged AIF in the form of a bi-exponential decay.152 Finally, 

there are several open source and commercially available software packages for both clinical and 

preclinical quantitative DCE analysis.178-182 However, few studies have been done to assess 

reproducibility of pharmacokinetic measurements obtained with different software packages. 

2.2.9 Limitations 

Use of mpMRI exams for the diagnosis and staging of prostate cancer has become 

prominent at medical centers around the world183-185 and is likely to continue expanding into 

increasing modalities in the age of precision medicine. However, mpMRI of the prostate did not 

yet gain the same level of acceptance of other imaging tests; and this is at least in part due to the 
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use of suboptimal protocols, lack of standardization, and inadequate patient preparation. The 

American College of Radiology, in conjunction with the European Society of Urogenital 

Radiology and the AdMeTech Foundation, has developed standards for the Prostate Imaging 

Reporting and Data System (PI-RADS).186 Currently in its version number 2, in addition to 

providing guidelines for interpretation and reporting of mpMRI, PI-RADS establishes the 

minimum acceptable technical parameters for scanning patients.  

Another significant hurdle in widening mpMRI acceptance has to do with difficulties 

associated with proper validation of imaging with histopathology. Histopathology samples 

acquired in patients post radical prostatectomy serve as a gold standard for validation studies. 

However, imaging to histopathology alignment presents serious challenges. The next chapter 

discusses these challenges and presents a semi-automatic technique for aligning the acquired T2-

weighted images to the whole mount histopathology slides.  
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CHAPTER 3 
 

Semi-automatic Registration of Digital Histopathology Images to In-
vivo MR Images in Molded and Unmolded Prostates  

 
 

Parts of this chapter are reprinted from “Semi-automatic registration of digital 

histopathology images to in-vivo MR images in molded and unmolded prostates” by 

Olga Starobinets, Richard Guo, Jeffry P Simko, Kyle Kuchinsky, John Kurhanewicz, Peter R 

Carroll, Kirsten L Greene, and Susan M Noworolski. The manuscript was published in Journal 

of magnetic resonance imaging  : JMRI in February 2014 (39(5): 1223-1229). Olga Starobinets 

and Susan Noworolski wrote the manuscript. Richard Guo and Olga Starobinets co-wrote the 

registration software. Olga Starobinets performed the data analyses. Jeffry Simko and Kyle 

Kuchinsky processed the histopathology. John Kurhanewicz edited the manuscript. Peter Carroll 

and Kirsten Greene performed radical prostatectomy surgeries. Susan Noworolski 

conceptualized the study and supervised the project. 

3.1 Abstract 

 The purpose of this work was to evaluate a semi-automatic software-based method of 

registering in vivo prostate magnetic resonance (MR) images to digital histopathology images 

using two approaches: 1) in which the prostates were molded to simulate distortion due to the 

endorectal imaging coil prior to fixation, and 2) in which the prostates were not molded. T2-

weighted MR images and digitized whole-mount histopathology images were acquired for 

twenty-six patients with biopsy-confirmed prostate cancer who underwent radical prostatectomy. 

Ten excised prostates were molded prior to fixation. A semi-automatic method was used to align 

MR images to histopathology. Percent overlap between MR and histopathology images, as well 

as distances between corresponding anatomical landmarks were calculated and used to evaluate 
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the registration technique for molded and unmolded cases. The software successfully morphed 

histology-based prostate images into corresponding MR images. Percent overlap improved from 

80.4±5.8% prior to morphing to 99.7±0.62% post morphing. Molded prostates had a smaller 

distance between landmarks (1.91±0.75mm) versus unmolded (2.34±0.68mm), p<0.08. Molding 

a prostate prior to fixation provided a better alignment of internal structures within the prostate, 

but this did not reach statistical significance. Software-based morphing allowed for nearly 

complete overlap between the pathology slides and the MR images.  

3.2 Introduction 

 It is estimated that 1 in 7 men in the United States will be diagnosed with prostate cancer 

during his lifetime.187 Early and accurate prostate cancer diagnosis is important in managing the 

disease. With the introduction of prostate-specific antigen (PSA) screening early diagnosis and 

treatment of prostate cancer became possible.188 While radical, whole-gland therapy is favored 

for treatment of advanced, often multifocal prostate cancer, such an approach is associated with a 

host of long-term genitourinary and rectal side effects.189 A targeted treatment might be preferred 

for patients presenting with less advanced disease. Focal treatments however require accurate 

disease localization, staging, and monitoring.89,190 MRI imaging is a noninvasive technique that 

can be used in detection and localization of prostate cancer.41,191 MRI is poised to play a 

significant role in the image-guided targeted biopsies and the planning of targeted treatments 

such as high intensity focused ultrasound (HIFU), radiofrequency ablation (RFA), cryosurgery, 

photodynamic therapy (PDT) or brachytherapy.192 

 To establish the validity of imaging findings, accurate mapping between in-vivo MRI and 

digitized pathology images of the resected prostate is essential. Currently there is no established 

technique that allows for an accurate and timely alignment of postoperative histology images to 
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preoperative in-vivo MR images obtained with an endorectal coil. Although the endorectal coil 

introduces prostate deformation, it offers a significant improvement in signal to noise ratio and 

spatial resolution.193 

 Several factors hinder registration efforts including prostate distortion during scanning, 

particularly due to an endorectal coil,194 specimen shrinkage during formalin fixation on the 

order of 10-15%,195,196 prostate deformation during surgery, and differences in slicing plane 

angles.197 Additional factors such as the time between the MR scan and the surgery may further 

impede registration.  

 Registration methods based on anatomical landmarks,198 fiducial markers,199 

biomechanical modeling,200 multiattribute combined mutual information,201 and spatially 

weighted mutual information202 have been described in the literature. These can require 

subjective and time consuming user-intervention,198,203,204 make assumptions about the tissue 

distortion,201,205,206 or require additional information, such as MR imaging of the ex vivo prostate 

gland198,203 or placement of fiducial markers.199,204 The purpose of this study was to evaluate a 

semi-automatic software-based method of registering digital histopathology images to in vivo 

prostate magnetic resonance (MR) images using two approaches. These groups were: 1) in which 

the prostates were molded prior to fixation to replicate the mechanical distortion due to the 

endorectal coil, and 2) in which the prostates were not molded. 

3.3 Materials and Methods 

3.3.1 Patients 

 This study was approved by the Committee on Human Research at this institution and 

was compliant with the Health Insurance Portability and Accountability Act. Written, informed 

consent was obtained from all subjects. Twenty-six patients who underwent radical 
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prostatectomy for a biopsy-proven prostate cancer were studied. Patients who underwent 

treatment for their prostate cancer prior to surgery or whose surgery was more than 120 days 

after their MRI were excluded from the study. The patients’ mean age was 62.7 ± 5.8 years and 

the average Gleason score was 7.2, range GS 6 to GS 9.  For this study, the time interval between 

MRI scan and prostatectomy was 23.4 days, ranging from 2 to 97 days. Patient characteristics are 

summarized in Table 3.1.  

3.3.2 MR Imaging 

 All patients were imaged with an expandable balloon endorectal coil (Medrad, Inc., 

Indianola, PA, USA) and the GE pelvic phased array on a 3T MR scanner (GE Healthcare, 

Waukesha, WI, USA). Fast spin echo (FSE) T2-weighted images were acquired in an oblique 

axial plane with FOV = 18 cm, slice thickness = 3mm, matrix = 256 × 256, and TR/TE = 

6000/96. Images were corrected for the inhomogeneous reception profile associated with the 

combined endorectal coil and pelvic phased array.207  

Table 3.1: Patient Characteristics 
Variable  Molded (N=10) Unmolded (N=16) 

Age (years) 
Prostate weight (gm) 
Prostate volume (cm3) 
Gleason score 
Days to surgery 
PSA (ng/mL) 
Tumor volume (cm3) 

 

60.4 (6.0) 
49.6 (21.4) 
36.0 (19.0) 
7.0  (1.0) 
20.5 (14.3) 
4.3 (2.1) 
2.8 (2.9) 

64.1 (5.3) 
43.8 (9.7) 
29.7 (9.6) 
7.4 (0.9) 
25.2 (28.9) 
8.7 (8.4) 
5.1 (5.4) 

Mean	
  (Standard	
  Deviation)	
  
	
  
3.3.3 Molding 

 After surgery, prostates were weighed and inked. Ten patients had their prostates molded. 

Molding was accomplished by securing the excised prostate within a plastic mesh basket prior to 

fixation (Figure 3.1). This basket was made in-house of heat sensitive moldable plastic and was 
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designed such that the posterior side of the prostate underwent a concave curvature, intended to 

imitate the inflated endorectal probe. A cover was secured to the anterior portion of the prostate 

and compressed with rubber bands in the anterior/posterior direction, approximately by 15%, the 

compression typically observed with an endorectal probe.194 Prostate dimensions noted on T2-

weighted MRI images were provided as a reference for molding. An opening was made in the 

basket to accommodate the seminal vesicles and vas deferentia.  

 

 

 

  

 All molded and unmolded prostatectomy specimens were formalin-fixed for at least 24 

hours. Prostates were then serially cross-sectioned from apex to base at 3-4mm intervals using a 

manual meat slicer (Hobart, Troy, OH, USA). Tissue slices were embedded in paraffin, cut as 

whole-mount histologic sections and stained with hematoxylin and eosin. Slides were arranged 

from superior to inferior in two columns in an 8.5 x 11 inch space and digitized as a single image 

per sheet. Ten minutes per prostate were required to complete digitization.  

3.3.4 Registration 

 In-house software written in C and Image Magick (ImageMagick Studio LLC, 

Landenberg, PA, USA) were used to manipulate the images. The digitized histopathology 

images were automatically cropped into slices (Figure 3.2a). Label sides were automatically 

detected based upon more than 5 blue or green pixels found on the right-most or left-most 200 

pixels within the image. Extraneous markings were removed automatically by identifying non-

violet pixels and surrounding pixels. Images were visually inspected and any remaining 

Figure 3.1: The mesh basket. The mesh basket was 
made in-house out of heat sensitive moldable plastic 
and was used for molding the excised prostates. 
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markings removed (Figure 3.2b). Pathology images were visually matched to corresponding 

axial T2w images according to their level in the prostate and common anatomical landmarks.  

Prostates were manually segmented from surrounding tissues on T2w images (Figure 3.2c). 

Manual steps of matching pathology to the MR images and segmenting the prostate on the MR 

images required 25 minutes per prostate to complete. Pathology slides were automatically 

centered and rotated to align with the corresponding MR images (Figure 3.2b). Next, pathology 

images were globally stretched or shrunk to correspond to the T2w images (global alignment). In 

the second stage, pathology images were stretched or shrunk differently in the right-left direction 

and in the anterior-posterior direction to match the maximum extent in each direction to that of 

the T2w images (x-y alignment). In the final stage, each row and each column in a pathology 

image was stretched or shrunk to match the MRI prostate, first in the left-to-right direction and 

then in the anterior-to-posterior direction (line-by-line alignment) (Figure 3.2d). Automatic 

image processing steps required less than a minute to complete. 

 

 

3.3.5 Registration Assessment 

 The accuracy of registration was assessed in two ways. First, the percent overlap between 

pathology and MR images was calculated and compared for each alignment stage. Second, three 

visually identified landmarks marking the boundary of the peripheral zone and the central gland 

Figure 3.2: Alignment steps: a. Original 
histopathology slide. b. Cleaned up slide from (a) 
with background markings removed. c. T2-
weighted MR image of a segmented prostate 
matched to the histopathology slide (b). d. 
Histopathology slide from (b) aligned to match MR 
image from (c). 
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were placed at approximately midline, then midway between the midline and the left side, and 

lastly, midway between the midline and the right side on a midgland level in each set of images.  

Distances between these landmarks in-plane were compared on an aligned midgland pathology 

slide and on the corresponding MR slice for all cases. Evaluations were made for Stage I – global 

alignment, Stage II – x-y alignment, and Stage III – line-by-line alignment for both the molded 

and unmolded cases. Alignment metrics were compared between the molded and unmolded 

cases. Using the right and the left-side landmark coordinates in-plane rotation angles for 

landmarks placed on the pathology images and the MR images were computed for molded and 

unmolded prostates at both x-y and line-by-line alignment stages.  

3.3.6 Factors Potentially Impacting Alignment 

 Gleason Score obtained during surgery, gland volume as measured by visually outlining 

the gland on the T2-weighted images, gland weight as measured post-surgery, age and serum 

prostate specific antigen (PSA) within a year of surgery were measured or obtained. The 

alignment metrics of this study were compared with each of these metrics: Gleason Score, gland 

volume, gland weight, age, and PSA.  

3.3.7 Statistical Methods 

 Statistical analyses were carried out using JMP software (JMP, Version 10, SAS Institute 

Inc., Cary, NC). Distances between anatomical landmarks for molded and unmolded prostates 

were computed. The mean and standard deviation were calculated for the two groups and a 

Student t-test was performed. The percent overlap mean and standard deviation values were 

calculated for each stage of the morphing process for molded and unmolded prostates. A 

Wilcoxon signed rank test of matched pairs for pair-wise comparison of mean values within a 

patient for percent overlap at each stage in the alignment process was done. For comparisons of 
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patient characteristics between molded and unmolded, t-tests were done if the distributions were 

normal, and a Wilcoxon test used if not normally distributed. A p-value of 0.05 was used to 

define significance. 

3.4 Results 

Patient demographics are given in Table 3.1, demonstrating no significant difference 

between molded and unmolded groups in terms of age and Gleason Score (p>0.1, t-tests), or in 

terms of prostate volume, prostate weight, days to surgery, or tumor volume (p>0.1, Wilcoxon 

test). PSA was variable, with a maximum value of 38.5 ng/ml in the unmolded group compared 

to 8.5 ng/ml in the molded group, and was significantly higher in the unmolded cases, p<0.05, 

Wilcoxon test. Without this outlier of 38.5 ng/ml, which was more than two times higher than 

any other value in the group, the PSA was not significantly different between the groups. 

 An example of images from a patient with a biopsy-proven cancer (Gleason 3+3) and a 

PSA level of 5.5 ng/ml, who underwent prostatectomy, is shown in Figure 3.3.  

 

 

 

 

This excised prostate was molded prior to fixation. Figure 3.3 demonstrates that the compression 

and induced curvature experienced by the gland in the anterior-posterior direction due to the 

basket allowed the prostate to better resemble the shape of its MR counterpart, yielding a global 

alignment %overlap of 85.5%. Figure 3.4 presents the images from a patient with a biopsy-

Figure 3.3: Molded prostate: a. A segmented prostate on an axial T2-weighted MR image.                        
b. Corresponding histopathology slide. The excised prostate was molded prior to fixation to mimic 
the peripheral zone curvature due to the endorectal coil seen on the MR image of the prostate (a).   
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proven cancer (Gleason 3+4) and a PSA level of 6.2 ng/ml, who underwent prostatectomy. This 

excised prostate was not molded.  

 

 

 

 

Figure 3.4 illustrates that the prostate compression and induced curvature due to the endorectal 

probe seen on the MR image is not observed on the corresponding histology slice for the 

unmolded prostate. This case had a %overlap at the global alignment stage of 72.2%, which was 

less than the molded case of Figure 3.3. 

3.4.1 Analyses 

When percent overlap between MR images and histopathology was calculated for global, 

x-y, and line-by-line alignment stages, there were no statistically significant differences between 

percent overlap values for molded and unmolded groups. With global alignment, molded 

prostates had 79.1±5.6% and unmolded prostates had 81.6±5.9% overlap with MR images, 

p>0.3. The percent overlap increased to 84.9±5.4% and 84.4±6.3% for x-y aligned molded and 

unmolded prostates respectively, p>0.97. In the final stage of line-by-line alignment, percent 

overlap reached 99.7±0.46% for molded and 99.7±0.71% for unmolded prostates, p>0.97 (Figure 

3.5). In a pair-wise comparison, it was determined that on average, percent overlap increased by 

Figure 3.4: Unmolded prostate: a. A segmented prostate on an axial T2-weighted MR image.                        
b. Corresponding histopathology slide. The excised prostate was not molded prior to fixation. 
Instead of mimicking the peripheral zone curvature due to the endorectal coil seen on the MR image 
of the prostate (a), prostate in (b) is rounder especially at the peripheral zone and does not exhibit a 
similar curvature as (a).  
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3.95% between global and x-y alignment stages, and then by another 15.1% between x-y and 

line-by-line alignment stages, p<0.001.  

 

 

 

 

 

 

 

An example shown in Figure 3.6 demonstrates the three landmarks positioned within the 

prostate on the MR slice (Figure 3.6a), as well as the corresponding x-y (Figure 3.6b) and line-

by-line (Figure 3.6c) aligned histopathology images.  

 

 

 

 

For each landmark, the in-plane distances between MR and the x-y aligned pathology 

coordinates were calculated. The mean distance for the three landmarks was determined to be 

1.47mm for this case. Also, for each landmark, the distance between the MR and the line-by-line 

Figure 3.6: Placement of landmarks shown on a. Segmented prostate on an axial T2-weighted MR 
image. b. Corresponding histopathology slide. c. Histopathology slide from (b) aligned to the MR 
image from (a).   
 

Figure 3.5: Percent overlap between histopathology and MR images at different stages of alignment. 
Error bars indicate standard deviation. 
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aligned pathology image was computed; the mean distance for the three landmarks was 

determined to be 1.13mm. Landmark distances were calculated for midgland slices for all 

molded and unmolded prostates. For both groups, the landmark distance values were normally 

distributed. For x-y aligned prostates, the average distance between corresponding landmarks 

was 2.34±0.68mm for unmolded and 1.91±0.75mm for molded prostates (Table 3.2). There was 

a trend toward molded prostates having smaller average and maximum landmark distances, but 

with a p-value of 0.079, the result did not reach significance. For the line-by-line alignment 

stage, the average distance between corresponding landmarks was 1.67±0.58mm for unmolded 

and 1.62±0.58mm for molded prostates. With a p-value of 0.422, there were no statistically 

significant differences between the two groups. There were no differences in the time it took to 

process the specimens in each group. For every prostate, approximately 45 minutes were 

required to complete all the alignment steps.  

Table 3.2: Three-point landmark distance 
Alignment	
   Molded	
   Unmolded	
  

X-­‐Y	
  
Mean	
  (SD)	
  
Min,	
  Max	
  (mm)	
  

Line-­‐by-­‐line	
  
Mean	
  (SD)	
  
Min,	
  Max	
  (mm)	
  

	
  
1.91	
  (0.75)	
  
0.870,	
  3.08	
  
	
  
1.62	
  (0.58)	
  
0.955,	
  2.80	
  

	
  
2.34	
  (0.68)	
  
1.13,	
  3.54	
  
	
  
1.67	
  (0.58)	
  
0.693,	
  3.27	
  

SD = Standard Deviation 

There was no significant in-plane rotation between the pathology and the MR images, 

based on the right and left side landmark coordinates. For the x-y alignment stage, the mean 

rotation angle was -0.58 ±3.1 degrees for unmolded and -1.04±1.30 degrees for molded 

prostates. With a p-value of 0.48, there were no statistically significant differences between the 

two groups. For the line-by-line alignment, the mean rotation angle was -0.66±4.21 degrees for 
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unmolded and -0.59±1.87 degrees for molded prostates. Once again, with a p-value of 0.38, no 

statistically significant differences between the molded and the unmolded prostates.  

No trends for percent overlap or landmark distances were observed to be associated with 

Gleason Score, tumor volume, prostate weight, PSA, or prostate volume, p>0.05 for all 

comparisons, linear regression. Landmark distances before and after line-by-line alignment 

significantly increased with age, p<0.05, linear regression.  

3.5 Discussion 

This study demonstrated that computationally morphing the prostate allowed an almost 

complete overlap of 99.7% between the pathology slides and the MR images with good 

alignment of internal structures. These results were robust across different prostates, with no bias 

in alignment when compared to Gleason Score, tumor volume, prostate weight, PSA or prostate 

volume. The internal alignment was worse for older patients although no statistical corrections 

were made for the multiple comparisons performed. After the global alignment and the separate 

x-y stretching/compressing, the average distance between landmarks was 2.17±0.73mm, ranging 

from 0.87mm to 3.54mm. After the final line-by-line alignment stage, this distance decreased to 

an average of 1.65±0.57mm, ranging from 0.693mm to 3.27mm. These internal distances 

between structures were less than the typical distortion caused by the endorectal coil, which are 

an average anterior-posterior compression of 4.1mm and an average right-left expansion of 

3.7mm.194 This demonstrates that the alignment at least partially compensates for the endorectal 

coil distortion. Therefore, this technique can be used to align the histopathology to other 

functional imaging modalities obtained with an endorectal coil such as MR spectroscopy, 

diffusion-weighted imaging, and the dynamic contrast enhanced MR imaging. 
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The first part of our registration method entailed a rigid alignment with global 

stretching/shrinking separately in the x and y directions. We obtained an internal alignment of 

2.34±0.68mm for unmolded prostates, which was similar to other studies in the literature, which 

report registration errors ranging from 2.3 to 2.89mm.198-200 These studies involved user 

intervention to identify internal landmarks,198 additional scanning of the ex vivo prostate, ex-vivo 

imaging198,203 and/or fiducial markers199,204 to guide the histopathology sectioning of the gland. 

In contrast, our method did not require extensive user intervention or ex vivo prostate scans, 

which may be difficult to incorporate into a standard clinical protocol. Furthermore, in a clinical 

setting time efficiency is crucial. Our computational method required less than an hour to align 

histopathology images for an entire prostate to the corresponding in-vivo MR images, while 

other groups reported registration times ranging from several hours to several days.198-200 

The second stage of our alignment incorporated non-rigid registration and resulted in 

internal alignment to landmarks of 1.67±0.58mm for unmolded prostates, without significant 

rotation between histopathology and the MR images. These results are similar or better than 

other automatic alignment methods reported in the literature. Patel et al. based an alignment on 

spatially weighted mutual information, which had virtually the same performance as our method, 

with 1.65mm registration error, ranging from 1.05mm to 2.03mm.202 An advantage of their 

method is that it does not necessitate prostate segmentation from MRI images; however, the 

results presented in the study were limited to 7 slices collected from 2 patients and require 

further exploration in a larger cohort. Samavati et al. described a biomechanical model-based 

deformable registration approach and reported a target registration error of 2.1mm for a finite 

element modeling registration method.200 For this method, several ex-vivo scans were done and 

additional magnetic resonance elastography (MRE) studies had to be carried out on the excised 
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prostate specimens. The sample size in this study was limited to 4 prostates. Other non-rigid 

methods that used additional information performed slightly better. A method based on user-

identified landmarks within both the in vivo and ex vivo prostate resulted in a 1.59mm 

registration error.198 However, with the sample size of 3, these findings need to be verified with a 

larger sample size. The method by Ward et al., which based histology specimen slicing on ex 

vivo MRI with fiducial markers, attained a 1.1mm error in a study of 13 prostate specimens.199 

While our method had a slightly higher registration error, it was similar and did not require scans 

of the ex vivo gland or time consuming and subjective identification of landmarks within the 

gland and was evaluated on more, specifically 26, subjects. Overall, compared to others in the 

literature, our alignment methods produced similar or better results, required less time, and were 

validated in a larger cohort of patients. 

This study also looked at the effects of molding on registration outcomes. Molding the 

prostate during pathological preparation of the gland provided a better alignment of internal 

structures within the prostate, but this did not reach significance. Most prostate molding efforts 

described in the literature involve post formalin fixation molding done with patient-specific 

molds, which can be expensive and time-consuming to make.208-210 Formalin fixation makes the 

gland rigid and tough, limiting the extent to which the prostate can be molded. To avoid this, 

prostates in this study were fixed while in the molding basket. We saw a trend toward molded 

prostates having a better alignment of internal structures, which did not reach statistical 

significance. While molding tended to aid the alignment of internal structures at the x-y 

alignment stage, the line-by-line alignment seemed to compensate for this, resulting in a similar 

internal alignment of the molded and unmolded prostates, implying that molding is not required 

if the line-by-line alignment is performed. The trend in improvement in the alignment of internal 
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structures post x-y alignment for molded cases versus unmolded cases suggests that further 

improvements in our molding technique may result in further improvement in alignment. 

 There were a few limitations to this study. First, we had a single size basket that was used 

to mold prostates that ranged in size from 15.2ml to 75.8ml. Individualized or tailored sized 

baskets may have improved the alignment. Second, the compression of the gland varied across 

subjects. While efforts were made to defer to MR images for guidance, properly modulating 

compression remains difficult. Third, the alignment of the histopathology slides to the 

corresponding MR images was done in 2D, which assumes that the prostate specimen was sliced 

along the same plane as the in vivo MR images were acquired. While the MR images were 

acquired in an anatomic, axial plane, this may not necessarily match the orientation of the 

prostate ex vivo, leading to sections obtained at different angles than the MRI. Fourth, we used a 

manual meat slicer to standardize the slicing of the histopathology sections; if any cases or 

portions of prostates varied in their shrinkage with fixation, the histology slices may not 

correspond to the MR images. Fifth, histopathology slices represent microns of tissue whereas 

the MR images span 3mm of tissue and may not correspond well. Sixth, while our method tried 

to incorporate mechanical compression to mimic the in vivo prostate deformation and then non-

rigid registration, distortion within the gland may have been more pronounced. This could occur 

when a BPH nodule shifts or expands out of plane or tears the tissue during processing. Other 

limitations include: 1) the use of subjective, user-identification of the prostate within the MR 

images and user confirmation or modification of the identification of the prostate within the 

histopathology images; 2) the use of subjective, user-identified landmarks within the gland to 

assess the alignment, which may affect the registration metrics. However these landmarks were 

not used during the alignment procedure, which was automated; and 3) a limited number of cases 
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were studied, which may have hindered detection of significant differences between the molded 

and unmolded prostate alignments.  

In conclusion, this study presented a semi-automatic alignment method demonstrating an 

almost complete overlap between histopathology slides and MR images with good alignment of 

internal structures. While user-intervention was required to segment the prostate in the MR 

images and to assess and adjust the automatic segmentation, if necessary, on the histopathology, 

neither user-intervention nor additional scans were required during the alignment procedures. 

Thus, this is a promising technique for more broad use for alignment of histopathology to MR 

images. Molding the prostate during pathological preparation of the gland may provide a better 

alignment of internal structures within the prostate, but this did not reach significance.  
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CHAPTER 4 
 

Characterization and Stratification of Prostate Lesions Based on 
Comprehensive Multiparametric MR Imaging Using Detailed 

Whole Mount Histopathology as a Reference Standard 
 
 
 
 
4.1 Abstract 

 The purpose of this study was to characterize prostate cancers (PCa) based on 

multiparametric MR (mpMR) measures derived from MRI, diffusion, spectroscopy, and dynamic 

contrast-enhanced (DCE) MRI and to validate mpMRI in detecting PCa and predicting PCa 

aggressiveness by correlating mpMRI findings with whole-mount histopathology. Seventy-eight 

men with untreated PCa received 3T-mpMR scans prior to radical prostatectomy. Cancerous 

regions were outlined, graded, and cancer amount estimated on whole-mount histology. Regions 

of interest were manually drawn on T2-weighted images based on histopathology. Logistic 

regression (LR) was used to identify optimal combinations of parameters to separate 1) benign 

from malignant tissues, 2) Gleason Score (GS) 3+3 disease from ≥GS3+4, and 3) low risk 

(≤GS3+4) from high-risk disease (≥GS4+3) for peripheral zone (PZ) and transition zone (TZ). 

Performance of the models was assessed using repeated four-fold cross-validation. LR models 

yielded area under the curve (AUC) of 1.0 when separating benign from malignant tissues in 

both PZ and TZ. Within PZ, combining apparent diffusion coefficient (ADC), maximal 

enhancement slope, and choline/creatine yielded AUC=0.82 for separating GS3+3 from ≥GS3+4 

PCa. Combining ADC, washout slope, choline/creatine, and choline/citrate yielded AUC=0.80 

for discriminating low-risk and high-risk disease. Within TZ, washout slope outperformed any 

combination of parameters yielding AUC=0.81 for discriminating GS3+3 and ≥GS3+4 cancers. 
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When separating low-risk and high-risk PCa, combining Kep and choline/creatine yielded 

AUC=0.83. MpMRI provides excellent separation between benign tissues and PCa, and across 

PCa tissues of different aggressiveness. The final models prominently featured spectroscopy and 

DCE-derived metrics underlining their value within a comprehensive mpMRI exam. 

4.2 Introduction 

Approximately one in seven men in the United States will receive a prostate cancer (PCa) 

diagnosis during his lifetime.211 Given the often-indolent nature of the prostate tumors and 

potentially adverse consequences of the available treatments, accurate disease risk stratification 

is essential for identifying patient-specific cancer management strategies.212 Currently, prostate-

specific antigen and digital rectal exam are the main diagnostic tools used in prostate cancer 

screening.213 Suspicious findings on these noninvasive modalities are typically followed by a 

transrectal ultrasound-guided biopsy with the assigned Gleason grade of any detected 

malignancy being one of the most powerful predictors of patient outcome.28 

Despite this, accuracy of Gleason score based on biopsy findings frequently suffers from 

inadequate tumor sampling with biopsy Gleason score underestimating actual Gleason score in 

up to 45% of radical prostatectomy cases.  More than 30% of cancers are missed on transrectal 

ultrasound-guided prostate biopsies altogether.32 Furthermore, prostate biopsy is not an indolent 

procedure, and can be associated with discomfort, pain, hematuria, rectal bleeding and risk of 

severe infection.214 Multiparametric magnetic resonance imaging is a noninvasive technique that 

can be used for detection and localization of prostate cancer.  

The utility of diffusion weighted imaging (DWI), T2-weighted imaging, magnetic 

resonance spectroscopic (MRS), and Dynamic contrast-enhanced (DCE) sequences in detecting 

and localizing prostate cancer is well documented in literature.39,40 The next pertinent question is 
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whether mpMRI can be used to accurately determine the aggressiveness of the disease. Several 

studies have examined various imaging parameters as potential biomarkers for Gleason score, 

and have yielded mixed results for Gleason score correlations with T2-weighted imaging,215 

ADC,90,216-218 MRS127,219 and DCE MRI.148,217,220 The purpose of this study was to use a logistic 

regression approach to improve the characterization of prostate cancers based on multiparametric 

MR measures derived from MRI, diffusion, spectroscopy, and dynamic contrast-enhanced MRI 

and to validate mpMRI in detecting PCa and in predicting PCa aggressiveness by correlating 

mpMRI findings with whole-mount histopathology generated from radical prostatectomy 

specimens. 

4.3 Materials and Methods 

4.3.1 Patients 

This study was approved by the Committee on Human Research at this institution and 

was compliant with the Health Insurance Portability and Accountability Act. Seventy-eight 

patients were studied. Two sets of patients were pooled for this study: 1) patients scheduled for 

surgery, recruited during a urological oncology clinic to receive mpMRI prior to surgery 

identified prospectively and 2) patients who received mpMRI and then pursued surgical 

treatment post imaging identified retrospectively. Written, informed consent was obtained from 

all subjects. Patients who underwent any treatment for their prostate cancer prior to surgery, or 

whose surgery was more than a year after their MRI were excluded from the study. No MRI 

exam was performed less than 6 weeks after prostate biopsy.   

4.3.2 MR Imaging 

 All patients were imaged with an expandable balloon endorectal coil (MedRad, Bayer 

HealthCare LLC, Whippany, NJ) combined with an external phased array coil on a 3T MR 
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scanner (GE Healthcare, Waukesha, WI, USA). A perfluorocarbon fluid (Galden; Solvay 

Plastics, West Deptford, NJ, USA) was used to inflate the balloon coil. Fast spin echo (FSE) T2-

weighted images were acquired in an oblique axial plane with FOV = 18cm, slice thickness = 

3mm, matrix = 512×512, and TR/TE = 6000/96ms. Diffusion weighted imaging (DWI) was 

acquired using a 2D single-shot spin echo sequence TR/TE=4000/78-90ms, pixel bandwidth = 

1952 (conventional acquisition), pixel bandwidth = 1305 (reduced-field-of-view acquisition101), 

b=0 and 600 s/mm2, slice thickness=3mm. MRSI data was acquired using a 3D flyback, echo 

planar PRESS CSI acquisition, with a 16×12×10 matrix, acquired at 5.4 mm resolution, zero-

filled to 5.4×2.7×2.7mm3, 0.04cc voxels, TR/TE=2000/85ms,221 MRSI data was not available in 

4/78 subjects. DCE MRI was performed using a 3D fast SPGR sequence with TR/TE = 

3.5/0.9ms, flip angle = 5°, slice thickness = 3mm slices, and a single-dose of gadopentetate 

dimeglumine (Gd-DTPA) (Magnevist; Bayer, Whippany, NJ) over ~5 minutes.  The acquisition 

parameters are outlined in Table 4.1. T2-weighted images and MRSI were corrected for the 

inhomogeneous reception profile associated with the combined endorectal coil and the external 

phased array.67 Apparent diffusion coefficient (ADC) maps were created using an in-house 

software, from the combined DWI (b=600 s/mm2) and T2-weighted reference images (b=0 

s/mm2) using Eq. 4.1, where b is the b-value used for the diffusion-weighted acquisition 

reflecting the gradient strength and duration, Sgm is the geometric mean of the signal intensity 

over the six gradient directions, and S0 is the signal intensity of the T2-weighted image acquired 

without diffusion gradients. The calculation was done on a voxel-by-voxel basis. 

ADC = − !
!
ln  (!!"

!!
)                                           [4.1] 

Choline, creatine, and citrate levels were quantified by measuring the height of the peaks. 

Additionally, [Choline+Creatine]/Citrate ([Cho+Cre]/Cit), as well as Choline/Citrate (Cho/Cit) 

and Choline/Creatine (Cho/Cre) ratios were computed. DCE MRI maps were created based on 
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the semi-quantitative tissue enhancement parameters of peak enhancement, maximal 

enhancement slope, and washout rate.132 Additionally, pharmacokinetic modeling was applied to 

the data using the assumption that the fractional plasma volume (vp) was 0.01.222 The 

concentration of Gd-DTPA in the plasma was modeled as a biexponential Eq. 4.2 

C! = AmpD(a!e!!!! + a!e!!!!)   [4.2] 

where Amp=4, D = 0.1mmol/Kg of Gd-DTPA, a1 = 3.99 kg/L, m1 = 0.144 1/min, a2 = 4.78 kg/L, 

m2 = 0.011 1/min. The Amp was introduced to account for an offset between our experimental 

measures and this population average and was determined by minimizing the root-mean-square 

error (RMSE) of the fits. 

A novel pharmacokinetic Luminal Water (LW) model was used.223 In the LW model, a 

luminal water fractional volume parameter (vL) is introduced to the extended Tofts Kermode 

model.222 The model is designed based on the assumption that Gd-DTPA does not reach intact 

prostatic ductal lumen, preventing the water in the lumen from interacting with gadolinium 

molecules. The non-linear LW model was fitted to data using non-linear least squares estimation 

with the “optim” function in R (R Foundation for Statistical Computing, Vienna, Austria).224 The 

quantitative DCE parameters of the transfer constant (Ktrans), the fractional extravascular, 

extracellular volume (vEES), the rate constant (Kep) and vL were computed. As the LW model is 

an extension of the Tofts Kermode model, only the LW model was used to avoid redundancy in 

the parameters and to provide the additional parameter of vL. 
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Table 4.1: Scanning parameters 

Imaging	
   PSD	
   TR/TE	
  
(ms)	
  

FOV	
  
(cm)	
  

Matrix	
  
Size	
  

NEX	
   ST	
  
(mm)	
  

In-­‐Plane	
  
Res.	
  (mm)	
  

Temp.	
  
Res.	
  (s)	
  

b-­‐value	
  
(s/mm2)	
  

T2w	
   FSE	
   6000/100	
   18x18	
   512x512	
   1	
   3	
   0.35x0.35	
   N/A	
   N/A	
  
Conv	
  ADC	
   ss-­‐EPI	
   4000/90	
   24x24	
   128x128	
   4	
   3	
   0.94x0.94	
   N/A	
   0,	
  600	
  
rFOV	
  ADC	
   ss=EPI	
   4000/90	
   18x9	
   128x64	
   6	
   3	
   0.70x0.70	
   N/A	
   0,	
  600	
  
MRSI	
   3D	
  PRESS	
   2000/85	
   varied	
   8x16	
   1	
   2.7	
   5.4x2.7	
   N/A	
   N/A	
  
DCE	
   3D	
  SPGR	
   3.5/0.9	
   26x26	
   256x256	
   0	
   3	
   1.02x1.02	
   10.417	
   N/A	
  
PSD=pulse sequence design, ST= slice thickness, Res=resolution, T2w = T2-weighted MRI, 
Conv = conventional, rFOV=reduced FOV 
 

4.3.3 Histopathology 

Post prostatectomy, all prostate specimens were fixed using injected neutral-buffered 

formalin for at least 24 hours and then serially cross-sectioned from apex to base at 3mm 

intervals using a manual meat slicer (Hobart, Troy, OH, USA). All slices were then embedded in 

paraffin as whole-mount sections, cut at 4 micron thickness, stained with hematoxylin and eosin, 

and examined under light microscopy by the study pathologist with regions of interest marked. 

The slides were then digitally scanned for comparison to the MR images. 

4.3.4 Identifying Regions of Interest 

During histological review, cancerous regions on each slide were outlined and graded by 

the study pathologist using the Gleason system; the amount of cancer in each region was 

estimated, along with the various fractions of each Gleason grade in each cancer region. Benign 

tissue regions of cystic atrophy (dilated cystic glands) and normal prostate glandular tissue were 

also identified and outlined. Next, regions of interest were manually drawn freeform on T2-

weighted images based on the digitized histopathology slides using anatomical cues, following a 

consensus of two readers, keeping within homogeneous regions.  

Only the regions containing more than 50% cancer, with regions of interest (ROI) areas 

larger than 0.05cc were included in the analysis. ROIs were grouped based on region within the 

prostate (peripheral zone versus transition zone) and tissue of interest – cystic atrophy/normal 
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tissue or Gleason Grade groups. For each patient, average imaging parameters were computed 

across the ROIs in question, weighted by the ROI area, resulting in one measure per patient for 

each tissue grouping.  

4.3.5 Statistical Analysis 

Statistical analysis was carried out using the JMP software (JMP, Version 10, SAS 

Institute Inc., Cary, NC). A p-value of 0.05 or less was used to define statistical significance. 

Descriptive statistics were listed as mean ± standard deviation when normally distributed and as 

median (first quartile (Q1), third quartile (Q3)) when not normally distributed. Non-parametric 

Wilcoxon signed-rank paired tests were used to compare all the imaging parameters of interest 

across tissue types. For the four subjects with missing MRSI data, mean MRSI values over ROIs 

within the group of interest were substituted for the missing MRSI values in order to include 

these four patients in the analysis. A stepwise logistic regression analysis was performed for all 

imaging modalities and combinations of imaging parameters. A forward stepwise logistic 

regression with a threshold p-value of 0.1 was used to identify the imaging parameters to be 

included in the combined model. The area under the ROC (receiver operating characteristic) 

curve (AUC) was computed and its performance was evaluated in distinguishing 1) benign 

tissues from malignant, 2) GS3+3 disease from ≥GS3+4 PCa, 3) grouped GS3+3 and GS3+4 

disease from ≥GS4+3 PCa. Sensitivity and specificity values were also reported. Optimal 

sensitivity and specificity pairs were chosen off of the ROC curve with the assumption that false 

negatives and false positives come at similar costs. Separate analyses were carried out for the 

transition zone and the peripheral zone tissues. To assess performance of each model, repeated k-

fold cross-validation with 100 iterations and k=4 was performed.  

4.4 Results 
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No adverse events due to mpMRI scans performed in the course of this study were 

reported. The patients’ mean age was 63.7±6.3 years, the median pre-surgical PSA was 6.2 

ng/ml (Q1=4.3 ng/ml, Q3=8.35 ng/ml), the median prostatectomy Gleason score was 7 (Q1=6, 

Q3=8), ranging from GS 6 to GS 10. For this study, the median time interval between MRI scan 

and prostatectomy was 40 days (Q1=14 days, Q3=83.8 days), ranging from 2 to 201 days. 

The distribution of Gleason scores across patients, the ROI numbers, and lesion-based 

ROI sizes used in the analyses are summarized in Table 4.2. In the peripheral zone 241 cancer 

ROIs were drawn for 62 patients, while in the transition zone 101 cancer ROIs were drawn for 

22 patients. Nineteen cases had both peripheral zone and transition zone lesions. The median size 

of these averaged, lesion-based ROIs in the peripheral zone was 0.30cc (Q1=0.16cc, 

Q3=0.52cc), ranging from 0.05cc to 8.28cc, while in the transition zone the median lesion-based 

ROI size was 0.20cc (Q1=0.15cc, Q2=0.60cc), ranging from 0.06cc to 2.05cc.  

Table 4.2: Patient, region of interest (ROI) counts, and lesion based ROI sizes for healthy and 
cancerous tissues.  
Prostate	
  Region	
   Tissue	
  Type	
   Number	
  of	
  Patients	
   Number	
  of	
  ROIs	
   Median	
  (Q1,	
  Q3)	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  

Lesion-­‐based	
  ROI	
  size	
  (cc)	
  
Peripheral	
  Zone	
  
	
  
	
  
	
  
	
  
	
  

	
  

Benign	
   67	
   218	
   0.31	
  (0.16,	
  0.59)	
  
3+3	
   22	
   54	
   0.26	
  (0.20,	
  0.34)	
  
3+4	
   25	
   78	
   0.38	
  (0.14,	
  0.59)	
  
4+3	
   18	
   42	
   0.26	
  (0.15,	
  0.57)	
  
4+4	
   10	
   21	
   0.17	
  (0.13,	
  0.26)	
  
4+5	
   4	
   19	
   1.86	
  (0.36,	
  4.36)	
  
5+3	
   2	
   8	
   0.93	
  (0.56,	
  1.30)	
  
5+4	
   3	
   9	
   0.32	
  (0.30,	
  0.57)	
  
5+5	
   2	
   10	
   4.29	
  (2.30,	
  4.29)	
  

Transition	
  Zone	
   Benign	
   42	
   126	
   0.28	
  (0.12,	
  0.59)	
  
3+3	
   13	
   32	
   0.27	
  (0.16,	
  0.36)	
  
3+4	
   11	
   37	
   0.18	
  (0.11,	
  0.30)	
  
4+3	
   9	
   25	
   0.18	
  (0.15,	
  0.64)	
  
4+4	
   2	
   5	
   0.65	
  (0.37,	
  0.93)	
  
3+5	
   1	
   2	
   0.30	
  (0.30,	
  0.30)	
  

Benign regions include cystic atrophy and normal peripheral zone tissues. 
Not normally distributed data reported as median (first quartile (Q1), third quartile (Q3)). 
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An example of mpMR images obtained as part of the study and corresponding 

histopathological slides are illustrated in Figure 4.1 for a peripheral zone cancer and in Figure 

4.2 showing a transition zone cancer.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3 depicts the magnetic resonance spectra within the peripheral zone for the 

patient in Figure 4.1 demonstrating the quality of the acquired MRSI data. The citrate peaks are 

prominent within the right lobe of the prostate indicating benign nature of the tissues, the choline 

peaks are evident within the left lobe of the prostate indicating malignancy. 

Figure 4.1: A 59 year-old male with serum PSA of 4.8 ng/ml and GS3+4 prostate cancer who 
underwent radical prostatectomy. a) H&E stained histology specimen, b) coil-corrected T2-weighted 
FSE image, c) ADC map, d) MRSI choline metabolite map, e) washout slope, f) maximal 
enhancement slope. The arrows designate cancerous lesions.  
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Figure 4.2: A 56 year-old male with serum PSA of 12.5 ng/ml and GS4+3+5 prostate cancer who 
underwent radical prostatectomy. a) H&E stained histology specimen, b) coil-corrected T2-weighted 
FSE image, c) ADC map, d) MRSI choline metabolite map, e) washout slope, f) maximal 
enhancement slope. The arrows designate cancerous lesions. 
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Figure 4.4 summarizes the distribution of values observed for the imaging parameters in 

benign tissues, as well as in GS3+3, in GS3+4, and in those GS4+3 and higher cancer tissues 

(≥GS4+3) in the peripheral zone. To determine the discriminatory value of each measured 

imaging parameter independent of each other, values obtained for each tissue and tumor type 

were compared. Within the peripheral zone, statistically significant differences were noted 

between benign and GS3+3, benign and GS3+4, as well as benign and ≥GS4+3 for all imaging 

parameters. Additionally, statistically significant differences were noted between GS3+3 and 

≥GS4+3 on ADC (p=0.0065), washout slope (p=0.019), Cho/Cit ratio (p=0.04), and Cho/Cre 

(p=0.0001), however, maximal enhancement slope did not reach statistical significance 

(p=0.053). Other results that did not reach statistical significance for group differences were 

GS3+3 compared to GS3+4 tissues on maximal enhancement slope (p=0.0621) and Cho/Cre 

(p=0.07). Cho/Cre was the only parameter for which statistically significant differences 

(p=0.028) were observed between GS3+4 and ≥GS4+3 cancers.  

 

 

 

Figure 4.3: Magnetic resonance spectra for a 59-year old male with serum PSA of 4.8 ng/ml and 
GS3+4 prostate cancer who underwent radical prostatectomy (histopathology and mpMR images are 
displayed in Figure 4.1). Cit indicates the citrate peaks and Cho designates the choline peak. 
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Figure 4.5 summarizes the distribution of values observed for the imaging parameters in 

benign tissues, as well as GS3+3, GS3+4, and ≥GS4+3 cancers in the transition zone.  

Figure 4.4: Box-plots comparing MR measures in normal peripheral zone tissues and GS3+3, 
GS3+4, and ≥GS4+3 peripheral zone cancers. A) T2-weighted intensity, B) ADC, C) Peak 
Enhancement, D) Maximal Enhancement Slope, E) Washout Slope F) Kep, G) Choline/Citrate, 
H) Choline/Creatine. Horizontal lines within the box plots represent the median values. 
Whiskers are drawn to the furthest points within 1.5x interquartile range, where interquartile 
range is the difference between the 1st and the 3rd quartiles. 
*** <0.0001, ** <0.001, * <0.05 
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Figure 4.5: Box-plots comparing MR measures in normal transition zone tissues and GS3+3, 
GS3+4, and ≥GS4+3 transition zone cancers. A) T2-weighted intensity, B) ADC, C) Maximal 
Enhancement Slope, D) Washout Slope, E) Ktrans, F) Kep, G) Choline/Citrate, H) 
Choline/Creatine. Horizontal lines within the box plots represent the median values. Whiskers 
are drawn to the furthest points within 1.5x interquartile range, where interquartile range is the 
difference between the 1st and the 3rd quartiles. 
*** <0.0001, ** <0.001, * <0.05 
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Within the transition zone, statistically significant differences between benign and 

GS3+3, benign and GS3+4, as well as benign and ≥GS4+3 cancers were noted on the majority of 

modalities as depicted in Figure 4.5. Additionally, statistically significant differences were 

observed between GS3+3 and ≥GS4+3 on washout slope (p=0.0451) and Cho/Cit ratio 

(p=0.0447). No statistically significant differences were noted between GS3+3 and GS3+4 

cancers or between GS3+4 and ≥GS4+3 cancers.  

The results for the logistic regression analyses to discriminate between tissue types 

including the AUC, the specificity, and the sensitivity, are given in Tables 4.3 and 4.4. The 

results for the peripheral zone are summarized in Table 4.3, while Table 4.4 contains the results 

for the transition zone.  

Table 4.3: Peripheral zone – results of the logistic regression analysis with the area under the 
curve (AUC), sensitivity and specificity values demonstrating the capabilities of individual 
metric and combinations of parameters to discriminate tissues of interest. 

 

 

 

Parameter Benign/All Cancers G3+3/≥G3+4 ≤G3+4/≥G4+3 

 AUC Sensitivity Specificity AUC Sensitivity Specificity AUC Sensitivity Specificity 

T2-weighted 0.73 86.4 55.2 0.56 60.9 59.1 0.62 66.7 61.5 

ADC 0.90 94.9 77.6 0.68 73.9 63.6 0.68 57.6 79.5 

Peak Enhancement 0.74 61.0 77.6 0.57 56.5 63.6 0.52 75.8 38.5 

Max Enhancement Slope  0.82 81.4 70.7 0.66 45.7 86.4 0.56 54.6 66.7 

Washout Slope 0.77 66.1 79.3 0.65 54.4 86.4 0.63 63.6 66.7 

Ktrans 0.75 59.3 86.2 0.60 91.3 31.8 0.54 42.4 74.4 

Kep 0.73 50.9 89.7 0.57 65.2 54.6 0.54 33.3 87.2 

vL 0.70 54.2 87.9 0.51 47.8 68.2 0.50 42.4 69.2 

Choline/Citrate (CC) 0.98 100 89.7 0.72 73.9 72.7 0.61 72.7 59.0 

[Choline+Creatine]/Citrate 0.96      88.1 91.4 0.65 56.5 77.3 0.58 54.6 71.8 

Choline/Creatine (Cho/Cre) 0.94 94.8 84.8 0.79 77.3 82.6 0.73 64.1 87.9 

Combined (ADC, Kep, CC) 1.0 100 100       

Combined (ADC, Max 
Enhancement Slope, Cho/Cre) 

   0.82 86.4 73.9    

Combined (ADC, Washout, 
Cho/Cre, CC) 

      0.80 76.9 69.7 
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Table 4.4: Transition zone – results of the logistic regression analysis with the area under the 
curve (AUC), sensitivity and specificity values demonstrating the capabilities of individual 
metric and combinations of parameters to discriminate tissues of interest. 

 

 

 

 

 

The results of the repeated k-fold cross-validation of the combined models are 

summarized in Table 4.5, with the training and the validation ROC AUC, as well as the 

confidence intervals reported.  

Table 4.5: The area under the curve (AUC) and the confidence intervals (CI) reported for the 
training and the validation models using the repeated 4-fold cross validation. 

 

 

Parameter Benign/All Cancers G3+3/≥G3+4 ≤G3+4/≥G4+3 

 AUC Sensitivity Specificity AUC Sensitivity Specificity AUC Sensitivity Specificity 

T2-weighted 0.76 85.0 58.3 0.56 66.7 61.5 0.53 88.9 38.9 

ADC 0.94 90.0 88.9 0.65 73.3 61.5 0.53 55.6 77.8 

Peak Enhancement 0.61 65.0 58.3 0.53 80.0 38.5 0.53 77.8 38.9 

Max Enhancement Slope  0.72 95.0 47.2 0.66 80.0 61.5 0.62 33.3 94.4 

Washout Slope 0.68 40.0 97.2 0.81 73.3 84.6 0.68 77.8 61.1 

Ktrans 0.71 55.0 91.7 0.70 60.0 84.6 0.69 77.8 61.1 

Kep 0.36 100 28.0 0.68 66.7 76.9 0.70 55.6 88.9 

vL 0.55 75.0 47.2 0.68 60.0 84.6 0.65 66.7 72.2 

Choline/Citrate (CC) 0.95 95.0 94.4 0.49 33.3 92.3 0.70 88.9 55.6 

[Choline+Creatine]/Citrate 0.89 90.0 83.3 0.49 26.7 92.3 0.74 100 55.6 

Choline/Creatine (Cho/Cre) 0.92 83.3 100 0.70 69.2 86.7 0.72 50.0 100 

Combined (T2w, ADC, CC) 1.0 100 100             

Combined (Washout Slope)    0.81 73.3 84.6       

Combined (Kep, Cho/Cre)          0.83 83.3 77.8 

 

Region Model Benign/All Cancers G3+3/≥G3+4 ≤G3+4/≥G4+3 

   AUC 95% CI AUC 95% CI AUC 95% CI 

Peripheral Zone Training 1.0 1.0 1.0 0.82 (± 0.04) 0.82 0.83 0.81 (± 0.03) 0.80 0.82 

 Validation  0.99(± 0.02) 0.99 1.0 0.80 (± 0.11) 0.78 0.82 0.78  (± 0.10) 0.76 0.80 

Transition Zone Training 1.0 1.0 1.0 0.80 (± 0.06) 0.79 0.82 0.83  (± 0.05) 0.82 0.83 

 Validation  0.97 (± 0.05) 0.96 0.98 0.85 (± 0.15) 0.82 0.87 0.77  (± 0.16) 0.74 0.81 
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4.5 Discussion 

Using one or a combination of several quantitative parameters derived from MR imaging 

to separate benign tissues from PCa and discriminate among different levels of PCa 

aggressiveness is a promising step toward improving prostate cancer characterization. A few 

studies have reported on the associations of individual imaging parameters and prostate Gleason 

grading.90,127,148,215-218 For instance, Wang et al. found statistically significant associations 

between higher Gleason scores and lower tumor to muscle signal intensity ratio on T2-weighted 

images.215 Statistically significant negative correlations were reported between diffusion ADC 

values and prostate cancer Gleason scores.90,216-218 Studies such as ACRIN have raised questions 

regarding suitability of spectroscopy for cancer detection, particularly for smaller ≤GS3+3 

lesions62; however, despite this limitation, MRSI has been shown an excellent technique for 

cancer characterization.127,219,225 The combinations of different metabolite ratios i.e. choline plus 

creatine to citrate, choline to citrate, or choline/creatine obtained from MRSI shows promise for 

discrimination of low-grade and higher-grade prostate tumors.127,219,225 Several studies have also 

reported promising associations between DCE MRI derived parameters and Gleason 

grades.148,217,220 Chen et al. observed a statistically significant association between the washout 

gradient and Gleason scores.220 Peng et al. noted moderate correlations of Ktrans with Gleason 

scores217, while Vos et al. found that a combination of DCE MRI parameters (mean and 75th 

percentile values of enhancement slope, mean washout, and 75th percentile values of Ktrans) may 

aid in separating low-risk from more aggressive cancers.148 In the last few years, several groups 

have published predictive models obtained by considering sets of predictors made up of multiple 

imaging parameters.217,226,227 Unfortunately, some studies are limited by the use of biopsy-based 

histopathology,226 which is associated with sampling errors.32 Others, while using prostatectomy 
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histopathology for imaging validation, performed an abbreviated imaging protocol, resulting in 

incomplete multiparametric models.217 Additionally, most studies exclude lesions smaller than 

0.5cc.227,228 Such size restrictions may limit applicability of the findings to the growing active 

surveillance patient population. 

This study examined all imaging modalities currently available in clinical scanning and 

used post-radical prostatectomy whole mount histopathology as the reference standard. To 

identify the purest cancer signatures, we only looked at regions with greater than 50% cancer 

composition on pathology and homogeneous imaging appearance. Unlike other studies, our 

cancer size restrictions were minimal. We included all regions of interest greater than 0.05cc, 

with resultant median cancer lesion-based ROI size of 0.3cc in the peripheral zone and 0.2cc in 

the transition zone, with lesion sizes ranging from 0.05cc to 8.28cc and 0.06cc to 2.05cc for the 

two regions respectively. 

Within the peripheral zone, while statistically significant differences between benign and 

malignant tissues were observed for all imaging parameters, logistic regression yielded the 

highest AUC values for ADC, Kep, and Cho/Cit. A combination of these parameters resulted in a 

complete separation of benign and malignant tissues with an AUC of 1.0. The stability of the 

model was demonstrated using repeated four-fold cross-validation, which yielded an AUC of 

0.99 (95% confidence interval, 0.99 - 1). Similar results were seen in the transition zone by 

combining ADC, Cho/Cit ratio, and T2-weighted image intensity, which yielded an AUC of 1.0 

with a validation AUC of 0.97 (95% confidence interval, 0.96 - 0.98), indicating the excellent 

performance of the model. Interestingly, Cho/Cit was the single best performing parameter for 

distinguishing benign and malignant tissues for both the peripheral zone and the transition zone, 

demonstrating AUC values of 0.98 and 0.95 respectively, higher than those observed for ADC. 
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These results are similar or better than those reported in literature: with AUC values for 

combined models for discrimination of normal and cancerous regions ranging from 0.82 to 0.96 

in the peripheral zone227,229,230 and 0.76 to 0.92 in the transition zone.150,231,232 

Next, the ability of mpMRI parameters to distinguish GS3+3 from ≥GS3+4 prostatic 

cancers was investigated. Studies have noted the importance of identifying a Gleason 4 

component in order to better monitor disease progression and minimize risk of prostate cancer 

specific mortality.233 Within the peripheral zone a combination of ADC, maximal enhancement 

slope and Cho/Cre ratio yielded an AUC of 0.82 with a good sensitivity of 86.4 and a lower 

specificity of 73.9. This suggests that some of the GS3+3 cancers tend to look more aggressive 

on imaging. This is not surprising since separating GS3+3 and GS3+4 cancers with minimal 

Gleason 4 disease is a considerable challenge, and these aggressive appearing G3+3 tumors 

could be genetically234 and metabolically235 more aggressive leading to poorer outcomes. In the 

transition zone, washout slope was the best performing parameter, yielding an AUC of 0.81, 

which was higher than any AUCs obtained for multiple predictor models fitted. This result 

highlights the importance of using a comprehensive mpMR imaging, incorporating both DCE 

and MRSI when assessing the aggressiveness of prostate cancer at diagnosis in a contemporary 

early stage population of patients. 

Finally, in order to assess our ability to distinguish low-risk from high-risk disease, we 

examined the performance of mpMRI parameters at separating grouped GS3+3 and GS3+4 

cancers from ≥GS4+3 prostate lesions. At many institutions patients can continue with active 

surveillance in the presence of GS3+4 disease; however, diagnosis of GS4+3 cancers on biopsy 

typically triggers treatment with curative intent, which makes our ability to separate the two 

groups of clinical importance. Within the peripheral zone, a combination of ADC, Kep, Cho/Cre, 
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and Cho/Cit yielded an AUC of 0.80 with a sensitivity of 76.9 and a specificity of 69.7, likely 

due to the considerable challenges associated with separating GS3+4 and GS4+3 lesions on 

imaging. In the transition zone, combined Kep and Cho/Cre yielded an AUC of 0.83 for 

discriminating between low-risk (GS3+3/GS3+4) and high-risk (≥GS4+3) disease, with 

reasonable sensitivity of 83.3 and specificity of 77.8. It is important to note that all the models 

described above had very narrow confidence intervals and excellent corresponding validation 

AUC values, indicating the robustness of the final models. 

Other studies have looked at separating low and high-risk prostate cancers. In a 2015 

study, Vos et al. reported a combined AUC of 0.85 for separating low-grade PCa (defined as GG 

≤3) from high-grade lesions (defined as GG ≥4) in the peripheral zone and an AUC of 0.92 for 

the transition zone.227 Peng et al. also looked at using combined models to distinguish low-grade 

disease (GS3+3) and high-grade lesions (GS 7, 8, 9) and reported an AUC of 0.77 for their 

combined model within the peripheral zone.217 These and our models show promise in using an 

mpMRI technique for evaluation of cancer. Our models go a step further in showing the ability 

of mpMRI to discriminate low-risk from high-risk prostate cancers even for smaller lesions, 

which is critical in the setting of early stage disease typically found in active surveillance 

patients. 

The role of multiparametric MR imaging in prostate cancer management is continually 

evolving. T2-weighted imaging and DW imaging are universally accepted for PCa diagnosis. 

Version 1 of the Prostate Imaging – Reporting and Data System (PI-RADS) published in 2012 

and designed to standardize acquisition, interpretation and reporting of mpMRI scans was based 

solely on T2-weighted imaging and DWI.236 The current PI-RADS version 2 entirely omits 

MRSI and advises the use of qualitative DCE MRI only in cases of borderline findings on DWI 
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and T2w imaging in the peripheral zone and omits the use of DCE MRI for detection of lesions 

in the transition zone. Our study showed the importance of both MRSI measurements and DCE 

MRI-derived quantitative parameters for building better models for discriminating between 

prostatic cancerous and benign tissues, and more importantly for distinguishing between 

malignant prostatic tissues of various grades. These findings are important for improving 

therapeutic selection for individual patients, and for designing improved clinical trials of new 

therapeutic approaches.  

Our study has several limitations. First, the regions of interest were manually drawn on 

MR images based on the histopathology; this approach could have potentially introduced bias 

toward outlining MR visible features as opposed to histologically evident cancers. Second, MR 

sequences were manually aligned to each other based upon visual assessment; however, it is 

possible that some regions were not perfectly transferred from one sequence to another. Third, 

this study only included cancer regions with greater than 50% cancer composition and 

homogeneous imaging appearance. This was done to identify the purest imaging signatures 

associated with PCa of different Gleason grades and to establish mpMRI capabilities in detecting 

these lesions. However, this selection process resulted in smaller ROIs than the histopathological 

lesions and does introduce bias to our results. Fourth, prostate tissues are extremely 

heterogeneous; in the analysis above normal tissues and cystic atrophy were presented as benign 

tissues. This is an oversimplification of the complex nature of the benign prostatic tissues, which 

requires further exploration. High-b DW imaging was incorporated into the imaging protocol 

part way through the study. Due to low numbers (only 35/78 patients had high-b DW imaging 

performed), high-b DWI, which has proven to be very useful in contemporary studies,237,238 was 

not included in the models. Finally, truth in this study was based solely on pathologic grade at 
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surgery, mpMRI may be able to identify those GS3+3 tumors that could result in poor clinical 

outcomes. 

In conclusion, this study demonstrated excellent separation of benign tissues and PCa, as 

well as cancers across Gleason Scores in the peripheral zone and in the transition zone using 

mpMRI, even in very small lesions. Quantitative measures of DWI, MRSI, and DCE MRI aided 

the discrimination between Gleason Grade groups of cancers, underlining the value of a 

comprehensive mpMRI protocol for evaluation of prostate cancer presence and aggressiveness. 
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CHAPTER 5 

Semi-Automatic Technique for Segmentation and Evaluation of 
Prostate Cancer Regions as Outlined On Whole-Mount 

Histopathology 
 

5.1 Abstract 

 The purpose of this study was to develop a technique for 1) segmentation of prostate 

cancer regions outlined on whole-mount histopathology slides and 2) accurate estimation of the 

segmented region areas. Image processing and color segmentation techniques in Matlab were 

used to develop the procedure for cancer region segmentation. User initialized gradient vector 

flow (GVF) active contouring was then applied to the extracted cancerous regions to obtain an 

accurate outline of each region. Region areas were computed first in pixels and then converted to 

cm2. The areas for 1193 cancer regions outlined on histopathology slides for 78 patients were 

successfully computed using these segmentation and contouring techniques. A small study was 

designed to test repeatability of the GVF snake contouring. Fifteen lesions differing in size and 

degrees of concavities were randomly chosen. For each region, the process of GVF snake 

initialization, lesion contouring, and region area computation was repeated 10 times and the 

coefficient of variation was calculated. The coefficients of variation were small ranging from 

0.0018 to 0.0166, indicating the overall robustness of the technique. 

5.2 Introduction 

 Histopathology is widely considered a reference standard for PCa diagnosis and lesion 

characterization. Pathology derived Gleason grading has been linked to critical clinical outcomes 

such as disease staging, progression to metastatic disease, and survival.11 Lesion size and 

Gleason grading are the most accurate indicators of disease aggressiveness. Nevertheless, 
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accurate quantitative assessment of lesion volumes and grading in the radical prostatectomy 

specimen is difficult to come by. In a clinical setting, tumor volumes are often approximated, 

with size and Gleason grading details reported only for the largest lesions. Whole-mount slicing 

of the prostate, digitization of the histopathology slides, and detailed histopathological review 

provide a unique opportunity to get a better picture regarding the number of lesions, lesion 

volumes, and their aggressiveness in a surgical population. The goal of this project was to 

develop a semi-automatic way of accurately segmenting cancerous regions and determining the 

sizes of cancerous regions as outlined on the whole-mount histopathology slides by a prostate 

pathologist.  

5.3 Theory 

5.3.1 Traditional snakes 

Active contours or snakes are commonly used in computer vision to identify the 

boundaries of an object. Snakes have first been introduced in 1987 in a seminal paper by Kass et 

al.239 and defined as energy-minimizing splines guided by external constraint forces and 

influenced by image forces that pull them toward features such as lines and edges. The image 

forces tend to push the snake toward the prominent image features (such as lines or edges), while 

the external constraint forces act to position the snake near the local minimum of choice (such as 

specified by a user).  

The snake is a contour represented parametrically as c(s)=(x(s), y(s)) where x(s) and y(s) 

are coordinates along the contour and s is taken to vary between 0 and 1 (Figure 5.1). 

 

  

 

Figure 5.1: Parametric curve. 
The contour or the snake is defined in the (x, y) plane 
of an image as a parametric curve c(s)=(x(s), y(s)). The 
snake is influenced by the internal, external and the 
image forces as described in Eq. 5.1.  
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The snake moves through the spatial domain of an image to minimize its energy function. The 

energy of the snake (Esnake) can be written as a weighted sum of forces acting upon it.239  

E!"#$% =    E!"#$%"&' c s +   E!"#$% c s + E!"#$%&'(#% c s ds!
!            [5.1] 

The integral notation implies an open-ended snake; however, closed ended snakes, created by 

joining the first and the last elements, are often used in practice.  

Einternal is the internal energy of the spline due to bending and imposes a smoothness constraint; 

Eimage represents the image forces that push the snake toward the image features (i.e. edges, light 

or dark regions, terminations and etc.), Econstraint represents the external constraints responsible 

for placing the snake near the local minimum (user input or automatic initialization). 

5.3.1.1 Internal Energy 

The internal spline energy (Einternal) can be written out in terms of elastic and bending 

energies, which can be viewed as tension and stiffness respectively (Eq. 5.2). 

E!"#$%"&' =
!
!
(α s c′ s ! +   β s c′′ s !)	
  	
   	
   	
   	
   	
  	
  	
  	
  	
   	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  [5.2]	
  

The first order derivative c′(s) makes the spline act like a membrane, while the second order 

derivative c′′(s) makes it act like a thin plate. In this manner, by adjusting the weights α(s) and 

β(s) the elasticity and the rigidity terms of the snake are controlled. For instance, setting β(s) = 0 

in one part of the model allows the snake to become second-order discontinuous and develop a 

corner.	
  When no other constraints are applied, a snake collapses to a point; however, if the ends 

of the snake are fixed in space, it forms a straight line with evenly spaced elements.240  

5.3.1.2 Image Energy 

The image energy or the potential energy generated by processing an image I(x,y) 

produces a force that can be used to drive snakes towards features of interest. 
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The image forces act to attract the snake to the image features such as lines, edges, or 

terminations. As such, the image energy (Eimage) can be written out as the sum of these individual 

energy components (Eq. 5.3).240  

E!"#$% =   w!"#$E!"#$ +   w!"#!E!"#!+  w!"#$%&'!%(&E!"#$%&'!%(&                               [5.3] 

Eline is defined by the image intensity (Eq. 5.4). 

E!"#$ = I(x, y)                                                                                                          [5.4] 

Depending on the sign of wline the snake will either be attracted to the lightest or the darkest 

nearby lines of the image and will try to align itself with either the lightest or the darkest nearby 

contour (Figure 5.2a).  

By defining the edge energy Eedge as the gradient-based potential energy (Eq. 5.5), the snake is 

attracted to contours with large image gradients and thus it stops when it hits a hard edge (Figure 

5.2b). 

E!"#! = − ∇I(x, y) !                                                                                                 [5.5] 

Finally, the snake can be attracted to corners and terminations using the energy term based on the 

line curvature (Figure 5.2c). This is usually done for a slightly smoothed image.  

Assuming our image I(x,y) was smoothed to create image J(x,y) and the gradient direction is 

given by θ = tan-1(Jy/Jx), then the unit vectors along and perpendicular the image gradient are240  

𝐧∥ =
cos θ
sin θ                             𝐧! =

−sin θ
cos θ  

The curvature of a contour can be written as  

E!"#$%&'!%(& =   
!!
!𝐧!

!
! ds =    !!! !𝐧!

!

!! !𝐧∥

!
!  ds                [5.6] 

This can be ultimately written as 

E!"#$%&'!%(& =   
!!!!!!  !  !!!!!!   !  !!!"!!!!

!!!!  !!!
!
!

!
!   ds                [5.7] 
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5.3.1.3 Constraint Energy 

Snakes rely on “high-level” processes such as user input or automatic initialization to 

place them somewhere near a desired solution. An initialization protocol may locate the features 

of interest in an image and then a snake can be used for further refinement. Alternatively, a user 

may need to push the snake towards an image feature, while the energy minimization will take 

care of the rest, fitting the active contour to the data. In other words, both automatic and manual 

supervision can be used to control attraction and repulsion forces that drive snakes to and from 

specific features. 

5.3.1.4 Euler Formulation 

Typically, Eimage and Econstraint can be combined into external energy Eext. 

Eext = Eimage + Econstraint 

The energy equation for the snake becomes 

E = !
!
α s c!(s) ! +   β s c!!(s) ! + E!"# c s ds!

!                                          [5.8] 

When α(s)=α and β(s)=β are constants, minimizing the energy equation (Eq. 5.8) gives rise to the 

following Euler equation (Eq. 5.9). 

αc!! s −   βc!!!! s − ∇E!"# = 0                                                              [5.9] 

Figure 5.2: Examples of line, edge, and termination scenarios for snake contouring. 
a) With wline set at a positive value, minimizing Eline puts the snake contour in a dark region 
(wline<0 would ensure attraction to light regions) b) moving towards large image gradients, the 
snake stops when it hits a hard edge, c) the snake locates the corners by identifying points of 
high curvature within the region.  
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! The first term measures the tension or elasticity of the 
contour.

! Minimizing this term makes the snake want to contract 
like a rubber band.

! Increasing the weight & will make the snake contract 
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! The second term measures the stiffness or rigidity of the 
snake.

! Minimizing this term makes the contour bend gently.
! Decreasing the weight - will allow corners to form.
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! The last term is the potential energy, which attracts the 
points to certain features in the image like a magnet.

! Note the tension and stiffness terms control the snake 
shape, but do not involve the image at all.

! The potential term is important for stopping the snake at 
an image boundary.

Tension Stiffness Potential

Potential Energy

! Kass-Witkin-Terzepoulos suggested 3 possible potential 
energies:

. "# = /0123!0123 + /4563!4563 + /7389!7389

! The idea is that the programmer would choose potential 
energy depending on what features they want to detect in 
the image.

! If you don't want a particular energy, set its weight / = 0.
! Let image I be a smoothed version of the original image f:
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! Maybe we want our snake to stop when it reaches a dark 
region.

!0123 = ;(", B)

! Then minimizing !0123 will put snake points in a dark 
region (low grayscale ; ", B 	value).

! If we want our snake to stop in a bright region, we would 
minimize −; ", B .	 This can be done by setting a 
negative weight /0123.

Potential Energy: Edge

! Or maybe we want our snake to stop when it hits a 
strong edge, which would be where the gradient is large.

!4563 = −G;(", B)

! Minimizing −G; will attract the snake points to the 
boundary of an object.

B
A	
  

Lec 10:  Snakes

3

Potential Energy: Termination

! For a shape with sharp corners, it would be helpful to 
place a snake point at the corner.

! So we want points to terminate at places of high 
curvature in the image.

!"#$% = '()*+,()- . =
.//.0

1 − 2./.0./0 + .00./
1

./
1 + .0

1 5/1

Parameters

! There are 5 basic parameters to set.

! 7:  Tension (contraction force)
! 8:  Stiffness (resistance to bending)
! 9:;<#:  Attraction to dark pixels

Set 9:;<# < 0 to attract to bright pixels.
! 9?@A#:  Attraction to edges (large color changes)
! 9"#$%:  Attraction to corner points

Energy Minimization

! To	minimize	the	energy:
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U

V

+ P W QX ST
U

V

! We calculate its first variation of energy:
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SQ

! We then evolve a PDE in small time steps following −Y!:
ZQX

Z,
= 27Q[[ − 28Q[[[ −

SW

SQ

Illusory Contours

! If the weights are set properly, we can even find 
contours where there are no edges.

Snakes Demo
! A nice supervised snake GUI was written by Ritwick Kumar, 

available from the Matlab Central File Exchange.
www.mathworks.com/matlabcentral/fileexchange/28109-snakes--active-contour-models

! Start the GUI by typing "snk".
! First load an image, then 
click "Filter" to smooth 
the image.
! Then click points around 
the object you wish to segment.
! You will have to adjust the 
parameters for each image.

GVF Snakes

! Snakes have trouble filling in nooks and crannies 
(concave boundary).

! A more advanced snake uses the Gradient Vector Flow 
(GVF) to guide the snake into these small crevices (Xu-
Prince, 1997).

! GVF snakes are particularly useful in medical imaging.

Standard Snake                  GVF Snake
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Since a snake typically deforms over a series of iterations, each element x along the contour 

technically can be written as x(s,t) and not just x(s), with space s (curve) and time t (iteration) 

serving as parameters. Eq. 5.9 can be rewritten as  

αc!! s, t −   βc!!!! s, t − ∇E!"# = 0                                                                         [5.10] 

There are several strategies (briefly outlined below) that can be utilized to achieve a solution to 

this problem and ensure convergence of the active contour.241 

5.3.1.5 Energy Minimization Strategies 

Energy minimization is at the core of the active contouring. There are several approaches 

to solving the energy minimization problem; these can mostly be split into continuous and 

discrete categories.242 The continuous methods are Newton-Raphson, as well as gradient based 

techniques (gradient descent, conjugate gradient, and proximal gradient), while discrete 

approaches include graph cuts, constrained optimization methods (linear programming), message 

passing algorithms (belief propagation), as well as simulated annealing243 and iterative 

conditional modes, which are both based on Markov-Random-Fields.242 It is not the intention of 

this work to provide mathematical formulations for these techniques; however, it might be useful 

to briefly look at the advantages and drawbacks associated with these methods. For instance, 

Newton-Raphson method typically requires the fewest number of steps to reach the minimum 

but is the most computationally expensive approach per step since the evaluation of both the first 

and the second derivatives is required at each iteration. Gradient descent approaches, on the other 

hand, are typically faster at each iteration (do not require calculation of the second derivative) 

but generally involve greater number of iterations to reach the minimum and are slower to 

converge. Unlike gradient descent techniques that are prone to local minima and require 

guidance from the user to ensure optimal solution, discrete optimization approaches tend to 
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obtain global minima of the energy function. Largely more receptive to automatic initialization, 

discrete techniques come with their own set of challenges such as limited applicability to non-

submodular energy functions (graph cuts),244 lack of guaranteed convergence (belief 

propagation),245 stalling and lack of efficiency (linear programming),242 slow convergence and 

necessity for additional steps/methods for verification of optimal solution (simulated 

annealing),243,245	
  or sensitivity to initial estimate (iterative conditional modes).242 

5.3.2 Gradient Vector Flow 

Since their introduction, snakes have been widely used for edge detection246, 

segmentation247,248, motion tracking249,250, and etc. The two main problems with the conventional 

snake models as described above are: 1) their performance tends to depend significantly on 

initialization (poor convergence for snakes initialized far from the minimum), 2) poor 

performance in scenarios involving boundary concavities.251 Attempts have been made to 

address some of these shortcomings by introducing additional external forces such as the 

solenoidal fields252 proposed by Prince et al., as well as pressure forces253 or distance forces254 

proposed by Cohen et al. as part of the balloon models. While these approaches performed better 

than the traditional active contour models, a comprehensive solution was not introduced until 

1997 when Xu et al. proposed a new class of external forces called gradient vector flow (GVF) 

fields.6,251,255  

The advantages of a GVF snake are its insensitivity to initialization (initialization can be 

made inside or outside of the object boundary) and its ability to move into concave boundary 

regions. The GVF approach begins by defining an edge map. An edge map is derived from the 

image and has the following properties: 1) the gradient of an edge map has vectors pointing 

toward the edges, 2) these vectors have large magnitudes only in the immediate vicinity of the 
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edges, and 3) in homogeneous regions where the image values are nearly constant, the edge map 

is nearly zero.251 While the first property allows a snake initialized close to the edge to converge; 

the second and the third properties act to decrease the capture range of the snake, which is not 

desirable. To address this, a computational diffusion process is used to extend the gradient map 

farther from the edges into the homogeneous regions, which: 1) results in increased capture 

range of the external edge map force field, making the snake evolve toward the desired 

boundary; and 2) creates vectors that point into the boundary concavities, permitting the contour 

to reach these irregular boundaries6. 

Figure 5.3 demonstrates the capture range differences between the traditional potential 

force fields (Figure 5.3a,b - top panel) and the GVF fields (Figure 5.3c,d - bottom panel). The 

streamlines shown on the right hand side display the movement of free particles under the 

influence of the external forces. Straight away, it can be clearly seen that the range of GVF 

forces (Figure 5.3d) is significantly larger than that seen for the traditional potential forces 

(Figure 5.3b). Furthermore, GVF provides downward forces that allow for the contouring of the 

concavity in the U shape (Figure 5.3c) while the potential forces only provide sideways forces 

making it impossible for the snake to enter the concave region (Figure 5.3a). 

Figure 5.3: Left panel demonstrates convergence of 
the snake using a) traditional potential forces and c) 
GVF external forces. The images show that 
compared to the traditional potential forces depicted 
in (b), the GVF forces (d) have a larger capturing 
range and are capable of driving the active contours 
inside the concavities (c) that are unreachable with 
traditional potential forces (a). 
 
 
The figure is adapted from a paper by Chenyang Xu 
and Jerry L. Prince. Snakes, Shapes, and Gradient 
Vector Flow. IEEE Transactions on Image 
Processing.	
  1998;7(3):359-369.6 
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The gradient of the edge map f(x,y) is computed from the original image I(x,y) using the 

following equations: 

For binary images, Eq. 5.11 and 5.12 are used. 

f! x, y =   −I(x, y)          [5.11] 

f ! x, y =   −𝐺! x, y   ∗   I(x, y)        [5.12] 

where 𝐺! x, y  is a 2D Gaussian function with standard deviation σ. 

For grey scale images, Eq. 5.13 and 5.14 are used in edge map calculations instead. 

f ! x, y =   − ∇I(x, y) !         [5.13] 

f ! x, y =   − ∇ 𝐺! x, y   ∗   I(x, y) !       [5.14] 

The gradient vector flow field is defined as vector field g(x,y) = (u(x,y), v(x,y)) that minimizes 

the energy function (Eq. 5.15), where f(x,y) is the edge map and ∇f is the gradient of the edge 

map, µ controls the smoothness of the GVF field and is set according to the noise level in the 

original image (larger µ values are used for noisier images). 

E =    µμ(u!! +   v!! +   u!! +   v!!)+    ∇f !   𝐠− ∇f !  dxdy                                            [5.15] 

This minimization is achieved by solving two resultant decoupled linear partial differential 

equations (Eq. 5.16 and 5.17). 

µμ∇!u− u− f! f!! +    f!! = 0                                                                                  [5.16] 

µμ∇!v− v− f! f!! +    f!! = 0        [5.17] 

∇! is the Laplacian operator ∇!= !!

ð!!
+ !!

ð!!
  

When u and v are treated as functions of time t, rewriting these equations for 𝑡   →   ∞ results in a 

pair of generalized diffusion equations 

u! x, y, t =   µμ∇!u(x, y, t)− u(x, y, t)− f!(x, y) f!  ! x, y +    f!!(x, y)    [5.18] 
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v! x, y, t =   µμ∇!v(x, y, t)− v(x, y, t)− f!(x, y) f!  ! x, y +    f!!(x, y)    [5.19] 

The iterative solution to these equations is set up by replacing x, y, and t terms with indices i, j, 

and k respectively, with Δx and Δy designating the spacings between pixels and Δt as the time 

step for each iteration.  The partial derivatives can be written as 

u! =   
!
∆!
(u!,!!!! − u!,!! ) 

v! =   
!
∆!
(v!,!!!! − v!,!! ) 

∇!u =    !
∆!∆!

u!!!,! + u!,!!! + u!!!,! + u!,!!! − 4u!,!   

∇!v =    !
∆!∆!

v!!!,! + v!,!!! + v!!!,! + v!,!!! − 4v!,!   

For convenience Xu et al.6 defined: 

b x, y = f!(x, y)! + f!(x, y)!  

c! x, y = b(x, y)f!(x, y)  

c! x, y = b(x, y)f!(x, y)  

Substituting the above partial derivatives into equations 5.18 and 5.19 provides the following 

iterative solution for the GVF: 

u!,!!!! = 1−   b!,!∆t u!,!! + r u!!!,!! + u!,!!!! + u!!!,!! + u!,!!!! − 4u!,!! + c!,!! ∆t  [5.20] 

v!,!!!! = 1−   b!,!∆t v!,!! + r v!!!,!! + v!,!!!! + v!!!,!! + v!,!!!! − 4v!,!! + c!,!! ∆t  [5.21] 

where r = !∆!
∆!∆!

 . 

To ensure convergence, the step size Δt, has to be ∆t ≤    ∆!∆!
!"

. 

 Once the GVF filed (g(x,y)) is identified, the external force term (−∇E!"#) in the Euler 

equation (Eq. 5.9) is substituted with g(x,y). 

𝑐! s, t = αc!! s, t −   βc!!!! s, t + 𝐠   
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The equation is then solved through the iteration process such as described above or through 

gradient descent methods. 

5.4 Selection of GVF Approach to Contour Histopathological Lesions 

In the context of this project, the balloon approach as described by Cohen et al.254 was 

preliminarily tested for edge detection of tumor outlines extracted from histology but proved to 

be inadequate in reaching the caveats so often seen with the lesions, nor did the algorithm 

perform well with “subjective” contours such as dotted lesion outlines. The balloon snake was 

often escaping outside the boundaries through the open spaces in the dotted outlines. Since 

concave, irregular boundaries were a common feature for the lesion regions and the 

overwhelming majority of lesions were outlined with a dotted line, GVF approach was chosen 

for its ability to adapt to subjective contours, its superior performance with concavities, as well 

as the ability to drive the snake toward the boundary from the inside, as well as from the outside 

the object boundary, which is extremely useful for very small lesions.  

5.5 Methods 

5.5.1 Histopathological Processing 

Prostate specimens obtained in patients undergoing radical prostatectomy were processed 

according to a research protocol established at this institution. First, all prostate specimens were 

fixed using injected neutral-buffered formalin for at least 24 hours. Once fixed, each prostate 

gland was then serially cross-sectioned from apex to base at 3-4 mm intervals using a manual 

meat slicer (Hobart, Troy, OH, USA). All slices were then embedded in paraffin as whole-mount 

sections, cut at 4 micron thickness, and stained with hematoxylin and eosin.  Each slide was 

closely examined by a study pathologist under the light microscope with cancerous regions and 

those corresponding to HGPIN outlined on the slides. A researcher was present during each 
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histological examination, taking detailed notes and drawings regarding lesion location, 

composition, etc. The slides were then digitally scanned. Image processing techniques were used 

to extract the outlined cancerous regions. For the majority of cases, dashed black or blue lines 

were used to outline the cancerous regions with solid green lines often designating HGPIN 

regions; however, in some instances this convention was reversed. These discrepancies were 

noted and corrected during the semi-automatic process of lesion extraction. 

5.5.2 Lesion segmentation 

Figure 5.4a shows an example of the digitized histopathology slides. Depending on the 

size of the prostate each patient had from one to three scanned pages worth of histopathology 

slides. In-house software was written in Matlab (MATLAB, 2016a, The MathWorks Inc., Natick, 

MA, USA) designed to 1) extract the lesion contours and 2) determine the area of each lesion.   

5.5.2.1 Extraction of Lesion Contours 

First, prostate segmentation was achieved by manually selecting a small area within the 

background, as well as an area within one of the prostate slices to get a representative color 

sample for each of these regions. The RGB (Red (R), Green (G), Blue (B) color spectrum) image 

(Figure 5.4a) was then transformed into the CIE (Commission Internationale de l’Eclairage) 

L*a*b* color space (Figure 5.4b). The L*a*b* space mimics human vision by creating a uniform 

perception space. Each location within the L*a*b* space is defined by three coordinates: L* 

represents the luminance or brightness, a* defines the location on the red/green axis, while b* 

specifies the position on the blue/yellow axis. Once the RGB histopathology image was 

transformed into the L*a*b* space, the a*b* compositions for the sampled colors within the two 

chosen regions were computed and used as color classifiers – one for the prostate slice and one 

for the background. Next, for each pixel within the image the Euclidian distance between the 
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pixel’s color and each color classifier was computed. The smaller the distance, the closer the 

pixel matched the color classifier in question. Nearest neighbor classification was used to group 

the pixels based on the closest matching color classifier to yield the prostate segmentation results 

shown in Figure 5.4c. The segmented image was then converted to a binary image as depicted in 

Figure 5.4d and region-growing techniques were used to create prostate masks, as well as a mask 

for the ruler seen on the right hand-side (Figure 5.4e), which was later used during pixel to 

metric units conversion. L*b* image composition was then used to isolate the lesion markings 

(which appear as blue in L*a*b* space) (Figure 5.4f). The lesion-associated markings were then 

further refined by applying prostate masks and removing any labels or extraneous pixels (Figure 

5.4g). Once downsampled to 5% of the original image size, the dotted regions depicted in the 

resulting image (Figure 5.4h) served as a starting point for the active contouring algorithm used 

in lesion size estimation. Once the dotted outlines for the individual lesions were extracted, 

gradient vector flow (GVF) snakes were used to determine the area of each lesion.  
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Figure 5.4: a) Example of digitized histopathology slides, with cancerous lesions outlined in black 
and HGPIN outlined in green. b) RGB image in 5.4a transformed into the L*a*b* space. c) Using 
L*a*b* color space for prostate segmentation. d) Binary image of the segmented prostates in 5.4c. 
e) Prostate masks created from the images in 5.4d using the region growing techniques. f) Using 
L*b* image composition in 5.4b to isolate the lesion markings. g) Extraneous markings are 
removed and lesions are displayed in a binary image. h) Downsampled complementary image to 
5.4g, the starting point for active contouring. 
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5.5.3 Application of GVF Approach to Contour Histopathological Lesions  

Each lesion identified on the histopathology was contoured using the GVF active 

contouring approach. Depending on the lesion size, a GVF snake was manually initialized by the 

user to either spread outward (Figure 5.5a) or to converge inward toward the lesion boundary 

(Figure 5.5b). For lesions larger than 40 pixels in size, a small circular 2 pixel in diameter GVF 

snake was initialized inside the lesion to spread outward toward the lesion boundaries; 

conversely, for lesions smaller than 40 pixels, a GVF snake 10 pixels in diameter was initialized 

to converge inward toward the lesion boundary.  

 

 

 

 

 

Initially, 1000 iterations were used to contour all lesions. Complete filling of each region 

was visually confirmed for all lesions. If the lesion was only partially filled after 1000 iterations, 

the number of iterations was increased to 1300. The time it took to contour each lesion was 

recorded. Once the lesion was entirely filled, the area in pixels was calculated (Figure 5.6). 

 

 

 

Area=1511.64	
  pixels	
  

Figure 5.6: Iterative process demonstrating the GVF snake spreading out to fill the contours of the 
lesion. Once the lesion was outlined, the area of the lesion in pixels was computed. 
	
  

Figure 5.5: Top panel (a) depicts a large lesion 
(215 mm2 in size) the snake for which was 
initialized within the boundary of the lesion. 
The bottom panel (b) depicts a small lesion (2.2 
mm2 in size) the snake for which was initialized 
from the outside the boundary of the lesion. 
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Once the area of each lesion was computed in pixels, a ruler, digitized along with 

histopathology slides, was used to convert the area values in pixels to cm2. This was 

accomplished by isolating the centimeter markings on the ruler and computing the number of 

pixels within the 1 cm segment. This process was entirely automatic. Along side this automated 

processing, approximate pixels to cm conversion factor was computed using the size of the 

digitized image in pixels and the size of the standard 8.5 x 11 inch sheet of paper on which the 

slides were scanned. The two methods were used in tandem; if the discrepancy in the reported 

conversion values between the two techniques was more than 1 pixel/cm the user was alerted 

that a manual check was required to ensure accurate conversion.  

5.5.4 Patient Study  

Whole-mount histopathology slides from 78 patients who underwent radical 

prostatectomy for a biopsy-proven prostate cancer were studied. This was approved by the 

Committee on Human Research at this institution and was compliant with the Health Insurance 

Portability and Accountability Act. Whole-mount slides were processed in the manner described 

in 5.5.1. The GVF contouring combined with lesion segmentation procedures described above 

were used to contour and compute the areas for all the lesions identified by the study pathologist. 

5.5.5 Repeatability study  

A study was designed to test repeatability of the user initialized GVF snake edge 

detection technique. Fifteen lesions were randomly chosen – different in size and with varying 

degrees of concavities within lesion boundaries. For each lesion, the process of snake 

initialization, lesion contouring, and area computation was repeated 10 times. The coefficient of 

variation (COV=σ/µ, where σ is the standard deviation and µ is the sample mean) was calculated 

for each lesion. 
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5.6 Results 

5.6.1 Patient Study  

A total of 1193 lesions within 78 patients were outlined by the study pathologist. All 

1193 lesions were successfully contoured and their areas estimated using the techniques 

described above. The average lesion size was 307±498 pixels (55±89 mm2), with lesions varying 

in size from 6 to 4727 pixels (1 to 849 mm2). Approximately a quarter of lesions were smaller 

than 40 pixels in size and required GVF snakes initialized for convergence from outside the 

lesion boundary. Fewer than 2% of lesions were too large to be entirely filled within the initial 

setting of 1000 iterations. However, 1300 iterations were enough to completely contour all large 

lesions. Complete filling of each region was visually confirmed for all lesions. Despite the high 

number of iterations, it took approximately 13 seconds to contour each lesion.  

5.6.2 Repeatability Study  

 Results for the repeatability study are shown in Figure 5.7. Fifteen lesions used in this 

study ranged in size from 12 pixels (2.15 mm2) to 1201 pixels (215.6 mm2). The smallest COV 

of 0.0018 was observed for the largest lesion of 1201 pixels (215.6 mm2), while the largest COV 

of 0.0166 was noted for a smaller lesion of 77.2 pixels (13.9 mm2). Interestingly, that was not the 

smallest lesion tested. The smallest lesions 12 and 13.9 pixels (2.15 and 2.5 mm2 respectively) in 

size had comparatively small COV values of 0.003 and 0.006 respectively.  
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5.7 Discussion 

This study demonstrated the excellent performance of GVF snakes for contouring 

subjective prostate lesion boundaries segmented from the histopathology slides. The GVF 

approach was chosen over the traditional active contouring techniques described in 5.3.1 for 1) 

its ability to adapt to subjective boundaries (such as dotted lesion outlines), 2) its superior 

performance with concavities (often seen with irregularly shaped lesions), and 3) its ability to 

drive the contour toward the boundary from the inside, as well as from the outside the lesion 

boundary (extremely useful for very small lesions).  

Nearly 1200 lesions, within a wide range of shapes and sizes, were successfully 

contoured and their area evaluated using this technique. The small COV values observed in the 

repeatability study reveal that the use of GVF snakes for countering of the subjective lesions 

yields consistent results from which the lesion area values can be reliably computed. 

Additionally, the small COV values observed for even the smallest lesions indicate that the GVF 
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Figure 5.7: The coefficient of variation plotted against the lesion size. Fifteen lesions of 
varying sizes and concavities were randomly chosen, with snake initialization, active 
contouring, and area computations repeated 10 times for each lesion. 
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snakes perform consistently well when the snake converges onto the lesion boundary from the 

inside (larger lesions), as well as from the inside (smaller lesions).  

In conclusion, a semi-automatic technique for lesion segmentation, region contouring and 

region area estimation has been described. This technique performed well even when applied to 

“subjective” contours (dotted lesion outlines), with the accuracy and high quality of contouring 

visually evaluated and confirmed for every cancer region. Additionally, this approach was 

demonstrated to be robust to the variations in user initialization and to perform well for regions 

within a wide range of sizes. 
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CHAPTER 6 

Characterizing Sparse and Dense Prostate Cancers on Whole-
Mount Histopathology and Evaluating These Lesions on 

Multiparametric MRI 
 

6.1 Abstract 

The study purpose was to establish size, incidence, and Gleason Score (GS) of prostate 

cancer (PCa) identified on whole-mount histopathology in post-prostatectomy population and to 

evaluate imaging characteristics associated with sparse cancers on mpMRI. This study included 

78 men with untreated PCa who received 3T-MR scans prior to undergoing prostatectomy. Post-

prostatectomy, all prostate specimens were processed whole-mount. During histological review, 

cancerous regions on each slide were outlined and graded using the Gleason system, with the 

amount of cancer in each region estimated. Regions with cancer occupying <50% and ≥50% of 

the cross-sectional area were considered sparse and dense respectively. Histopathology slides 

were digitized and processed using in-house software with cancer region sizes estimated. 

Contiguous 2D cancer regions identified on histopathology were grouped into 3D lesions and 

their volumes calculated. Lesions were classified as sparse or dense. Sparse lesions were defined 

in two ways: 1) “purely sparse” lesions were defined as lesions containing only sparse cancerous 

regions, any lesion containing a dense cancerous region was classified as dense; 2) “overall 

sparse” lesions were defined as lesions containing <50% overall cancer, any lesion containing 

≥50% overall cancer was classified as dense.  

On imaging, regions of interest (ROI) were manually drawn freeform in the peripheral 

zone (PZ) and the transition zone (TZ) on T2-weighted images based on histopathology. Within 

each patient, ROIs were grouped based on tissue type, Gleason Score, and sparse/dense 



	
   82	
  

composition. Imaging measures consisting of T2-weighted image intensity, apparent diffusion 

coefficient (ADC), semi-quantitative dynamic contrast-enhanced (DCE) MRI parameters of peak 

enhancement, maximal enhancement slope, and washout slope were computed. For analysis, 

ROI area-weighted averages for each imaging measure were calculated for each tissue type and 

sparse/dense composition per patient. Non-parametric Wilcoxon signed-rank tests were used to 

compare imaging metrics across tissues of interest. 

1193 (939 (PZ) and 254 (TZ)) cancerous regions were identified on histopathology. With 

“purely sparse” lesion definition, there were 152 dense and 54 sparse PZ lesions, 59 dense and 

12 sparse TZ lesions identified. Sparse lesions were primarily low-grade. Within PZ, 53/54 

lesions were ≤GS3+3, with a single high-grade GS4+3+5 lesion. Within TZ, all 12 sparse lesions 

were GS3+3. Using the “overall sparse” approach, 128 dense and 79 sparse PZ lesions and 52 

dense and 19 sparse TZ lesions were identified on histopathology. 86% of sparse lesions in the 

PZ and 100% of sparse lesions in the TZ were ≤GS3+3. With both sparse lesion definitions, 

dense lesions were significantly larger than sparse lesions in both PZ and TZ. 

On imaging, 246 dense and 45 sparse and 109 dense and 8 sparse 2D cancerous ROIs 

were drawn in the PZ and TZ respectively. Within PZ, no statistically significant differences 

were found between sparse ≤GS3+3 lesions and sparse ≥G3+4 lesions or ≥G4+3 lesions for any 

of the imaging metrics. No statistically significant differences were found between sparse and 

dense ≤GS3+3 lesions or between sparse ≥G3+4 cancers and dense ≤GS3+3 cancers for any of 

the parameters. Statistically significant differences were found between sparse ≤GS3+3 cancers 

and normal PZ tissues, as well as between sparse ≤GS3+3 cancers and benign PZ tissues on T2-

weighted imaging, ADC, peak enhancement and maximal enhancement slope. No statistically 
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significant differences were found for TZ tissues; however, the number of sparse TZ lesions was 

low (N=5).  

The size, Gleason grading, and prevalence of sparse cancers on histopathology was 

characterized. Sparse cancers were entirely low grade (≤G3+3) in the TZ and predominantly 

low-grade (96% or 83% depending on the definition of sparse lesions) in the PZ and thus likely 

pose limited malignant potential for spread and progression. Sparse GS3+3 and ≥GS3+4 cancers 

had similar imaging characteristics to dense GS3+3 cancers; there were statistically significant 

differences between sparse low-grade cancers and benign tissues on several imaging modalities 

in the PZ. This suggests that mpMRI may prove valuable for focal treatment planning and 

establishing lesion margins even in the setting of cancer sparsity.  
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6.2 Introduction 

Prostate cancer (PCa) is extremely common, with one in seven men in the United States 

expected to receive a prostate cancer diagnosis during his lifetime.3 However, not all prostate 

cancers are created equal, some are aggressive and require treatment, while others grow slowly 

and can be safely left untreated for decades.5,7,117 It is, therefore, extremely important to be able 

to separate clinically significant tumors requiring treatment from the slow-growing indolent PCa. 

Prostate biopsies, often used in PCa diagnosis, are inherently limited by inadequate tumor 

sampling and frequently fail to convey the full extent of the tumor aggressiveness, thus providing 

limited confidence when it comes to treatment recommendations.256,257 Multiparametric magnetic 

resonance imaging (mpMRI) is a noninvasive technique that has been gaining traction in 

detection and localization of prostate cancer.39,142,170,209,258 By evaluating the prostate gland in its 

entirety, mpMRI sidesteps the greatest limitation associated with the needle biopsies. However, 

mpMRI comes with its own set of limitations. A major challenge in PCa characterization is 

posed by the heterogeneity of prostatic tissues. Aside from histologically assigned Gleason 

grading, which is traditionally used to estimate cancer aggressiveness, prostate cancers can also 

be categorized as dense or sparse based on the amount of cancerous and normal tissues within 

the lesion. The inability to detect sparse cancers on imaging is often sited as one of the 

limitations associated with mpMRI of the prostate.259,260 However, the clinical relevance of these 

sparse lesions has remained largely unknown. The purpose of the study was 1) to establish the 

incidence and Gleason Score of sparse lesions on whole-mount histopathology in post-

prostatectomy samples and 2) to identify the imaging characteristics of sparse cancers on 

mpMRI modalities and discuss their clinical implications.  

6.3 Materials and Methods 
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6.3.1 Patients 

This study was approved by the Committee on Human Research at this institution and 

was compliant with the Health Insurance Portability and Accountability Act. Seventy-eight 

patients who underwent radical prostatectomy for a biopsy-proven prostate cancer were studied. 

Patients who underwent any treatment for their prostate cancer prior to surgery, or whose surgery 

was more than a year after their MRI were excluded from the study. One patient was not 

included in this study due to the lack of cancerous regions on histopathology. No MRI exam was 

performed less than 6 weeks after prostate biopsy. This cohort has been described in an earlier 

study (Chapter 4).  

6.3.2 MR Imaging 

All patients were imaged with an expandable balloon endorectal coil (MedRad, Bayer 

HealthCare LLC, Whippany, NJ) combined with an external phased array coil on a 3T MR 

scanner (GE Healthcare, Waukesha, WI, USA). A perfluorocarbon fluid (Galden; Solvay 

Plastics, West Deptford, NJ, USA) was used to inflate the balloon coil. Fast spin echo (FSE) T2-

weighted images were acquired in an oblique axial plane with FOV = 18cm, slice thickness = 

3mm, matrix = 512×512, and TR/TE = 6000/96ms. Diffusion weighted imaging (DWI) was 

acquired using a 2D single-shot spin echo sequence TR/TE=4000/78-90ms, pixel bandwidth = 

1952 (conventional acquisition), pixel bandwidth = 1305 (reduced-field-of-view acquisition)101, 

b=0 and 600 s/mm2, slice thickness=3mm. DCE MRI was performed using a 3D fast SPGR 

sequence with TR/TE = 3.5/0.9ms, flip angle = 5°, slice thickness = 3mm slices, and a single-

dose of gadopentetate dimeglumine (Gd-DTPA) (Bayer, Whippany, NJ) over ~5 minutes.  The 

acquisition parameters are outlined in Table 6.1. T2-weighted images were corrected for the 

inhomogeneous reception profile associated with the combined endorectal coil and the external 



	
   86	
  

phased array.67 Apparent diffusion coefficient (ADC) maps were created using an in-house 

software from the combined DWI (b=600 s/mm2) and T2-weighted reference images (b=0 

s/mm2). DCE MRI maps were created based on the semi-quantitative tissue enhancement 

parameters of peak enhancement, maximal enhancement slope, and washout rate.132  

Table 6.1: Scanning Parameters 

Imaging PSD TR/TE 
(ms) 

FOV 
(cm) 

Matrix 
Size 

NEX ST 
(mm) 

In-Plane 
Res. (mm) 

Temp. 
Res. (s) 

b-value 
(s/mm2) 

T2w FSE 6000/100 18x18 512x512 1 3 0.35x0.35 N/A N/A 
Conv ADC ss-EPI 4000/90 24x24 128x128 4 3 0.94x0.94 N/A 0, 600 
rFOV ADC ss=EPI 4000/90 18x9 128x64 6 3 0.70x0.70 N/A 0, 600 
DCE 3D SPGR 3.5/0.9 26x26 256x256 0 3 1.02x1.02 10.417 N/A 
PSD=pulse sequence design, ST= slice thickness, Res=resolution, T2w = T2-weighted MRI, Conv = 
conventional, rFOV=reduced FOV. 
 
6.3.3 Whole Mount Histopathology 

Following prostatectomy, all prostate specimens were fixed using injected neutral-

buffered formalin for at least 24 hours. The prostates were then serially cross-sectioned from 

apex to base at 3-4mm intervals using a manual meat slicer (Hobart, Troy, OH, USA). All slices 

were then embedded in paraffin as whole-mount sections, cut at 4µm thickness, and stained with 

hematoxylin and eosin. The study pathologists then examined the slides under light microscopy, 

marking the regions of interest. Following the pathology review, the slides were digitally 

scanned for comparison to the MR images.  

6.3.4 Identifying Regions of Interest 

During histological review, cancerous regions on each slide were outlined and graded by 

the study pathologist using the Gleason system;12 the amount of cancer in each region was 

estimated, along with the various fractions of each Gleason grade in each cancer region. In 

addition to cancer, percentages of HGPIN if present within a cancer region were reported. 

Finally, the amounts of benign glandular tissue and of stromal tissue within each cancerous 

region were also estimated. Next, regions of interest were manually drawn freeform on T2-
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weighted images based on the digitized histopathology slides using anatomical cues, following a 

consensus of two readers, and keeping within homogeneous regions.  

6.3.5 Histopathology Segmentation  

 A semiautomatic in-house software written in Matlab (MATLAB, 2016a, The 

MathWorks Inc., Natick, MA, USA) was used to segment the outlines of the individual cancer 

regions from the digitized histopathology slides. Following cancer region segmentation, gradient 

vector flow (GVF)6,251,255 contouring was used to determine the area of each cancerous region. 

For further information on cancer region segmentation, the theory of GVF snakes, and the details 

regarding this post-processing technique please see Chapter 5. 

6.3.6 Defining Sparsity and Identifying Sparse Lesions 

6.3.6.1 Histopathology 

Cancerous regions outlined on histopathology were classified as dense if 50% or more of 

the cross-sectional area was occupied by cancer; conversely, sparse cancerous regions were 

regions with less than 50% of the cross-sectional area occupied by cancer. Cancerous regions 

were grouped into lesions based on their locations on the adjacent histopathology slices. 

Assigning the overall Gleason Score and sparsity to the lesion was done in two ways. 1) The 

Gleason Score was assigned based on the most aggressive cancerous region within the lesion. 

“Purely sparse” lesions were defined as lesions containing only sparse cancerous regions. Any 

lesion containing a dense cancerous region was classified as dense. 2) Since the individual 

Gleason Grade percentages were available for every cancerous region of interest, Gleason Score 

of the lesion was computed as a cumulative result of all the cancerous regions included within 

the lesion weighted by the area of each cancerous region.  “Overall sparse” lesions were defined 

as lesions containing less than 50% overall cancer. For each lesion a lesion volume was 



	
   88	
  

computed by multiplying the total area of the included cancerous regions by the thickness of the 

cross sectional prostate slices (3mm). 

6.3.6.2 mpMRI 

In the context of imaging studies, sparsity within individual ROIs was defined in the 

following way: ROIs with cancer occupying 50% or more of the cross-sectional area were 

considered dense, while ROIs with cancer occupying less 50% of the cross-sectional area were 

considered sparse. For each patient, ROIs were grouped based on the location within the prostate 

(PZ/TZ), tissue type, Gleason score category (when applicable), and sparsity. A weighted 

average was calculated using ROI areas for each imaging measure. Based on these criteria, 

sparse lesions only contained sparse ROIs.  

6.3.7 Statistical Analysis 
 

Statistical analysis was carried out using JMP software (JMP, Version 11, SAS Institute 

Inc., Cary, NC). A p-value of 0.05 or less was used to define statistical significance. Analyses 

were done separately for tissues in the peripheral zone and for tissues in the transition zone. 

Descriptive statistics were listed as mean ± standard deviation when normally distributed. Two-

tailed, heteroscedastic Student’s t-tests were used to compare the sizes of dense and sparse 

lesions on histopathology. Additionally, two-tailed, heteroscedastic Student’s t-tests were used to 

compare the volumes of the sparse, low-grade lesions and the rest (grouping sparse, higher-grade 

lesions and dense lesions). Non-parametric Wilcoxon signed-rank tests were used to compare the 

imaging parameters of interest across tissue types. Imaging metrics for sparse tissues of differing 

Gleason Scores were compared, as well as imaging parameters for sparse tissues and dense 

tissues, sparse tissues and normal tissues, and finally sparse tissues and benign tissues were 

compared. The normal tissues were defined to include:  1) in the PZ - normal PZ tissues and 
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cystic atrophy located in the PZ; and 2) in the TZ - normal TZ tissues and cystic atrophy located 

in the TZ. The benign tissues were defined to include: 1) in the PZ – normal PZ tissues, cystic 

atrophy, atrophy, and inflammation located in the PZ; and 2) in the TZ – normal CG tissues, 

cystic atrophy, atrophy, inflammation, and benign prostatic hyperplasia located in the TZ.  

6.4 Results 

6.4.1 Histopathology 

A total of 1193 cancerous regions were drawn for 77 patients, 939 cancerous regions 

were drawn within the peripheral zone and 254 regions were drawn within the transition zone of 

the prostates (Table 6.2). Cancerous regions ranged in size from 0.01cm2 to 8.49cm2. Figure 6.1 

demonstrates the distribution of tissues types observed for dense and sparse cancerous regions on 

histopathology. The contributors listed are the benign glandular and stromal tissues, cancer, and 

HGPIN. The zonal breakdown and the exact percentages of tissue types found are summarized in 

more detail in Table 6.2. 

Table 6.2 Number of cancer regions outlined on histopathology, the areas of cancer regions outlined on 
histopathology and the distribution of tissues types within dense and sparse cancer regions. 

Zonal 
Anatomy and 

Sparsity 

Histopathology 
Outlined Cancer 
Regions (N) 

Histopathology 
Outlined Cancer 
Regions Area (cm2) 

Tissue Types 
Glandular 
(% Lesion) 

Stromal    
(% Lesion) 

Cancer            
(% Lesion) 

HGPIN             
(% Lesion) 

Dense PZ 571 0.77±1.12 3 27 69 1 
Dense TZ 176 0.63±0.70 1 27 71 0 
Dense Overall 747 0.73±1.04 3 27 70 1 
Sparse PZ 368 0.25±0.42 11 58 25 5 
Sparse TZ 78 0.23±0.41 6 65 26 1 
Sparse Overall 446 0.24±0.42 10 59 25 4 
Area values are displayed as Mean ± Standard deviation 
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Table 6.3 summarizes the Gleason Score distribution found in the cancerous regions split 

based on the location within the prostate and the sparsity of the cancerous regions. The 1193 

cancerous regions were grouped into 277 lesions; 206 lesions were classified as peripheral zone 

lesions, while 71 lesions belonged to the transition zone. 

Table 6.3 Histopathology: dense and sparse cancerous regions separated by zone and Gleason Score 
Gleason 

Score 
Peripheral Zone Transition Zone 

Dense Sparse Dense Sparse 
2+2 0 1 1 0 
2+3 4 4 5 0 
3+2 14 2 6 1 
3+3 254 298 89 73 
3+4 99 12 23 0 
3+5 2 1 1 0 
4+3 73 23 32 3 
4+4 52 8 13 1 
4+5 24 7 1 0 
5+2 0 1 0 0 
5+3 7 3 0 0 
5+4 20 5 0 0 
5+5 15 0 3 0 

3+4+5 1 0 2 0 
4+3+5 6 3 0 0 

Total (N) 571 368 176 78 
Sparse cancerous regions were defined as 2D regions with cancer occupying  
<50% of cross-sectional area of the region 
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  Regions	
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Stromal	
  

Cancer	
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  Cancerous	
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Figure 6.1: Distribution of tissue types within dense and sparse prostatic cancer regions. The 
presence of glandular, stromal, cancer, and high-grade prostatic intraepithelial neoplasia (HGPIN) 
tissues in dense and sparse prostatic cancer regions located within the peripheral or the transition 
zones of the prostate based on histopathological evaluation. 
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First, the “purely sparse” lesions containing only sparse cancerous regions were studied. 

Using these criteria, there were 152 dense and 54 sparse PZ lesions, 59 dense and 12 sparse TZ 

lesions identified. Dense lesions had similar cancer compositions across the prostate zones, with 

66.3±10.4% and 67.7±11.9% cancer reported for PZ and TZ lesions. A similar cancer 

composition was also noted for PZ and TZ sparse lesions with 28.2±10.3% and 28.9±10.3% 

cancer respectively. Dense lesions were significantly larger than sparse lesions in both PZ 

(1.03±1.78cc > 0.063±0.08cc, p=4x10-10) and TZ (0.61±0.82cc > 0.079±0.06cc, p=6.4x10-6). 

Sparse lesions were also primarily low-grade. Within the PZ, out of the 54 sparse lesions, 53 had 

a Gleason Score of GS3+3 or lower and only one lesion had a higher Gleason Score of 

GS4+3+5. Within the TZ, all 12 sparse lesions were GS3+3 (Table 6.4). The distribution of 

Gleason Scores across dense and sparse lesions in the PZ and TZ are summarized in Table 6.4.  

Table 6.4 Histopathology: number of dense and sparse lesions separated by zone and Gleason Score 
Gleason 

Score 
Peripheral Zone Transition Zone 

Dense Sparse Dense Sparse 
≤3+3 67 53 32 12 
3+4 17 0 8 0 
4+3 25 0 9 0 
≥4+4 43 1 10 0 

Total (N) 152 54 59 12 
“Purely sparse” lesions defined as 3D lesions containing only sparse cancerous regions 

Second, the “overall sparse” lesions, containing both sparse and dense cancer regions but 

with the overall percent cancer of less than 50% were studied. This differs from the first 

approach of “purely sparse” lesions in that these sparse lesions may have foci that are dense, but 

also contain sufficiently large enough and sparse enough other regions to result in an overall 

percentage of cancer < 50% of the entire lesion. Using this “overall sparse” approach, there were 

128 dense and 79 sparse PZ lesions, 52 dense and 19 sparse TZ lesions. Dense lesions within the 

PZ and TZ had similar cancer composition, with 66±10.5% and 67±11.7% reported for PZ and 
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TZ lesions. Once again, dense lesions were statistically larger than sparse lesions in both PZ 

(1.13±1.88cc > 0.22±0.51cc, p=7.9x10-7) and TZ (0.60±0.84cc and 0.22±0.30cc, p=0.008). The 

distribution of Gleason Scores across dense and sparse lesions in the PZ and TZ is summarized 

in Table 6.5. 

Table 6.5 Histopathology: number of dense and sparse lesions separated by zone and Gleason Score 
Gleason 
Score 

Peripheral Zone Transition Zone 
Dense Sparse Dense Sparse 

≤3+3 64 68 30 19 
3+4 26 6 11 0 
4+3 18 3 9 0 
≥4+4 20 2 2 0 
Total (N) 128 79 52 19 

“Overall sparse” lesions defined as 3D lesions containing <50% cancer overall 

 Figures 6.2 and 6.3 depict the relationship between the Gleason Scores, the percent 

cancer, and the lesion volumes for lesions in the PZ and the TZ respectively. The two plots are 

drawn to the same scale; meaning, the differences in bubble sizes represent the true differences 

between the lesion volumes within the peripheral and the transition zones. Lesions in the sparse 

and low-grade regions (low left quadrant) for both PZ and TZ plots were smaller in volume than 

their dense or more aggressive counterparts (p=9x10-10 for PZ and p=0.008 for TZ). The majority 

of large lesions both within the PZ and TZ were predominantly found in the dense, higher-grade 

quadrants (upper right quadrant). Within the TZ, there were no higher-grade sparse lesions 

observed. There was one of each GS8 and GS9 lesions found within the sparse PZ lesions, which 

were 1.3cc and 3.75cc in volume respectively. 
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Figure 6.2: Bubble plot of 3D PZ lesions: percent cancer of the lesion plotted against the 
Gleason Score of the lesion, with the size of the bubbles representing lesion volumes. The 
horizontal dotted line represents sparsity (everything below 50% cancer considered sparse); 
the vertical dotted line represents aggressiveness with everything of Gleason Score 6 or lower 
considered low-grade.  
 

	
  

Figure 6.3: Bubble plot of 3D TZ lesions: percent cancer of the lesion plotted against the 
Gleason Score of the lesion, with the size of the bubbles representing lesion volumes. The 
horizontal dotted line represents sparsity (everything below 50% cancer considered sparse); 
the vertical dotted line represents aggressiveness with everything Gleason Score 6 or lower 
considered low-grade.  
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6.4.2 mpMRI 

On imaging, 246 dense and 45 sparse cancerous 2D ROIs were drawn in the PZ and 109 

dense and 8 sparse 2D ROIs were drawn in the TZ. On average, dense and sparse ROIs in the PZ 

were 0.75±0.83 cm2 and 0.41±0.22 cm2 in size with 70.9±11.6% and 29.6±8.8% cancer. Within 

the TZ, on average dense and sparse ROIs were 0.54±0.32 cm2 and 0.38±0.19 cm2 in size 

containing 76.1±9.9% and 28.4±11.6% cancer.  Table 6.6 describes the distribution of Gleason 

Scores across the regions of interest drawn on MR imaging in the PZ and the TZ.  

Table 6.6 MR imaging: dense and sparse cancerous regions separated by zone and Gleason Score 
Gleason 

Score 
Peripheral Zone Transition Zone 

Dense Sparse Dense Sparse 
2+3 0 0 1 0 
3+2 1 0 9 1 
3+3 55 29 30 7 
3+4 78 3 37 0 
3+5 0 0 2 0 
4+3 42 5 23 0 
4+4 22 1 5 0 
4+5 19 5 0 0 
5+2 0 0 0 0 
5+3 8 2 0 0 
5+4 9 0 0 0 
5+5 10 0 0 0 

4+3+5 2 0 2 0 
Total (N) 246 45 109 8 

Sparse 2D cancerous regions were defined as regions with cancer occupying  
<50% of cross-sectional area of the region 
 

These cancerous 2D regions were grouped into sparse and dense lesions. The distribution 

of Gleason Scores across sparse and dense lesions outlined on MR imaging in the PZ and the TZ 

is summarized in Table 6.7. In addition to grouping cancer regions, benign regions were grouped 

to yield 68 benign volumes in the PZ and 61 benign volumes in the TZ. Normal tissues regions 

were grouped into 62 normal tissue volumes within the PZ and 42 normal tissue volumes in the 

TZ.  
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Table 6.7 MR Imaging: number of dense and sparse lesions separated by zone and Gleason Score 
Gleason 

Score 
Peripheral Zone Transition Zone 

Dense Sparse Dense Sparse 
≤3+3 22 18 14 5 
3+4 24 3 11 0 
4+3 18 5 8 0 
≥4+4 21 4 4 0 

Total (N) 85 30 37 5 
Sparse lesions were defined as 3D lesions containing only sparse cancerous ROIs 

 Figure 6.4 demonstrates an example of a dense GS4+3 cancer region (top panel) and a 

sparse G4+3 cancer region (bottom panel) as these regions appear on mpMRI modalities: T2-

weighted imaging, ADC maps, and maximal enhancement slope maps. These regions belong to 

the same lesion; however, while the dense region contains 60% cancer, the sparse region 

contains only 30% cancer. As expected, the cancer in the dense region appears more aggressive 

on all modalities than the cancer in the sparse region. Without the knowledge of the 

histopathological grading, based on its appearance on imaging alone, the sparse cancer region 

could be confused for a low-grade disease. 
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Figure 6.4: A 74 year-old male with serum PSA of 10.3 ng/ml who underwent radical 
prostatectomy. Top panel: dense GS4+3 cancer (60% cancer): a) coil-corrected T2-
weighted image, b) ADC map C) maximal enhancement slope. Bottom panel: sparse 
GS4+3 cancer (30% cancer): d) coil-corrected T2-weighted image, e) ADC map f) 
maximal enhancement slope. The arrows designate cancerous regions. 
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 MpMRI results were reviewed to determine whether imaging could be used to distinguish 

sparse cancers from other tissue types. Within the PZ, no statistically significant differences were 

found when sparse ≤GS3+3 lesions were compared to sparse ≥G3+4 lesions (N=29) or ≥G4+3 

lesions (N=9) for any of the imaging metrics. No statistically significant differences were found 

between sparse and dense ≤GS3+3 lesions or between sparse ≥G3+4 cancers and dense ≤GS3+3 

cancers for any of the parameters. Statistically significant differences were found between sparse 

≤GS3+3 cancers and normal PZ tissues on T2-weighted imaging (p=0.0001), ADC (p<0.0001), 

peak enhancement (p=0.037) and maximal enhancement slope (p=0.015). Additionally, 

statistically significant differences were found between ≤GS3+3 cancers and benign PZ tissues 

also on the T2-weighted imaging (p=0.0006), ADC (p<0.0001), peak enhancement  (p=0.043) 

and maximal enhancement slope (p=0.025) (Figure 6.5). 

 Within the TZ, the number of sparse lesions was low (N=5) and included only GS3+3 

cancers. No statistically significant differences were found between dense and sparse GS3+3 

lesions in the TZ. Furthermore, no statistically significant differences were found between sparse 

GS3+3 cancers and benign TZ tissues, or sparse GS3+3 cancers and normal TZ tissues for any of 

the imaging modalities. 
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6.5 Discussion 

Prostate cancer has been the subject of intense study for decades.261 A lot is now known 

about its histological appearance,11,12,20,31 molecular signatures,262,263 treatment options,5,261,264 

and imaging characteristics;39,170,265 however, the concept of cancer sparsity when applied to 

prostatic lesions has not been thoroughly explored. Very little information is available regarding 

the incidence of sparse lesions or their clinical significance. To our knowledge no study has 

looked at the prevalence of sparse cancers in the radical prostatectomy population, nor attempted 

to characterize the composition, size, or Gleason grading of these sparse cancers. Perhaps not 

Figure 6.5: Box-plots comparing MR measures in benign, normal, and sparse ≤GS3+3 cancers for  
A) T2-weighted intensity, B) ADC, C) Peak Enhancement, D) Maximal Enhancement Slope 
Horizontal lines within the box plots represent the median values. Whiskers are drawn to the 
furthest points within 1.5x interquartile range, where interquartile range is the difference between 
the 1st and the 3rd quartiles. 
*** <0.0001, ** <0.001, * <0.05 
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surprisingly mpMRI characterization of sparse lesions has also been limited; the most widely 

cited imaging publication available on the subject by Langer et al., with N=10 patients scanned 

at 1.5T, reported no statistically significant differences between sparse cancers and normal 

tissues on T2-weighted imaging or ADC.266 

6.5.1 Histopathology 

 Consistent with literature,266 we defined dense regions as those with 50% or more of the 

cross-sectional area occupied by cancer, while sparse cancerous regions were defined as regions 

with less than 50% of the cross-sectional area occupied by cancer. Out of the 1193 cancerous 

regions outlined on histopathology slides obtained from 77 patients, 39% of cancer regions in the 

PZ and 31% of cancer regions in the TZ were classified as sparse. Sparse regions contained on 

average 25% cancer (vs. 70% cancer seen for dense regions) and were predominantly low-grade; 

nearly 83% of sparse PZ cancerous regions were ≤GS3+3 and nearly 95% of sparse TZ 

cancerous regions were ≤GS3+3. 

 While it is informative to look at the individual cancerous regions, it is also important to 

look at sparsity in the context of cancerous lesions. Differences in lesion composition are 

associated with differences in disease progression and malignant potential, as well as our ability 

to detect these lesions either through biopsies or imaging. Classifying lesions as sparse is not 

trivial and can be done in a number of ways. One approach would be to characterize purely 

sparse 3D lesions. Another approach would be to take a closer look at how sparse regions 

contribute to the overall composition of a 3D lesion.  

 Our first approach was to define “purely sparse” lesions as those containing only sparse 

cancerous regions. Thus, these lesions were homogeneously sparse. When viewed in this way, 

our prostate cancer histopathological findings suggest that on average “purely sparse” lesions are 
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much smaller than dense lesions (0.061cc vs 1.03cc in PZ) and (0.079cc vs 0.61cc in TZ) and are 

primarily low-grade. While the majority of lesions were smaller than 0.1cc in volume, the largest 

purely sparse lesions found in the PZ and TZ were 0.44cc and 0.22cc in volume, which suggests 

that sparse cancers as they grow do not necessarily acquire a dense core but may retain their 

diffuse nature. In the TZ, all 12 sparse lesions were GS3+3; while in the PZ, 53/54 lesions were 

≤GS3+3 with only a single higher-grade (GS4+3+5) lesion identified. As small size and low-

grade cancers have minimal metastatic potential,267 these histopathological findings that the 

purely sparse lesions are small and primarily low grade, suggest they have limited clinical 

significance. The patient with the single high-grade sparse GS4+3+5 lesion (0.175cc) also had 

two larger, dense GS4+3 (1.04cc) and GS3+4 (1.13cc) lesions. In the future, it might be 

informative to study the progression of sparse cancers in the setting of exclusively benign tissues 

versus in the presence of high-grade prostatic disease.  

Our second “overall sparse” approach consisted of defining sparse lesions as containing 

less than 50% of cancer overall. Sparse and dense regions comprising each lesion were combined 

with their Gleason Score contributions weight-averaged based on the area of each region. Thus, 

these “overall sparse” lesions, in addition to sparse regions, had a dense focus to them. Viewed 

in this way, 86% of sparse lesions in the PZ and 100% of sparse lesions in the TZ were ≤GS3+3, 

compared to 50% of dense lesions in the PZ and 58% of dense lesion in the TZ being low grade. 

With this approach, the “overall sparse” lesions were still smaller in size than their dense 

counterparts but not as drastically as seen above (0.22cc vs 1.13cc for sparse and dense lesions in 

the PZ) and (0.22 cc vs 0.6cc for sparse and dense lesions in the TZ). A Gleason 4 component 

identified in 11/79 sparse lesions in the PZ points to the clinical significance of these lesions. 

The heterogeneity and the diffuse nature of these lesions reemphasizes the drawbacks of TRUS-
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guided biopsies that may capture a small segment of a sparse region, missing a dense or a more 

aggressive portion of the lesion.  

6.5.2 mpMRI 

 Compared to cancer regions drawn on histopathology, cancer regions drawn on MRI 

images were fewer in number (especially true for low grade regions) and were similar in size for 

dense lesions but on average slightly smaller in size for sparse lesions (0.50±0.65cm2 on 

histopathology vs. 0.40±0.65cm2 on MR imaging). This observation foreshadows the fact that 

sparse cancers (partly due to their diffuse nature and partly due to their predominantly low grade) 

are not always easy to identify on imaging.  

 Looking at imaging metrics, no statistically significant differences were found between 

sparse GS3+3 and ≥GS3+4 cancers or sparse and dense GS3+3 cancers in the PZ. Interestingly, 

despite our inability to differentiate low-grade sparse and dense lesions, we did find statistically 

significant differences between GS3+3 sparse and benign tissues on T2-weighted imaging, ADC, 

peak enhancement, and maximal enhancement slope. An explanation for this may lie in the 

composition of sparse regions. From Figure 6.1 sparse regions are seen as being composed 

predominantly of stromal tissues with smaller contributions from cancer and glandular tissues. 

Stromal tissues typically appear dark and have a “cancer-like” appearance, which could explain 

why it is hard to distinguish between the dense and the sparse cancers on imaging. It also 

explains why it is still possible to differentiate between the sparse GS3+3 cancers and benign 

tissues, which are more glandular in nature and provide a better contrast to stromal-dominated 

sparse cancer lesions.   

 Our ability to distinguish between sparse low-grade lesions and benign tissues on mpMR 

imaging is of clinical significance since accurate evaluation of the extent of the disease is 
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important for treatment planning. Sparse regions are often found at the periphery of dense 

cancerous regions, which are more easily detected on mpMRI (chapter 4). Since effective focal 

treatments are impossible to achieve without identifying accurate lesion margins, our findings 

suggest that even very straight forward imaging metrics – T2-weighted image intensity, ADC, 

and semi-quantitative evaluation of DCE studies (especially in the PZ) are capable of providing 

sufficient cancer margins in the presence of sparse PCa are promising. 

 Our findings in the TZ were less encouraging. No statistically significant differences 

were found on imaging parameters for TZ tissues when sparse GS3+3 cancers were compared to 

dense GS3+3 cancer, nor when sparse G3+3 cancers were compared to benign or normal TZ 

tissues. While our lack of imaging findings in the TZ may reflect the true standing of sparse 

cancer imaging in that region, no reliable conclusions can be drawn from this data due to the low 

number of sparse TZ lesions identified on MR imaging (N=5).  

 While the majority of sparse lesions are small, low-grade, and may never progress 

enough to require treatment, there are exceptions. For instance, in Figure 6.2, there are two 

outliers in the sparse PZ region, representing two high-grade lesions. These sparse GS8 and GS9 

lesions are not only aggressive in their Gleason grading but are also concerning due to their large 

size – 1.3cc and 3.75cc in volume respectively. These lesions cannot be overlooked. The good 

news is that despite their sparsity, high-grade lesions such as the ones described above are 

detectable on mpMRI imaging. Figure 6.6 depicts a prostate slice containing a sparse GS4+5 

cancerous region (20% cancer). This 2D GS4+5 cancerous region is part of the 3D sparse GS9 

lesion discussed above. While the cancer may not be obvious on T2-weighted imaging, a signal 

reduction on ADC map and an elevated enhancement on maximal enhancement slope map 

clearly indicate the presence of malignancy. 
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 This study had several limitations. First, the regions of interest were manually drawn on 

MR images based on the histopathology; this approach likely introduced the bias toward 

outlining regions visible on MR, likely corresponding to more aggressive disease. Second, MR 

sequences were manually aligned to each other based on visual assessment; small shifts in 

alignment could have taken place and influenced the results. Third, analyses in the TZ were 

confounded by the low numbers of sparse ROIs drawn on MR images. 

 In conclusion, we characterized the prevalence of sparse cancers on histopathology. We 

established that sparse GS3+3 and ≥GS3+4 cancers have similar imaging characteristics to dense 

GS3+3 cancers, but we were able to find statistically significant differences between sparse low-

grade cancers and benign tissues on several imaging modalities in the PZ. This suggests that 

mpMRI may prove valuable for focal treatment planning and establishing lesion margins even in 

the setting of cancer sparsity. Further study of sparse cancers on mpMRI especially in the TZ is 

needed to fully understand the limitations of imaging when it comes to sparse lesion detection. 

The encouraging news is that based on our histopathology findings, sparse cancers were entirely 

low grade (≤G3+3) in the TZ and predominantly low-grade (83%) in the PZ and thus overall 

may pose limited malignant potential for spread and progression. 
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Figure 6.6: A 60 year-old male with serum PSA of 9.3 ng/ml who underwent radical 
prostatectomy. Sparse GS4+5 cancer (20% cancer) as seen on: a) coil-corrected T2-
weighted image, b) ADC map C) maximal enhancement slope. The arrows designate 
cancerous regions. 
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CHAPTER 7 
 

 
Improved Multiparametric MRI Discrimination Between Low-Risk 

Prostate Cancer and Benign Tissues in a Small Cohort of 5-alpha 
Reductase Inhibitor Treated Individuals as Compared to an 

Untreated Cohort 
 
 

Parts of this chapter are reprinted from “Improved multiparametric MRI discrimination 

between low-risk prostate cancer and benign tissues in a small cohort of 5α-reductase inhibitor 

treated individuals as compared with an untreated cohort” by Olga Starobinets, John 

Kurhanewicz, and Susan M Noworolski. The manuscript has been accepted for publication in 

NMR in Biomedicine and is available in early view (doi: 10.1002/nbm.3696). 

7.1 Abstract 

The purpose of the study was to determine whether 5α-reductase inhibitors (5-ARIs) 

affect the discrimination between low-grade prostate cancer (PCa) and benign tissues on 

mpMRI. Twenty men with biopsy-proven Gleason 3+3 PCa and 3T mpMRI were studied. Ten 

patients (Tx) were receiving 5-ARIs for at least a year at scan time. Ten untreated patients (Un) 

were matched to the treated cohort. For each subject two regions of interest (ROI) representing 

cancerous and benign tissues were drawn within the peripheral zone of each prostate, MR 

measures evaluated, and cancer contrast versus benign [Contrast=(MRTumor-MRHealthy)/MRHealthy] 

calculated. Decreased cancer contrast was noted on T2-weighted images: 0.4 (Un) versus 0.3 

(Tx). However, for functional MR measures, a better separation of cancerous and benign tissues 

was observed in the treated group. Cancer contrast on high-b diffusion weighted images (DWI) 

was 0.61 (Un) vs. 0.99 (Tx). Logistic regression analysis yielded higher AUC (area under the 
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curve) values for distinguishing cancerous from benign regions in treated subjects on high-b 

DWI [0.71 (Un), 0.94 (Tx)], maximal enhancement slope [0.95 (Un), 1 (Tx)], peak enhancement 

[0.84 (Un), 0.93 (Tx)], washout slope [0.78 (Un), 0.99 (Tx)], Ktrans [0.9 (Un), 1 (Tx)], and 

combined measures [0.86 (Un), 0.99 (Tx)]. Coefficients of variation for MR measures were 

lower in benign and cancerous tissues in the treated group compared to the untreated group. This 

study’s results suggest an increase in homogeneity of benign and malignant peripheral zone 

prostatic tissues with 5-ARI exposure, observed as reduced variability of MR measures after 

treatment. Cancer discrimination was lower with T2-weighted imaging, but was higher with 

functional MR measures in a 5-ARI-treated cohort compared to controls. 

7.2 Introduction 

One in seven men in the United States will be diagnosed with prostate cancer (PCa) 

during his lifetime.268 Currently, prostate cancer is most often detected on systematic ultrasound-

guided biopsies prompted by elevated serum prostate specific antigen (PSA) levels. 

Unfortunately, prostate biopsies are often associated with discomfort, pain, hematuria, rectal 

bleeding and carry a risk of infection.214 Additionally, prostate biopsies are inherently limited by 

sampling errors.256,257 In recent years, multiparametric magnetic resonance imaging (mpMRI) 

has emerged as a powerful noninvasive technique for diagnosis, localization, and staging of 

prostate cancer.39,142,170,209,258 A growing number of studies attest to the utility of mpMRI in 

detecting prostate cancer in untreated men170,209,258 or in identifying recurrent disease in patients 

treated with definitive therapies (i.e. radiation therapy or radical prostatectomy).45,269-272 

However, some men, such as those taking 5α-reductase inhibitors (5-ARI), fall in-between these 

two categories. Five alpha-reductase inhibitors such as Finasteride or Dutasteride are marketed 

for management of prostate enlargement known as benign prostatic hyperplasia (BPH), a 
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condition that often contributes to the development of lower urinary tract symptoms in older 

men. BPH is extremely common. It affects 50% of men by the age of 50 and 90% of men in their 

80s.273 Fifty percent of men in their 60s experience low urinary tract symptoms due to BPH274. 

With growing numbers of men receiving mpMRI scans as part of the active surveillance protocol 

and with BPH being such a prevalent condition in older men, it is important to evaluate how the 

5-ARIs affect the MR imaging and the interpretation of the imaging findings.  

The health of the prostate is largely dependent on properly regulated actions of androgens 

through the androgen receptor (AR) complex.275 Deregulation of the androgen–androgen 

receptor pathway plays an important role in the development and progression of prostate 

cancer.276 The 5α-reductase enzymes convert testosterone, the most abundant circulating 

androgen, to dihydrotestosterone (DHT). Increased activity of 5α-reductase results in increased 

production of DHT. DHT has a greater affinity for the androgen receptor than testosterone and is 

a more effective activator of the AR. Once activated, the AR sets off a cascade of events 

resulting in increased cell growth and proliferation characteristic to both BPH and prostate 

cancer (Figure 7.1). One approach in regulating the AR pathway is to block the synthesis of DHT 

and by decreasing the levels of circulating androgens, limit the rates of AR activation and 

moderate cellular proliferation.4  

MpMRI exams probe the prostate gland on a tissue level; diffusion weighted imaging is 

used to evaluate cell proliferation, while dynamic contrast enhanced imaging is used to assess 

neovascularity and tissue structure of the prostate. Since 5-ARIs impact prostatic tissues, the use 

of 5-ARI agents is expected to affect the interpretation of imaging studies in 5-ARI treated 

patients. In order to accurately stage and assess disease progression in 5-ARI treated patients, the 

effects of these agents on imaging studies in both benign and malignant prostatic tissues need to 
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be investigated. The purpose of this study was to determine whether 5-ARIs affect discrimination 

between low-grade prostate cancer and benign tissues on multiparametric MR imaging.  

 

 

 

 

 

 

 

 

 

 

7.3 Materials and Methods 

7.3.1 Patients 

This study was approved by the Committee on Human Research at this institution and 

was compliant with the Health Insurance Portability and Accountability Act. Written, informed 

consent was obtained from all subjects. Twenty patients with biopsy-proven Gleason Score 3+3 

(GS3+3) prostate cancer were studied. Ten patients were taking 5-ARIs for at least a year at the 

time of the study. The ten 5-ARI treated patients were selected from 17 men who were scanned 

at our institution within the last 2 years, had complete mpMRI studies, were injected with 

gadopentetate dimeglumine (Gd-DTPA) contrast agent during DCE studies, had GS3+3 disease 

on biopsy and were taking either Dutasteride or Finasteride for at least a year. Out of these 17 

patients, 1 patient was excluded due to a prior cryosurgery and another patient was excluded due 

Figure 7.1: This figure demonstrates the 
diffusion of testosterone into the prostate 
cell. The testosterone is converted to 
DHT via 5α-reductase. DHT is then 
shown to bind to the androgen receptor 
(AR), leading to an increased cell 
metabolism and growth, often associated 
with benign prostatic hyperplasia, as well 
as prostate cancer4. 
 
 
 
The figure is adapted from Lucas P 
Nacusi and Donald J Rindall. Targeting 
5α-reductase for prostate cancer 
prevention and treatment. Nat. Rev. Urol. 
2011. May 31; 8(7):378-84. 
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to a prior androgen deprivation hormonal therapy. Out of the remaining 15 men, 10 men had 

mpMRI visible cancers within the peripheral zone of the prostate as per their radiology report 

and were included in the study. Four out of ten men in the 5-ARI treated group were taking 

Dutasteride (0.5mg taken daily), while the remaining six were being treated with Finasteride 

(5mg taken daily). Ten untreated individuals with GS3+3 biopsy-proven peripheral zone cancers, 

scanned within the same 2-year period as the treated group, with complete mpMRI studies, Gd-

DPTA	
  injections during DCE, and with prostate volumes matched to the individuals in the 5-ARI 

treated group, were identified in the database and included in the study to serve as controls. 

Prostate volumes were matched to allow for similar central gland/peripheral zone ratios to 

facilitate comparable cancer detection. Cancer detection can be more challenging in patients with 

a significantly compressed peripheral zone due to an enlarged central grand. Prostate volumes 

were matched within 5cc as estimated on the MRI, except for the largest and the smallest 

prostates that were matched within 8.3cc and 5.5cc respectively. Despite the prostate volume 

matching, there are likely differences in the peripheral zone and the central gland volumes 

between the two groups. 

Age, PSA values, the number of previous biopsy procedures, the number of biopsy cores 

obtained during the most recent biopsy procedure, and the number of days between the most 

recent biopsy and the MR exam, prostate volume, and benign and cancerous regions of interest 

(ROI) areas were compared between the two groups. The reported PSA values were obtained 

within a six-month window of the MRI scan.  

7.3.2 MR Imaging 

All patients were imaged with an expandable balloon endorectal coil (Medrad, Bayer 

HealthCare LLC, Whippany, NJ, USA) and a GE phased array on a 3T MR scanner (GE 
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Healthcare, Waukesha, WI, USA). The balloon coil was inflated with a perfluorocarbon fluid 

(Galden, Solvay Plastics, West Deptford, NJ, USA). T1-weighted images were examined as part 

of the clinical radiology review to ensure the biopsy hemorrhage was not corrupting the 

interpretation of the imaging study. T2-weighted images, diffusion-weighted images (DWI), and 

dynamic contrast-enhanced (DCE) MRI were acquired. The DCE MRI was performed using a 

single-dose of Gd-DPTA (Bayer HealthCare LLC, Whippany, NJ, USA) over ~5 minutes. 

Diffusion weighted imaging (DWI) was acquired using a 2D single-shot spin echo sequence with 

pixel bandwidth = 1952 (conventional acquisition, n=4: 2 (untreated) and 2 (5-ARI treated)), or 

pixel bandwidth = 1305 (reduced-field-of-view acquisition,101 n=16: 8 (untreated) and 8 (5-ARI 

treated)), with b=0 and 600 s/mm2, as well as b=0 and b=1350 s/mm2 over 6 non-coplanar, non-

colinear directions. The acquisition parameters are outlined in Table 7.1.  

Table 7.1: Imaging parameters 

  Pulse 
Sequence 

TR/TE 
(ms) 

FOV 
(cm) 

Matrix 
Size NEX ST 

(mm) 

In-Plane 
Res. 

(mm) 

Temp. 
Res. 
(s) 

b-value 
(s/mm2) Imaging 

T2w FSE 6000/100 18x18 512x512 1 3 0.35x0.35 N/A N/A 
DCE 3D SPGR 3.5/0.9 26x26 256x256 0 3 1.02x1.02 10.417 N/A 
Conv ADC ss-EPI 4000/90 24x24 128x128 4 3 0.94x0.94 N/A 0, 600 
rFOV ADC ss-EPI 4000/90 18x9 128x64 6 3 0.70x0.70 N/A 0, 600 
High-b DWI ss-EPI 4000/100 24x24 256x256 5 3 0.94x0.94 N/A 0, 1350 

FSE=Fast Spin Echo, SPGR = Spoiled Gradient Echo, ss-EPI = Single-Shot Echo-Planar 
Imaging, ST = Slice Thickness 

T2-weighted and diffusion-weighted images were corrected for the reception profile of 

the endorectal and the pelvic phased-array coils using Prostate Analytical Coil Correction 

(PACC) software available on the GE scanners. This correction technique as described in the 

literature67,277 has been adopted by GE. High quality of the intensity correction was visually 

confirmed. Apparent diffusion coefficient (ADC) maps were generated for DW b=0, 600 s/mm2 

images. In-house software was used to create the ADC maps. The maps were computed from the 

combined DWI (b=600 s/mm2) and T2-weighted reference images (b=0 s/mm2) using Eq. 7.1, 
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where b is the b-value used for the diffusion-weighted acquisition, Sgm is the geometric mean of 

the signal intensities acquired over the six gradient directions, and S0 is the signal intensity of the 

T2-weighted image acquired without applying diffusion gradients. 

ADC = − !
!
ln !!"

!!
                             [7.1] 

For b=0, 1350 s/mm2 acquisition, diffusion-weighted images were corrected for the reception 

profile of the endorectal coil and a mean of the 6 directions was computed to create a high-b 

value DW image. For completeness, high-b ADC maps were computed for DWI b=0, 1350 

s/mm2 images using Eq. 7.1 and following the same procedure outlined above.  

DCE maps were created based on the semi-quantitative tissue enhancement parameters of 

maximal enhancement slope, peak enhancement, and washout rate.132 Additionally, 

pharmacokinetic modeling was performed using the mean signal intensity measurements within 

individual ROIs. Quantitative DCE parameters of the fractional extravascular, extracellular 

volume (vEES),	
  the transfer constant (Ktrans), and the rate constant (Kep) were computed. A widely 

used two-compartmental extended Tofts-Kermode model was applied since prostate tissue has 

relatively low permeability and this model is permeability, surface area-limited rather than flow-

limited.173 The concentration of Gd-DTPA in the blood plasma was modeled as a biexponential 

(Eq. 7.2)222  

C! = AmpD(a!e!!!! + a!e!!!!)   [7.2] 

where Amp=5.2, D = 0.1mmol/Kg of Gd-DTPA, a1 = 3.99 kg/L, m1 = 0.144 1/min, a2 = 4.78 

kg/L, m2 = 0.011 1/min. A blood plasma fractional volume of 0.01 was used. The Amp was 

introduced to account for interpatient differences and was determined by minimizing the root-

mean-square error (RMSE) of the fits. 

For each subject, a single cancer ROI and a single benign ROI were drawn freeform 
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within the peripheral zone of each prostate on T2-weighted images, following areas of mpMRI 

concordance. Lesion placement was based upon agreement of biopsy and imaging findings. 

Benign ROIs were drawn contralateral to each cancerous region with care taken to avoid areas 

with positive biopsy findings. Additionally, locations for biopsy cores containing HGPIN or 

prostatitis were noted and avoided when placing benign regions of interest. All ROIs were drawn 

in the PZ. The ROIs were drawn without knowledge of the patients’ treatment status. T2-

weighted image intensity, ADC, high-b value DWI intensity, high-b ADC, maximal 

enhancement slope, peak enhancement, washout slope, vEES, Ktrans, and Kep values were 

computed for each region of interest.  

T2-weighted images and high-b value diffusion-weighted images are not measured on an 

absolute scale. For these measures, changes in gain may contribute additional variability across 

subjects. To account for this, contrast values between the cancerous and benign tissues were 

calculated based on Eq. 7.3. 

Contrast =   
MR!"#$% −   MR!"#$%&'

MR!"#$%&'
                                                                          [7.3] 

Where “MR” represents the MR measure of interest, i.e. T2-weighted or high-b value DWI 

intensity.  

7.3.3 Statistical Methods 

Statistical analyses were carried out using JMP software (JMP, Version 12, SAS Institute 

Inc., Cary, NC). Measures are reported as mean ± standard deviation, with median (first quartile, 

third quartile), as well as minimum and maximum values also reported. Two-tailed, 

heteroscedastic Student’s t-tests were used to compare age, PSA, prostate volume, as well as the 

sizes of benign and cancerous ROIs between the two groups, with p≤0.05 considered statistically 

significant. The number of biopsy procedures, the number of biopsy cores obtained during the 
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most recent biopsy, and the number of days since the most recent biopsy procedure were 

compared between the two groups using Mann-Whitney rank-sum test. Two-tailed, 

heteroscedastic Student’s t-tests with a significance level of 0.05 were also used to compare MR 

measures in the untreated and the 5-ARI treated groups. Ordinal logistic regression analysis was 

performed for all imaging modalities to evaluate the area under the ROC (receiver operating 

characteristic) curve (AUC) in benign and cancerous regions for the untreated and the 5-ARI 

treated groups. A forward stepwise logistic regression with a threshold p-value of 0.1 was used 

to identify the imaging parameters for inclusion in the combined model. Finally, the coefficient 

of variation (COV) was evaluated for all imaging modalities for benign and cancerous regions in 

both the untreated and the 5-ARI treated groups.  

7.4 Results 

Patient characteristics for the untreated and the 5-ARI treated patients are summarized in 

Table 7.2 and 7.3 respectively. No significant differences were noted between the two groups. 

The untreated and the 5-ARI treated groups were similar in age (p=0.1), PSA (p=0.77), the 

number of previous biopsy procedures (p=0.81), the number of biopsy cores obtained during the 

most recent biopsy (p=0.85) and prostate volumes (p=0.90). Additionally, none of the subjects 

included in the analysis were noted to have post biopsy hemorrhage evident on imaging. The 

number of days between the most recent biopsy procedure and the MR exam was fewer in the 

untreated group (Table 7.2) than the 5-ARI treated group (Table 7.3); however, the difference 

between the two groups was not statistically significant p=0.27. 
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Table 7.2: Patient Characteristics: Untreated 

Metric 

Untreated 

Mean±SD Median (Q1, Q3) 
Minimum, 
Maximum 

Prostate Volume (matched) [cc] 48.66±29.6  41 (29.9, 51.1) 24.3, 123.3 
Age [years] 64.4±6.6  72.0 (65.6, 76.6) 53.6, 76.4 
PSA (within 6 months) [ng/ml] 6.55±3.76  5.93 (4.20, 8.05) 1, 14.1 
# Previous Biopsy Procedures 2.1±0.99 2 (1, 3) 1, 4 
# Biopsy Cores obtained during the most recent biopsy  15.3±3.0 15 (12, 18) 12, 21 
Days between the most recent biopsy and mpMRI 455±326 476 (166, 556) 68, 1093 
Size of benign ROIs [cm2] 0.87±0.55 0.72 (0.54, 0.94) 0.33, 1.89 
Size of cancerous ROIs  [cm2] 0.40±0.33 0.28 (0.20, 0.40) 0.11, 0.99 

   PSA=Prostate Specific Antigen, ROI = Region of Interest, SD = Standard Deviation. 
 

Table 7.3: Patient Characteristics: 5-ARI Treated 

Metric 

Treated 

Mean±SD Median (Q1, Q3) 
Minimum, 
Maximum 

Prostate Volume (matched) [cc] 47.03±28.77  41.5 (29.5, 49.1) 18.8, 115 
Age [years] 70.8±9.1 65.3 (60.0, 68.1) 57.4, 82.8 
PSA (within 6 months) [ng/ml] 5.84±6.56  3.44 (1.90, 6.91) 1.2, 22.6 
# Previous Biopsy Procedures 2.1±0.88 2 (1, 3) 1, 3 
# Biopsy Cores obtained during the most recent biopsy  15.3±2.1 16 (13.5, 17) 12, 18 
Days between the most recent biopsy and mpMRI 1140±1364 624 (351, 988) 220, 4604 
Size of benign ROIs [cm2] 0.62±0.33  0.56 (0.37, 0.65) 0.31, 0.91 
Size of cancerous ROIs  [cm2] 0.32±0.26 0.26 (0.13, 0.46) 0.03, 0.84 

   PSA=Prostate Specific Antigen, ROI = Region of Interest, SD = Standard Deviation. 

No statistically significant differences were noted between the sizes of the benign ROI 

areas for the untreated and the 5-ARI treated groups (p=0.24). Additionally, no statistically 

significant differences were noted between the sizes of the malignant ROI areas for the untreated 

and the 5-ARI treated groups (p=0.58). The two groups also had similar incidence of biopsy 

detected HGPIN and prostatitis. One patient in each group had a single HGPIN core discovered 

on biopsy. Additionally one patient in each group had biopsy- diagnosed prostatitis.  

No significant differences between the untreated and the 5-ARI treated groups were noted 

for benign or cancerous regions on T2-weighted imaging, ADC, high-b value DWI intensity, 
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high-b ADC, maximal enhancement slope, peak enhancement, washout slope, or vEES. No 

significant differences were noted for cancerous tissues between the untreated and the 5-ARI 

treated groups on Ktrans and Kep measures. However, significant differences were noted between 

benign untreated and benign treated tissues on Ktrans (p<0.02) and Kep (p<0.03). For benign 

tissues Ktrans values were 0.42±0.234 min-1 and 0.20±0.09 min-1, while Kep values were 

1.86±1.25 min-1 and 0.70±0.41 min-1 for the untreated and the 5-ARI treated groups respectively.  

Example images for a patient with a low-grade biopsy-proven (GS3+3) prostate cancer 

with a PSA of 4.6 ng/ml are shown in the top row of Figure 7.2. The patient was not taking any 

medication for BPH or lower urinary tract symptoms. The bottom row in Figure 7.2 depicts 

example images for another patient with a biopsy-proven (GS3+3) prostate cancer with a PSA of 

0.42 ng/ml who had been taking Dutasteride for the prior year. Based on visual assessment, 

Figure 7.2 demonstrates a better discrimination of benign and malignant tissues on the high-b 

value intensity images and the washout images in the treated case when compared to the 

untreated example. 

  

 

 Figure 7.3 depicts box-plots for the MR measures and calculated maps in benign and 

cancerous tissues as observed for the untreated men and the individuals treated with 5-ARIs. For 

Figure 7.2: Example prostate MR images from a 67-year-old (GS3+3, PSA=4.6 ng/ml) untreated 
male (top panel: A-D) and from a 57-year-old man (GS3+3, PSA=0.42 ng/ml) treated with 5α-
reductase inhibitors (bottom panel: E-H). T2w intensity images (A, E), ADC (B, F), high-b 
value DWI intensity (C, G), and washout slope (D, H) images are shown. The arrows designate 
cancerous regions. 
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ADC, high-b value DWI intensity, high-b ADC, peak enhancement, maximal enhancement 

slope, washout slope, Ktrans, and Kep a better separation of benign and cancerous tissues was 

observed for individuals treated with 5-ARIs than for those untreated. 

Table 7.4 lists ROC AUC values obtained when stepwise logistic regression was 

performed for all the imaging modalities for untreated and 5-ARI treated subjects in benign and 

cancerous regions. The ROC AUC values for distinguishing benign tissues from cancer were 

consistently higher in the treated group with the exception of T2-weighted images  (AUC of 0.82 

for the untreated and 0.79 for the 5-ARI treated group) and both sets of ADC images (untreated 

and 5-ARI treated groups both had an AUC of 1).  

Table 7.4: ROC-AUC for cancerous versus benign tissues in untreated and 5-ARI treated 
patients. The higher AUC values are listed in BOLD.  
Imaging Untreated ROC-AUC Treated ROC-AUC 
T2-weighted 0.82 0.79 
ADC (b=600 s/mm2) 1 1 
High-b ADC (b=1350 s/mm2) 1 1 
High-b DWI 0.71 0.94 
Maximal Enhancement Slope 0.95 1 
Washout Slope 0.78 0.99 
Peak Enhancement 0.84 0.93 
Ktrans 0.9 1 
Kep 0.8 0.98 
vEES 0.51 0.57 
Combined 0.86 0.99 

The combined model used T2-weighted, ADC, maximal enhancement slope, washout slope, 
peak enhancement, Ktrans, and Kep for the untreated group and ADC, high-b DWI, maximal 
enhancement slope, washout slope, peak enhancement, Ktrans, and Kep for the treated group. 

In order to account for the arbitrary intensity scales associated with T2w and high-b 

DWI, tumor contrast was evaluated. For the T2w, tumor contrast was computed to be 0.40±0.13 

and 0.30±0.20 for the untreated and the 5-ARI treated groups, respectively, p=0.19. For high-b 

DWI intensity measures, contrast values were 0.61±0.43 and 0.99±0.52 for the untreated and the 

5-ARI treated groups respectively, p=0.086. 
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The absolute coefficients of variation for the measures within the benign tissues and 

within the cancer are listed in Table 7.5. COV values were lower in both the benign tissues and 

the cancer for the treated group compared to the untreated group for high-b value DW images, 

high-b ADC, peak enhancement, washout slope, vEES, Kep, and maximal enhancement slope 

(cancer only), ADC and Ktrans (benign only). 

Table 7.5: Absolute coefficient of variation of the measures within cancer and benign tissues for 
the treated and untreated groups. The lower COV values are listed in BOLD.  

Imaging 
Benign Cancer 

Untreated Treated Untreated Treated 
T2-weighted 0.34 0.389 0.233 0.303 
ADC (b=600 s/mm2) 0.107 0.095 0.153 0.174 
High-b ADC (b=1350 s/mm2) 0.13 0.103 0.16 0.13 
High-b DWI 0.567 0.361 0.367 0.264 
Maximal Enhancement Slope 0.185 0.204 0.24 0.153 
Washout Slope 2.556 0.572 0.968 0.611 
Peak Enhancement 0.082 0.064 0.113 0.052 
Ktrans 0.556 0.451 0.749 0.83 
Kep 0.674 0.52 1.05 0.965 
vEES 0.353 0.289 0.394 0.212 

 

Figure 7.3: Box-plots comparing A) T2w intensity, B) ADC (b=600 s/mm2), C) high-b value DWI 
intensity, D) high-b ADC (b=1350 s/mm2), E) peak enhancement, F) maximal enhancement slope, 
G) washout slope, H) vEES, I) Ktrans, and J) Kep values in cancerous and benign prostatic tissues for 
untreated individuals and those treated with 5α-reductase inhibitors. Horizontal lines within the 
box plots represent the median values. Whiskers are drawn to the furthest points within 1.5x 
interquartile range, where interquartile range is the difference between the 1st and the 3rd quartiles. 
	
  



	
   117	
  

7.5 Discussion 

Dutasteride and Finasteride are two commonly used drugs prescribed for treatment of 

prostate enlargement. Both agents act as inhibitors to the 5α-reductase enzyme, forming strong 

irreversible ternary complexes with the 5α-reductase–NADPH complex.278 In a 2011, 

multicenter, randomized, double-blind, 12 month-long study of 1630 men, Nickel et al. reported 

that both Dutasteride and Finasteride were effective at reducing prostate volume with no 

significant difference between the two treatments during the study and with a similar number of 

adverse events.279  

This study investigated whether 5-ARIs affect discrimination between low-grade prostate 

cancer and benign tissues on mpMRI. It was observed that high-b value DWI intensity, maximal 

enhancement slope, peak enhancement, washout slope, Ktrans, and Kep acquired as part of a 

routine prostate mpMRI scan show reduced variability within both low-grade (GS3+3) cancerous 

tissues and within benign tissues in the treated group. Additionally, a better separation between 

cancerous and benign regions was noted for the prostate tissues exposed to 5-ARI as compared 

to the untreated prostate tissues. These results are consistent with the findings of an earlier study 

that monitored the effects of Dutasteride on untreated prostate cancer using MRI and magnetic 

resonance spectroscopic imaging (MRSI).280 The authors reported that in tumors the levels of the 

metabolite choline, the presence of which signals malignancy, remained unchanged with 5-ARI 

treatments. However, in benign prostatic tissues, 5-ARI treatments resulted in decreased levels of 

the prostatic secretory metabolites citrate and polyamines, low levels of which are consistent 

with 5-ARIs primarily inhibiting metabolism of healthy prostatic glandular tissues and 

eventually inducing atrophy of these tissues.280 The reduction of the dominant normal prostatic 

metabolite MR resonances increases the visibility of the cancerous metabolite signals, elevated 
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choline to citrate ratio, and therefore the detection of small amounts of cancer.280 By blocking the 

AR pathway, 5-ARIs block DHT driven proliferation and vascularization of prostatic tissues, 

inducing apoptosis and resulting in increased amounts of tissue atrophy. When exposed to 5-ARI 

therapy, androgen sensitive glandular normal and BPH tissues quickly atrophy, while less 

androgen sensitive cancers will atrophy more slowly.281 Based upon this biology and our results, 

we suggest that 5-ARI therapy results in decreased contribution of glandular tissues to all MR 

measurements and allows cancerous tissues to become readily apparent against a more uniform 

background of atrophic tissues.  

Untreated benign and 5-ARI treated benign prostatic tissues have different appearances 

on histopathological examination. Histologically, atrophy is characterized by a reduction in the 

volume of existing glands and the loss of luminal secretary epithelial cells.282 Large pools of 

lumen are observed for healthy untreated prostatic tissues, while significantly diminished luminal 

spaces and increased surfaces of stromal tissues are typically seen in the treated individuals. 

Additionally, the shrinking and loss of the basal and the secretory epithelial cells associated with 

atrophy is often noted in the treated prostatic tissues.   

Figure 7.4 shows an example of T2-weighted images for benign tissues for two untreated 

and one 5-ARI treated patients. Figure 7.4a demonstrates the appearance of healthy glandular 

tissues in an untreated patient; detecting cancerous lesions against such a uniform and bright 

background is straightforward. Unfortunately, very few prostates have such an uncomplicated, 

glandular appearance. Figure 7.4b demonstrates the challenges associated with detecting cancers 

within mixed tissues, characteristic of the majority of prostates. Against a background of such 

heterogeneous tissues – some glandular and bright, some stromal and dark, some atrophic, some 

inflamed, and some malignant - it is much more challenging to confidently identify cancerous 
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regions in this untreated patient. Figure 7.4c shows why atrophic processes associated with 5-

ARI treatments may enhance the diagnostic utility of mpMRI. While the 5-ARI treated prostatic 

tissues of the peripheral zone appear darker than those observed in healthy, untreated tissues 

(Figure 7.4a), the diffuse nature of the hormone-induced atrophy allows for a more uniform 

background than the mix of tissues often seen in untreated prostates (Figure 7.4b). The 

uniformity of the benign prostatic tissues provides a better background against which a 

malignant lesion can be detected. This may explain why we observe a better separation between 

benign and malignant tissues and a lower variability in the measures for 5-ARI treated group 

when compared to untreated controls.  

Within the scope of anti-androgen therapies, very few studies review the effects of 5-ARI 

agents on imaging.280 For instance, Dutasteride treatment was shown to increase the rate of 

cancer detection in ultrasound studies.283-285 However, in the realm of MR imaging, most of the 

published literature involving 5-ARI agents focuses on the changes in prostate volumes due to 

androgen deprivation.286,287 There are, however, studies covering the effects of hormone ablation 

on both anatomical and functional prostate MR imaging.47,48,288-291 There is a consensus that 

glandular atrophy and tissue shrinkage makes prostate cancer detection more challenging on T2-

weighted images.48,291,292 This is a similar observation to what is seen for T2-weighted images in 

Figure 7.4: T2-weighted images of benign prostatic tissues for A) untreated patient with 
homogeneous tissue (age = 64.1 years, PSA= 2.14 ng/ml, GS3+3), B) untreated patient with 
heterogeneous tissue (71.4 years, 5 ng/ml, GS3+3), C) 5-ARI treated patient with homogeneous 
tissue (50.4 years, 4.44 ng/ml, GS3+3).  
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the 5-ARI treated cases of the current study. For functional imaging, preliminary studies have 

shown cancerous lesions becoming less apparent on DWI and DCE post-hormonal ablation, 

which is different than the results of the current study.47,290 This discrepancy is likely due to the 

differences in the evaluated populations. Hormonal ablation is typically used to treat aggressive 

prostate cancer rather than GS3+3 disease (pooling the patients from the two ablation studies - 

only 4/69 men had GS3+3 prostate cancers),47,290 which is vastly different from our exclusively 

low-risk GS3+3 cohort. Pretreatment discrimination of cancer and benign tissues is easier in 

patients with aggressive prostate cancer as opposed to those with low-risk disease. Thus, 

inhomogeneity of prostatic tissues plays a small role in identifying aggressive, clear-cut cancers, 

but is a significant hurdle in diagnosing diffuse or low-grade lesions. For low-risk cancers, as our 

data suggests, post-treatment cancer detection might be advantaged by the atrophy of benign 

tissues, especially when considering the challenges of low-risk cancer detection pre-treatment. 

On the other hand, atrophy of benign glandular tissues post-treatment might make it more 

challenging to detect aggressive cancers when compared to the ease of detection pre-treatment as 

suggested by the prior studies of hormone ablation in aggressive cancer.47,290  

In the current study, while it was noted that the contrast on T2-weighted images between 

cancerous and benign tissues was lower in the 5-ARI treated than the untreated group, our 

findings for the functional imaging measures provide reassurance. First, contrast on the high-b 

value DW images between cancerous and malignant tissues was higher in the 5-ARI treated than 

the untreated group. Second, the separation between imaging values for cancerous and benign 

regions was greater on ADC, high-b value DW, maximal enhancement slope, peak enhancement, 

washout slope, Ktrans, and Kep images, with an overall reduced variability in the MR measures for 

individuals in the 5-ARI group. Third, Kep and Ktrans values obtained for benign regions were 
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significantly lower for the 5-ARI treated than the untreated groups. Higher Kep and Ktrans values 

typically signal higher perfusion and are often indicative of malignancy. Since there were no 

significant differences between Kep and Ktrans values for the cancerous 5-ARI treated and 

untreated groups, the larger separation between cancerous and benign tissues in the treated group 

may potentially lead to an easier detection of cancerous regions in that cohort.  

For patients on active surveillance with emphasis placed on detecting and treating more 

aggressive disease, why do we care about detecting GS3+3 lesions? Several studies reported that 

patients with visible lesions on mpMRI have an increased overall risk of cancer 

progression;293,294 therefore, identifying these lesions is of clinical importance. If pretreatment 

with 5-ARI agents makes lesions more conspicuous on imaging, it may aid in identifying 

patients at a higher risk of cancer progression, prompting a closer observation of these patients 

while on active surveillance.	
  Additionally, while our study looked at GS3+3 disease in 5-ARI 

treated and untreated men, we expect our findings to be applicable in detection of higher-grade 

cancer (i.e. GS3+4 or GS4+3 disease), the detection of which is of clinical significance. In this 

study, we limited the inclusion criteria to GS3+3 lesions in order to avoid introducing variability 

associated with Gleason 4 disease, especially when detected on biopsy; however, we expect the 

underlying principle of elucidating cancer against a more homogeneous atrophic background to 

be applicable for higher grade cancers. This observation that pretreatment with 5-ARI agents 

improves PCa detection on mpMRI is very similar to the reported effects of 5-ARI agents on the 

sensitivity of PSA in detecting prostate cancer in 5-ARI treated individuals. In a large study of 

18,882 men, Thompson et al. reported that PSA had a better sensitivity for detecting all grades of 

prostate cancer in the group treated with Finasteride when compared to a placebo cohort.295 This 

further supports the idea that reducing the impact of potential confounders such as benign 
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pathologies improves cancer detection in the prostate.  

 Another potentially important consequence of our findings pertains to interpretation of 

mpMR imaging studies acquired in 5-ARI treated patients when using Prostate Imaging – 

Reporting and Data System (PI-RADS) criteria. For peripheral zone lesions, PI-RADS places a 

particular importance on conspicuity of prostatic lesions on diffusion-weighted imaging.296 Our 

results suggest that 5-ARI treated patients will have prostate cancers that are more conspicuous 

on functional imaging than lesions of similar grade in the untreated group. This can potentially 

lead to a misdiagnosis of higher-grade cancer in men with GS3+3 disease, affecting the disease 

management for those patients. Knowledge of a patient’s 5-ARI status prior to interpretation of 

his imaging study might be an important caveat when applying PI-RADS criteria. 

Our study had several limitations. First, with only 10 patients per group our study has a 

small sample size. Second, biopsy-based Gleason grading of cancerous regions was used, which 

could be inaccurate due to biopsy sampling errors.256,257 Third, only men with visible lesions on 

mpMRI were included in our study, which introduces a selection bias to our sample. However, 

this selection bias adds clinical significance to our findings. Men with lesions visible on mpMRI 

have been shown to have an increased risk of cancer progression; therefore, detecting these 

lesions in 5-ARI treated individuals is important for disease management in this population. 

Fourth, benign regions were drawn based on imaging (contralateral to cancer); they could 

potentially include inflammation or even cancer undetected on biopsy. Fifth, T2w measures were 

reported for completeness; however, these measures are inherently biased since the ROIs were 

drawn on T2w images, with the size of the lesion providing further bias.  Additionally, while 

untreated patients were matched to the treated individuals and were not significantly different in 

the demographic, clinical, and biopsy metrics tested, there could be unaccounted for differences 



	
   123	
  

between the two subject groups. For purposes of completeness we are reporting both semi-

quantitative parameters, as well as measures derived using quantitative pharmacokinetic 

modeling. It is important to remember that these measures are not independent but may be 

attributed to similar biological mechanisms. Similarly, there is a redundancy to ADC (b=600 

s/mm2) and high-b ADC (b=1350 s/mm2) maps, with the two sets of data representing the same 

biological processes but at slightly different levels of tissue organization. Finally, patients were 

treated with either Finasteride (type I 5-ARI) or Dutasteride  (type I and II 5-ARI). Differences 

between the two agents may introduce variability to the data. However, despite these limitations, 

for the majority of the imaging modalities, we were still able to see reduced coefficients of 

variation and better discrimination between cancerous and benign tissues in the treated patients 

as compared to the untreated patients. 

In conclusion, this study presented data from 5-ARI treated and untreated men receiving 

3T multiparametric MRI scans. A better separation between low-grade cancerous and benign 

regions was observed for prostatic tissues exposed to 5-ARIs for the majority of the MR 

measures of interest and overall with an mpMRI approach. Furthermore, a reduction in the 

coefficient of variation was noted for most of the MR measures in the treated cohort (for both 

cancerous and benign regions) when compared to the untreated group. The findings in our study 

suggest that pretreatment with 5-ARI may facilitate a better discrimination of low-grade prostate 

cancer from benign tissues with mpMRI. Furthermore, this study suggests that interpretation of 

mpMRI in treated patients may need to be refined, as both more high-risk lesions may be 

identified and as low-risk lesions may be misdiagnosed as more aggressive. These findings are of 

clinical importance and require further exploration in a larger cohort. 
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CHAPTER 8 
 

Conclusion 
 
8.1 Summary of Results 

 This thesis reviewed the imaging modalities involved in multiparametric MR scans. It 

discussed the importance of a proper registration and alignment of histopathology slides, which 

often serve as a reference standard for imaging studies, to the MR images and proposed a semi-

automatic registration technique. By closely correlating mpMRI data to histopathology, we 

characterized the appearance of cancerous tissues on imaging and used mpMRI to predict PCa 

aggressiveness by creating robust logistic regression models to discriminate benign tissues from 

PCa, distinguish ≤GS3+3 cancers from clinically significant disease (≥SG3+4), and differentiate 

low-risk cancers (≤GS3+4) from high-risk cancers (≥GS4+3) within both the peripheral and the 

transition zones. We also introduced a new semi-automatic technique for segmentation and 

assessment of cancerous regions outlined on histopathology. This approach was used to 

characterize all cancerous regions found on histopathology in a post radical prostatectomy cohort 

of 78 men. Of particular import, sparse lesions, which are poorly studied, were thoroughly 

characterized not only on histopathology but also on mpMR imaging. Sparse lesions were shown 

to be predominantly low-grade and thus overall likely to pose limited malignant potential for 

spread and progression. On imaging, sparse low-grade cancers and sparse higher-grade disease 

were shown to have similar imaging characteristics to dense low-grade PCa. However, high-

grade, aggressive sparse lesions were clearly detectable on mpMRI.  Finally, we covered the 

effect of PCa treatments on prostatic tissues and their appearance on imaging. Specifically, we 

looked at 5-ARIs (used to slow down and reverse BPH growth) and showed in a small-cohort 
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study that pretreatment with 5-ARI may facilitate a better discrimination of low-grade prostate 

cancer from benign tissues with mpMRI. 

8.2 Future Directions 

Over the past decade mpMRI has been gaining traction as a reasonable alternative for 

detection and characterization of prostatic lesions.40,170,258,297,298 By assessing the prostate gland 

in its entirety, mpMRI offers a better diagnostic approach than the traditional ultrasound guided 

systematic biopsies, which are plagued with undersampling and undergrading.256,257 However, 

histological assessment still remains the most trusted way of assessing PCa. MR-guided and US-

MR fusion prostate biopsies provide a direct approach to not only target a dominant lesion but 

also sample the region with the most aggressive appearing tumor. Preliminary studies found MR-

guided prostate biopsies useful in diagnosing a new malignancy or upgrading previously 

diagnosed disease.125,299,300 Furthermore, a study by Siddiqui et al. reported an increased 

detection of high-risk (≥G4+3) prostate cancer and decreased detection of low-risk prostate 

cancer for MR-US fusion biopsies when compared to standard US-guided biopsies.35,301 Prostate 

biopsies aided by MR-guidance can potentially increase the diagnosis of clinically significant 

malignancies, addressing the concerns associated with traditional untargeted US-guided biopsies.  

mpMRI may also aid in treatment management of prostate cancer.  

Furthermore, the ability of mpMRI to localize a prostatic lesion allows the 

implementation of focal treatments, which could potentially reduce the side effects associated 

with radical interventions.302 High-intensity focused ultrasound (HIFU) is one such example. 

HIFU is a minimally invasive technique that has been used under MR guidance, with MR 

thermometry in real time to monitor ablation of a localized cancerous region without affecting 

the entire gland.303 Preliminary studies report promising results in treatment of small, low to 
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intermediate grade prostatic lesions.304,305 Overall, multiparametric MRI has the potential to have 

a significant impact on the way the prostate cancer is diagnosed and treated. Standardization of 

acquisition protocols is required to achieve the optimal reproducibility of imaging findings and 

establish trust. With PSA testing on the decline, based on the USPSTF recommendation,19 

mpMRI may prove the ultimate tool for non-invasive PCa assessment and an apt aid for more 

accurate prostatic biopsies. 
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