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ABSTRACT 

 
Traumatic brain injury (TBI) is the leading cause of death 
and disability in children. Among the many neurological 
disruptions that follow an injury, damage to the white matter 
is among the most common and long-lasting. Diffusion 
weighted imaging methods are uniquely sensitive to this 
disruption. Even so, traumatic injury disrupts the brain 
anatomy we aim to study, complicating the analysis of brain 
integrity and connectivity, which are typically analyzed 
using tractography methods optimized for analyzing normal 
healthy brains. To understand which fiber tracking methods 
show promise for analysis of TBI, we tested 7 different 
tractography algorithms for their accuracy and ability to 
detect group differences between children with TBI and 
matched controls. We also tested which elements 
(corresponding to neural bundles) in the resulting 
connectivity matrices provided the most useful information 
for accurately detecting group differences. 
 

Index Terms— High angular resolution diffusion 
imaging (HARDI), traumatic brain injury, tractography, 
connectivity 
 

1. INTRODUCTION 
Traumatic brain injury (TBI) can cause extensive white 
matter (WM) damage that can be long-lasting and far 
reaching in its associated impairments. Diffuse axonal injury 
(DAI) is partly responsible, and is frequently detectable in 
the corpus callosum, brain stem, gray-white matter 
junctions, and the parasagittal white matter. While DAI can 
only be definitively diagnosed post mortem, diffusion 
weighted imaging (DWI) has shown great potential in 
detecting these disruptions.  

Disruptions in WM integrity caused by TBI are 
observable as decreased FA (fractional anisotropy) and 
increased MD (mean diffusivity), indicating myelin 
disruption [1]. These FA dropouts can make advanced 
analyses such as tractography difficult, as tract-propagation 

methods may stop in regions where the fractional anisotropy 
is abnormally low. As tractography algorithms vary in the 
equations and models they use reconstruct tracts, they may 
also vary in their success in tracking fibers through 
disrupted regions. To investigate how different fiber 
tracking methods perform on scans from children with TBI, 
we tested 7 different tractography algorithms to see how 
sensitive the resulting connectivity matrices are in 
differentiating between our groups. 

In the developing brain, TBI is especially disruptive. In 
animal studies, TBI during development can decrease 
experience-dependent plasticity - a key process for brain 
maturation and development [2]. TBI during development 
can delay or alter the maturation of WM tracts. Even today, 
little is known about how TBI affects developing brains, 
what course recovery may follow, and what interventions 
may assist in the process. 

 
2. METHODS 

2.1. Subjects and Image Acquisition 
TBI participants were recruited from 4 Pediatric Intensive 
Care Units (PICUs) at Level 1 Trauma Centers in Los 
Angeles County. Healthy controls, matched for age, sex, and 
educational level, were recruited from the community 
through flyers, magazines, and school postings. Participants 
were studied in the chronic phase (13-19 months post-
injury). We included 13 TBI participants (4 female) and 13 
controls, matched for age and sex. Inclusion criteria: non 
penetrating moderate-severe TBI (intake or post-
resuscitation GCS score between 3 and 12), 8-19 years old, 
right handed, normal vision, English proficiency. Exclusion 
criteria: history of neurological illness or injury, motor 
deficits or metal implant preventing safe MRI scanning, 
history of psychosis, ADHD, Tourette’s, learning disability, 
mental retardation, autism, or substance abuse. 

Participants were scanned using 3T MRI (Siemens 
Trio) with whole-brain anatomical and 66-gradient diffusion 
imaging. Diffusion-weighted images (DWI) were acquired 
with the following acquisition parameters: GRAPPA mode; 



acceleration factor PE=2; TR/TE=9500/87 ms; 
FOV=256x256mm; isotropic voxel size=2 mm. 66 images 
were collected per subject: 2 b0 and 64 diffusion-weighted 
images (b=1000 s/mm2).  
 
2.2 Data Preprocessing and Cortical Extraction 
Non-brain regions were automatically removed from a b0 
image from the DWI volume using the bet function in the 
FSL toolbox (http://fsl.fmrib.ox.ac.uk). Brainsuite was used 
for the T1-weighted images (http://brainsuite.org); these 
brain extractions were refined by a neuroanatomical expert. 
DWI volumes were corrected for eddy current distortion 
using FSL’s eddy_correct function. All T1-weighted scans 
were linearly aligned to a common template using 9 DOF. 
Averaged b0 maps were elastically registered to the 
structural scan using a mutual information cost function to 
compensate for EPI-induced susceptibility artifacts. Based 
on these DWIs, whole brain tractography was conducted 
using 7 different deterministic and probabilistic tracking 
algorithms. 

34 cortical labels per hemisphere [3] were automatically 
extracted from aligned T1-weighted structural MRI scans 
using FreeSurfer (http://surfer.nmr.mgh.harvard.edu/), 
aligned to the T1-weighted images, and downsampled using 
nearest neighbor interpolation to the space of the DWIs. To 
ensure tracts would intersect cortical label boundaries, labels 
were dilated with an isotropic box kernel of width 5 voxels. 
We created 7 68x68 connectivity matrices for each 
subject using each tractography method separately. Each 
element of the matrix described the number of fibers that 
passed through each pair of cortical labels - or regions of 
interest (ROIs).  
 
2.3 Tractography  
We tested seven different tractography methods, including 
three tensor-based deterministic algorithms: FACT [4], 2nd 
order Runge-Kutta (RK2) [5], and tensorline (TL) [6], and 
two deterministic tractography algorithms based on the 4th 
order spherical harmonic derived orientation distribution 
functions (ODFs) – FACT and RK2. We also tested the 
Hough voting method [7], which is based on ODFs 
represented by 4th order spherical harmonics, and the 
Probabilistic Index of Connectivity (PICo) [8], based on 
ODFs represented by 6th order spherical harmonics. For the 
Hough method, tract reconstruction was constrained to 
10,000 fibers. 

The five deterministic methods were run with Diffusion 
Toolkit (http://trackvis.org/dtk/). Fiber tracking was 
restricted to regions with fractional anisotropy (FA) ≥ 0.2 to 
avoid gray matter and cerebrospinal fluid; fiber paths were 
stopped if the fiber direction encountered a sharp turn (with 
a critical angle threshold ≥ 30°). Recent reports have 
suggested that fiber angles as sharp as 90° may be 
biologically plausible [9], but such a large threshold can also 
allow for large numbers of false positive fibers. 

The Hough method was performed using an optimized 
implementation relying on a lookup table and described 
previously [7,10]. Voxels with an FA ≥ 0.2 were 
probabilistically seeded, and 10,000 fibers were 
reconstructed. PICo was conducted with Camino 
(http://cmic.cs.ucl.ac.uk/camino/). Voxels with an FA ≥ 0.2 
seeded, ODFs were estimated using 6th order spherical 
harmonics and a maximum of 3 local ODF maxima to be 
detected. The fiber turning angle threshold was set to 
30°/voxel, and tracing was stopped at any voxels with an FA 
< 0.2. 
 
2.4 Support Vector Machine (SVM) Classification 

To automatically identify connectivity patterns in TBI 
from normal development we used the machine learning 
classifier support vector machines (SVMs) [11]. The method 
works by learning the parameters of a hyperplane that 
optimally separates the two groups of points. 

Formally, we can let xi ∈ Rd represent the features that 
are derived from all the connections organized in the 
connectivity matrix, where in our data d is 68*68 = 4,624 in 
dimension and since our matrices are symmetric this number 
can drop to 2,278 unique features. We let Yi = ±1 represent 
the group label of each subject with -1 and 1 representing 
TBI and control respectively. We compute a hyperplane as: 

〈w,x〉 + b = 0, 
choosing w∈ Rd such that it separates the maximal number 
of points possible. The hyperplane can be posed as the 
following L2-norm problem: 
       arg  min

!,!,!

!
!
𝑤,𝑤   + 𝐷 𝑣!!! ,  

such that  
yi(〈w,xi〉 + b) ≥ 1 - vi, 
vi ≥ 0 

where we let vi be slack variables and D controls a penalty 
parameter. This formulation is necessary because in many 
real applications the hyperplane is not able to completely 
separate the two classes and we need to provide additional 
flexibility to the method. 

To evaluate the performance of the classification 
algorithm we used 10 times repeated stratified 10-fold cross-
validation [12,13]. This approach has been shown to balance 
the amount of bias and variance in its estimate in both 
synthetic and real data. In each repetition of cross-validation 
we cataloged the accuracy, specificity, and sensitivity as the 
metrics for performance. 

In addition to performance metrics, we computed a 
ranking of features in each of the classification problems. 
This ranking was derived using a standard technique [14] 
that evaluates each feature’s relationship to the optimal 
hyperplane. These values are quantified by 𝑤  in the above 
equations and by sorting these values in decreasing order we 
compute a ranking from most important to least important 
feature. The interpretation of features with high weights is 
that they have a greater influence on the decision of the 



boundary represented in the hyperplane. We use the 
collection of weights to understand what connections in the 
network are driving the classification rule and are being 
sampled effectively in a certain tractography algorithm. 
 

3. RESULTS 
3.1. Comparing Tractography Algorithm Outputs 
Descriptive statistics for the 7 tractography algorithm 
outputs for the TBI and control groups are shown in Figures 
1 and 2. Figure 1 displays the number of tracts 
reconstructed, while Figure 2 displays the maximum length 
of the tracts reconstructed.  

The number of tracts reconstructed was similar across 
the 5 deterministic methods. As expected, PICo (Camino) 
generated many more streamlines in the brain than the other 
methods, and the Hough method was constrained to 
generate only 10000 fibers. Between TBI and controls, there 
were no detectable differences in the number of tracts or 
maximum length of tracts reconstructed.  

 
Figure 1. Number of tracts reconstructed across all 7 tractography 
algorithms, across control and TBI subjects. For the Hough 
method, tract reconstruction was constrained to 10,000 fibers. 

 
Figure 2. Maximum length of tracts reconstructed across all 7 
tractography algorithms, across control and TBI subjects. 
 
 
 

3.2. SVM Accuracy of Connectivity Matrices 
To rank the tractography algorithms, we compared the 

accuracies of the SVM associated with the connectivity 
matrices. Results are shown in Table 1. 
  Accuracy Specificity Sensitivity 
FACT - Tensor 0.5536 0.7714 0.3357 
FACT - TL 0.5964 0.6714 0.5214 
FACT - RK 0.5821 0.65 0.5143 
Camino 0.4357 0.3857 0.4857 
FACT - ODF 0.55 0.5857 0.5143 
FACT - rkODF 0.4643 0.5643 0.3643 
Hough 0.5179 0.55 0.4857 

Table 1. SVM classification accuracy, specificity, and sensitivity 
across the 7 tractography algorithms tested.  

 
From these analyses, the FACT – TL tractography 

algorithm had the best accuracy in our dataset, with FACT – 
RK close behind. 

 
3.3. Most Robust Elements in Connectivity Matrix 

After we determined that the FACT - TL tractography 
algorithm was the most accurate for group classification, we 
further investigated which connections contributed most. 
Figure 3 displays the connections that ranked in the top 5% 
in classification weight (of the non-zero matrix elements).  

 
Figure 3. Connections with the highest weight in the classification. 
The top 5% of connections (out of non-zero matrix elements) are 
shown in blue, with all ROIs indicated by black spheres. Left in 
image is right in brain. 



 
The most robust elements in the connectivity matrices 

fed into the SVM classifier included connections spanning 
all lobes, both interhemispheric and intrahemispheric. Of 
these, connections terminating in the left hemisphere were 
more numerous than those terminating in the right. There 
were a number of long-range, anterior-posterior connections 
included in these most robust connections. 

 
4. DISCUSSION 

TBI causes widespread damage to WM integrity, but 
there has been little comprehensive comparison of fiber 
tracking methods that may be used to examine this damage. 
Here we compared 7 tractography algorithms, testing which 
was most accurate in separating TBI patients from controls. 
When connectivity matrices resulting from these different 
algorithms were entered into SVM classification schemes, 
FACT – TL (tensorline) emerged with the greatest accuracy. 
In healthy individuals, higher resolution analyses using 
probabilistic methods and ODFs instead of tensors typically 
result in more robust tract reconstruction. These methods are 
optimized for healthy brains, however, so perhaps they do 
not perform as well in damaged areas. 

Our classifier was based on the fiber density of these 
connections. Prior studies report long-lasting differences in 
MD (mean diffusivity) and FA (fractional anisotropy) [15], 
so weighting the connectivity matrices using these 
diffusivity measures may increase accuracy, and may affect 
which tractography algorithm leads to the greatest 
classification accuracy. In future work, we will study this.  

When we examined the connections contributing most 
to the classifier (those with the top 5% strongest weights), 
and we found connections spanning all lobes of the brain. 
Of these most-robust connections, there were more in the 
left hemisphere than in the right, and a number long-range, 
anterior-posterior connections. This could indicate that long- 
range connections are especially vulnerable to the 
disruptions caused by a traumatic brain injury. While our 
resolution for very short fibers is arguably less than that of 
long ones, this is an interesting possibility. It makes sense 
that long fibers would be more vulnerable, as they 
experience the acceleration-deceleration forces of TBI 
across a great length, and there is a greater probability that 
they contact an area of acute injury.  

Our findings indicate that TBI, in the chronic phase, 
causes global disruption. Population studies in TBI are made 
difficult by the heterogeneity of the type, severity, and 
extent of the brain damage patients sustain. This spread 
from localized and presumably heterogeneous disruption 
into a global issue may occur through diaschisis. Diaschisis 
is the phenomenon whereby disruption of one injured brain 
area spreads to other connected brain areas. This is an on-
going, longitudinal study, so we will have the opportunity to 
further investigate how disruption spreads, how recovery 
occurs, and how this is related to cognitive recovery. 
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