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ABSTRACT OF THE DISSERTATION

Development and Applications of a Computational Framework for Protein and Drug Design
by
Chris Allen Kieslich
Doctor of Philosophy, Graduate Program in Bioengineering

University of California, Riverside, September 2012
Dr. Dimitrios Morikis, Chairperson

Interactions between biomolecules are essential to biological function, and
fundamentally understanding the forces that drives these interactions is of great medical
importance. Molecular modeling approaches represent a powerful set of tools for gaining a
mechanistic perspective of biomolecular interactions at the atomic level. Due to the
complexities of biological environments, a diverse set of molecular modeling methods are often
needed to capture various aspects of biomolecular function. Here we present a computational
framework that utilizes established molecular modeling methods, such as molecular dynamics,
Poisson-Boltzmann electrostatics, and small-molecule docking, as well as includes novel tools for
elucidating the role of electrostatics in protein association. Our novel computational tool,
Analysis of Electrostatics Similarity Of Proteins (AESOP), utilizes theoretical mutagenesis,
electrostatic clustering, and electrostatic free energies of association to evaluate the role of
each charged residue in protein association. The AESOP framework has been applied to various
biomolecular systems, including barnase-bartstar, the gold-standard system for protein
electrostatics, as well as for the successful design of novel SUMO-4 substrate analogs. One

biological system that is of key interest is the complement immune system, which is an ancient
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component of innate immunity. The complement system is involved in the opsonization and
clearance of foreign pathogens, and achieves its function through a cascade of protein-protein
interactions largely driven by electrostatics. The key role of electrostatics in complement
function is further evidenced by the existence of electrostatic “hot-spots” on the surface of
complement proteins, and by the fact that pathogens utilize electrostatics in complement
targeted evasion mechanisms. Over-activation of the complement system is implicated in
numerous autoimmune and inflammatory diseases, and as a result anaphylatoxin receptor C5aR
has become an important drug target. We have developed a conformationally-sampled
pharmacophore model for known C5aR antagonists, which has utility in the design/evaluation of
novel C5aR antagonists. We have also performed virtual screening based on a newly developed
model of the interaction between C5aR and known potent antagonist PMX-53, and have
identified a structurally diverse set of potential C5aR ligands. These studies define a

computational framework that has utility in the analysis of many other protein targets.
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1. INTRODUCTION

1.1. BIOMOLECULAR INTERACTIONS DRIVE BIOLOGICAL FUNCTION

Biomolecular interactions are central to all biological function, from processes as
fundamental as the absorption of oxygen by hemoglobin to as complex as cognitive perception.
Biomolecules are dynamic in nature, and as Richard Feynman was famously quoted saying,
“everything that living things do can be understood in terms of the jigglings and wigglings of
atoms” [1]. The dynamics of biomolecules cover a large range of length and time scales, from
motions as fast and short as bond vibrations up to large Brownian motions that occur during
protein-protein association. Specificity is key for most biomolecular interactions [2], including
biomolecules as small as serotonin and as well as large protein assemblies like the ribosome.
Biomolecular specificity arises from structural and physicochemical complementarity, but is
complicated by dynamic phenomena such as transient binding sites and conformational
switching.

Understanding what drives interactions of biomolecules is of great medical importance
due to its utility in studying disease pathogenesis and in the design of new therapeutics. One
approach for studying biomolecular interactions is computational molecular modeling, which
utilizes computer simulations to analyze the structure-dynamics-interactions-function
relationships of biomolecules. One of the most accurate approaches for investigating
biomolecular interactions is known as molecular dynamics (MD), and utilizes Newton’s laws of
motion to simulate the thermal motions of proteins. However, due to the complexity and size of
typical biomolecular systems, approximations must be made. Therefore, numerous other

computational approaches have been developed to approximate specific aspects of the length



and time scales relevant to biomolecules [2-8]. Of these approaches, electrostatic calculations
represent a powerful tool for elucidating complementarity in biomolecular interactions due to
their efficiency and ability to be applied to large systems [3,9]. Docking calculations also
investigate complementarity between biomolecules, but have the advantage of being able to
predict the structure of the complex formed [4-6]. For most applications, a combination of
computational approaches is needed to fully analyze the biomolecular interaction of interest,
since each approach has its own advantages and limitations. Here we discuss a collection of
work that takes advantage of the interplay between a combination of molecular modeling
methods to address problems of biological/medical significance. The approach described
henceforth represents a computational framework that can be applied to many other

biomoelcular systems of interest.

1.2.  MOLECULAR DYNAMICS SIMULATIONS OF PROTEIN DYNAMICS

Molecular dynamics (MD) is a type of computer simulation that utilizes classical
mechanics to provide a time course trajectory for the thermal motions of a macromolecule [10].
These simulations approximate atoms as hard spheres and bonds as springs, where the spring
constant would depend on the bond type. MD is dependent on a potential energy landscape,
which is based on a force field that is composed of energy functions and parameters. Eq. 1-1 is
an example of a potential energy function, V(R), which is included in the CHARMM?22 force field;

here, the constants, K, represent the needed parameters.

V(R)=3, Kild=di) + 3 K,(0-6)+3,  K,(1+cos(ny-9))

.12 .\ 0
min min

2 R R q.49;
+ E K - + E E. Y - + =
impropers ¢ (¢ ¢0 ) nonbond Yy

7 7y

Eq. 1-1
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Where d is a bond distance, 0 is a bond angle, x is a dihedral (or torsion) angle, ¢ is an improper
angle, g; is the dielectric coefficient for atoms i,j, r; is the distance between atoms i,j, and g; g;
are the partial charges for atoms i,j respectively. Here Ky, Ko, Ky, K¢, do, 80, $o, n, , and Rijmi"
represent parameters and topologies that are specific to the type of atoms involved. This

potential energy function can be converted into forces that would drive the motion of the atoms

based on the first derivative of the potential by applying Eq. 1-2.

F=—— Eq. 1-2

The position of an atom after a finite time step, At, can be described by a Taylor series

expansion as shown in Eq. 1-3.

dx(t) Ats d*x(t) At? .

x(1+Ar)=x(1)+ " -7

Eq. 1-3

In this expression the first term refers to position, the second term refers to velocities resulting
from kinetic energy, and the third term is acceleration and relates to the forces defined in Eq.
1-2. Several approaches have been developed for the iteration of Eq. 1-3 to generate MD
trajectories, however currently the most widely used MD suite is Nanoscale Molecular Dynamics
(NAMD) [11]. Not only does NAMD provide great scalability and speed but also includes a very

useful graphical interface called Visual Molecular Dynamics (VMD) [12].

1.3. ELECTROSTATIC CALCULATIONS OF PROTEINS

When studying electrostatics, the fundamental expression that describes electrostatic

potential, V(r), is Coulomb’s law, as shown by:



1
V(r)= 4 Eq. 1-4.
dree r

Coulomb’s law defines electrostatic potential as a function of charge, g, distance, r, and a
dielectric constant, &, which is relative to vacuum permittivity, €, and characteristic of the
dielectric medium, as shown in Eq. 1-4. This expression is only appropriate for describing
systems with a single dielectric medium, which is not the case when modeling proteins. Due to
the complex nature of the protein environment in which there exists a hydrophobic core, with a
dielectric constant near that of vacuum, surrounded by aqueous solvent, a more elaborate
expression is needed. One such expression is the linearized Poisson-Boltzmann equation (LPBE),
as shown in Eq. 1-5, which allows the calculation of electrostatic potential for systems of

multiple dielectric constants, as well as accounts for the presence of mobile ions.

5 4 2 F
V- e(rV(r) + £,6(rK(r)p(r) = ZeT gzié(r —r) Eq. 1-5

EoKp
The LPBE defines electrostatic potential, ¢, as a function of charge, g, dielectric coefficient, &,
and an ion accessibility function (), as described above. The charge term, g, accounts for fixed
charges, such as point and partial charges, as well as mobile monovalent ions. The amount and
type of mobile ions is controlled by the ion accessibility function, which is directly dependent on

the ionic strength (/), as defined by:

1 M
I==>z'n Eq. 1-6,
22 ?
2
(=<1 Eq. 1-7.
g,ek,T

The current gold standard for calculating electrostatic potentials at atomic resolution using the

Poisson-Boltzmann method is the Adaptive Poisson-Boltzmann Solver (APBS) [3]. The basic
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strategy used by APBS is to place the protein in a three-dimensional grid, and then to assign the
values for the charge, dielectric coefficient, and ionic strength function at every grid point. Two
surfaces, known as the epsilon and kappa surfaces, are generated around the protein or protein
complex to define the boundaries of the protein environment. The epsilon surface, which
defines the boundary for the dielectric coefficient, is defined by rolling a sphere, typically the
size of a water molecule, across the van der Waals surface of the protein and defining a new
surface based on the center of this sphere. The kappa (or ion accessibility) surface is similarly

defined, however a

Figure 1-1 Flectrostatic potential representations of complement C3b: (A) isopotential contour and (B)
surface projection.

sphere the size of an ion is used rather than a water molecule. Following the solution of the
LPBE, a three-dimensional array describing the spatial distribution of the electrostatic potential
is obtained, which can be visualized using an isopotential contour (Figure 1-1). The LPBE
electrostatic potentials can also be used to calculate electrostatic free energies of a specific

state according to:

1
Gelectro = 52q1¢1 Eq 1'8;



such free energies can be used for the study of protein stability/association, including their pH

dependencies.

Figure 1-2 Binding site of C5aR with representative spheres for DOCK6 docking calculations.

1.4. SMALL MOLECULE DOCKING FOR DRUG DESIGN

The major question in computational drug design typically regards whether or not a
specific ligand of interest will bind in a given binding pocket, and if so with what affinity. In the
absence of available structural data for a given protein-ligand complex, the primary approach
that can be used to answer such questions is referred as docking. Docking algorithms generate
potential poses (orientations) of a protein-ligand complex by rotating and translating the ligand
across the proposed binding site and then use a scoring function to rank the resulting poses. In
order to dock a compound, the docking algorithm first generates a simplified representation of
the binding site for efficiency, such as the spheres used by DOCK6 [4] as shown by Figure 1-2.
Additionally, one of the major difficulties in docking that must be considered is how to handle
receptor/ligand flexibility. Flexible receptor approaches, such as that employed in AutoDock [6],
provide more realistic docking conditions, but can be computationally expensive. Another
approach for incorporating receptor flexibility is to perform the docking procedure using
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multiple structures from molecular dynamics simulations to sample the conformational space of
the receptor [5].

Ligand flexibility is more widely used and as a result numerous algorithms have been
developed, such as the “anchor-and-grow” algorithm of DOCK6 [4]. The DOCK6 algorithm first
identifies the largest rigid substructure of the ligand, which serves as the “anchor” (often a ring),
and then produces orientations for the “anchor” within the binding site. These orientations are
generated by matching the heavy atoms of the anchor with the centers of as many spheres
(Figure 1-2) as possible. In the DOCK6 approach, all possible orientations are scored using a grid-
based molecular mechanics scoring function, which incorporates van der Waals and electrostatic
components. The orientations are ranked according to their scores, spatially clustered with
respect to heavy atom root mean squared deviations, and prioritized. The algorithm also
identifies flexible bonds within the ligand structure, which are subsequently used to partition
the remainder of the compound into rigid segments. The ligand is then grown from the best
anchor orientations based on the addition of segments using the identified flexible bonds. From
all of the anchor orientations the best scoring pose is selected.

Virtual screening approaches, which parallel high-throughput screening drug discovery,
utilize docking methods to evaluate databases of compounds in order to identify potential new
ligands for a given target. One popular ligand database for virtual screening studies is the ZINC
database [13], which currently contains over 17 million purchasable compounds. In addition to
the docking algorithm, the prime consideration that must be made when performing virtual
screening is how to handle the immense computation required in testing such a large number of
compounds; therefore, access to computer clusters or grid-computing [14] technologies is

essential.



1.5. OVERVIEW

This work describes the design and applications of a computational framework for
analyzing biomolecular interactions, which has utility for protein and drug design. We utilize a
combination of established molecular modeling methods, including molecular dynamics,
Poisson-Boltzmann electrostatics, and small-molecule docking, as well as develop novel
electrostatic similarity methods. Section 2 describes the design of our computational tool,
AESOP, which uses theoretical mutagenesis in combination with electrostatic clustering and free
energy calculations, as well as ionization properties, to elucidate the role of electrostatics in
protein association; this section includes the application of the AESOP framework to the test
system barnase-barstar, as well as for the design of novel SUMO-4 substrate analogs. Section 3
utilizes the methods of the AESOP framework, but investigates the role of electrostatics in key
proteins involved in the activation and regulation of the complement immune system. Section 3
also introduces a new methodological advance for the AESOP framework, which is used in
identifying electrostatic “hot-spots” on the surface of complement fragment C3d in a study of
the evolution of C3d to assume dual functions. Section 4 includes drug design studies targeting
complement receptor C5aR, a key drug target for inflammatory and autoimmune diseases. We
employ ligand-based approaches, by developing pharmacophore models for known C5aR

antagonists, as well as perform ligand-based and receptor-based virtual screening.



2. DEVELOPMENT OF THE AESOP COMPUTATIONAL FRAMEWORK FOR

ELECTROSTATICS-BASED PROTEIN DESIGN

2.1. ELECTROSTATIC CALCULATIONS IN PROTEIN INTERACTIONS

2.1.1. Two-step model of association

For studies focused on electrostatically-driven protein association, McCammon and
coworkers have proposed a two-step association model that is used to deconstruct association,
as well as the interactions that drive it [15,16]. In this two-step association model, the first step
is known as recognition and consists of the initial collision of the two proteins free in solution
through diffusive motion. Recognition is driven and or accelerated by long-range electrostatic
interactions, and results in a weak non-specific encounter complex. This is then subsequently
followed by the binding step, where short to medium range electrostatic interactions, van der
Waals interactions, as well as entropic effects, drive the formation of a specific final complex.
This model holds true for interactions between highly charged proteins and ligands, and is
essential in understanding why mutations away from the binding interface can affect binding.
An illustration of the two-step binding models is presented in Figure 2-1A. According to this
model, long range electrostatic interactions are vital to the recognition or association phase of
binding, and therefore, mutations that alter the spatial distribution of electrostatic potential can
affect binding, even if the residue is away from the binding interface. This logic is different from

traditional thinking, and is evidence for the need for a thorough electrostatic analysis.
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Figure 2-1 lllustrations of the decomposition of the role of electrostatics in protein association.
(A) Schematic of the two-step model of association illustrated using isopotential contours of barnase-
barstar. (B) Thermodynamic cycle for calculating solvation free energies of association illustrated using
isopotential contours of barnase-barstar. The top process corresponds to association in the reference
state and bottom process corresponds to association in the solution state (described in text). The color
scheme of the isopotential contours is red for negative potential, and blue for positive potential. (C)
Thermodynamic cycle for ionization free energies of association for barnase-barstar. White molecular
surfaces indicate neutral proteins, while the red and blue surfaces are colored based on positive and
negative atomic charge, respectively, indicating a charged protein state.

2.1.2. Electrostatic similarity calculations

Based on the two-step model for association, it is intuitive that proteins with similar
electrostatic properties, or more specifically similar spatial distributions of electrostatic

potential, are likely functional homologues. Methods for quantifying electrostatic similarity have
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thus been of great interest for fields such as protein engineering and drug design. Early work in
this field was centered in pharmacochemistry, where molecular similarities were used to
compare the electron densities of small organic compounds based on quantum mechanical
calculations. Carbo and coworkers [15,17] developed a similarity index (SlI) for comparing
molecular density functions, which has the advantage of being firmly grounded in quantum

mechanics,

[, pa0pdv
[e2av) ([, piav)

Where, ps and pg represent density functions of the two molecules to be compared. Hodgkins

SICar‘bo = ( 1/2 Eq 2-1.

and coworkers [18,19] were first to propose the use of a similarity measure for the comparison
of molecular electrostatic potential or electric field. The Hodgkin electrostatic similarity index

(ESI), is based on a dot-product and produces values from -1 to 1,

2 (i k)b i )

ESI =
D 9, (0k)* + Y 0, ik

Hodgkin Eq 2-2.

Where a value of 1 indicates identity, a value of -1 indicates anticorrelation, and 0 indicates no
similarity. In this expression, the density functions have been replaced with the electrostatic
potentials, ¢, and ¢z, and normalization is achieved using the sum of the self dot-products.
Summations over all grid points (i,j,k) are performed, since space is discretized for numerical
calculations of electrostatic potential. Two alternative measures, one by Reynolds and
coworkers [20] and another by Petke [21], have also been proposed, both of which provide a

linear relationship with respect to the proportionality of the compared electrostatic potentials,
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Ly 16, k) = 5 G, ) Eq. 2-3

ESI.. .=|1-—
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0u G, K) + (i, k)

Eq. 2-4.
Both the Reynolds and Petke ESls utilize an average similarity that is locally normalized at each
grid point. All three of these early ESIs (Hodgkins, Reynolds, and Petke) compared only potential
values outside the van der Waals surface of the molecules. Wade and coworkers have since
extended the ESI originally proposed by Hodgkins et al to the analysis of protein interactions
[22,23]. However, Wade et al introduced the concept of a “skin” region, or a thin region of
chosen thickness surrounding the protein, to account for the intricacies that arise when applying
ESI methods to proteins. The skin region is used to focus the comparison to regions of functional
importance, and to exclude large potential values that arise in the protein interior. ESI values
can also be converted into electrostatic similarity distances (ESD), which allow for the
application of clustering algorithms. ESD measures simply require that values of zero indicate

identity, whereas increasing values indicate increasing dissimilarity. Three examples of ESD

measures derived from Eq. 2-2, Eq. 2-3, and Eq. 2-4, are as follows:

P PR
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‘_E |9, j. K~ ¢B(ljk)| e
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= _i 2¢A(Z’J’k)¢3(ls]’k)
LDP_\/1 N;m(i,j,k)%%(i,j,kf 5. 27
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2.1.3. Electrostatic free energies of association

To quantify the electrostatic contributions to protein association, electrostatic free
energies of association can ultimately be calculated, and such free energies have been shown to
serve as good predictors of binding ability for highly and oppositely charged proteins [24-26].
When calculating electrostatic free energies of association, it is often of interest to incorporate
solvation and other effects using a thermodynamic cycle such as that in Figure 2-1B. Solvation
free energies of association, AAG,,,, which account for both solvation and association, can be

calculated according to this thermodynamic cycle and the following expression,

AB A B
AAGSU]V = AGmlvution - AGmlvution - AGmlvution
Eq. 2-8.
= AGassoc,sul - AGasmc,ref

This thermodynamic cycle accounts for association in a uniform dielectric reference state,
AGgssocres, Without the presence of counterions, as well as a solvated state, AGgssocsol-
Additionally, the vertical processes represent solvation, AGgoationasor a8, Of the two free
components, as well as the complex, and aid in removing grid artifacts as has been discussed

extensively [24].

2.1.4. Protein ionization

When performing electrostatic calculations extra consideration needs to be made in
choosing protonation states of ionizable residues, since these charged residues contribute most
to the electrostatic properties of proteins. Additionally, ionization properties of proteins drive
pH dependent phenomena such as enzymatic catalysis, stability, and conformational switching.
With this in mind, extensive research has gone into understanding the titration properties of

proteins, which has been reviewed in great detail previously [27,28]. The protein ionization
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state, or ionization vector, defines which titratable groups of the protein are in the charged or
neutral state. This ionization state is dependent on pH, and since charged residues contribute to
the electrostatic properties of a protein, ionization states are also very important for function
and stability. Accurately determining ionizations states of protein is very important to
understanding biological function, but calculations are quite complex. In a small molecule
containing a single titratable site, ionization states can be calculated rather simply, based on
acid-base dissociation. The protein environment is complex containing numerous titratable
groups, with the protonation state of each group dependent on all other groups, resulting in an
astronomical number of possible protein ionization states for even an average sized protein. To
overcome this complex problem, methods that decompose the contributions of electrostatics in
protein ionization and utilize statistical approximations to sample possible protein ionization
states have been developed [27,28]. One such approach defines the free energy, G, of a
particular ionization state based on contributions from two sets of free energies, self- and

interaction energies, which are calculated based on the Poisson-Boltzmann method [27]:

M M
G(X{,X;,.... Xy, pH) = 2.303RT ¥ xly,(pH - pK") + ¥ XAAG,

i=1 i=1

Mol M ‘ Eq. 2-9,
+ Y Y XX AAG
i=l j=i+l
AAGself,i = A(;m—>p,c - AGm—)p,n Eq 2'10,
AAG" =AG,_.. ;- (AG,_ ,+AG,_ ) Eq. 2-11.

In Eq. 2-9 the ionization state of the protein is defined by x’, where a value of 1 indicates a
titratable group is charged while 0 represents a neutral group. Additionally, the charge of each

titratable group is defined by y. Self-energies account for the penalty of placing each individual
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titratable group into the protein environment, and are calculated according to the
thermodynamic cycle of Figure 2-2 and Eq. 2-10. Interaction energies (Eq. 2-11), on the other
hand, account for all possible Coulombic interactions between all possible pairs of ionizable

groups within the protein.

Neutral Charged

Figure 2-2 Thermodynamic cycle for calculating ionization self-energies. White ball-and-stick residue
indicates ionizable residue in neutral state, while CPK coloring indicates the charged state.

Based on the self- and interaction energies, as well as Eq. 2-9, any ionization state of the
system can be evaluated; however, a numerical approximation, such as clustering or Monte
Carlo simulation, must used to identify a subset of lowest energy ionization states for a given pH
[27]. From such calculations, protein titrations and accurate predictions of protein pK,s are
possible [29-34], giving further insight into the electrostatic environment of proteins. Also,
ionization free energies can be used to compute stability curves, such as pH-dependent free

energies of association, as described by the thermodynamic cycle of Figure 2-1C.
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2.2. PERTURBATIVE DESIGN OF KAPOSICA VARIANTS

2.2.1. Introduction

In order to overcome an immune response, viruses and other pathogens exhibit
numerous strategies to evade immune recognition inside the body. One example includes
immune system mimicry, in which a virus secretes molecules that function in a similar manner
to native immune regulator proteins, thereby curtailing immune response against the virus
itself. VCP, SPICE, and Kaposica are viral or viral-based proteins that consist of four CCP modules,
which have similar structure to those of CR2 and FH, but with diverse sequences and
physicochemical properties [35-37]. These three proteins are used by their respective viruses to
trick the immune system by mimicking native regulators of the complement system and thus
inhibiting the function of complement.

VCP and SPICE have high sequence identity, differing only by 11 amino acids out of 244,
but their complement inhibitory activity differs by up to 1000-fold, with SPICE being more
active. SPICE possesses higher net positive charge than VCP, as two glutamic acids in VCP are
replaced by lysines. The location of these lysine residues in the second module (CCP2) results in
a characteristic electrostatic potential distribution, which is distinct from that of VCP. An early
gualitative study using Coulombic potentials demonstrated that systematically mutating
ionizable amino acids in VCP in order to manipulate the spatial distribution of electrostatic
potentials yields VCP-like proteins with variable binding and inhibitory activities [35]. A
subsequent quantitative theoretical study used PB electrostatics and molecular dynamics
simulations to provide a more complete picture on the interplay between dynamics and

electrostatics towards developing a working hypothesis on the mechanism of function of VCP
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and SPICE [36]. The correlation between the spatial distributions of electrostatic potentials and
binding and inhibitory activities was excellent, demonstrating that CCP-containing regulators of
the complement system can be designed by rationally manipulating charge. The most
remarkable finding in these studies was that replacement of the two glutamic acids of VCP’s
CCP2 with lysine results in a protein with SPICE-like binding and inhibitory activities (with some
subtleties discussed in [35,36]).

The evolution from the first VCP study [35] to the subsequent VCP/SPICE study [36]
provided the transition from qualitative visual inspection to quantitative electrostatic and
dynamic analysis, which paved the way for the design of complement regulators with tailored
physicochemical/dynamic properties and inhibitory activities. Further quantification was
initiated in the second study by introducing clustering analysis of electrostatic potentials [36],
which later formed the basis for the development of the sophisticated AESOP framework
[25,38]. Based on the success of the VCP/SPICE electrostatic analysis, this study aims to utilize
these methods for computational design involving Kaposica, a viral protein-based complement
inhibitor [37]. The basic design principle is to perturb the electrostatic character of various
structural elements/domains of Kaposica to investigate the role of electrostatics in Kaposica’s

inhibition of the complement system.

2.2.2. Methods

Our atomic-level calculations are possible when three-dimensional structures are known
at high resolution. However, the structure of Kaposica is yet to be solved; therefore, our initial
step was the generation of a Kaposica homology model. The three-dimensional structure of VCP,

a known homologue, has been experimentally determined [Protein Data Bank Code: 1G40 [39]]

17



and was used for the homology modeling of Kaposica. To generate the homology model for
Kaposica, we first obtained the amino acid sequence alignment for the comparison of VCP, our
template, and Kaposica, our target, using ClustalW [40]. The generated amino acid sequence
alignment was manually optimized to enhance the level of sequence identity. The modified
sequence alignment and template structure, 1G40, were imported into a DeepView, Swiss
Institute of Bioinformatics (http://spdbv.vital-it.ch) project and submitted to the Project Mode
of the SWISS-MODEL online server [41]. The generated Kaposica model was inspected for van
der Waals clashes, secondary structure quality, and disulfide bond correctness. The Kaposica
model was created with all four CCP modules intact. Models for each CCP module alone were
extracted from the whole Kaposica model. In this study, the CCP module is defined as the
sequence between and including the first and fourth conserved cysteines. The theoretical
mutations were generated by importing coordinates, corresponding to either the entire
Kaposica molecule or individual CCP modules, into Deep View and selecting the mutation site
and type. Because multiple rotamers can be generated for each mutation, the rotamer that
created the most favorable contacts, primarily hydrogen bonds, while minimizing the number of
van der Waals clashes, was selected.

Electrostatic potential calculations were made with the Adaptive Poisson—Boltzmann
Solver [3], which uses a grid-based method to solve the linearized Poisson—Boltzmann equation.
Prior to electrostatic potential calculations, partial charges and van der Waals radii were
assigned using the software PDB2PQR [42] and the PARSE force field [43]. A dielectric coefficient
of 2 was used for the protein, whereas a dielectric coefficient of 78.5 was used for the solvent.
The calculations were carried out at an ionic strength corresponding to a 0 mM concentration,

assuming +1/-1 charges for the counterions. The dielectric surface was defined by selecting the
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contact surface, using a sphere with a probe radius of 1.4 A. The ion accessibility surface was
defined using a sphere with a probe radius of 2.0 A. Because calculations were performed on the
entire Kaposica macromolecule, as well as individual CCP modules, the physical dimensions of
the box used for each set of calculations were set to different values to ensure that the largest
magnitude values were captured, while still providing maximum resolution. The grid size was
129 x 129 x 129 points. A box size of 130 A x 120 A x 190 A was used for calculations of whole
Kaposica, whereas a box size of 100 A x 100 A x 140 A was used for calculations of individual CCP
modules. The spatial distributions of electrostatic potential were visualized and plotted using
isopotential contours using the molecular graphics program Visual Molecular Dynamics [[12];

Theoretical and Computational Biophysics Group, Urbana, IL; www.ks.uiuc.edu/Research/vmd].
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Figure 2-3 [sopotential contours of Kaposica and its mutants, illustrating the spatial distribution of
electrostatic potential. The electrostatic potentials of Kaposica and seven mutants were calculated at
0 mM ionic strength and are presented in four orientations. The color code for the isopotential contours is
blue for positive and red for negative electrostatic potential. Isopotential contours are plotted at
+ 1 kgT/e. A ribbon representation of Kaposica is also included for reference, and the four CCP modules
are colored as follows: CCP1 is blue, CCP2 is red, CCP3 is orange, and CCP4 is green.
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2.2.3. Results and Discussion

There is a long-standing view in the field of complement biology that ionic interactions
play a vital role in complement regulation. This premise is primarily based on salt-dependent
binding of complement regulators to C3b/C4b and mutagenesis data demonstrating that acidic
residues on C3b/C4b, and basic residues on complement regulators, are important for the
interaction between these proteins [44-47]. More recently, on the basis of mutagenesis and
electrostatic modeling studies of VCP and SPICE, it has been proposed that overall positive
potential on these viral regulators directs the initial recognition (Figure 2-1A) of C3b (termed
step 1). Recognition is then followed by binding, which involves electrostatic interactions
(hydrogen bonds, salt bridges, and medium/weak Coulombic interactions), hydrophobic and van
der Waals interactions, and entropic effects such as solvent exclusion and local structural
rearrangements at the binding sites (termed step Il) [35,36]. According to this association
model, step | influences predominantly the k., rate and the formation of a weak, nonspecific
encounter complex, whereas step Il influences predominantly the k. rate and the formation of
a strong, specific bound complex [29,36]. In the earlier studies of VCP/SPICE, correlation was
found between the reduction of negative character of the CCP2/3 interface and C3b binding,
inhibition of AP, and CFA [35]. Indeed, because of spatial cancellation of opposite electrostatic
potentials, which is modulated by the dynamic character of VCP/SPICE, an increase of positive
potential in one module may contribute to the decrease of negative potential in a nearby

module, depending on potential magnitude [36].
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Figure 2-4 Isopotential contours illustrating the spatial distributions of electrostatic potential of different
CCPs of Kaposica and its mutants in isolation. The electrostatic potentials of individual wild-type CCP
domains and the corresponding charge-reversal mutants were calculated at 0 mM ionic strength and are
presented in four orientations. The color code for isopotential contours is blue for positive and red for
negative electrostatic potential. Isopotential contours are plotted at + 1 kgT/e.

We therefore asked whether the overall or localized electrostatic potential guides the
complement regulatory activities of Kaposica. To answer this, we applied structural
perturbations by mutating positively charged residues in a homology model of Kaposica, as
illustrated in the top of Figure 2-3. We designed two sets of mutants; the first (Figure 2-3) was
designed to reduce or eliminate positive potential in the whole molecule, and the second
(Figure 2-4) was designed to delineate the role of electrostatic potential of the individual CCP
modules. For the mutants of Figure 2-4, the minimal number of mutations for charge reversal
was identified for CCP1, CCP2, and CCP4, and for charge enhancement for CCP3. lterative design
was also performed using a combination of computational and experimental data. After
theoretical design, Kaposica and the designed mutants were then expressed in E. coli, and their
activities were compared to determine the dependence of the activities on the electrostatic

character of the molecule. The electrostatic calculations better depict binary interactions
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between Kaposica and C3b/C4b, which can be more directly validated by SPR data than by CFA
and DAA data [37]. When other molecules are involved (factor | or convertase components),
additional complexity is introduced, which cannot be incorporated into our modeling at this
time because of lack of three-dimensional structures of the multicomponent assemblies. For
example, the SPR-based binding assay showed remarkable reduction in the binding of M7
mutant to C4b, which carries the most negative electrostatic potential (Figure 2-3) [37].
Significant decrease in binding to C4b was also observed in mutants with altered electrostatic
potential in the linker region (M3—M7) and CCP1 (M2); M1, with two-residue replacement in
CCP1, did not show any effect on C4b binding. Among domain electrostatic potential modulation
mutants, D1-D3 showed significantly reduced binding, whereas D4 showed marginally reduced
binding to C4b. These data together point out that positive potential around CCP1 and the
linkers between CCPs 1-2 and 2-3 of Kaposica are vital for binding to C4b. These studies
collectively illustrate examples of cross-talk between theory and experiment, in which

theoretical calculations can be used in a predictive manner to guide the design of experiments.
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2.3. DESIGN OF THE AESOP FRAMEWORK

2.3.1. Motivation

Based on the two-step association model (Figure 2-1A), mutations of ionizable residues
away from the binding interface can affect protein association, by altering recognition.
Therefore, from the point of view of protein design, mutations of ionizable residues provide an
interesting advantage, since they can affect both the overall protein electrostatic potential
(global), as well as more specific intermolecular interactions (local). Following the success of the
VCP/SPICE/Kaposica studies [35-37], we desired to create a method, based on the perturbative
design approach, which could systematically evaluate the role of each ionizable residue in
protein association and stability. The goal was to develop a framework for identifying
electrostatic “hot spots” and optimizable sites, in order to aid in the design of new protein
analogs with customized electrostatic properties. The resulting computational framework is
referred as Analysis of Electrostatic Similarities of Proteins (AESOP), and utilizes theoretical
mutations, Poisson-Boltzmann electrostatics, and electrostatic similarity clustering to evaluate
the role of electrostatics in protein association. Additionally, the AESOP framework also contains
utilities for analyzing the pH dependent properties of proteins, which were developed in

collaboration with Jan Antosiewicz of University of Warsaw.

2.3.2. Computational workflow of AESOP

The general workflow of the AESOP framework, as illustrated by Figure 2-5, starts with a
protein complex and the generation of electrostatically perturbed protein analogs. The standard

analysis involves the use of theoretical alanine-scan mutagenesis in which each ionizable
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Figure 2-5 Workflow of the AESOP Framework. Arrow color indicates which utility is responsible for
performing the various steps: orange, AESOP; green, APBS [3]; blue, R functions [48]. In ribbon model, red
residues indicate perturbation site.
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(charged) residue is replaced by alanine, one at a time. Additional perturbation methods, such
as charge reversals and mutation permutations, are also included in the AESOP framework.
Following the generation of perturbed mutant structures, there are two types of electrostatic
calculations that are used to quantify the effects of the perturbations: electrostatic similarity
clustering and electrostatic free energies of association. Electrostatic similarity clustering depicts
the global effects of perturbations and relates to the recognition step of association, while
electrostatic free energies of association capture both local and global effects, and therefore
correspond to both recognition and binding.

To perform electrostatic similarity clustering, the mutated proteins are first isolated
from the complex, and the spatial distributions of each mutant are calculated using the Poisson-
Boltzmann method. A distance matrix is then populated by ESD values, according to Eq. 2-5, Eq.
2-6, or Eq. 2-7, quantifying the similarity between spatial distributions of electrostatic potential
for each possible pair of mutants. Clustering methods are applied to the ESD distance matrix to
classify the perturbations according to their effects on the spatial distributions of electrostatic
potential; one such method, is hierarchical clustering [49], which produces a dendrogram tree as
shown on the bottom of Figure 2-5. Electrostatic free energies of association are typically
calculated based on a thermodynamic cycle that accounts for solvation effects by including
association in both a solvated state as well as a reference state (Figure 2-1B). All electrostatic
calculations in the AESOP framework (green arrows, Figure 2-5) are performed using the
Adaptive Poisson-Boltzmann Solver (APBS) [3]. It should also be noted that the AESOP protocol
could be applied in the absence of a protein complex, to families of either homologous proteins
or alanine-scan mutants. In general, the AESOP was developed with flexibility in mind in order to

allow for customized electrostatic analyses.
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Figure 2-6 Schematic of AESOP functions for electrostatics-based protein design.
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2.3.3. AESORP library structure and usage

The AESOP framework has been written using the R statistical language [48] and utilizes
the Bio3D [50] library to handle PDB structure data. The AESOP framework relies on three
external software packages: (i) SCWRL4 [51] for non-alanine mutations, (ii) PDB2PQR [42] for
structure preparation and parameterization, and (iii) APBS [3] for all electrostatic potential and
free energy calculations. The functions of the AESOP framework have been designed to be
flexible and interchangeable, however, the framework contains two platforms, one for
electrostatics-based protein design (Figure 2-6) and another for pH-dependent calculations
(Figure 2-7). At this point in time, the two platforms have been developed independent of one
another, but the combination of both platforms could have great utility for pH-dependent
protein design in the future. As illustrated by Figure 2-5, all AESOP calculations begin with a PDB
file which is read into the R environment using the read.pdb() function of Bio3D, which allows
usage of Bio3D functions when making complex atom/residue selections and other
manipulations based on a PDB file. The next step in all AESOP calculations, both design and pH-
dependent, is the generation of PQR files, which contain the protein coordinates, including
hydrogen atoms, as well as atomic radii and partial charge parameters. However, the AESOP
function used in PQR generation is what mostly defines the type of analysis to be performed.

In the electrostatic-based design platform (Figure 2-6), the first primary step is the
generation of electrostatically perturbed protein mutants. The AESOP framework includes 4
methods for introducing charge perturbations: ala.scan.c(), char.rev.c(), mut.list.c(), and
mut.comb.c(). ala.scan.c() performs a theoretical alanine-scan by replacing each charged residue
with alanine, one at a time. These alanine mutations are performed by an AESOP function called

mut2ala(), which simply truncates the residue down to the Cz atom and generates the
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appropriate hydrogen geometry. In addition to generating a directory containing the alanine-
scan mutants, ala.scan.c() also returns a list of the mutants generated and the directories to
which they were written. char.rev.c() is similar to ala.scan.c, however, instead of alanine
mutations, the charge of each charged site is reversed one at a time by replacing every basic
residue with glutamic acid and every acid residue with lysine. The charge reversal mutations are
introduced using SCWRL4 [51], which optimizes the side chain rotamer upon mutation. The
remaining two functions are somewhat different in that only specified positions are mutated,
not every charged residue as in ala.scan.c() and char.rev.c(). The mut.list.c() function takes as
input a list of specific mutants, which can contain single or multiple mutations, and generates
the mutated PQR files using a combination of SCWRL4 and PDB2PQR. In contrast, mut.comb.c()
accepts a list of single mutations and then generates PQR files for all permutations, using
SCWRL4 and PDB2PQR, given a desired number of mutations per mutant. Caution should be
used when using the mut.comb.c() approach, since the number of permutations can become
extremely large for a relatively small list of single mutations depending on the number of
mutations per mutant.

After generating PQR files for charge-perturbed structures, the next step is to setup the
APBS parameters for the electrostatic potential and free energy calculations. The function
apbs.solv() generates an object containing the APBS parameters based on the initial PDB and the
location of perturbed PQR files. apbs.solv() will assign default values to parameters such as
protein dielectric and will suggest grid lengths based on the coordinates of the protein,
however, all parameters can be adjusted using the APBS keyword notation. It is imperative at
this step that the parent structure is used in centering the electrostatic calculations to remove

the possibility of grid artifacts. Once the APBS input parameters are initialized, the next step is
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to perform the Poisson-Boltzmann electrostatic calculations. For efficiency, the calc.solv()
function simultaneously calculates the solvation free energy and electrostatics potential of each
mutated component/complex. Instead of calculating the six states of the thermodynamic cycle
(Figure 2-1B), followed by an additional calculation for the electrostatic potential, calc.solv()
calculates the vertical process of for the parent and each mutant and saves the electrostatic
potential for solvated state.

The final steps of the AESOP protein design platform involve quantifying/comparing the
effects of the perturbations on the electrostatic character. The first approach comparison is
electrostatic similarity clustering, which requires the esd.dist() function to generate an
electrostatic similarity distance matrix, containing all pair-wise comparisons. The esd.dist()
function simply requires the name of the directory containing the electrostatic potentials to be
compared, and returns a two-dimensional distance matrix that can used in clustering methods
included in the R statistical language [48], such as hclust() for hierarchical clustering. The second
step in quantifying the effects of the electrostatic perturbations is to calculate solvation free
energies of association by combing the free energies of the three vertical processes according to
Eq. 2-8.

The AESOP pH dependent platform follows a similar workflow to the AESOP design
platform, as shown in Figure 2-7, but differs in the type of electrostatic calculations being
performed. As discussed for the AESOP design platform, the pH dependent platform also begins
with the generation of PQR files using PDB2PQR to add hydrogen atoms, as well as atomic radii
and partial charge parameters. However, instead of generating perturbed PQR files, the
get.pgrs() function is utilized to generate two PQR objects (from Bio3D) containing the same

number of atoms but representing the fully charged or fully neutral states. Subsequently, the
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Figure 2-7 Schematic of AESOP functions for pH dependent calculations.
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titr.res() function is used to identify all titratable groups/residues, and stores where each
group/residue is located within the fully charged/neutral PQR files (e.g line numbers) for later
use. At this step, specific residue types/numbers can be excluded/added to the titration. Also
titr.res() saves the net charge and model pKa for each titratable group/residue, in addition to
their locations in the PQR objects.

After obtaining the neutral/charged PQRs and the list of titratable groups, the next step
is to calculate intrinsic pK, values (self-energies) using the calc.pKint() function according to the
thermodynamic cycle of Figure 2-2. Self-energies account for the penalty of placing a single
charged group in the protein environment, and are calculated by considering a specific titratable
group in both the charged/neutral states in both the model (free in solution) and protein
environments. calc.pKint() uses the neutral/charged PQRs and the list of titratable
groups/residues to generate the various states needed to calculate self-energies, and calls APBS
to calculate the corresponding electrostatic free energies. Pairwise electrostatic interaction
energies are then calculated between every possible pair of titratable groups. The ultimate step
is to use the calculated self and interaction energies in combination with statistical
approximation software to extract protein titration properties, such as protein titration curves
and apparent pK, values. Two such programs are HYBRID [52], developed by Michael Gilson, and
DOPS [53], developed by Jan Antosiewicz. The HYBRID software uses a clustering approach to
reduce combinatorial complexity, while DOPS utilizes Monte Carlo simulations to sample
possible ionization states and minimizes the ionization free energy
(Eg. 2-9). Therefore after calculation, the self and interaction energies are then written to a
potentials file, in the format required by HYBRID and DOPS, using the write.pot() function.

run.hybrid() calls the HYBRID software, which returns residue titration curves, apparent pK,
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values, and ionization free energies. run.dops0() calls a version of DOPS best for determining the

lowest energy state for a given pH, while run.dopsB() uses more rigorous sampling.

2.3.4. Development and test of the pH dependence platform: pH dependent

properties of barnase-barstar

As a proof of concept, the AESOP pH dependent platform was applied to the association
of barnase barstar, a gold-standard system for protein electrostatics calculations [54-63]. The
extensive experimental [64,65] data available in the literature for the pH dependence of barnase
barstar association allow for validation of the AESOP pH dependent calculations. The procedure
for the AESOP pH dependent platform, as described in section 2.3.3, was applied to the barnase
barstar complex. Apparent pK; values for barnase and barstar were calculated using HYBRID.
Table 2-1 compares calculated apparent pK, values, from both AESOP/HYBRID and PROPKA [66],
to experimentally determined pK, values for acidic residues of barnase [65]. The AESOP/HYBRID
and PROPKA predictions perform comparably well with a root mean squared error (RMS) of ~1
when compared to the experimental values. It should be noted that the AESOP/HYBRID
apparent pK, values showed dependence on the parameters used for electrostatic calculations.
More specifically, the predictions were dependent on the protein dielectric coefficient and type
of dielectric boundary assumed, with a protein dielectric of 20 and a van der Waals surface
providing the lowest RMS when compared to experiment (data not shown). PROPKA predictions
have no such dependencies since the software uses an empirical approach rather than rigorous
electrostatics calculations, as discussed for AESOP predictions thus far.

In addition to pKa values, pH-stability curves for the association of barnase-barstar were

also calculated as illustrated by Figure 2-8. The AESOP predicted curve (red, Figure 2-8) was
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calculated using the extensively sampled version of DOPS to identify the 50,000 lowest energy

states, based on over 1 million Monte Carlo steps, for each pH value. A partition function was

then applied to calculate the free energy at each pH value based on the energies of the 50,000

Table 2-1 Predicted apparent pK, values for acidic residues of barnase and comparison with

experiment.

Residue pKa" AESOP PROPKA EXPERIMENTAL®
A-ASP-8 4.0 3.8 3.8 3.1
A-ASP-12 4.0 4.1 3.5 3.8
A-ASP-22 4.0 3.6 3.9 3.3
A-GLU-29 4.4 4.6 3.7 3.8
A-ASP-44 4.0 4.0 4.2 3.6
A-ASP-54 4.0 3.9 2.7 2.2
A-GLU-60 4.4 4.3 4.6 3.4
A-GLU-73 4.4 4.4 54 21
A-ASP-75 4.0 3.0 2.2 3.1
A-ASP-86 4.0 4.2 3.3 4.2
A-ASP-93 4.0 3.6 2.2 2.0
A-ASP-101 4.0 4.0 1.0 2.0
A-CTER-110 3.8 3.7 1.4 3.3
RMS 1.1 1.2

®Experimental pKa values were previously reported [65].

lowest energy states. The PROPKA curve (blue, Figure 2-8) in contrast was calculated based on

changes in the predicted pK, values upon association of barnase-barstar, according to:

M
AG = —RTEln

m=1

[H']+ K.
[H+] + KA orB
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Figure 2-8 Comparison of pH-stability curves for association of barnase and barstar. Experimental data
(EXP) was previously reported [64].

In Eq. 2-12 the pH and pK, values are represented by the hydrogen concentration [H’] and acid
association constants K,, respectively, and RT represents the gas constant and temperature. In
this expression, the pH-dependent stability (AG) is defined by a ratio of pK, values, with the
association constants for each titratable group in the bound complex (k%) in the numerator and

" B) are found in the

association constants for each group in the free components (K*
denominator. The two predicted curves were compared to an experimentally derived pH
stability curve (black/white, Figure 2-8) [64], and both show good agreement in the
experimental pH range. As discussed for the pK, predictions, the AESOP pH-stability also showed

dependence on the protein dielectric and molecular surface definition used (data not shown). In

general, PROPKA performs quite well when compared to experiment, both for pK, values and
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pH-stabilities, and is remarkably fast in comparison to the calculations of the AESOP framework.
However, the AESOP pH-dependent platform is capable of incorporating nonstandard titratable

groups and ion strength effects, which are not possible with the latest versions of PROPKA [66].
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Figure 2-9 Comparison of effects of background partial charges on predicted pH-stability curves.
Experimental data (EXP) was previously reported [64].

It should be noted that special consideration must be made regarding how/if to include
background partial charges for atoms of the peptide backbone and polar-neutral side chains in
the calculations of self and interaction energies using the AESOP framework. The AESOP
framework contains approximations, which can substantially reduce computation time, but can
cause discontinuities in resulting stability curves, as shown in Figure 2-9. If all background partial
charges are ignored, it is possible to calculate the self and interaction energies based on the four
calculations needed to calculate self-energies (Figure 2-2). This is achieved by saving the per-

atom potentials for each titratable group in the charged and neutral states (bottom, Figure 2-2),
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and determining the interaction energies based on how the potential produced by one group is
felt by another. The resulting curve (No BG, Figure 2-9) contains discontinuities near pH of 4 and
10, but still agrees well with experiment (EXP). These discontinuities are not seen in the pH-
stability curve generated using all background charges (All Q, ); however, including all
background charges requires explicit calculation of each interaction energy and takes at least

five times more computational time, on a single CPU.

2.4. IS THE RIGID-BODY ASSUMPTION REASONABLE? INSIGHTS INTO THE

EFFECTS OF DYNAMICS ON THE ELECTROSTATIC ANALYSIS OF BARNASE-

BARSTAR

2.4.1. Introduction

In protein design, it is of great utility to determine the contributions of each amino acid
residue to function, in order to identify which sites are indispensable for activity and which can
be further optimized. Experimentally, researchers often perform alanine-scan mutagenesis in an
attempt to identify such sites, but these methods can be both time consuming and costly.
Therefore, computational methods with the ability to predict the effects of mutations in a high-
throughput and efficient manner are in need. Electrostatic similarity methods can be used to
computationally predict the effects of electrostatically relevant mutations on binding. To this
end, we have developed a computational protocol, AESOP (Analysis of Electrostatic Similarities
Of Proteins [25,38]), which utilizes ESD clustering to evaluate the effects of single charge
perturbations that are introduced through alanine-scan mutations. Using a combination of the

hierarchical ESD clustering and electrostatic free energies of association, AESOP provides
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predictions of the effects of the alanine-scan mutation of ionizable amino acids on association
driven biological function. Typically in Poisson-Boltzmann calculations, there is an underlying
rigid body assumption that is utilized for simplicity. In this study, we assess the validity of the
rigid body assumption for electrostatic calculations performed by incorporating dynamics from
molecular dynamics (MD) simulations. The MD simulations are used to generate alternative
conformations of the parent structure and to relax the structures of alanine scan mutants. Since
various ESD metrics and comparative schemes have been proposed in the literature, we also
examine their utility for the AESOP analysis. Finally, we discuss the correlations between the
AESOP analyses and published experimental data.

For the current study we have chosen the barnase-barstar interaction as our test system
to validate our methods. This is largely because there are experimental data for several alanine
mutations in the literature [64,67-69], which form the gold-standard dataset in the literature of
electrostatically driven association. Barnase is the extracellular ribonuclease of Bacillus
amyloliquefaciens and barstar is its co-expressed inhibitor [70]. Electrostatics drives the rapid
association and tight binding of barnase-barstar, inhibiting the potentially harmful activity of
barnase inside the cell. The barnase-barstar complex is relatively small in size, with only 198
amino acid residues in total, and both proteins are excessively charged (The net charges are +2e
for barnase and -6e for barstar.) Also, the barnase-barstar interaction has been the focus of
multiple studies using various computational approaches, including free energy calculations,

Brownian dynamics, etc., which allow for further analysis of our results [54-63].
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2.4.2. Methods

The calculations of this study were performed at atomic resolution using an X-ray
crystallographic structure of the barnase-barstar complex (PDB Code: 1BRS [70]). An AESOP
analysis was performed using methods that have been previously described, with the crystal
structure serving as the starting point or parent molecule [25,38]. In brief, WHATIF was first
used to generate the alanine mutants based on the coordinate file of the barnase-barstar
complex by replacing each ionizable amino acid with alanine, one at a time. Twenty-eight
barnase alanine mutations were generated. The mutant complex files were subsequently split to
obtain separate sets of coordinates for each component. PDB2PQR [42] was used to add
hydrogen atoms, partial and whole charges, and van der Waals radii, according to the PARSE
[43] force field, to the coordinates of each mutant. The Adaptive Poisson-Boltzmann Solver
(APBS ) was subsequently used to calculate the spatial distributions of electrostatic potential
and electrostatic free energy differences corresponding to each alanine-scan mutant and parent
protein. The probe radii for defining the dielectric and the ion accessibility surfaces were set to
1.4 A and 2.0 A, respectively. A protein dielectric constant of 2 was used throughout, and a
solvent dielectric constant of 78.5 was used when relevant. Two sets of calculations were
performed, which correspond to the presence or absence of monovalent counterions at
150 mM ionic strength. The APBS calculations were performed on a grid containing
129 x 129 x 129 grid points with grid lengths of 125 A x 125 A x 130 A, providing a grid
resolution of ~1 A.

Electrostatic free energies of association were calculated according to a thermodynamic
cycle, Figure 2-1B, which includes association in both a solvated, AG,socso, and @ vacuum-like

reference state, AG,socrer Based on this theoretical thermodynamic cycle, solvation free
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energies of association, AAG,,,, were calculated according to Eq. 2-8. All steps discussed thus far
were automated through the use of in-house Python scripts. Following the APBS calculations,
ESD clustering was performed using three ESD distance metrics, including dot-product (DP), local
dot-product (LDP), and average normalized difference (LD), which were calculated according to
Eqg. 2-5, Eq. 2-6, and Eq. 2-7. These ESD metrics are derived from the ESI metrics described by Eq.
2-2, Eg. 2-3, and Eq. 2-4. In addition, three comparison schemes were used in combination with
the three ESD metrics, resulting in nine total electrostatic similarity methods. The utilized
schemes are the whole-box (WB), shell, and skin, as seen in the schematic of Figure 2-10. For the
shell scheme, all points inside the 2.0 A ion accessibility surface were ignored, while for the skin
method only grid points enclosed by two surfaces, at 2.0 A and 7.0 A from the protein surface,
were included. In-house R scripts were used to generate distance matrices containing
comparisons of the spatial distributions of electrostatic potential for each mutant-mutant and
parent-mutant pair, based on one of the nine clustering method combinations. Hierarchical
clustering was applied to the generated distance matrices using average linkage through the
hclust function of the R-base package . R scripts were subsequently used to visualize the
clustering results by generating dendrograms and plotting the electrostatic free energy
differences according to the order of said dendrograms.

The software package NAMD (Nanoscale Molecular Dynamics ) was used to perform a
series of 8 MD simulations based on the structures of the parent complex and 7 barnase
mutants (K25A, D52A, R57A, E58A, E71A, R85A, and H100A) found in the literature. These
barnase alanine-mutants were generated as described above. Visual Molecular Dynamics (VMD
) was used to generate a PSF file for each complex based on the CHARMM 22 forcefield .

Complexes were placed in explicit water boxes, containing ~8000 water molecules, and NacCl
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counterions were added at 150mM ionic strength, with the net charge of the system being
neutral. Simulations were performed using PM Ewald electrostatics with 1 A grid spacing, as well
as Langevin constant temperature control to maintain the system temperature at 298 K.
Constant pressure control was also implemented using a Langevin piston. A 2 fs time step was
used in all MD simulations, which was allowed by rigid hydrogen bonds implemented through
the SHAKE algorithm. Prior to each simulation 1000 steps of NAMD’s conjugate gradient energy
minimization were performed to remove any unfavorable contacts or geometries prior to MD
equilibration. The initial simulation involving the parent complex was allowed to run for 10 ns,

while the mutant complexes were ran for 5 ns.

A B
7 %

Y %,
Whole Box Shell

Figure 2-10 Schematic of comparative schemes for ESD metrics. lllustration showing which regions of the
spatial distribution of electrostatic potential are considered by each comparative method: (A) whole box;
(B) shell; (C) skin. The hashed area indicates grid points that are included, while the black and white areas
indicate grid points excluded from the ESD calculations. The three surface boundaries (g: dielectric, k:ion-
accessibility and 7 A) are label in (C).

Following the MD simulations, two further complete AESOP analyses, as described
above, were applied to the 5 and 10 ns snapshots from the parent complex trajectory. In order
to determine if the ESD clustering methods provide similar clustering results, irrespective of the

conformation of the parent, clustering similarities were calculated. Clustering similarity methods
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require that objects, in our case alanine mutants, be partitioned in to a finite number of clusters,
rather than the tree structure obtained from hierarchical clustering. To convert the generated
dendrograms into the appropriate form, the tree cutting function, cutree, of R was used to
extract a finite number of clusters, k. Since the ideal number of clusters to be extracted from
each dendrogram is not obvious, tree cutting was performed for k values of 2 to 15 and
similarities were calculated for each tree cutting result. Clustering similarities for each k value
were calculated according to the Rand index,

(a+d)
RCK)y=——"— . 2-13.
( ) (a+b+c+d) Fa. 2-13

In this expression, C and K represent two tree cutting results to be compared, while a is the
number of pairs that cluster together in both C and K, b is the number of pairs that cluster
together in C but not K, c is the number of pairs that cluster together in K but not C, and d is the
number of pairs that are not joined into clusters in K and C. For the Rand index cluster

comparison, a value of 0 indicates no agreement while 1 indicates identity.

2.4.3. Results

For this study, an initial 10 ns MD trajectory, using an explicit water box, was generated
for the parent barnase-barstar complex. The 10 ns barnase-barstar MD trajectory was generated
to monitor the extent of the fluctuations of the electrostatic properties of the parent complex.
Figure 2-11 illustrates the fluctuations of the spatial distributions of electrostatic potential,
together with AAG,,, values, during the MD trajectory. The AAG,,, values have a total range of
~150 kJ/mol, however, fluctuations are reduced towards the end of the trajectory where the
solvation free energy begins to settle at around 1250 kJ/mol. Similar fluctuations and trends are

visible in the isopotential contours of Figure 2-11B, but differences are more noticeable when
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potentials are calculated at 150 mM ionic strength. Despite only slight changes in the protein
backbone, as evident through comparison of the ribbon models, dynamics have a
distinguishable effect on both the electrostatic association free energies and electrostatic

potentials.
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Figure 2-11 Electrostatic fluctuations of barnase-barstar during a 10 ns MD trajectory. (A) Plot of AAGq,
for the crystal structure (0 ns) and 10 snapshots taken in 1 ns increments (1 - 10 ns). Data point color
transitions from blue to red with time and is included to correlate with the color of the ribbon models of
(B). (B) Ribbon models and isopotential contours depicting the conformation and corresponding
electrostatic potential for the structures as described in (A). Isopotential contours are presented for
barnase-barstar (C:complex), as well as barnase (R:receptor) and barstar (L:ligand) alone. Isopotential
contours are shown for two ionic strengths, 0 mM and 150 mM. The color code is blue for +1 kT/e and red
for -1 kT/e electrostatic potential.

The 10 ns MD trajectory for the parent complex also served the purpose of generating
alternative conformations to be used in AESOP analyses. In total, three complete AESOP

analyses were performed based on the 0, 5, and 10 ns barnase-barstar conformations. Each
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AESOP analysis included the generation of 28 barnase alanine-scan mutations, and calculating
the corresponding electrostatic potentials and AAG,,,, at 0 and 150 mM ionic strength according
to the Poisson-Boltzmann method. This resulted in six sets of electrostatic potentials, each
containing 29 spatial distributions, corresponding to parent barnase and barnase alanine
mutants. Each set of potentials was then analyzed using each of the 9 comparative-scheme/ESD
combinations, resulting in 54 sets of clustering results. The clustering results were individually
plotted in dendrogram or tree form, and the solvation free energies of association were plotted
in the order of the resulting dendrogram.

The results of all three AESOP analyses were quite comparable, producing correlations
of > 0.96 when comparing the AAG,,, values for the alanine-scan mutations generated from
these snapshots (data not shown). The correlations between the clustering results and the
electrostatic free energies of association, based on visual inspection, were similar for all
clustering methods, with exception to WB-DP which performed noticeably worse. This was an
expected result, since the WB-DP method is plagued by an inability to overcome extremely large
and dominating potential values that are found in the protein core. An example dendrogram
and free energy plot for AND clustering at 0 mM ionic strength are presented in Figure 2-12. As
seen in Figure 2-12A, the AND clustering creates three distinct clusters, which separate the
mutations according to the mutated residue type (acidic, basic, or neutral). Within each of these
major clusters, smaller subclusters with distinct electrostatic properties exist, and this is further
emphasized through visual correlations with AAG,,, seen by comparing panels (A) and (B) of
Figure 2-12. It should be noted that an increase in AAG,,, is actually indicative of a favorable
perturbation when using a low protein interior dielectric constant, such as the value of 2 used in

this study.
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Figure 2-12 AESOP analysis of barnase at 0 ns using WB-AND. (A) Dendrogram corresponding to the AND
electrostatic clustering of barnase alanine scan mutants using all grid points (WB-scheme). Colored circles
indicate the distance of each mutated residue from the binding interface according to the legend and
surface representation of the complex. In the surface representation, barnase residues are colored
according to their distance from barstar, while barstar is in gray. The colored lines of the dendrogram are
included to emphasize the three major clusters, which are on the type of the mutated residue (blue for
basic, red for acidic, and black for neutral) (B) Plot of AAG,, for parent barnase and its alanine scan
mutants according to the order of the dendrogram in (A). Colored circles follow the same coloring scheme
as described in B. The three vertical boxes indicate the three primary clusters (blue for basic, red for
acidic, and white for neutral) as described for (A). The dark grey box of B indicates mutations predicted to
have little or no effect on binding. White circle indicates the parent protein in (A) and (B).

To quantitatively assess the effects of the starting structure on the AESOP analysis,
correlations between our data for the 0, 5, and 10 ns structures and available experimental

results were calculated. Table 1 provides relative-experimental AG values for seven barnase
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alanine mutants seven (K25A, D52A, R57A, E58A, E71A, R85A, and H100A), calculated by
dividing each experimental value by that of the parent. These relative experimental AG values
were used in place of the actual values in order to be able to combine two different
experimental data sets [64,67]. AAG,,, values, calculated based on the three starting structures
at both 0 and 150 mM ionic strength, are also presented for the seven mutants in Table 2-2.
Correlation coefficients comparing each set of calculated AAGsolv values to the relative-
experimental AG data can also be found in Table 2-2. Inspection of these correlations suggests
that both the ionic strength and the starting structure have little to no effect on the agreement

with experimental data, since the coefficients range from 0.76 to 0.79.

Table 2-2 Solvation free energies of association and correlations to experimental data.

AAGg,, (kJ/mol)

0 ns” 5 ns¢ 10 ns* Relaxed Mutants’
Mutant Rel. AG,,,’ OmM 150mM OmM 150mM  OmM 150 mM OmM 150 mM
Parent 1.00 1331.3 13444 1329.0 1342.5 1246.6 1259.2 1329.0 1342.5
K25A 0.72 912.8 919.0 914.8 920.7 904.3 910.6 1029.6 1036.6
D52A 1.05 1675.4 1694.6 1604.6 1624.1 1570.7 1590.4 1610.2 1627.5
R57A 0.73 854.7 861.2 856.1 863.0 804.8 810.9 1043.2 1049.4
E58A 1.02 1629.9 1649.6 15454 1564.7 1509.0 1527.9 1592.4 1610.4
E71A 0.90 1712.2 1732.1 1622.7 1643.5 1606.5 1626.9 1608.4 1626.5
R85A 0.70 1025.8 10334 966.3 974.0 903.7 911.2 1013.2 1019.0
H100A 0.67 1339.8 1353.0 1269.3 1282.5 1234.8 1247.7 1269.5 1280.6
Corr. Coef!f 0.76 0.76 0.79 0.79 0.77 0.77 0.82 0.82

®Relative experimental free energies from Schreiber et al [64,67].

®Alanine mutants based on the crystal structure of barnase-barstar

“Alanine mutants based on the 5ns MD snapshot of barnase-barstar

“Alanine mutants based on the 10ns MD snapshot of barnase-barstar

®Alanine mutants based on the crystal structure of barnase-barstar,
and 5 ns of MD were applied following mutation.

fCorrelation coefficients calculated using the Pearson method

Clustering similarities were also calculated according to the Rand index to quantify the

effect of the starting structure on the clustering results for all nine of the methods described.
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For this analysis a series of Rand indices were calculated corresponding to k values of 2 to 15.
Table 2 contains the statistical analysis of the Rand indices resulting from the comparisons of
the 0 and 5 ns and 0 and 10 ns clustering data. The clustering results for the different
electrostatic similarity methods are consistent across the three parent conformations, which is
evidenced by mean and median similarities of about 0.9 or higher, with an exception of WB-DP.
However, slightly lower consistency, based on lower Rand indices, is seen between clustering
results for potentials calculated at 150 mM ionic strength, when compared to 0 mM results. This
suggests that the parent structure conformation has more effect on the results when

considering higher ionic strengths.

Table 2-3 Rand clustering similarity indices for the comparison 0, 5, and 10 ns clustering results.
The 0 ns & 5 ns similarities represent the comparison of the AESOP clustering dendrograms,
where mutations were based either on the crystal structure (0 ns) or the 5 ns MD snapshot. A
similar comparison between the results for the Ons barnase-barstar structure and the 10 ns MD
snapshot are also provided (0 ns &10 ns).

Ons & 5Sns 0 ns & 10 ns
0 mM 150 mM 0 mM 150 mM
Method Mean Median SD  Mean Median SD  Mean Median SD  Mean Median SD
WB-DP 0.77 080 0.12 081 080 0.06 084 088 0.10 081 079 0.07
WB-LDP 097 098 004 087 091 0.13 097 1.00 0.05 088 093 0.13
WB-AND 096 098 004 094 095 004 096 099 0.05 095 096 0.05
Shell-DP 098 099 003 093 094 006 096 098 0.04 096 097 0.03
Shell-LDP 097 098 0.04 087 091 0.13 097 100 005 0838 093 0.13
Shell-AND 096 098 0.04 094 095 004 096 099 005 095 096 0.05
Skin-DP 096 097 003 094 095 005 097 097 0.03 094 094 0.03
Skin-LDP 095 096 0.05 091 092 0.04 094 096 006 077 0.79 0.12
Skin-AND 096 099 0.06 092 095 0.10 095 098 006 079 0.83 0.13

An additional seven MD trajectories, with 5 ns of simulation time each, were generated
for seven barnase mutants (Table 2-2) in complex with barstar. AESOP analyses were performed
using the 5 ns snapshots from the MD trajectories of the parent and seven relaxed barnase

mutants. These analyses were used to investigate the effects of post-mutation relaxation on the
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clustering and free energy results. The AAG,, values for these relaxed mutants and the
corresponding experimental correlations are provided in Table 2-2. Only a small improvement
in experimental correlation, from 0.76 to 0.82, was observed when considering the relaxation of
the alanine scan mutations. ESD clustering was also performed to compare the spatial
distributions of relaxed mutants. The clustering of the two sets of electrostatic potentials,
before (0 ns, Table 2-2) or after relaxation (5 ns Relaxed Mutants, Table 2-2), individually
resulted in very similar clustering dendrograms. This result, however, is probably owed to each
set only containing 8 electrostatic potentials. Therefore, ESD clustering was applied to a
combined set of potentials, containing the barnase parent and seven alanine mutations in two
different conformations (0 ns and 5 ns Relaxed Mutants, Table 2-2). The clustering analysis was
performed at two ionic strengths (0 and 150 mM) using all nine clustering methods to assess
which methods are more sensitive to perturbation (mutation) affects rather than dynamic
affects. Example dendrograms for WB-AND and Skin-DP at 0 and 150 mM are presented in
Figure 2-13. Inspection of the 18 dendrograms showed that only the WB-AND at 0 mM
(Figure 2-13A) clustering was able to group the mutations of the same residue together despite
the structural differences. All other methods, including WB-AND at 150 mM, grouped mutations
primarily based on whether or not relaxation was performed, as emphasized by the brackets in

Figure 2-13B - D, instead of being based on electrostatic perturbation effects.

2.4.4. Discussion

We have developed a computational protocol, AESOP, for the electrostatic analysis of
protein-protein interactions using ESD clustering [25,38]. The use of ESD clustering gives the

AESOP protocol the unique capability of producing protein association predictions in the
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absence of a structure for the protein complex. Through single ionizable residue mutations,
AESOP analyzes the effect of each perturbation (charge removal) on the spatial distribution of
electrostatic potential and hierarchically classifies the mutations based on these effects.
Mutations of ionizable amino acids to alanine are not expected to alter global structure, because
ionizable amino acids are typically solvent exposed and thus do not contribute to the stability of
the protein core. We expect local structural changes to occur as a result of alanine scan
mutagenesis, owed to the loss of an interacting partner for electrostatic interactions. Alanine
scans are used to introduce perturbations into the physicochemical properties proteins, which in
our calculations were the electrostatic properties of barnase-barstar. When electrostatics
properties are important for binding, the alanine-scan perturbations will be manifested in the
free energies and clustering dendrograms of the AESOP protocol.

In this study, we sought to determine if a rigid body assumption (e.g. using the
experimental derived structure) is reasonable for the calculations of the AESOP protocol. In
answering this question two secondary questions arose regarding the effects of dynamics on the
electrostatic analysis of barnase-barstar: Does the conformation of the parent complex affect
the analysis, and is it necessary to consider relaxation of each alanine-scan mutant? To answer
these questions, we have examined the effects of pre- and post-mutation relaxation on the
electrostatic of barnase-barstar, by coupling MD simulations with the AESOP analysis. To first
elucidate the effects of conformation on the electrostatically-driven association of barnase-
barstar, we generated a 10 ns MD trajectory based on the crystallographic structure of the
complex. Examination of the backbone root mean squared deviations (RMSD) for the trajectory
showed that equilibration occurred immediately, and that RMSD values steadily fluctuated

between 1 — 2 A (data not shown). This indicates that the crystal structure of barnase-barstar
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was already well optimized prior to the MD simulation. Fluctuations in the recognition
(isopotential contours, Figure 2-11B) and binding (AAGs,,, Figure 2-11A) characteristics of

barnase-barstar were observed despite these small structural changes.

A WB-AND (0 mM) B Skin-DP (0 mM)
© ©
= ]
w
S ©
o
<
S A <
o
o«
S ]
o
~
S A ]
o
S b
o
3 [ ’Jﬁ
o J =3
<L <L agctE © << L<<qge<
N WO 0 0 '-Nww-ooo&, S Oq,%NFON%FmION
B8L382BANRE S8 SRUBcEBETs3BEEEE
arra T Ia o
N = 4
Ons 5ns
C WB-AND (150 mM) D Skin-DP (150 mM)
©
© (=)
o
8 3
< <
o o
] ®
(=} (=}
~N
s 3
e 5
]
oS ]
<L ELLLLELCLCL S © €< << gL E
BeEeE8 s~ 8398:34 BEESES883-SeN8  §
g souwesinegd PSR RUALesAEL S
o Ia T T T o a
LY A NG A J [N ) A J
Ons 5ns Ons 5ns 5ns Ons 5ns

Figure 2-13 Comparison of the effects of relaxation on ESD clustering results for barnase. Dendrograms
depicting the clustering results for electrostatic potentials of barnase and seven alanine mutants, before
and after 5 ns of MD relaxation. Clustering was performed using: (A) WB-AND (0 mM); (B) skin-DP (0 mM);
(C) WB-AND (150 mM); (D) skin-DP (150 mM). Bold labels indicate equilibrated structures. Brackets are
included in (B), (C), and (D) to emphasize the clustering results.

The AESOP analysis provides a relative comparison of the effects of charge
perturbations on electrostatics, therefore, the importance of the parent complex conformation,
on which the alanine-scan mutations were based, was investigated. Three complete AESOP
analyses were performed on the 0, 5, and 10 ns snapshots of the parent barnase-barstar
complex using three ESD metrics (DP, LDP, and AND) and three comparative schemes (WB, shell,
and skin). If the conformation were to have no effect on the analysis, we would expect the

clustering results (dendrogram) and relative free energy trends to be identical when comparing
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AESOP analyses from different barnase-barstar conformations. Rand similarity indices
(Table 2-3) demonstrate that all nine methods are capable of reproducing similar clustering
results irrespective of the parent complex conformation. We also observed that the relative free
energy trends for the alanine-scan mutations were very similar for the three parent
conformations (0, 5, and 10 ns), indicating that the conformation of barnase-barstar did not
have a noticeable affect on the AESOP analysis. Also, little to no improvement in the correlation
with experimental data (Table 2-2) was achieved by using an MD equilibrated structure (5 or 10
ns of pre-mutation relaxation). In addition, Wade et al reported very similar correlations (~0.8)
with experimental data for their electrostatic binding free energies, which incorporated
desolvation effects [59]. For their calculations, Wade et al performed 800 steps of energy
minimization, but did not perform MD simulations. These results suggest, at least for the
barnase-barstar complex, that the crystallographic structure is a sufficient starting point for
electrostatic calculations, such as those performed by the AESOP analysis.

In addition to investigating the effects of dynamics on electrostatic calculations, we
examined the utility of the nine electrostatic similarity methods for the rigid body assumption.
Seven of the nine electrostatic similarity methods, excluding WB-DP and skin-LDP, produced
similar clustering results showing good correlation with AAG,,,. The WB-DP method provided
poor correlation with AAG,,,, owed to inability to overcome dominating values in the protein
interior. Skin-LDP, on the other hand, produced unreadable dendrograms, since the resulting
ESD values were very similar for all electrostatic potential comparisons. Of the three
comparative schemes, the WB method is preferred, since the definition of the boundaries for
the shell and skin method is computationally costly. For the WB comparative method to be

proficient, an ESD metric that utilizes a local normalization, namely LDP or AND, must be used to
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minimize the contributions of potential values in the protein interior. Here we propose the use
of the WB-AND method for the clustering of electrostatic potentials for alanine-scan mutations.
We have found that the WB-AND method, despite its simplicity, provides comparable results to
the skin-DP method that has been proposed by Wade et al [22,23].

Theoretical amino acid mutations often introduce local and global conformational
rearrangements requiring the use of MD simulations for optimization. Here we examined the
benefits of post-mutation relaxation for electrostatic calculations of the barnase-barstar
interaction, by performing a 5 ns MD simulation following the generation of alanine mutants
found in the literature (Table 2-2 [64,67]). We found that only slight improvements in
correlations with experimental data were obtained by performing 5 ns of post-mutation MD
relaxation. This is most likely the result of minor local structural rearrangements. It is assumed
that further structural rearrangements and improvements in experimental correlations would
occur if the barnase mutations were allowed to relax in the unbound state. However, to
eliminate to the possibility of introducing grid artifacts, which are an inherent problem in
current Poisson-Boltzmann methods, only conformational changes of the bound state could be
considered. These artifacts originate from self-energies introduced by charge discretization in
nearest neighbor grid points, and are eliminated by using the theoretical thermodynamic cycle
of Fig. 1 [24]. For this study, MD relaxation was performed for 7 alanine-scan mutations out of
the 28 barnase ionizable amino acids, with each simulation requiring ~20 hrs. of computation on
40 processors. Given the small improvement that was observed compared to the computational
effort used, the ~560 hrs. of computation required to relax all 28 barnase mutants is not

warranted.
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Throughout the calculations, we also considered the effects of ionic strength on the
AESOP analysis, since the screening of coulombic interactions by counterions is an important
feature of the protein environment. The modeled ionic strength (0 or 150 mM) had little to no
effect on the relative trends of the electrostatic free energies, nor the correlations with
experimental data, as seen in Table 2-2. lonic strength did however have a noticeable effect on
the electrostatic clustering results, especially when comparing multiple conformations of the
same mutant (Figure 2-13). We have also observed this phenomenon, in which ionic screening
affects clustering results but not electrostatic free energies, for other applications of the AESOP
protocol (unpublished data). Surprisingly, only clustering performed at 0 mM ionic strength
using the WB-AND method was able to properly classify mutations based on the effects of the
perturbations, instead of dynamics. This result is unexpected, since WB-AND does not exclude
potential values in the protein interior, and because 0 mM ionic strength is not believed to be an
accurate representation of the protein environment. At 150 mM ionic strength, the presence of
counterions emphasizes the effects of dynamics on electrostatic potential, since changes in
conformation and the solvent accessible surface would affect the distribution of and screening
by counterions. For electrostatic potential calculations of different conformations of the same
protein, differences in ionic screening will result in unique spatial distribution of electrostatic
potential, despite similar charge distributions. However, in the case of electrostatic free energies
of association, differences in ionic screening effects are canceled out by the bottom horizontal
process of the theoretical thermodynamic cycle (Figure 2-1B). Therefore, only magnitudes of
AAG,,, are affected, not the relative trends for all alanine mutations.

Along with validating our methods in light of the rigid body assumption, as discussed

thus far, we have also produced a database of predictions for the mutation of each ionizable
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amino acid of barnase to alanine. Of the 54 data sets generated for the electrostatic analysis of
barnase, we prefer the AESOP analysis performed at 0 mM ionic strength with WB-AND
(Figure 2-12), for its accuracy (e.g. good correlations with AAG,,, and sensitivity to perturbation
irrespective of dynamics) and computational efficiency. Figure 2-12 not only shows good
correlation with experiment, but also provides predictions of the contribution of each mutated
residue to the electrostatically-driven association of barnase-barstar. These results can be used
alone to suggest new perturbative mutations to be tested experimentally, or can be used as a
guide for combinatorial calculations, in which multiple alanine mutations would be introduced
to design new barnase proteins with tailored electrostatic properties. This type of analysis can
also be applied to other interactions with electrostatically-driven association, to gain

understanding of the role electrostatics and for protein design.

2.4.5. Conclusion

In summary, we have performed electrostatic analyses of the barnase-barstar
interaction, specifically electrostatic clustering and free energy calculations, using the AESOP
protocol. We investigated the affects of pre- and post-mutation relaxation on electrostatic
calculations through the incorporation of snapshots form MD simulations. Our perturbative
calculations, based on theoretical alanine-scan mutagenesis, produced good correlations with
existing experimental data, irrespective of the conformation of the parent complex.
Additionally, only small improvements in the experimental correlations were observed when
including 5 ns of post-mutation MD relaxation. These results suggest, at least for the barnase-
barstar interaction, that the rigid body assumption is reasonable for the electrostatic

calculations of the AESOP protocol. The data of this study show the utility of the AESOP protocol
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for efficiently elucidating the contribution of each ionizable amino acid to association, and serve
as an example of how these methods can be applied to the design on novel proteins with

tailored electrostatic properties.

2.5. ELECTROSTATICS-BASED DESIGN OF SUMO4 SUBTRATE ANALOGS

2.5.1. Introduction

Sumoylation of cellular proteins by the ubiquitin-like members of the SUMO family has
been found to be one of the essential regulation mechanisms in signal transduction and genome
integrity [71]. One clear difference between the ubiquitin and SUMO pathways is the existence
of up to four SUMO isoforms, with SUMO-1, -2, and -3 being the most prominent. Prior to
sumoylation, a pre-SUMO peptide must first be matured through the cleavage of a C-terminal
tail via an enzyme of the SENP family [71]. The removal of the C-terminal peptide tail exposes a
Gly-Gly motif that is utilized during the sumoylation process. Following SUMO conjugation the
SUMO peptide can also be removed from its substrate in vivo. As discussed for the SUMO family,
multiple isoforms also exist in the SENP family, all of which have different specificities for the
various SUMO peptides. Of these isoforms, SENP2 is responsible for the maturation of SUMO-1,
-2, and -3 into their conjugatable forms, as well as the deconjugation of SUMO-1, -2, and -3
containing species. SENP2 therefore plays a significant role in the regulation of sumoylation [72].

Of the SUMO isoforms, SUMO-4 is still of mystery, since there are no known specific
enzymes with SUMO4 as its substrate [73]. SUMO-4 exhibits high sequence similarity to SUMO-
2, with only 14 amino acids different out of the total 95 (Figure 2-14) ([25,38,41]), but is still not

processed by any known SUMO-spedific enzymes. One notable difference between SUMO-2 and
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SUMO-2 MADEKPKEGVKTENNDHINLKVAGODGSVVQFKIKRHTPLSKLMKAYCERQGLSMRQIRF

SUMO-4 MANEKPTEEVKTENNNHINLKVAGODGSVVQFKIKROTPLSKLMKAYCEPRGLSVKQIRF
SUMO-2 RFDGQPINETDTPAQLEMEDEDTIDVFQQQOTGGVY 95
SUMO-4 RFGGQPISGTDKPAQLEMEDEDTIDVFQQPTGGVY 95

Figure 2-14 Sequence alignment for SUMO-2 and SUMO-4. Positions with differing amino acids are shown
in red.

SUMO-4 is net charge, since the net charge of SUMO-2 is -3 while the net charge of SUMO-4 is 0.
Based on this observation we propose that differences in the electrostatic character of SUMO-4,
when compared to SUMO-2, prevents the formation of a stable bound complex with SUMO-
specific enzymes, and as a result prevents catalysis. In this study, we aim to identify a minimum
set of SUMO-4 mutations necessary to regain catalytic ability based on electrostatic perturbative
design using the AESOP framework. Since SUMO-4 shares high sequence similarity to SUMO-2,
which preferentially binds SENP2, we propose to use the SUMO-2:SENP2 interaction as a guide
in the design of active SUMO-4 analogs. Ultimately the goal of this study is to use computation
to guide experimental mutagenesis studies; therefore, top predicted analogs are to be

experimentally validated using previously proposed methods.

2.5.2. Methods

Given that SUMO-4 does not form stable complexes with any SUMO-specific enzymes
there is no available structural data for the SUMO-4:SENP2 interaction. Therefore, the initial
step of this study was to generate an initial model of the SUMO-4:SENP2 interaction using a
crystal structure of the SUMO-2:SENP2 complex (PDB Code: 2100, ) as a template. The initial

step utilized the homology modeling software MODELLER [74] to extend the N-terminal tail of
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SUMO-2 in the SUMO-2:SENP2 complex to agree with an experimentally relevant sequence [75].
In order to ensure a reliable comparison, and since SUMO-2 and SUMO-4 are highly similar, the
SCWRL4 package was used to introduce the 14 mutations necessary to form SUMO-4 based on

SUMO-2 (Figure 2-14).

Figure 2-15 Molecular graphic of SUMO-4:SENP2 interaction. Both proteins are represented by a
molecular surface with SENP2 in gray, while SUMO-4 residues are colored based on their distance from
SENP2: orange, < 3.5 A; green, > 3.5 Aand<8 A; cyan, > 8 A.

All electrostatic calculations were performed using the AESOP framework, which has
been discussed in great detail previously (section 2.3, ). In brief, all alanine-scan mutations were
performed using truncations by AESOP functions, while all non-alanine mutations were
performed using the SCWRL4 package [51]. The PDB2PQR [42] utility was used to prepare all
structures for electrostatic calculations by incorporating atomic radii and partial charges
according to the PARSE forcefield . Electrostatic potential and free energies of association,
according to the thermodynamic cycle of Figure 2-1B, were calculated using APBS [3] based on a
grid with 129 x 129 x 129 grid points and coarse/fine grid lengths of 212 A x 98 A x 130 A. The

dielectric boundary was defined by a water-sized probe sphere with a radius of 1.4 A, and the
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dielectric coefficients of the protein and solvent environments were 20 and 78.54 respectively.

All electrostatic calculations were performed using 0 mM of counterions.

0.4

|
ﬁ
-

. T O 2 = = p >~ O
S s e
© N o ©® v PF o ©~ o
00 00 O O DD
o
o 0o —_
= o A )
ETRis A S osinime =2
2 2 Te—e o °
>~ 7
]
(0] il
=
(g0 TR
I I * [ | I [ |
2 4 6 8 10 12 14
Mutants

Figure 2-16 Electrostatic clustering and free energies of association for SUMO-2 based mutations of
SUMO-4. Electrostatic clustering is illustrated as a dendrogram tree (top) with label color indicating the
net charge of the resulting analog: pink, - 1; black, 0; purple, +1. The color of the free energy data points
indicates the distance of the mutated residue from SENP2 as illustrated by Figure 2-15: orange, < 3.5 A;
green, > 3.5 A and < 8 A; cyan, > 8 A (white point represents parent structure).

2.5.3. Results and Discussion

The initial step in identifying the electrostatic differences between SUMO-4 and SUMO-
2 was to replace each position in SUMO-4, which differs from SUMO-2, with the corresponding
SUMO-2 amino acid, one at a time. The effects of these mutations were quantified using
electrostatic clustering and solvation free energies of association as shown in Figure 2-16. Of
these 14 mutations, most had only minor effect on the solvation free energies of association,

which have been shown to be predictive of binding ability . Only the mutation of SUMO-4
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residue 63 from glycine to aspartic acid had a noticeable effect on the predicted binding ability
(bottom of Figure 2-16), which favorably decreases the solvation free energy of association by
approximately 40 kJ/mol. Despite having no effect on the electrostatic character of SUMO-4, a
previous study has shown that mutating position 90 from proline to glutamine (90 P2Q)
produces a SUMO-4 analog that is capable of being processed by SENP2 . It is believed that
proline at position 90 introduces a kink in the C-terminal tail of SUMO-4 preventing hydrolysis

and maturation; therefore, the 90 P2Q mutation was included in all designed analogs.
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Figure 2-17 Electrostatic clustering and free energies of association for SUMO-4 alanine-scan. Electrostatic
clustering is illustrated as a dendrogram tree (top) with label color indicating the type of amino acid being
replace by alanine: red, acidic; blue, basic. The color of the free energy data points indicates the distance
of the mutated residue from SENP2 as illustrated by Figure 2-15: orange, < 3.5 A; green, > 3.5 A and < 8 A;
cyan, > 8 A (white point represents parent structure).

After analyzing the effects of each of the SUMO-2/SUMO-4 replacements, the next step

was to elucidate the role of each charged residue of SUMO-4 in association. This was achieved
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using alanine-scan mutagenesis in which each charged residue is replaced with alanine, one at a
time. The electrostatic clustering and free energy results are presented in Figure 2-17. As is
typical for most AESOP alanine-scan analyses , the dendrogram (top of Figure 2-17) exhibits
three primary clusters containing mutations of only a single amino acid type: positive, negative,
or neutral. On average, most mutations of positive residues are favorable, while most mutations
of negative amino acids are unfavorable; however, the degree of these effects are dependent on
the distance of the mutated residue from SENP2, as well as the surrounding protein/solvent
environment. Of the alanine scan mutations, 21 K2A is predicted to be the most favorable
according to its free energy value. A charge-reversal scan was also performed (data not shown),
and resulted in comparable trends to the alanine scan mutations, but with the effects being
exaggerated.

Based on the assumption that electrostatics is responsible for the poor association
between SUMO-4 and SENP2, the net charge difference between SUMO-2 and -4 needs to be
equalized in order to design a SUMO-4 analog with SUMO-2 like association. Therefore, a new
SUMO-4 analog was designed by combining the most favorable mutation from SUMO-2 based
mutations with the most favorable alanine-scan mutation. This new analog, referred henceforth
as K21A/G63D/P90Q, has a net charge of -2 and requires one more mutation to reach the net
charge of SUMO-2. A second alanine-scan was performed based on the K21A/G63D/P90Q
analog to identify potential mutations that would result in binding similar SUMO-2. For this
analysis the favorability of the mutations were not only ranked based on electrostatic free
energies of association, but also based on electrostatic similarity to SUMO-2. This stems from
the fact that analogs with comparable free energy values and similar electrostatic potentials are

predicted to have similar recognition and binding, as defined by the two-step association model
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(Figure 2-1A). Figure 2-18 contains the dendrogram and free energies corresponding to the
K21A/G63D/P90Q alanine-scan calculations. As would be expected, SUMO-2 clusters with
analogs containing an additional mutation of a basic amino acid, which results in the same net
charge as SUMO-2. Additionally, the majority of all mutations predicted to be favorable are

away from the binding interface, at > 8 A from the nearest SENP2 atom.

© _|

o

= |

o

N

)

= | Feeme B e

o CLCLCLCLCLCLCLLLLLLCLCLONLCLCLLLLLLLLLL
NN NN NN AN NN N NNNN OSSN AN N NNNANNNNNN
B ANl a0 00 W N RN NN N NN NG NV
O T AN MNOOD T« O©OMWOIT®MOONMNMI—TONLDN®MOT™IW0OOD
LEIECEIENORIFTT A" Ty LOO
o0oo0oc00c00O0NOQANO<L - N-R-E-N-R-E=
N NNNNNNNNNONOONAON N (DN NN-NONONO-NO-NONN
O OO0000000 805 50X OQaOOODOOOOOOO
M MO M M MO MM MO MM O MO O M «— M O M M M M MM MOMOOMO®M
A S e e i e
I<d<IIIIIININNLZ I ddIIIIII<IIL
N N AN NANNANNANOGNYANY XN N Y N N AN NANNNONONON
R ORI DTN D D R D DI DD,
™ T T T T o - - - N NN e N T T T e
N N AN AN AN AN NN AN N N N N N N AN AN AN AN AN AN AN N

K | o)

= \

] (@)

Sl s

2 9 09 0

e N X

3 o ©¢o0 ‘©

o ° ‘ /

©o. \
38_ O\QO\ /O
(@)
| I I I I | I
0 5 10 15 20 25 30
Mutants

Figure 2-18 Electrostatic clustering and free energies of association for the SUMO-4 K21A/G63D/P90Q
alanine-scan. Electrostatic clustering is illustrated as a dendrogram tree (top) with label color indicating
the net charge of the analog: blue green, -1; gray, -2; purple, -3. The color of the free energy data points
indicates the distance of the mutated residue from SENP2 as illustrated by Figure 2-15: orange, < 3.5 A;
green, > 3.5 A and < 8 A; cyan, > 8 A (white point represents parent structure).

The final perturbative design approach that was applied in designing SUMO-4 analogs
involved permutations of 5 single mutations identified from the SUMO-2 based mutations and
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the SUMO-4 alanine scan: K21A, R51A, G63D, G69E, and K72A. Based on these 5 mutations 10
unique analogs are possible, and electrostatics clustering and free energies for these analogs are
presented in Figure 2-19. These SUMO-4 analogs show slightly less similarity with SUMO-2,
when compared to the analogs of Figure 2-18, with respect to both clustering and free energies.
However, the analog G63D/G69E/K72A is of interest since it contains only mutations from the

set of SUMO-2 based mutation.
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Figure 2-19 Electrostatic clustering and free energies of association for SUMO-4 permutation analogs.
Electrostatic clustering is illustrated as a dendrogram tree (top) with label color indicating the net charge
of the analog: black, O; purple, -3.
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Table 2-4 List of predicted SUMO-4 analogs based on perturbative electrostatic design.

# Mutations Net charge
1 P90Q +0
2  P90Q/G63D -1
3  P90Q/G63D/K21A -2
4 P90Q/G63D/K21E -3
5 P90Q/G63D/K21A/R36A -3
6 P90Q/G63D/G69E/K72A -3

Table 2-4 contains a list of proposed SUMO-4 analogs based on the four perturbative
design approaches. P90Q has been proposed previously to improve SUMO-4 as a substrate for
SENP2 [73], and therefore is included in all analogs. G63D was the most favorable mutation with
respect to electrostatics (Figure 2-16), and therefore has also been included in most of the
designed SUMO-4 analogs. Of the six proposed analogs of SUMO-4, three have been
experimentally expressed and evaluated (Liu, Kieslich, Morikis, Liao — In progress). Table 2-5
contains Michaelis—Menten parameters for SUMO-2 and the three design SUMO-4 analogs as
substrates for SENP2. The k../Ky parameter is understood as the overall enzymatic efficiency of
an enzyme and substrate, and was noticeably improved by all SUMO-4 mutations, since native
SUMO-4 shows no catalytic activity with SENP2. The double SUMO-4 mutant P90Q/G63D shows
the most improvement, with a k..,/Ky value within about an order of magnitude of that of SUMO-
2. However, the P90Q/G63D/K21A analog, which was predicted to be the most favorable of the
experimentally evaluated analogs, resulted in a lower ke/Ky when compared to P90Q/G63D.

To gain further insight into the experimental results for the designed SUMO-4 analogs,

we analyzed the inter/intramolecular Coulombic interactions that may contribute to the
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improved/weakened association of the tested analogs. The strong favorability of G63D is easily
understood after observing the placement of the aspartic acid between two basic amino acids
forming a strong bifurcated intramolecular salt bridge (Figure 2-20A). Further analysis showed
that a negative amino acid is conserved in all SUMO isoforms at position 63 (referred as position
67 in literature) [76]. Additionally, preliminary work elucidating the role of electrostatics in the
interaction between SUMO-1:SENP2 also predicted that this conserved aspartic acid (63/67 D) is
crucial to binding (Kieslich, Liao, Morikis — unpublished). Finally, comparison of the sequences of
the SENP2 isoforms also shows that positive charge at the positions 456 and 459 is highly
conserved; therefore, we propose that the G63D mutation, in combination with P90Q, not only
makes SUMO-4 a good substrate for SENP2, but also for SENP1, 3, and 5. With regards to the
lower ke /Kym for P90Q/G63D/K21A, replacement of lysine 21 with alanine removes
intermolecular Coulombic interactions that stabilize local structure (Figure 2-20B). This local
destabilization is most likely exacerbated by the fluorescent protein tags attached to the N and

C-termini of SUMO-4 in the experimental system used.

Table 2-5 Experimental enzyme kinetics parameters for designed SUMO-4 analogs.

SENP2 Substrate Ky (MM) Keat(s™) Kea/ Ku(M™"-s™)
SUMO-2 0.054 +0.015  29.33+2571  (5.45+ 1.590) x10°
SUMO-4 P90Q 18.30£3.670 1534+ 1613  (8.38 + 1.896) x10°
SUMO-4 P90Q/G63D 1650232  19.28+0.520  (1.17 £0.168) x10
SUMO-4 P90Q/G63D/K21A 545+0.837  21.20+1.413  (3.89 £ 0.648) x10°

Note: This data was collected and kindly provided by Yan Liu and Professor Jiayu Liao, Department of
Bioengineering, University of California, Riverside.
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ASP 82

ARG 456 : LYS 21

Figure 2-20 Molecular graphic of SUMO-4 mutations. Ribbon models are used to represent SUMO-4
(green) and SENP2 (gray). Charged residues of interest are in stick representation: red, negative; blue,
positive.

2.5.4. Conclusion

In this study we applied electrostatic perturbative design using the AESOP framework to
identify mutations of SUMO-4 that produce a suitable substrate for SENP2. Our predictions were
experimentally validated using enzyme kinetics, and showed that the double mutant
P90Q/G63D produced a SUMO-4 analog with a k./Kw similar to the highly homologous
SUMO-2. This result provides insight into the specificity of the SUMO/SENP families, since the
charged residues involved in the gained interaction (namely SUMO-4 63, SENP2 456, and SENP2
459) are highly conserved. Additionally, this study marks the first application of the AESOP
framework, in which the AESOP predictions were used to guide experimental studies, and
therefore, serves as an example of the utility of the AESOP framework for electrostatic

perturbative design.
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3. THE ROLE OF ELECTROSTATICS IN THE COMPLEMENT IMMUNE SYSTEM

3.1. BACKGROUND

The complement system, a component of innate immunity and a link between innate
and adaptive immunities, is a cascade of proteins whose proper function is vital to the body’s
ability to fight infection (as illustrated by Figure 3-1). Complement proteins attack foreign
pathogens by covalently attaching to pathogen antigens, directly lysing pathogen surface
membranes, and initiating inflammatory responses. The complement system functions through
protein-receptor interactions and is tightly regulated by cell-bound or serum regulators.
Complement system activation can be achieved by three distinct pathways: the classical
pathway which involves the binding of the C1 complex to antigen-antibody complexes, the lectin
pathway which involves the binding of mannose-binding-lectin (MBL) to carbohydrates located
on pathogen surfaces, and the alternative pathway which involves the spontaneous activation-
inactivation of C3, generation of C3b, and binding of C3b to pathogens (opsonization) [77]. All
three pathways result in the generation of a C3 convertase whose function is the cleavage of C3
into C3a and C3b. A complex is then formed between the C3 convertase and C3b creating a C5
convertase, which is responsible for the cleavage of C5 in to C5a and C5b. The cleavage products
C3a and C5a are collectively known as the anaphylatoxins, and are responsible for complement-
mediated inflammation [77,78]. The complement fragment C5b, however, is ultimately involved
in the formation of the membrane attack complex (MAC), which is responsible for bacterial cell
lysis. A simple diagram illustrating the three pathways of complement activation, and their end

results is shown in Figure 3-1.
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Following activation, C3b becomes deposited on pathogen cell surfaces leading to
formation of C3 convertatses and further activation of the complement system. In addition to
C3b deposition, complement activation also leads to generation, as well as pathogen surface
deposition, of cleavage product C3d, which is the thioester-containing domain of C3 [79]. C3d is
a key component of complement activation, and upon binding to the B-cell receptor CR2 forms a
link between innate and adaptive immunities [79]. The formation of B-cell receptor/co-receptor
complexes (Figure 3-1) augments the adaptive immune response by increasing B-cell sensitivity
to the antigen by 1,000 — 10,000 fold [79]. The ability of C3d to increase B-cell sensitivity to an
associated antigen has led to numerous studies investigating the use of C3d as a vaccine
adjuvant [79-82].

The complement system activation cascade is complicated further by the fact that C3b
opsonization can occur on all cell surfaces, including host cells. Therefore, regulators, such as
factor H, are recruited to prevent the formation of complement convertases on host cell
surfaces (Figure 3-1), and lead to the degradation of C3b bound to host cells into an inactive
form (iC3b). However, when this tight balance between activation and proper regulation fails,
the complement system can attack own tissues typically leading to an autoimmune disease
[77,78]. These instances of improper regulation are evidence of the need for complement-

targeted therapeutics.
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Figure 3-1 Schematic of complement system activation, regulation, and outcomes.
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3.2. ELECTROSTATIC ANALYSIS OF FACTORH

3.2.1. Introduction

Factor H (FH) is a regulator of the complement system [77,78,83] that has been
implicated in a variety of diseases, such as age related macular degeneration (AMD) [84-88],
atypical hemolytic uremic syndrome (aHUS) [89-92], and dense deposit disease (DDD, a.k.a.
membranoproliferative glomerulonephritis Type 1) [89,93]. The complement system is part of
innate immunity and a link between innate and adaptive immunities, whose function is tightly
regulated to avoid immune attack against own tissues. FH is an essential regulator of the
complement system whose absence results in breaking down the prevention of complement
attack against self-tissues [77,83]. FH functions by binding to complement protein fragment C3b
and acting as cofactor to serine protease Factor | (Fl), which cleaves and inactivates C3b. When
C3b is bound covalently to pathogen surfaces, it is amenable to binding by FB which is
subsequently activated and forms the convertase enzyme complex C3b-Bb. The convertase is
responsible for amplified cleavage of C3 molecules and generation of additional C3b fragments
that bind (opsonize) pathogen surfaces. A structural biology view of the C3 function has recently
been presented [94-96].

The essence of FH regulation of the complement system depends on the charge
composition of the surfaces it is capable of binding and on competition with FB [77]. FH binds
with higher affinity to C3b than FB on host cell surfaces that are rich in polyanions, such as sialic
acid and glycosaminoglycans (GAGs). On the contrary, FB binds with higher affinity to C3b than

FH on pathogen surfaces that lack polyanion coating [77]. The capability of FH to interact with
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polyanions implicates charge in its function and renders the study of the electrostatic properties
of FH necessary to understand its function.

Charge plays a role in FH’s association to disease through specific amino acids or groups
of amino acids that form surface hotspots. Mutations of ionizable amino acids are associated
with disease. FH is implicated in AMD through a single nucleotide polymorphism (SNP) that
involves tyrosine/histidine change [84,86-88)]. This SNP genetically predisposes part of the
population to AMD. Polyanion-binding sites in FH have also been implicated in AMD and in aHUS
(reviewed in [97,98]). FH is implicated in DDD through a lysine deletion [99].

FH has a chain-like structure consisting of 20 modules. These modules have the
complement control protein (CCP) module topology and are called CCP modules [100]. They
resemble compact ellipsoids that are connected with short and flexible loops. There are many
high-resolution structures of FH CCP modules and one low-resolution structure of whole FH,
which suggests a folded back topology that brings together the N- and C-termini [101]. In
addition, the structure of the complex between the four N-terminal CCP domains of FH and C3b
is available and provides the first insight on the specifics of the interaction [102]. Each FH CCP
module is made of 51-62 amino acids and has a core stabilized by two disulfide bridges. Each
loop is made of 3-8 amino acids. Despite similar structures and stabilities of FH CCP modules,
there is a wide diversity in physicochemical properties, and most importantly in charge
composition. The basic hypothesis of our study is that the charge (and electrostatic) diversity of
CCP modules renders FH its binding properties to C3b and polyanion-coated surfaces. C3b is also
a modular protein consisting of 8 macroglobulin (MG) domains and 5 other domains and linkers
[102,103]. Despite their similar structures, the MG domains of C3b also have charge (and

electrostatic) diversity.
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In a recent review, the interactions of FH and their roles in complement regulation and
disease have been discussed. However, the importance of charge and electrostatic interactions
was not emphasized. Therefore, the goal of our study is to perform a comparative electrostatic
analysis of all 20 CCP modules of FH and all 8 MG domains of C3b to identify electrostatic
hotspots and predict potential binding sites. We also performed binding analysis of the structure
of the FH(CCP1-4)-C3b and C3b-Bb complexes to gain insight on the C3b binding mechanism for
competing proteins FH and Bb. The method we use is theoretical and is based on the calculation
of electrostatic potentials using the Poisson-Boltzmann equation [3]. We have previously applied
similar protocols in other proteins that contain CCPs and whose function is driven by
electrostatic interactions, as evidenced by experimental data [24,29,30,35-37,104]. This is an
atomic resolution study in which three-dimensional structures of the 20 CCP modules are
needed. The basis of our study is the use of a clustering method to classify similarities or
dissimilarities of the spatial distributions of electrostatic potentials of the various CCP modules
of FH. We place special emphasis on CCP modules that are known from experimental data to
bind to C3b and polyanion-coated surfaces, such as GAGs and sialic acid found in human cells
and tissues. We also discuss those CCP modules that are implicated directly to disease. For
example, the SNP and polyanion-binding hotspot implicated in AMD are located in CCP7. A
polyanion-binding hotspot implicated in aHUS is in CCP20. A loss of charge mutation implicated

in DDD is in CCPA4. Finally, we make binding predictions for CCP modules of unknown function.

3.2.2. Methods

Our atomic-level calculations are possible when three-dimensional structures are known

at high resolution. FH has been the focus of several structural biology studies, from which
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several crystallographic or NMR structures for CCP modules have been determined. Currently
the structures of 14 CCP modules are available, and in most cases multiple structures exist for
single, double, triple, or quadruple modules (Appendix F). Modules with experimentally
determined structures are: CCP1-8, 12, 13, 15, 16, and 19-20. Therefore, our initial step was the
examination of all available CCP structures to (i) select those that are more suitable for our
calculations and (ii) select those that are suitable to be used as templates to generate homology
models for the 6 CCPs without experimentally-determined structures. Our criteria for (i) were
quality (resolution), completeness of the structure with maximum amount of secondary
structure, and lack of selenomethionine (MSE) amino acids. Appendix F and Appendix G provide
lists of the experimentally derived structures used and reasoning. Our criteria for (ii) were
quality of sequence alignment and percent identity. To generate homology models for CCP9-11,
14, 17, and 18 we first obtained the amino acid sequences from the SMART database and
subsequently we used sequence alignments with the CCP modules of known structure. Here, the
CCP module is defined as the sequence between and including the first and fourth conserved
cysteines. Amino acid sequence alignment scores were produced for all possible target-template
pairs using ClustalW [40]. The templates that produced alignments with the highest percent
identity score, while still providing proper alignment of the four cysteines and a conserved
tryptophan close to the C-terminus were chosen. The CCP module sequences and template
structures, as listed in and, were imported into the Automodel module of the homology
modeling package Modeller 9v5 . After generation, each model was visualized using Deep View
[105] and inspected for van der Waals clashes, secondary structure quality, and disulfide bond
correctness. The complete set of structures for all 20 FH CCP modules was superimposed using

Deep View for comparison. Superimposition was based on C,-atoms using CCP16 as reference,
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because CCP16 contained the highest quality secondary structure. The coordinates of each CCP
module were saved in the orientation of the superimposition. This was necessary to assure that
all CCP modules had the same center and coordinate fit in the box used in subsequent Poisson-
Boltzmann calculations.

Electrostatic potential calculations were performed using the Adaptive Poisson-
Boltzmann Solver (APBS) [3], which utilizes a grid-based method to solve the linearized Poisson-
Boltzmann equation. Prior to electrostatic potential calculations, partial charges and atomic radii
were assigned using the software PDB2PQR and the PARSE force field . A dielectric coefficient of
2 was used for the protein whereas a dielectric coefficient of 78.5 was used for the solvent. Two
sets of calculations were carried out at ionic strengths corresponding to 0 mM and 150 mM
concentrations, assuming +1/-1 charges for the counterions. The dielectric surface was defined
using a sphere with probe radius of 1.4 A and selecting the contact surface, whereas the ion
accessibility surface was defined using a sphere with probe radius of 2.0 A. Since the amount of
screening differs between the two ionic strength parameters, the physical dimensions of the box
used for each set of calculations was set to different values to ensure that the largest magnitude
values were captured, while still providing maximum resolution. The grid size was 129 x 129 x
129 points. A box size of 110 A x 110 A x 110 A was used for the calculations corresponding to 0
mM ionic strength, whereas a box size of 60 A x 60 A x 60 A was used for the calculations
corresponding to 150 mM ionic strength. All CCP modules were centered on CCP16 in
electrostatic potential calculations. The spatial distributions of electrostatic potential were
visualized and plotted in the form of isopotential contours using the molecular graphics program

Chimera [106].
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After calculating the electrostatic potentials, the final step was the clustering of spatial
distributions of electrostatic potentials of the 20 FH CCP modules. A distance matrix was
generated based on an electrostatic similarity distance (ESD). An ESD is a measure of the
amount of dissimilarity between the spatial distributions of electrostatic potential for two
homologous proteins and has been used previously in different protein clustering studies
[21,23,25,38,107-110]. The ESD used in this study is equivalent to an average difference, and
was calculated by taking the average of the normalized error between all corresponding grid
points according to Eq. 2-6. According to this scheme, two proteins (CCP modules here) are
identical if they have ESD 0 and totally different if they have ESD 1. The distance matrix was
produced by calculating the ESD between every CCP module pair, resulting in a 20 x 20 array.
Distance matrix generation and hierarchal clustering using average linkage was performed using
in-house R scripts that utilize functions of the R-base package [48]. The clustering results are
presented as dendrograms using the R plot functions.

Clustering was also performed for the C3b MG domains using a similar procedure. The
C3b structure with PDB Code 2l07 was used [102]. Since the MG domains exhibit more
structural and sequence variability than the FH CCPs, a more elaborate alignment procedure
was required. The “Match Maker” module of Chimera was utilized in this instance, since it
includes a secondary structure score with a variable weight that provided optimal coordinate
superposition. The MG domains were aligned to MG2 since this provided the best alignment.
The grid size used for the MG domain calculations was 129 x 129 x 129 points. A box size of 135
A x 140 A x 130 A was used for the calculations corresponding to 0 mM ionic strength, whereas
a box size of 65 A x 85 A x 60 A was used for the calculations corresponding to 150 mM ionic

strength. All CCP modules were centered on MG2 in electrostatic potential calculations.
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3.2.3. Results and Discussion

The 20 CCP modules of FH are structurally homologous, but have diverse sequences and
physicochemical properties. Because of the striking charge diversity among individual FH CCP
modules, we initiated this structural bioinformatics study to examine the electrostatic
properties of CCP modules in terms of net charge, spatial distributions of charge and
electrostatic potentials. Our goal is to classify CCP modules according to the spatial distributions
of their electrostatic potentials and to make correlations with the binding properties and
pathobiology of FH. These correlations are based on our clustering analysis of electrostatic
potentials and knowledge from available experimental and clinical data.

The rationale for our study is that if electrostatics is responsible (or contributes) to
binding, we can identify FH CCP modules with similar binding abilities. Besides electrostatic
interactions with C3b, FH interacts with negatively charged surfaces because it has binding sites
for sialic acid and GAGs, including heparin. Also, if electrostatics plays a known role in disease,
through the presence of electrostatic hotspots in the surface of certain CCP modules, then other
CCP modules with similar electrostatic profiles may also play a role in the specific disease.

FH is a long and flexible chain-like protein consisting of 20 modules, with each module
having distinct properties and role in binding to PBS or C3b/C3c/C3d fragments or other
molecules. Also, individual CCP modules have been associated to FH-mediated diseases, such as
AMD, aHUS, and DDD. It is reasonable to decompose the binding and pathobiological properties
of FH to respective properties of individual CCP modules. Although sequence identities are in
the range of 5-40%, a major contributor to the formation of tertiary structures converged to the
CCP module topology is the presence of two conserved disulfide bridges. (For clarification, 16

CCP modules have 30-40% identity with one or more CCP modules and 4 have 21-29% identities
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with one or more CCP modules; Appendix A.) Our efforts are focused on the role of charge
distributions within the tertiary structures and on classifying similarities/dissimilarities of spatial
distributions of electrostatic potentials derived from charge. This work provides useful
electrostatic analysis to form hypotheses and make predictions for interactions and biological

function of FH.
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Figure 3-2 Clustering diagram of the 20 CCP modules of FH according the spatial distributions of their
electrostatic potentials. Calculations of electrostatic potentials were performed using ionic strengths
corresponding to 0 mM (A) and 150 mM (B) counterion concentration. Isopotential contours are plotted
at =1 kgT/e, with blue and red corresponding to positive and negative electrostatic potential, respectively.
Four orientations are shown corresponding to rotations about the vertical axis, as indicated. The net
charge, Q, of each module is marked in the figure.

Figure 3-2 shows the clustering of the spatial distributions of electrostatic potentials for
the 20 CCP modules of FH at ionic strengths of 0 mM and 150 mM. The figure depicts which CCP

modules have similar electrostatic profile, by taking into account not only charge, but also how
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the charge-generated electrostatic potential is distributed in space. Although CCP modules with
similar charges tend to cluster together, it is the three-dimensional structure of each module
and the charge topology within each structure that renders the specific spatial distributions of
electrostatic potentials. There are seven CCP modules with positive net charge: CCP1, 5, 7, 10,
13, 17, and 20 (net charges 1 to 5; Figure 3-2). Twelve CCP modules have negative net charge:
CCP2, 3,6, 8,9, 11, 12, 14, 15, 16, 18, and 19 (net charges -1 to -6; Figure 3-2). Only the CCP4
module has 0 net charge (Figure 3-2). Because of local cancellation or enhancement of
electrostatic potentials in spatial proximity, CCP modules with similar charges may cluster
differently, but within the same superclusters (Figure 3-2).

At 0 mM counterion concentrations we observe the formation of two superclusters
including modules with net charges Q > 1 and Q < -1, whereas the module with Q = 0 forms its
own branch on its own within the negative supercluster (Figure 3-2A). Finer clustering occurs
according to similarities in localized electrostatic properties of modules within each
supercluster. At 150 mM counterion concentration we also observe the formation of two
superclusters including modules with net charges Q > 2 and Q < -2. However, modules with net
charges 0 and %1 cluster within the negative supercluster, with 5 out of 6 such modules forming
their own cluster (Figure 3-2B). This demonstrates the importance of ionic screening of
Coulombic interactions, which may reflect on protein function. These data also suggest that
spatial distributions of electrostatic potentials may be better predictors for electrostatically-
driven protein function than net charge alone.

Our analysis focuses on the FH CCP modules, defined with boundaries of the first and
fourth conserved cysteines. In addition, the flexible linkers of consecutive CCP modules may

mediate electrostatic interactions if they contain charged amino acids. Appendix B provides the
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linker and N- and C-terminal sequences to indicate if they are amenable to electrostatic
interactions. The basic idea behind performing electrostatic potential calculations is that the
excess charge in individual CCP modules is responsible for driving FH interactions with target
proteins or surfaces. Excess net charge is responsible for non-specific recognition between two
proteins or a protein and a ligand carrying opposite net charges, based on long-range
electrostatic interactions . Recognition is followed by specific binding, involving predominantly
short-range interactions, such as hydrogen bonds, salt bridges, and hydrophobic. The
electrostatic clustering of Figure 3-2 presents a quantitative classification of CCP modules with
similar electrostatic properties and perhaps similar functions.

Our data suggest that the 5 predominantly positively charged (Q > 2) CCP modules are
potential interaction sites with polyanions (Figure 3-2). CCP modules clustering together may
have similar binding properties. These are the CCP1, 5, 7, 13, and 20. An earlier low-resolution
structure of FH has proposed a folded-back dynamic structure that may enable multiple
modules to recognize the same polyanionic surface. Polyanion-binding sites in CCP19-20 and
CCP6-8 have been discussed in the past in view of experimental [111,112] and structural data.
Also, heparin-binding sites have been previously discussed for CCP7, CCP12-14, and CCP19-20
[111,113]. Figure 3-2 suggests that it is impossible for CCP6 to be a polyanion-binding site since
it is excessively negatively charged. Modules CCP8 and 19 have low probability for binding
polyanions since their total charge is -1; however, they both have patches of positive
electrostatic potential hotspots, which cannot exclude a localized ability to bind polyanions
(Figure 3-2). It may also be possible that modules CCP8 and 19 act as scaffolds to orient

neighboring modules CCP7 and 20, respectively, for polyanion binding. Previously not discussed,
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to the best of our knowledge, CCP1 and CCP5 may deserve attention as potential polyanion-

binding site, according to Figure 3-2.
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Figure 3-3 Clustering diagram of the 8 MG domains of C3b (PDB Code 2107) according to the spatial
distributions of their electrostatic potentials. Calculations of electrostatic potentials were performed using
ionic strengths corresponding to 0 mM (A) and 150 mM (B) counterion concentration. Isopotential
contours are plotted at =1 kgT/e, with blue and red corresponding to positive and negative electrostatic
potential, respectively. Four orientations are shown corresponding to rotations about the vertical axis, as
indicated. The net charge, Q, of each module is marked in the figure. (C) The 8 MG domains are shown in
ribbon representations with different colors, as marked. The net charge of each MG domain is also
marked. The amino acid ranges for each of the C3b domains are: MG1 (1-104), MG2 (105-209), MG3 (210-
328), MG4 (329-426), MG5 (427-534), MG6 (535-577 and 746-806), MG7 (807-911), MG8 (1331-1474). (D)
Isopotential contour plot for C3b at +3 kgT/e. The color code is blue for positive and red for negative
electrostatic potential. The calculation of electrostatic potential was performed using ionic strength
corresponding to 0 mM counterion concentration.

FH regulates complement activation by interacting with C3b. There are several

experimental and structural studies that implicate CCP1-4 and 19-20 and possibly 7 and 12-14
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(or 11-15) in binding to C3b [90,94,112,114-117]. CCP19-20 have also been proposed to bind to
C3d and CCP12-14 have also been proposed to bind C3c, suggesting that different CCP modules
may contact different C3b sites. Figure 3-3A,B shows the clustering of the spatial distributions of
electrostatic potentials for the 8 MG domains of C3b, whose relative topology is shown in Figure
3-3C. As is the case with the CCP modules of FH, there is charge diversity in the MG domains of
C3b, ranging from excess charge of -6 to excess charge of +8. Figure 3-3 depicts two
superclusters for positive and negative CCP modules, with finer clustering within each
supercluster based on the presence of localized charge hotspots and the inclusion or not of
counterions in the calculations. There are other domains in C3b that are not homologous to MG
domains and cannot be included in the clustering of Figure 3-3. Appendix | summarizes these
domains, their structures and spatial distributions of their electrostatic potentials to indicate
possible binding effects. The overall electrostatic potential of C3b is excessively negative (Figure
3-3D), with profound contributions from non-MG domains, such as a’Nt, C3d, CUB, LNK, and
C345C with net charges -5, -4, -6, +2, and -12, respectively (Appendix I). Only 3 MG domains
and LNK have positive net charges. Taking into account the dynamics of C3b, it is likely that
there are transient openings that expose positively charged patches in C3b, which may be sites
of interaction with negatively charged CCP modules of FH.

When we initiated this study, we expected, to a large extent, complementary
electrostatic properties for interacting macrodipoles between C3b domains and FH modules.
Although we recognize that the tertiary structure of C3b, which is rather compact, may
introduce cancellations or enhancements in the electrostatic potentials at the vicinities of
neighboring domains that contact each other, this may not be the case for FH whose modules

form an extended chain-like structure. When the crystallographic structure of the complex
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between FH(CCP1-4) and C3b was published [102], the following contacts were observed: (i)
positive-negative net charge, CCP1-a’Nt and Linker(CCP1-CCP2)-a’Nt; neutral-negative net
charge, CCP4-C3d and CCP4-MG1; positive-positive net charge, CCP1-MG7 and Linker(CCP1-
CCP2)-a’Nt; negative-negative net charge, CCP2-a’Nt, CCP2-MG2, CCP2-MG®6, CCP3-CUB, CCP3-
MG1, and CCP3-MG2 (Figure 3-4). The types of contacts, decomposed to hydrogen bond and
salt bridge (up to 3.5 A), Coulombic (up to 8 A), and hydrophobic interactions, are summarized in
Appendix C, Appendix D, and Appendix E. In all cases, there are strong local pairwise interactions
that stabilize the interacting FH(module)-C3b(domain) complexes. All interacting module-
domain complexes involve at least one salt bridge and many hydrogen bonding, and Coulombic
interactions. Hydrophobic interactions are more prominent in the case of CCP1 and 2 compared
to CCP3 and 4. Figure 3-4B,C shows a surface projection of the electrostatic potential
complementarity for the FH(CCP1-4)-C3b complex, depicting interacting positive-negative
hotspots or positive/negative-neutral areas.

Based on our findings and guided by the crystal structure, we propose the following
model for FH(CCP1-4)-C3b recognition and binding. The recognition process is driven by long-
range interactions between the positive CCP1/Linker(CCP1-CCP2) and the negative a’Nt, which
orient FH on the surface of C3b to favor specific short-range interactions and lock binding. Upon
formation of the non-specific encounter complex, local structural rearrangements and solvent
exclusion take place to accommodate favorable short-range interactions for binding. The
binding step is dominated by the stronger and specific pairwise interactions in local areas of
complementary charge hotspots or neutral-charged spots. In our analysis, above, long-range
electrostatic interactions are depicted by the spatial distributions of electrostatic potentials and

short-range electrostatic interactions are depicted by the surface projections of electrostatic
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potentials. Our analysis shows that charge distributions and electrostatic potential distributions
are more useful in understanding C3b-FH interactions than net charges alone. Our clustering
analysis shows stronger ionic strength effect on neutral or slightly charged (+/- 1)
modules/domains. The 0 mM clustering data of excessively charged modules/domains (| Q| = 2),
although non-physiological, contain less localized electrostatic hotspots, as would be expected

by the inclusion of the dynamic character of amino acid side chains.

Figure 3-4 Electrostatic nature of interaction between FH(CCP1-4) and C3b. (A) FH(CCP1-4) in C-trace
representation and C3b in a surface representation. The 8 MG domains and the C3d, C345C, CUB, and
o’Nt domains are shown in different colors and marked. CCP1 and CCP2 of FH are also marked. (B)
FH(CCP1-4) in C-trace representation and C3b in surface representation, colored by projection of its
electrostatic potential. (C) FH(CCP1-4) in surface representation, colored by projection of its electrostatic
potential. The right image of (C) is the contact surface of FH(CCP1-2) with C3b in the orientation of panel
(B) and. Comparison of panels (B) and (C) depicts electrostatic potential complementarity. The color code
in (B) and (C) is blue for positive and red for negative electrostatic potential.
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Previous studies have shown that the FH module CCP7 is involved in AMD through the
Tyr/His402 SNP, with His being the amino acid of the population at risk [84,86-88]. We have
performed pKa calculations to investigate if Tyr402 (an acidic amino acid with model pKa of 9.6)
or His402 (a basic amino acid with model pKa of 6.3) are found in conformationally strained
environments. This would have been indicated by unusual shifts in pKa values; however this was
not the case (data not shown). Indeed both Tyr402 and His402 are solvent exposed in the NMR
structures [18], which suggests freedom of the amino acid in position 402 for involvement in
specific side chain intermolecular interactions possibly with C3b. CCP7 has also a polyanion-
binding hotspot on its surface [94] and overall positive electrostatic potential (Figure 3-2), which
may be important for nonspecific interactions with negatively charged regions of C3b. Barlow
and coworkers discuss the possibility of disruption of the ability of FH to bind GAGs upon
mutation of Tyr402 to His402 [18]. They propose that the interaction of CCP7 with heparin or
sulfated heparin oligosaccharides is driven by ring stacking interactions of the two tyrosine-rich
regions of CCP7 (Tyr390, Tyr393, Tyr402, and 398, Tyr420) and sugar rings. This interaction may
be perturbed upon removal of Tyr402 and replacement by His402 in the genetically predisposed
population for AMD. A unit charge of the SNP amino acid, does not appear to play a role, as both
Tyr402 and His402 are expected to be neutral at physiological pH since they are solvent exposed
and our calculations do not suggest pKa perturbations. In essence, the model of Barlow and
coworkers [18] implicates ring stacking in addition to overall charge complementarity in the case
of heparin and GAGs in general. The same study provides a structural picture of these
interactions using chemical shift perturbation mapping of NMR data and suggests the presence
of two faces of interaction. Another study also suggests differential heparin binding for the

Tyr402 and His402 variants of CCP6-8 [118]. Finally, the crystal structures of CCP6-8(His402)
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(with the genetic variation His402) in complex with sucrose octasulfate demonstrates proximity

of Tyr390 and His402 with sulfate groups [119].

C3b/C3c

5 7 13
1 20

F e

Polyanion Surface

Figure 3-5 Cartoon representing our model for FH interactions with polyanion-containing surfaces and
C3b. Other interaction sites are also marked. The CCP modules or module ranges discussed in text are
numbered. (A) A simple model based on previous structural and mutagenesis data, which implicate CCP20
in anchoring polyanion-rich surfaces and CCP1-4, CCP7, 12-14 and 19-20 in interacting with C3b and its
fragments. CCP modules that contain previously proposed polyanion-binding sites (PBS) are marked. The
N- and C-termini are marked. The black dots indicate heparin binding sites. The CCP7 module interacting
with C-reactive protein (CRP) is marked. CCP modules implicated in complement-mediated disease, such
as AMD, DDD, and aHUS are marked in red. (B) A more elaborate model that incorporates electrostatic
properties from our analysis. This model implicates CCP1, CCP5, CCP7, CCP13, and CCP20 in interactions
with polyanion-rich sites. CCP modules colored in blue possess polyanion-binding sites and those with red
borders are C3b-binding sites, in analogy with panel (A).

Module CCP4 is involved in DDD through deletion of Lys224 [99]. CCP4 is the only
neutral module of FH, with balanced, and rather unusual, spatial distribution of electrostatic
potential (Figure 3-2). According the FH(CCP1-4)-C3b crystal structure, CCP4 contacts the
negatively charged domains C3d and MGL1. It is likely that the deletion of the positively charged
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Lys224 produces an imbalance in the spatial distribution of electrostatic potential of CCP4. This
would favor excess negative electrostatic potential which may be disruptive for the binding of
CCPA4. It is possible that module CCP7 is also involved in DDD through the polyanion-binding
hotspot [94]. Interestingly, there is a link between DDD and AMD because often patients have
both diseases [120].

Modules CCP19-20 are involved in aHUS, because many aHUS-associated mutations are
located in CCP20 [90,94,97,111,112,121,122]. Our data suggest that CCP20 is a polyanion-
binding site because of its excess positive spatial distribution of electrostatic potential (Figure
3-2). On the contrary, CCP19, with net charge -1, has a somehow balanced spatial distribution
of electrostatic potential (Figure 3-2). The role of CCP19 may be that of a scaffold to properly
orient the structure of CCP20 or binding to C3b/C3d; however, a recent study suggests that
CCP19 may also be a binding module to C3b/C3d [123], which may be possible through localized
short-range interactions. It is likely that the observed mutations in CCP19-20 affect both
functions of these modules, their polyanion-binding ability and their ability to bind C3b/C3d. A
number of C3b mutations have also been reported to be associated with aHUS, however these
mutations are enhancing or inhibiting mainly the interaction of C3b with membrane cofactor
protein (MCP) [124]. Some of these mutations involve ionizable amino acids. Additional studies
to identify similar mutations that affect C3b/C3d interactions with FH are necessary.

Figure 3-5A presents a previously published functional map of FH [117], including an
additional C3d binding site for CCP4, identified by the crystal structure of FH(CCP1-4)-C3b [102].
These interactions are hypothesized to be responsible for regulation of the complement system
in self-surfaces. The presence of a complex bending of FH is likely, to allow contact of the

polyanion-binding site of CCP6-8 with cell surfaces; however, according to our data, only the
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highly positively charged CCP7 of this triplet is capable of binding to polyanion sites. We propose
a modified model which includes anchoring of FH on cell surfaces through polyanion-binding
sites in the 5 excessively positively charged modules CCP1, 5, 7, 13 and 20. This binding allows
for the following sets of interactions with C3b/C3d: (i) CCP1-4, 7, 12-14, and 19-20 with C3b; and
(ii) CCP4 and 19-20 with the C3d portion of C3b. As C3d is the opsonization site, it must be in
proximity to the cell surfaces, and so can be the positively charged modules CCP1, 5, 7, 13, and
20. This can happen in a 1:1 complex, which would bring CCP4 and 19-20 in a topology
surrounding C3d, or in bivalent complexes. Recent studies have suggested that FH undergoes
self-association in the presence of polyanions [121,123,125,126]. It is likely that the function of
FH and implication to disease is more complex than presented here. However, the presented
electrostatic arguments for association with polyanions and disease-related mutations are
applicable for monomers and also for higher order self-associated complexes.

Our model proposes non-specific electrostatic interactions with polyanion surfaces and
specific electrostatic (and non-electrostatic) interactions with C3b. Non-specific interactions
with polyanions in self surfaces result in high concentration of FH molecules, which become
available for C3b binding and subsequent C3b degradation. The number of C3b molecules is
sparse in self surfaces because of lack of (or reduced) amplification loop of the complement
system alternative pathway. On the contrary, in nonself surfaces there is less concentration of
FH molecules and excess of the C3 convertase C3b-Bb. The latter is responsible for the
amplification of C3 cleavage, which generates numerous copies of the C3b opsonin for pathogen
surface coating, and subsequent elimination by phagocytosis. We can also factor in this model

possible auto-inhibitory association interactions between positive and negative CCP modules (or
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hotspots). This type auto-association may be present in free FH, which, in the presence of PBS,
unwinds to accommodate binding to C3b.

Barlow and coworkers have previously presented a binding model involving anchoring of
CCP20 to self-surface through “C3b/polyanion composite binding site”, with CCP7 acting as a
mediator and CCP1-4 disrupting the formation and stability of C3/C5 convertases [117]. The
proposed mediating ability of CCP7 was called “proof-reading” to aid discrimination of self from
non-self sulfation patterns [117]. The choice of the intermediate module CCP7 as the mediator
may be based on the fact that it is part of the binding site of many bacteria known to interact
with FH [89,100,111]; however, there are bacterial binding sites that do not include CCP7 [111].
The hypothesis of Barlow and coworkers is attractive and overall in line with our electrostatic

data.

Figure 3-6 Competition in the formation of C3b complexes. Superposition of the C3b-FH(CCP1-4) and C3b-
Bb (C3 convertase) complexes and free C3b. The structure of the C3b-FH complex (C3b in white, FH in
black) is shown in surface representation, while the C3b-Bb complex is shown in ribbon representation
(C3b in green, Bb in red) and free C3b is shown in yellow ribbon representation. Conformational
transitions involving mainly the C345C domain of C3b are identifiable in the figure. The PDB Codes are
2WII for C3b-FH(CCP1-4), 2WIN for C3b-Bb, and 2107 for free C3b.

A fundamental question rises on the physicochemical basis of the competition between

FH and the C3 convertase C3b-Bb for C3b binding on self and non-self surfaces. Figure 3-6 shows
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a superposition of the C3b-FH(CCP1-4) and C3b-Bb complexes, which demonstrates how
FH(CCP1-4) binding can sterically hinder C3b-Bb access to its binding site [102]. According to our
model FH(CCP1-4) binding is facilitated by non-specific electrostatic interactions between
positive CCP modules and polyanion sites in self surfaces. FH(CCP1-4) binding is initiated by the
electrostatic recognition of CCP1 and o’Nt. Upon FH binding, a conformational transition is
observed in C3b involving moving away of the negatively charged C345C domain (Q = -12)
(Figure 3-6), possibly owed to non-specific electrostatic repulsion with CCP2 (Q = -6) and CCP3
(Q = -4). Conformational transition in the opposite direction occurs upon Bb binding to C3b
involving the C345C domain (Figure 3-6). In summary, it is likely that synergistic binding of the
positive FH CCP modules to polyanion surfaces and specific C3b-FH contacts contribute to the
formation of a stronger C3b-FH complex than a C3b-Bb complex on self surfaces. Although most
of the binding studies are based on experimental mutagenesis studies or CCP module deletions,
our electrostatic and clustering analysis together with structural data provide additional tools to
guide future experiments that are needed for refining the proposed model of C3b-FH
interaction. The electrostatic data are useful to establish mechanistic hypotheses for C3b-FH and

C3b-Bb interactions.
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3.3. THE TWO SIDES OF COMPLEMENT C3D: EVOLUTION OF ELECTROSTATICS

IN A LINK BETWEEN INNATE AND ADAPTIVE IMMUNITY.

3.3.1. Introduction

Complement C3d is a domain and cleavage product of complement protein C3, which is
the central protein involved in the activation and up regulation of the complement immune
system [79,127]. As a domain of complement C3, C3d is involved in the opsonization of
pathogens through a highly reactive thioester bond [79,127]. Additionally, when attached to
pathogen cell surfaces complement fragment C3d interacts with complement receptor 2 (CR2),
which is expressed on the surface of B-cells, to form B-cell co-receptor complexes, a link
between innate and adaptive immunities [79,127,128]. The C3d-CR2 interaction increases B-cell
sensitivity to an antigen by 1000 — 10000 fold, making the interaction a critical aspect in the
initiation of an adaptive immune response [79,129]. Due to the significance of the C3d-CR2
interaction, extensive research has been performed investigating the nature of the interaction
[29,30,130-135], as well as possible approaches for utilizing this interaction in the design of new
therapeutics and vaccines [79,81]. As has been discussed for many complement proteins,
electrostatic forces contribute significantly to the function of C3d [29,30]. Often as a result of
evolution many proteins, especially those of the complement system, contain clusters of like-
charged residues, which generate regions of high electrostatic potential that are often referred
as electrostatic “hot-spots” [136,137]. These electrostatic “hot-spots” tend to correspond with
functional sites, since they can result in acceleration of protein association, and can stabilize
protein complexes [9,138]. When referring to the functional sites of C3d, two opposing surfaces

have been described: 1) CR2-face, a highly acidic concave surface known to be the binding site
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of several host/pathogenic ligands (Figure 3-7, top; see also Appendix J and Appendix K); and 2)
thioester-face, a basic surface surrounding the thioester bond utilized in covalent attachment to
pathogen cell surfaces (Figure 3-7, bottom). The acidic “patch” has been shown to be involved in
recognition and binding during the association of C3d to CR2 [133,135], as well as to bacterial
inhibitors of the complement system [96,139,140]. The basic surface however, accelerates the

covalent attachment of C3/C3d to pathogenic cell surfaces.

Binding site for
host ligands

Binds pathogenic
cell surfaces

Figure 3-7 Electrostatic potential of human C3d. Electrostatic potential is projected onto the surface of
C3d (PDB Code: 1C3D). The color transitions from red — white — blue when going from negative — neutral —
positive electrostatic potential.

Evolutionarily, C3d is of great interest since it can be found in species that have been on
the earth for 600 million years, while its interaction with CR2 is believed to have been gained
after adaptive immunity, which first appeared in teleost fish [129]. Since electrostatics has been
shown to play such a key role in the function of C3d, we propose that the electrostatic character
of C3d has evolved to allow for optimal performance of both functions simultaneously. This
follows from the logic that covalent attachment of C3d to pathogen cell surfaces, and the

interaction between C3d and CR2 on the surface of B-cells, must both occur for this link
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between innate and adaptive immunities to be activated. In this study, we investigate the
presence of electrostatic “hot-spots” on complement C3d using a novel computational method
involving perturbation of electrostatic properties of proteins. Additionally we probe the
evolution of the electrostatic character of C3d, through the use of homology modeling, to gain
insight into the role of electrostatics in the gained interaction with CR2, as well as the surface of

the conserved thioester bond.

3.3.2. Methods

All calculations for human C3d, as well as all homology modeling, was based on the
crystal structure of unbound human C3d (PDB Code: 1C3D) [135]. The sequence for human
complement C3d was extracted from 1C3D and was used as a Blast query to identify C3d
homologue sequences from the UniProt database [141]. The 23 C3d homologues were selected
to optimize the range of sequence similarity when compared to human C3d (~37 — 85 % identity
with human), but were chosen while keeping in mind that ~40% similarity is needed to ensure
accuracy when performing homology modeling (Appendix P). As an initial comparison, a
multiple sequence alignment comparing the 24 C3d homologues was generated using MUSCLE
[142] and Bio3D [50] (Appendix L). The resulting alignment was used to populate a pairwise
sequence identity matrix comparing the 24 C3d homologues. A second matrix comparing
pairwise charge similarity was also generated by identifying the number of amino acid positions
with a like charged amino acid for each pair of sequences, meaning the number of positions
where both sequences have either K/R or D/E. The generated similarity matrices were used as

input for hierarchical clustering using the R statistical language [48], and the results were
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visualized using heatmaps with dendrograms. The functional regions for sequence clustering
were defined based on the x-coordinates of the residues as illustrated by Appendix O.

Homology modeling was performed using the Automodel module of Modeller 9v9 [143]
to produce structures for the 23 additional homologues of complement C3d. The crystal
structure of unbound human complement C3d (1C3D) was used as the template structure.
Sequence alignments between human C3d and the 23 C3d homologues were generated using
MUSCLE in conjunction with the R package Bio3D, and supplied as input to Modeller. Each
homology was subsequently superimposed onto 1C3D using Bio3D. The generated models were
then prepped using PDB2PQR [42], in order to add atomic radii and partial charges according to
the PARSE [43] forcefield to the coordinate files. Alanine-scan mutagenesis was performed
using the coordinates of the 24 C3d homologues as parent structures and applying the AESOP
computational framework, Analysis of Electrostatic Similarities of Proteins [25], which truncates
each ionizable residue (Arg, Lys, His, Glu, and Asp) to alanine, one at a time.

A 20-ns explicit-solvent molecular dynamics simulation was configured using VMD [12]
and performed using NAMD [11]. The crystal structure of human C3d (1C3D) was placed in a 82
A x 82 A x 82 A water box with NaCl ions at 150 mM ion strength. The system was initially
minimized using 1000 steps of energy minimization, to remove unfavorable torsions and
contacts. The system was further relaxed by constraining the protein while allowing the solvent
to equilibrate for 100 ps. Constraints were reduced linearly at 100 ps intervals, resulting in a
total of 1 ns of equilibration. The simulation was performed using a 2 fs time step with rigid
hydrogen bonds imposed by SHAKE.

All electrostatic potential calculations were performed using APBS [3], based on a grid

with 129 x 129 x 129 grid points and length 98 A x 116 A x 116 A. The solvent environment was

91



represented by a dielectric constant of 78.57 with a counterion concentration of 0 mM, while
the protein dielectric constant was 20. Each electrostatic potential calculation was centered on
1C3D to ensure proper alignment of electrostatic potentials prior to similarity calculations. For
each set of electrostatic potentials, cumulative distributions of electrostatic similarity (ESI) were

calculated using the AESOP framework, according to the following expression:

|¢A(i:j: k) - ¢B,n(i!jl k)l
max(1pa(i,j, k), |5 (irj, k)|)

N
1
ESI(i,j, k) = NZ 1-— Eq. 3-1.
n=1

Here, ¢, represents the electrostatic potential to which all other potentials are compared
(parent), while ¢, represents the N members of the family of electrostatic potentials to be
compared. The ESI is calculated at each grid point (ij,k), and normalized by N, the number of
electrostatic potentials comparisons. For example, the ESI distribution for the C3d homologues
(Figure 3-8B) was calculated by comparing the electrostatic potentials of the 23 homology
models to the electrostatic potential of 1C3D. The surface projections of electrostatic similarity

were generated using UCSF Chimera [106].

3.3.3. Results and Discussion

Through the course of evolution, in addition to sequence, electrostatic character is also
often conserved. Conserved electrostatic potential can be responsible for acceleration and
strengthening of protein-protein association, and is therefore indicative of the location of
functional sites. Wade et al. have proposed computational methods utilizing homology modeling
and Poisson-Boltzmann electrostatic calculations to quantitatively identify regions of conserved
electrostatic character [22,109]. The approach calculates electrostatic similarity indices (ESI) to

determine the cumulative spatial distribution of electrostatic similarity across a family of
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homologous proteins. Similar ESI calculations were performed for 24 C3d homologues, based on
homology models, as shown in Figure 2. The C3d homologues were chosen from a variety of
species, at various evolutionary time points, and are diverse both in sequence (~36 — 84 %
identity with human) and in net charge (-13 to +8). Isopotential contours for the electrostatic
potentials of the C3d homologues further illustrate the diversity of their electrostatic character
(Figure 3-8A). Despite large variations in the electrostatic potentials of the C3d homologues, the
analysis identified two regions of high electrostatic similarity (Figure 3-8B; circled and indicated
in red), which corresponded to the two functional sites of C3d. This conservation of the
electrostatic potential surrounding the two functional sites further suggests a central role for
electrostatics in C3d function; however, conserved electrostatic potential alone is not

necessarily indicative of the existence of electrostatic “hot-spots”.
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Figure 3-8 Electrostatic similarity analysis of C3d homologues. (A) Electrostatic potential distributions for
24 homologues of C3d [red, negative; blue, positive]. The net charge of each homologue is provided in the
parentheses. (B) Cumulative electrostatic similarity distribution for 24 homologues projected onto the
surface of human C3d [blue — green — red; low to high similarity].
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If through the evolution of C3d, electrostatics has become crucial to function, it is
plausible that the electrostatic nature of the protein would be resistant to perturbation. This
stems from the assumption that a disruption in the electrostatic character of C3d would result in
a reduction or loss of function. Furthermore, the necessity for electrostatic perturbation
resistance is already suggested by the presence of clusters of like charged residues (“hot-
spots”). To test this hypothesis, for the case of human C3d, we generated two sets of perturbed
electrostatic potentials based on: i) dynamics and ii) mutations. For the dynamics, a 20 ns
explicit-solvent molecular dynamics (MD) simulation was performed, from which 200
conformations of C3d were extracted. As for the mutations, a computational alanine-scan was

performed using the AESOP framework [25], in which each charged residue was mutated to

Figure 3-9 Electrostatic similarity distributions for perturbed human C3d structures. (A) Perturbation map
for a 20 ns explicit-solvent MD simulation, based on 200 snapshots. (B) Perturbation map based on a
theoretical alanine scan, consisting of 64 charged residue to alanine mutations. Color scheme is: blue —
green — red; low to high similarity.

alanine, one at a time. For both sets of perturbed structures, the procedure used to compare
the C3d homologues was also applied to generate ESI distributions to identify regions of high
electrostatic similarity, or those regions least affected by perturbation. Surface projections of

the ESI distributions, referred henceforth as perturbation maps, were generated for the two sets
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of perturbed structures. Both perturbation maps, based on either dynamics or mutation,
identify two similar regions with resistance to perturbation (Figure 3-9; circled and indicated in
red). These regions correspond to the two functional sites of C3d (Figure 3-7), as well as the two
regions of evolutionarily conserved electrostatic potential (Figure 3-8B). This resistance to
electrostatic perturbation of the two functional sites, suggest the presence on an electrostatic
“hot-spot” at each site, which compensate for changes in the character of these regions. The
two electrostatic “hot-spots” are slightly larger and more distinct in the mutation-based
perturbation map (Figure 3-9B), when compared to the dynamics-based (Figure 3-9A), and this
arises due to the size of the perturbation. This is understandable since depending on the
amount of conformational change, dynamics can have noticeable effect on electrostatic
potential; however, both perturbation types are still quite modest, yet are able to identify these

electrostatic “hot-spots”.
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Figure 3-10 Mutation-based perturbation maps for 24 C3d homologues. The cumulative electrostatic
similarity distributions for alanine-scan charge perturbations are projected onto the surface of each
respective structure with two rotations: (A) CR2-face and (B) thioester-face. Perturbation map color
scheme is: blue — green — red; low to high similarity. Colored boxes are used to group homologues from
similar species. The box color code is as follows: mammals, dark-blue; birds, orange; reptiles, red;
amphibians, green; fish, light-blue; jawless fish, purple; invertebrates, black.
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Given the presence of perturbation resistance in the electrostatic character of human
C3d, the question of how exactly did this characteristic come about arises. This question is even
more interesting, when considering that C3d has gained the CR2 interaction, which is driven by
electrostatics, over the course of evolution. It is possible that either the C3d electrostatic “hot-
spot” has always been present and CR2 was simply opportunistic, or that the “hot-spot” has
came to existence through co-evolution with CR2, which seems the most likely. To investigate
whether the C3d electrostatic “hot-spots” are present in homologues of human C3d, we
generated perturbation maps based on alanine-scan mutations for the remaining 23 C3d
homologues (Figure 2-9). When comparing the perturbation maps for the CR2-face of the C3d
homologues (Figure 2-9A), we find that the mammals (dark-blue box) are the only group of
species in which all homologues exhibit the CR2 “hot-spot”. This indicates that the electrostatic
“hot-spot” of the CR2-face of C3d is something that has been gained through evolution. On the
other hand, the electrostatic “hot-spot” on the thioester-face of C3d (Figure 2-9B) is much more
predominate in lower species, such as the invertebrates (black box) and jawless fish (purple
box), when compared to higher species like the mammals. The combination of these two results,
the gain of the CR2 “hot-spot” and the reduction of thioester “hot-spot”, is quite interesting,
since it suggests a transition in the function of C3d. The two functions of C3d can be seen as
opposing one another, and in order to optimize the new interaction with CR2, the conserved
electrostatic “hot-spot” on the thioester face was reduced or lost, such is the case for mouse.
There are exceptions to the mentioned trends, mainly the invertebrates (Figure 2-9; black box),
which exhibit large diversity in net charge (ranging from -13 to +6) and electrostatic potential
(Figure 3-8A). The invertebrates diverge first in the evolutionary tree, and therefore, have been

evolving under their own pressures for much longer than any other group of species, which has
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most likely been the cause of this increased diversity. Interestingly, this increased diversity has
resulted in the C3d of amphioxus having very similar electrostatic character to human C3d,
when comparing net charge and electrostatic potentials/“hot-spots”, despite being separated by
hundreds of millions of years in evolution. On a technical note, it should also be noted that due
to the small size of the charge perturbations introduced by the alanine-scan mutations,
electrostatic “hot-spots” could be overestimated in proteins with high net charge, which is most

likely the case for homologues like the sea urchin (net charge -13).
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Figure 3-11 Charge similarity clustering for the two sides of C3d. Dendrograms with distance matrix
heatmaps illustrate clustering of the 24 C3d homologues based on the number of positions with the same
charge within the two functional regions: (A) CR2-face and (B) thioester-face. Net charge of each
homologue is provided in parentheses.

Sequence-based approaches are typically used when analyzing the evolution of a
protein, since conservation of amino acid positions can identify functionally important regions of
sequence. As a comparison to our perturbation map approach, we have performed clustering

for the 24 C3d homologues based on similarity of charged amino acid positions within the two
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functional regions (Figure 3-11). The CR2-face charge clustering (Figure 3-11A) identified two
primary clusters: (1) contains all species with cellular immunity [jawless fish, fish, amphibians,
reptiles, birds, and mammals]; (2) all invertebrate species. The appearance of jawless fish
(lamprey and hagfish) in cluster 1 of the CR2-face clustering, is quite interesting given that
jawless fish could hypothetically be the first group of species to exhibit a C3d-CR2-like
interaction, since they contain B-like and T-like cells [144]. This is in contrast to the current
hypothesis that teleost fish are the first species to possess the C3d-CR2 interaction [129]. The
charge patterns of the species of cluster 1 are noticeably more similar (darker region; Figure
3-11A), suggesting an emergence of a new role of charge in the function of C3d in the species of
this cluster. Additionally, the mammals cluster separately from the other species of cluster 1 in
the CR2-face charge clustering. Indicating that the CR2-face charge character of mammal C3d
homologues is unique, which correlates with the perturbation map results (Figure 3-10A). In
contrast, the thioester-face charge similarity clustering (Figure 3-11B) produced a similar
classification of the C3d sequences as found using sequence percent identity (Appendix M and
[145]). It should be noted that the net charge of the homologues has little to no effect on the
charge similarity clustering (Figure 3-11), and it’s the position of specific charged residues that
distinguishes the clusters of C3d homologues, which is in agreement with the existence of
electrostatic “hot-spots”.

As has been discussed by McCammon [145], speed is often the main evolutionary
driving force, even at the molecular level. Acceleration of biomolecular processes is achieved
through long-range electrostatic interactions, which guide the formation of encounter
complexes, increasing the diffusive rate [16]. Electrostatic “hot-spots”, generated by clusters of

like-charged residues, are frequent in nature, since they provide rapid association of
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biomolecules satisfying the need for speed. However, there is a penalty paid in the form of a
loss in local protein stability, since the presence of clusters of like-charged residues can result in
numerous unfavorable intramolecular Coulombic interactions, as has been shown for the case
of barnase-barstar [146]. Fersht and coworkers have proposed that nature often selects for
function over stability [146], as is suggested by the presence of electrostatic “hot-spots” on
many proteins. In the case of human C3d, electrostatic “hot-spots” have evolved surrounding
the thioester bond and CR2 binding site, which when combined accelerate the formation of the
B-cell co-receptor complex, a link between innate and adaptive immunity. The C3d-CR2
interaction greatly improves the immune response to an antigen, and as a result has been
selected by nature as a target for immune evasion [96,139,140]. Structural evidence has shown
that virulence factors of Staphylococcus aureus target the electrostatic “hot-spots” of human
C3d (Appendix K). For example, Staphylococcus aureus secretes the highly cationic virulence
factors EfbC and Ehp, which take advantage of the CR2 electrostatic “hot-spot” through the use
of long-range, as well as short-range, electrostatic interactions (Appendix K-A) [139].
Additionally, domain IV of the Staphylococcal immunoglobulin-binding protein (Sbi) targets the
thioester side electrostatic “hot-spot” of C3d (Appendix K-B), and in conjunction with Sbi
domain Il results in futile consumption of C3 through the formation of covalent adducts [140].
The electrostatic nature and binding sites of the Staphylococcus aureus virulence factors is
further evidence for the key role of electrostatics in the function and evolution of complement
C3d. When comparing the homologues of complement C3d, a weak CR2 “hot-spot” doesn’t
necessarily imply an absence of the C3d-CR2 interaction, but implies a less optimized
interaction, specifically with respect to electrostatics. Therefore, based on our analysis we

cannot conclude which homologues of C3d interact with a CR2 homologue, but we have
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identified the onset of a new role of charge/electrostatics in the function of C3d after the
divergence of jawless fish. We propose that this new role of charge corresponds with the
appearance of the first multi-functional homologue of C3d. It should be noted that conserved
electrostatic potential is not necessarily indicative of a conserved electrostatic “hot-spot”, as can
be seen when comparing the homologues of C3d (Figure 3-8 and Figure 3-10); however, our
novel methods based on perturbation maps identified the electrostatic “hot-spots” of C3d and
have potential utility in the identification of functional sites of other highly-charged

biomolecular systems, as well as in drug design.

3.4. CONTROVERSY OF THE ASSOCIATION OF C3D-CR2

3.4.1. Introduction

The interaction between complement fragment C3d and B-cell receptor CR2 is an
important step in the mounting of an immune response and helps form a link between the
innate and adaptive immune systems [79]. As a result, the C3d-CR2 interaction has been a hot
research topic for more than a decade. In the midst of these studies a controversy over the
mode of interaction between C3d and CR2 arose. In 1998 the structure of free C3d was
published, which revealed an acidic patch comprising of two hotspots of acidic amino acids
[135]. In 2000, a mutagenesis study confirmed that mutations of acidic amino acids within the
C3d patch decreased binding to CR2, whereas a mutation of a basic amino acid in the vicinity of
the acidic patch increased binding to CR2 by two-fold [133]. It was then proposed that this acidic
patch might be the site of interaction with CR2. However, in 2001 a structure of the C3d-CR2

complex was published, which showed that the binding interface was not at the acidic patch
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[147]. In 2005 a mutagenesis study demonstrated that several mutants of basic amino acids in
CR2 resulted in reduced binding to C3d, including one mutation (out of three possible) at the
binding interface [132]. The results of that study were consistent with the binding interface of
the crystal structure, and also showed that medium and long-range electrostatic effects are
contributing to binding.

A more recent publication reported a mutagenesis study of C3d acidic amino acids,
some of which were repeat mutations of the 2000 study but with a different assay (SPR versus
Rosette) and some were new mutations [148]. Four new mutants were near the crystallographic
binding interface and showed no effect on binding. The authors of that study questioned the
physiologic relevance of the crystallographic structure. They proposed that the complex was
forced to assume the observed binding interface by the crystallization conditions, which
included the presence of zinc. Indeed, the crystallographic structure contains two non-
physiologic zinc ions at the C3d-CR2 interface [147]. The same study [148] demonstrated using
ELISA assays that C3d-CR2 binding in solution was abolished in the presence of zinc acetate. The
possibility of a secondary or transient binding site has also been discussed, based on theoretical
and experimental data [24,29,134,149,150]. We also came to similar conclusions regarding the
physiological relevance of the co-crystal of C3d-CR2 following comparison of the latest
mutagenesis data with new electrostatic calculations [38]. This controversy was brought to a
closure upon the release of a new co-crystal structure of C3d-CR2 [151], which showed CR2
interacting with the acidic concave surface as was originally proposed [133].

In light of the new structural data for the C3d-CR2 interaction, the goal of this study is to
reevaluate the role of electrostatic using computer simulation. In this study we apply our novel

computational framework, AESOP, to elucidate the role of each charged residue through the use
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of theoretical alanine-scan mutagenesis and electrostatic clustering/free-energy calculations.
We discuss our results in view of all available experimental data and shed some light on the

current state of the controversy over the mode of interaction between C3d and CR2.

3.4.2. Methods

Calculations of this study were performed using the latest co-crystal for C3d-CR2 (PDB
Code: 30ED, [151]). Additionally, new calculations based on the previous C3d-CR2 co-crystal
(PDB Code: 1GHQ, [147]) were also performed using the latest protocols for consistent
comparison. All electrostatic calculations were performed using the AESOP framework, which
has been discussed in great detail previously (section 2.3, [25,38]). In brief, all alanine-scan
mutations were performed using amino acid truncations by AESOP functions. The PDB2PQR [42]
utility was used to prepare all structures for electrostatic calculations by incorporating atomic
radii and partial charges according to the PARSE forcefield [43]. Electrostatic potential and free
energies of association, according to the thermodynamic cycle of Figure 2-1B, were calculated
using APBS [3]. A grid with 129 x 129 x 129 grid points was used for both 30ED and 1GHQ, while
coarse/fine grid lengths of 130 A x 126 A x 120 A were used for 30ED and 168 A x 128 A x 140 A
for 1GHQ. The dielectric boundary was defined by a water-sized probe sphere with a radius of
1.4 A, and the dielectric coefficients of the protein and solvent environments were 20 and 78.54

respectively. All electrostatic calculations were performed using 0 mM of counterions.

3.4.3. Results and Discussion

The theoretical alanine-scan mutagenesis for the 30ED structure produced 64 mutants

of C3d and 23 mutants of CR2. The effects of the two sets of mutations (from C3d or CR2) were
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Figure 3-12 FElectrostatic free energies and clustering for the C3d alanine-scan. Relative solvation free
energies of association are plotted according to the electrostatic clustering, with the color of the circles
indicating the type of amino acid mutated: red — acidic; blue — basic. The dark gray circle represents the
parent structure, while the light gray circles indicate mutations of neutral histidines. The gray box
illustrates the range of free energies containing mutations predicted to be benign (x 20 kJ/mol). Darker
circles and labels indicate residues predicted to substantially affect binding. Clustering trees for the two
primary clusters (acidic and basic) illustrate the electrostatic similarity within these clusters. Calculations
were based on PDB 30ED.

quantified/compared using electrostatic free energies and clustering, as illustrated by
Figure 3-12 and Figure 3-13. To focus the analysis on mutations of residues crucial to
association, all mutations with free energies of association falling in the range of + 20 kJ/mol
(gray box of Figure 3-12 and Figure 3-13) are assumed to be to be benign. Figure 3-12 contains
electrostatic free energies of association for each C3d mutant relative to the parent, as well as

the electrostatic clustering for further classification. The electrostatic calculations identified two
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clusters of acidic amino acids on C3d, which when mutated have notable effect on the
electrostatic character of C3d that is predicted to be unfavorable for association. These two
clusters of acidic amino acids correspond to the two groups of negatively charged amino acids
previously identified on the acidic concave surface of C3d [133], and are composed of: (i) E1I66A
and E167A; (ii) D36A, E37A, E39A, E160A, D163A, and D292A. Three basic residue mutations
(R49A, K162A, and K291A) were also identified to have notable effect on the electrostatic
character of C3d, but are predicted to be favorable for association, with R49A and K291A having
similar effects since they cluster together. Of the 11 mutations predicted to affect association
the most, all except R49A have been experimentally evaluated [133,148] and comparisons
between the electrostatic free energies of association and their reported activities can be found
Table 3-1.

Figure 3-13 contains the electrostatic free energies and clustering for the alanine-scan of
CR2, which identifies five mutations of basic residues as being unfavorable for the association of
C3d-CR2 (R13A, R28A, R36A, K41A, and K108A). Three of the five mutations (R13A, R36A, and
K41A) have been experimentally evaluated [132] and their activities are provided in Table 3-1.
No mutations with substantially favorable effects were identified for CR2, as indicated by the
lack of bold data points below the gray box of Figure 3-13. In general, the mutations of CR2 are
predicted to have less effect on association when compared to the mutations of C3d, as
evidenced by a smaller range of relative association free energies (Figure 3-13).

Table 3-1 contains comparisons between experimental binding data for various alanine
scan mutants and calculated solvation free energies of association based on the two available
crystal structures (30ED and 1GHQ). Comparison of the two sets of solvation free energies of

association (based on 30ED and 1GHQ) shows that on average the free energy values obtained
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Figure 3-13 Flectrostatic free energies and clustering for the CR2 alanine-scan. Relative solvation free
energies of association are plotted according to the electrostatic clustering, with the color of the circles
indicating the type of amino acid mutated: red — acidic; blue — basic. The dark gray circle represents the
parent structure, while the light gray circles indicate mutations of neutral histidines. The gray box
illustrates the range of free energies containing mutations predicted to be benign (x 20 kJ/mol). Darker
circles and labels indicate residues predicted to substantially affect binding. Clustering trees for the two
primary clusters (acidic and basic) illustrate the electrostatic similarity within these clusters. Calculations
were based on PDB 30ED.

for the 30ED are noticeable more negative when compared to the 1GHQ based values. This
suggests that the mode of interaction observed in the 30ED structure is more electrostatically
favored in comparison to 1GHQ. Pearson correlation coefficients were used to quantify the
agreement between the two sets of electrostatic free energies, based on the two crystal
structures, and experimental binding data for mutations of C3d and CR2. As expected, the

correlation between calculated electrostatic free energies and experimental data for mutations
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Table 3-1 Comparison of electrostatic free energies of association and experimental activities for
alanine-scan mutants of C3d and CR2.

C3d Mutants AAG,, Relative AAG¢, SPR*® Rosette™®
30ED 1GHQ 30ED 1GHQ
Parent -168.36 -43.83 0.00 0.00 4 4
D36A -143.63 -35.21 24.73 8.62 2 4
E37A -138.43 -34.67 29.93 9.16 1 2
E39A -139.11 -36.05 29.25 7.77 1 2
E42A -152.68 -37.09 15.68 6.74 3 4
E117A -154.78 -18.40 13.58 25.43 4
D122A -154.97 -24.77 13.39 19.06 4
D128A -155.83 -24.93 12.53 18.90 4
D147A -155.53 -28.05 12.83 15.78 4
E160A -142.68 -32.32 25.68 11.50 0 1
K162A -200.28 -56.51 -31.92 -12.68 5
D163A -128.14 -31.76 40.22 12.07 0 0
E166A -132.47 -30.20 35.89 13.63 0 0
E167A -146.93 -28.36 21.43 15.47 3 3
K251A -179.54 -52.55 -11.18 -8.72 2
K291A -197.63 -52.63 -29.27 -8.80 3 4
D292A -143.26 -35.11 25.10 8.72 3
SPR-COR -0.65 0.14 -0.65 0.14
Rosette-COR -0.68 -0.57 -0.68 -0.57
AAG,,, Relative AAG¢, cd
CR2 Mutants Rosette™
30ED 1GHQ 30ED 1GHQ
Parent -168.36 -43.83 0.00 0.00 4
R13A -145.86 -41.04 22.50 2.79 2
R36A -145.67 -40.24 22.69 3.58 3
K41A -145.31 -39.15 23.05 4.68 2
K50A -164.99 -40.10 3.38 3.73 2
K57A -153.52 -39.59 14.84 4.24 1
K67A -154.32 -43.08 14.04 0.75 4
R83A -154.83 -32.84 13.53 10.99 1
Rosette-COR -0.28 -0.78 -0.28 -0.78

®SPR data for C3d mutations were previously reported [148].

®Rosette data from C3d mutations were previously reported [133,148].

‘Rosette data from CR2 mutations were previously reported [132].

dExperimental data are relative to the parent activity as follows: 0, 0% of parent activity; 1, 25% of parent
activity; 2, 50% of parent activity; 3, 75% of parent activity; 4, 100% of parent activity; 5, 200% of parent
activity.
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of C3d were drastically improved for the 30ED structure. It would appear that there is a
discrepancy in the correlations between the 1GHQ free energies and the two sets of
experimental data, since the correlation with the SPR data is noticeably worse; however, this
difference arises because the SPR dataset contains four mutations suggested to be at the
binding interface according to the 1GHQ structure, which were found to have no effect on
binding of C3d and CR2 (Table 3-1). This demonstrates the need for using a large number of
mutations distributed evenly or in a representative way throughout the protein in order not to
bias the correlation calculation. Additionally, the free energy correlations with the Rosette and
SPR data for C3d mutations are comparable for 30ED structure.

Interestingly, the correlations between calculated electrostatic free energies and
experimental binding data for CR2 mutations are substantially worse for 30ED when compared
to 1GHQ. This phenomenon may have arisen due to sampling, since researchers have only
performed mutations of CR2 residues near the binding interface identified by the 1GHQ
structure. Correlations could potentially improve after collection of additional experimental data
for new mutations, such as those identified in Figure 3-13. Lack of correlation for CR2 mutations
with the 30ED-based calculations could also be further evidence for the existence of a

secondary transient binding site, as has been previously suggested [24,29,134,149,150].

3.4.4. Conclusion

In this study, we employed our computational framework AESOP [25,38] to further
analyze the controversy over the C3d-CR2 mode interaction in light of new structural data,
which has recently been reported [151]. We utilize alanine-scan mutagenesis, as well as

electrostatic clustering and free energy calculations, to evaluate the role of each charged
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residue in association of C3d and CR2, and compare our results with available experimental data
[130,132,133,148]. Surprisingly, only correlations between free energies and experimental data
for mutations of C3d were improved in light on the new 30ED crystal structure, since better
correlation was observed with calculations based on the 1GHQ structure for the mutations of
CR2. This result further suggests the possibility of a transient binding site for CR2, and leaves the

controversy over the mode of interaction between C3d and CR2 not fully resolved.

3.5. PERSPECTIVE

The complement system is an ancient line of defense, consisting of a complex cascade of
protein-protein interactions responsible for attacking foreign pathogens, and when healthy,
leaving host tissues unharmed [77,78]. As is the case for many biological functions, speed is of
the essence for biomolecular interactions involved in immune defense, especially those of the
complement system. Through evolution complement proteins have gained high charge content,
which accelerates the recognition phase of association [16,145]. Electrostatic forces are
essential to the opsonization of foreign pathogens (C3b/C3d) [activation], as well as factor H
recognition of opsonized host cells [regulation]. Therefore, electrostatics plays a crucial role in
the constant balance waged between the efficient clearance of foreign pathogens and harmful
over activation. Transient complexes, such as complement convertases, are often formed
though long-range non-specific electrostatic interactions, which provide the fastest response
time, but are weak enough to prevent prolonged over-activation.

Complement proteins have evolved to include electrostatic “hot-spots”, which are
regions containing large electrostatic potential generated by clusters of like charged residues.

These electrostatic “hot-spots” accelerate the recognition and orientation phases of association,
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and as a result are often indicative of functional sites. Interestingly, due to the complement
system’s constant balance between activation and regulation, electrostatic “hot-spots” of
complement proteins are often the binding site for numerous proteins, as is illustrated for C3d
in Appendix J. However, pathogens have evolved to utilize these electrostatic “hot-spots” in the
evasion of the immune system, by producing virulence factors that are highly charged to
compete with host ligands, as is illustrated by Appendix K.

Due to this central role of electrostatics, electrostatics-based design has great utility in
developing therapeutics for complements system related disease. One key project that would
benefit from our recent work is the design of C3d analogs as vaccine adjuvants. The design of
C3d analogs could take advantage of the results of our recent studies investigating the C3d
electrostatic “hot-spots”, as well as the role of electrostatic in the C3d-CR2 interaction. A recent
study has shown that mutations known to affect C3d-CR2 binding, also affect the effectiveness
of C3d as an adjuvant [80]. Suggesting that electrostatically designed C3d analogs, which possess
improved CR2 binding, could be utilized in the development of more efficacious vaccine
adjuvants. As our recent study into the evolution of C3d electrostatics showed, human C3d has
evolved to have a dual electrostatic character, optimized for binding CR2 and pathogenic cell
surfaces, both crucial in the formation B-cell receptor/co-receptor complexes. However, since
C3d is covalently attached to the antigen in designed vaccines, only binding to CR2 is necessary
for adjuvant activity. Therefore, mutations of charged amino acids away from the acidic concave
surface of C3d (CR2 binding site) can be utilized to design new single-function C3d analogs, with
improved CR2 recognition and binding. An approach similar to that utilized in the design of new
SUMOA4 analogs, which was performed using the AESOP framework [25,38], should be employed

for the design of new C3d analogs.
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4. DESIGN OF COMPLEMENT SYSTEM INHIBITORS TARGETING C5AR

4.1. COMPLEMENT ANAPHYLATOXINS

Of the anaphylatoxins, C3a is found in the highest concentrations, since it is the cleavage
product resulting from the activation of C3, the central complement protein that is involved in
all three activation pathways. On the other hand, C5a is the most potent of the anaphylatoxins
despite being produced in lower concentrations. The anaphylatoxins regulate the inflammatory
response through interactions with their membrane-bound receptors, C3aR and C5aR, which
result in the chemotaxis and activation of leukocytes [152,153]. C3aR and C5aR are members of
the GPCR superfamily, all of which are comprised of seven transmembrane helices connected by
intra- and extra-cellular loops. The 7-helical bundle structural motif and the existence of highly
disordered loops that are found in all GPCR structures, allows for large amounts of
conformational freedom. Since C5aR has a central role in complement-mediated inflammation,
and GPCRs are popular drug targets, C5aR has been a key target for therapeutic design [154-
158].

Due to the importance of C5aR as a drug target, there have been some studies that have
modeled C5aR bound to ligands (C5a or peptidic analogs) with the intention of understanding
experimental results. Nikiforovich et al. generated a C5aR:C5a complex using numerous
molecular modeling tools including “enhanced homology modeling” and geometrical sampling
[159]. This study focused on possible modes of interaction between C5aR and C5a, and used
published mutagenesis results for validation. Another study, by Higginbottom et al., utilized
homology modeling and docking methods to investigate important interactions between C5aR
and analogs of peptidic antagonist cC5aR-pa (also known as PMX-53 as referred to below) [160].
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Both the Nikiforovich and Higginbottom studies provided insight into C5aR interactions, but
both studies can be improved upon, especially since neither of these studies included molecular
dynamic simulations to optimize local and global conformations. Following the Higginbottom
study, a new, more refined, solution structure of the cC5aR-pa was determined by Zhang et al.
and deposited in the Biological Magnetic Resonance Bank [161]. Figure 4-1 contains molecular
graphics of the Zhang et al. structure for cC5aR-pa. The new structure included more accurate
force field parameters for the non-natural amino acids, and was performed at lower
temperature, as allowed by the solvent. Therefore, it would be beneficial to perform similar
docking studies with the new structure determined by Zhang et al. Also, inclusion of an explicit
membrane during the modeling process would provide a more realistic environment, and

therefore a better analysis of protein-ligand interactions.

4.2. CONFORMATIONALLY SAMPLED PHARMACOPHORE MODEL OF C5AR

ANTAGONISTS

4.2.1. Introduction

Complement receptor C5aR (also termed CD88) is a member of the GPCR superfamily,
and upon activation by complement anaphylatoxin C5a initiates a pro-inflammatory response
[155]. Over-activation of C5aR has been implicated in several inflammatory/autoimmune
diseases, such as lupus nephritis and sepsis [155], and therefore C5aR has been the focus of
numerous drug design efforts [154-156,158,162]. Several groups reported initial success in the
development of short linear peptide C5aR agonist in the early 1990’s, but the first C5aR full

antagonist, Me-FKPdChaWr, was later developed by researchers at Merck (as reviewed in [155]).
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Structural studies using NMR spectroscopy observed that a salt-bridge between Lys 2 and the
carboxylate of Me-FKPdChaWr stabilizes a cyclic-like structure [156]. This observation led to the
development of a new family of cyclic hexapeptides, including the highly active analog Ac-Phe-
[Orn-Pro-dCha-Trp-Arg] marketed as PMX-53 (Figure 4-1); Ac denotes the acetylated N-terminal
end, Orn ornithine, dCha d-cyclohexaalanine and the square brackets indicate cyclization

(analog 1, Table 4-1) [154,156,162].

Figure 4-1 Molecular graphic of PMX-53 illustrating the four pharmacophore points. (A) center of benzene
ring of Phe 1, blue; (B) C, backbone atom of dCha 4, orange; (C) center of the indole ring of Trp 5, green;
(D) C¢ side chain atom of Arg 6, red.

Over 60 PMX-53 analogs have been experimentally evaluated [154,156,162] providing
valuable structure-activity data, however only limited modeling has been performed to analyze
the observed relationships. Since both linear and cyclized C5aR antagonists exhibit a well-
defined structure, as observed by NMR studies [154,156,161,162], we propose that the
dynamics of the C5aR antagonists free in solution contribute significantly to function and can be
used to distinguish among various levels of affinity. Therefore, the aim of the current study is to
develop for the first time a conformationally sampled ligand-based pharmacophore model for
hexapeptide C5aR antagonists of the PMX-53 family, in order to analyze the relationship
between structure, dynamics, and function.

Conformationally sampled ligand-based pharmacophore models utilize MD simulations

to generate representative conformations for a set of related ligands in their unbound state and
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extract properties, such as distances, angles, and torsion angles, describing the relative position
of selected pharmacophore points [163-167]. Conformationally sampled pharmacophore
models seek to identify pharmacophore descriptors whose statistical distributions describe
conformations of ligands either unique to, or more frequently observed in, the most active
ligands. Such models have been previously developed for ligands of 6-[163-165] and p-opioid
[166] receptors, also GPCRs, as well as complement system inhibitors of the compstatin-family
[167]. In the current study, we extend previous methods by incorporating the anisotropic
membrane/water environment in which the C5aR resides via a high quality implicit-membrane
model [168]. We also include clustering methods to efficiently identify quality pharmacophore

descriptors.

4.2.2. Methods

For this study we have selected 10 hexapeptide C5aR antagonists with 1Cso values
ranging from 0.25 — 1082 uM to compose our ligand set, and their sequences and reported
experimental activities are provided in Table 4-1. Available structure-activity data has shown
that Phe at position 1, an aromatic residue at position 5, and Arg at position 6 are all crucial for
antagonist affinity [154]. Therefore, these three constraints were employed while selecting the
analogs, and as a result the majority of substitutions affect position 4. The geometric centers of
these key residues at positions 1, 5, and 6 were selected as pharmacophore points. Comparison
of the sequences of the ligand set shows that positions 4 and 5 share some codependence with
regard to affinity, suggesting that a potential interaction between positions 4 and 5 could have
distinguishable effects on dynamics and function. Based on this observation, the backbone C, of

position 4 was also selected as a pharmacophore point since there is little consistency in amino
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acids at this position. The definition of the four selected pharmacophore points is illustrated in
Figure 4-1. The analogs have been grouped into three groups according to their experimental
affinity as follows (Table 4-1): two highest affinity analogs (group 1), two lowest affinity analogs
(group 1), and six analogs of varied affinity (group Il). Of the 10 training analogs, only analog 5 is
linear (Table 4-1). Analog 5 resembles very closely analog 3, the only difference being that

analog 3 is cyclized. Also, analogs 3 and 5 are the only analogs with dArg at position 6.

Table 4-1 List of C5aR hexapeptide antagonists with sequences and activities.

Reported Reported
# Group Sequence ab receptor affinity antagonist activity Ref. #
(uM) (uM)
1 Ac-F-[OPdChaFR] 0.25 0.032 [154]
2 Ac-F-[OPdChaWR] 0.38 0.026 [154]
3 Ac-F-[OPdChaWr] 0.28/ 16.0 0.012/0.400 [156]/[162]
4 Ac-F-[OPfWR] 0.46 0.022 [154]
5 ' Ac-FOPdChaWr 0.80 0.200 [162]
6 Ac-F-[OPIWR] 1.13 N.D. [154]
7 Ac-F-[OPfFR] 5.20 5.210 [154]
8 Ac-F-[OPWWR] 32.0 N.D. [154]
9 " Ac-F-[OPaWR] 145 3.700 [154]
10 Ac-F-[OPgWR] 1082 N.D. [154]

®Bold letters indicate amino acid postions that differ from the parent peptide (analog 1).
®Lowercase letters indicate D amino acids.

To sample the conformations of the training analogs (Table 4-1), we carried out implicit-
solvent MD simulations starting from the lowest energy NMR structure of the parent (analog 2)
hexapeptide [161]. All necessary mutations were introduced by the UCSF Chimera software
[106]. MD simulations were carried out with the CHARMM program [169]. Standard amino acids
were described by the CHARMMZ27 all-atom energy function including the CMAP correction
[170,171]. The topology and parameters for non-standard groups (ornithine, cyclohexylalanine
and the Orn2-Arg6 cyclization segment) were derived from CHARMM27 definitions for lysine,
alanine/cyclohexane and the peptide group, respectively. The membrane environment was
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modeled by the heterogeneous dielectric generalized Born variant (HDGB) of the Generalized
Born Molecular Volume (GBMV) model [168], with default parameters (solvent dielectric €=80,
surface tension coefficient 0=0.015 kcal/A?, B=-12, S0=0.65, C0=3255, C1=1.085, D=-0.14). An
18-A cutoff distance was used for non-bonded interactions. The lengths of covalent bonds
containing hydrogen atoms were constrained by the SHAKE algorithm[172], and the equations
of motion were solved with an integration time step of 1.5 fs [173]. The peptide was in contact

with a Langevin heat bath at 300 K; a friction coefficient of 10 ps™ was used for heavy atoms.

Pos. #

1

Extracellular

= Nwh

Figure 4-2 lllustration of the five membrane positions used in the molecular dynamics simulations. The
membrane positions are as follows: (1) membrane center, blue; (2) 15 A above center, cyan; (3) 20 A
above center, green; (4) 25 A above center, yellow; (5) pure water, red. Dark gray bars depict polar
regions of the membrane bilayer, while the light gray bar represents the hydrophobic membrane core. A
molecular graphic of C5aR[159] is included for reference, but was not included in the simulations.

For all analogs we conducted five sets of simulations with varied environments.
In the first four, the analogs were immersed in an (implicit) membrane and were restrained at
distances of 0.0 A, 15.0 A, 20.0 A and 25.0 A from the membrane center, as illustrated by Figure
4-2; in the last they were immersed in pure water, represented by the GBMV Il model [174].
Prior to each production run, the energy was minimized by 500 steps of steepest descent;
subsequently, two 100-ps equilibration runs were performed, with backbone atoms

harmonically restrained by 2 kcal/mol/A* and 1 kcal/mol/A? force constants. In the membrane
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runs, the peptide center of mass was restrained to the desired position across the membrane by
a weak, 0.5 kcal/mol/A? force constant. The duration of each production run was 15 ns, with
only the last 13.5 ns used in the analysis.

In order to generate the conformationally sampled pharmacophore descriptors we
extracted 1,800 snapshots from each trajectory at 7.5-ps intervals. The four pharmacophore
points (Figure 4-1) define 24 geometrical properties (6 distances, 12 angles, and 6 torsion
angles), resulting in 276 pairs of properties. For all 276 pairs we generated two-dimensional
histograms, with dimensions of 50x50 bins, using the 50 sets of available trajectories (10
analogs, simulated at 4 membrane positions and in pure water). To quantify the similarity
between two analogs we compared the statistical distributions of their property pairs using a
measure similar to that proposed for clustering of protein electrostatic potentials [25]. The

similarity measure is defined as follows:

1 |AG.)-BG.))
LD =— -
N E Eq. 4-1,

= max(A(i,j),B(i,j))
where A and B are two-dimensional (50x50) histograms of a given property pair, generated by
simulations of the peptides A and B in the same environment, i,j are the indices of the two-
dimensional histogram, and N is the total number of histogram bins. The histograms will be
referred to as pharmacophore descriptors from this point further. The 276 possible
measurement pairs and the 5 environments (4 membrane positions and pure water) generate
1,380 pharmacophore descriptors. For each descriptor, we generated a 10x10 distance matrix,
containing pairwise similarities for all peptide pairs in the 10-analog ligand set. Peptides were
guantitatively classified using hierarchical clustering based on each of the generated distance

matrices, and the classifications were visualized using dendrograms.
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C5aR C5aR-pa
Generate Elevated w/ C5a-15CT w/ C5a-15CT w/ C5a 5 Positions in the
Structures Temperature (shaped (No constraints)  (No constraints) membrane/water
(C5aR constrained) environment
constrained)
Select Used every Cavity shape- Cavity shape- Cavity shape- Clustering based on
Structures 20t snapshot based based based chi1/ci2 angles
clustering clustering clustering (50 structures)

~100 - 150

snap shots
Docking

~500,000 poses

Figure 4-3 Schematic of the molecular dynamics and docking procedure for PMX-53:C5aR model
development. Red text indicates procedures used to generate/select structures of C5aR, while light blue
text corresponds PMX-53 (C5aR-pa). Dashed lines indicate the combination of the C5aR and PMX-53
structures using rigid-ligand docking.

For further analysis of the mode of interaction C5aR antagonists, a model of the
PMX-53:C5aR interaction has also been developed in parallel. A novel procedure utilizing
implicit membrane molecular dynamics and rigid ligand docking has been developed (as
illustrated by Figure 4-3) were performed with hopes of extensively sampling the
conformational space and generating a diverse set of binding sites for docking studies. PMX-53
conformations were also generated using the procedure discussed above. Based on the

molecular dynamics simulations at the 5 membrane positions (Figure 4-2), 50 representative
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PMX-53 structures were selected based on torsion angle clustering. (All molecular dynamics
simulations for C5aR antagonists were performed by Dr. Phanourios Tamamis.)

Representative C5aR structures were selected from the MD simulations of the three
C5aR complexes using a novel procedure based on receptor cavity shape. The cavity shapes
were characterized by identifying water molecules that fill the void resulting from the removal
of the C5aR ligand, and these calculations were performed with scripts written in the R
statistical language [48] using the Bio3D library [50]. The underlying premise is that by ensuring
that the water molecules are always in the same position relative to C5aR, it is possible to
identify the regions of the C5aR cavity that are changing structurally by simply keeping track of
which water molecules fit in the cavity. Implying that C5aR cavities containing similar water
molecules have a similar shape. Cavity shape similarity was determined by first superimposing
each MD snapshot onto the initial structure, which was centered in a 50 x 50 x 60 explicit water
box, based on the C,-atoms of the TM regions. Water molecules were selected by excluding all
molecules within 2.4 A of any C5aR atom, and by including only those molecules within 4 A of
the 15 C-terminal residues of C5a (a.a 60 -74). Lists identifying the water molecules that fit into
each MD snapshot were created, and used to generate binary water fingerprints, where a value
of 1 represents water molecules that were present in the cavity and a value of 0 indicates those
that were absent. Distance matrices based on a binary similarity measure were generated to
guantify the similarity between each pair of water fingerprints, which is indicative of the
similarity between each pair of cavity structures. Hierarchical clustering was used to classify the
MD snapshots into families based on water fingerprint similarity, and the clustering was
visualized using dendrogram trees. The dendrogram trees were cut at a binary similarity value of

0.3 to extract clusters of MD snapshots containing structures that differ by fewer than 50 water
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molecules. From each cluster, the cavity structure with the largest volume (most cavity water
molecules) was selected as the representative structure. However, structures were extracted
every 20 snapshots from the ligand-free elevated temperature trajectory. Approximately 150
structures were selected from each MD simulation to be used as input for the docking studies.
Rigid-ligand docking was performed based on the representative MD snapshots of C5aR
and PMX-53 using the DOCK®6 [4] docking program. Molecular surfaces were generated for each
C5aR structure using DMS[175]. All possible spheres representing the potential binding sites of
each C5aR structure were generated using the SPHGEN utility; however, only spheres within 7 A
of the 15 C-terminal residues of C5a were chosen to represent the putative PMX-53 binding site.
A bump filter was employed to exclude docking poses with more than 5 receptor-ligand clashes,
with a clash being defined as an atom-atom overlap of more than 50 percent. All orientations
that passed the bump filter were saved as input for the CHARMM-based scoring procedure,
since the docking program was not used to rank the C5aR:PMX-53 poses, due to the
complexities of GPCR docking. The 51 selected conformations of PMX-53 were docked to the
representative structures from each of the four C5aR MD simulations, resulting in approximately
500,000 docked poses. Following docking, an implicit membrane model in the CHARMM
software was used to relax each pose using energy minimization, and subsequently score each
pose using an association free energy. The top 40 poses, according to association free energy,
were subjected to further optimization using implicit membrane molecular dynamics

simulations to identify the lowest energy pose.
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Figure 4-4 Classification of C5aR antagonists. Dendrograms illustrate the clustering of the 10 C5aR
antagonists based on two pharmacophore descriptors at membrane position 1 (Figure 4-2): (A) ACD-CDB
and (B) AD-CB. The coloring code is as follows: group | analogs are in green, group Il analogs are in blue,
and group lll analogs are in black.

4.2.3. Results and Discussion

Based on the four chosen pharmacophore points, and the two-dimensional histogram
analysis, there are 1,380 potential pharmacophore descriptors, which were visualized using
dendrogram clustering trees. All 1,380 dendrograms were analyzed to identify pharmacophore
descriptors able to distinguish between the three levels of affinity as defined by the three
groups of analogs (Table 4-1). Of the 1,380 pharmacophore descriptors, only two were able to
properly classify all training analogs, including the linear analog of group Il (analog 5). The first
identified pharmacophore descriptor is the pair of angles, ACD and CDB (ACD-CDB; Figure 4-4A),
based on simulations performed at the membrane center (Figure 4-2; position 1). The second
descriptor on the other hand is the pair of distances AD and CB (AD-CB; Figure 4-4B), also at the
membrane center (position 1).

The ACD-CDB dendrogram (Figure 4-4A) shows a cluster containing analogs 1 through 7
(groups | and Il), while analogs 8 through 10 compose their own clusters. Upon closer

examination it also can be observed that analogs 1 and 2 (group I) form a subcluster indicative
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Figure 4-5 Effects of the membrane environment of C5aR antagonists on ACD-CDB clustering.
Superimposed scatter plots and corresponding dendrogram of the ten analogs are presented for the five
membrane positions: (A) position 1, (B) position 2, (C) position 3, (D) position 4, and (E) position 5. The
coloring code is as follows: group | analogs are in green, group Il analogs are in blue, and group IIl analogs
are in black.

of higher similarity, which is mirrored in their comparable activities (Table 4-1). Cyclized analog 3
clusters closely to analog 5, which has identical sequence except that it is linear. We note that
there is some controversy in the affinity of analog 3: One study reports an affinity of 0.28 uM
[156], near the affinity (0.80 uM) of analog 5; another study reports a substantially lower affinity
(16 uM) [162]. The AD-CB dendrogram (Figure 4-4B) also shows a cluster containing analogs 1
through 7 (groups | and Il), however, the subclusters do not correspond as well with the analog
activities as seen in the ACD-CDB clustering (Figure 4-4A). ACD-CDB and AD-CB describe very
similar relationships between the pharmacophore points; however, ACD-CDB provides better
distinction between the three levels of affinity represented by the analogs, and will be the
primary focus of the remaining discussion. The scatter plot corresponding to the dendrogram for
ACD-CDB at the membrane center is provided in Figure 4-5A. Inspection of the Figure 4-5A
scatter plot shows that the ACD-CDB distribution is noticeably tight for high-affinity analogs

(group I, green) and becomes more disperse for low-affinity analogs (group I, black).
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Presumably, a tight distribution indicates a smaller loss in the conformational entropy of the
corresponding analog upon binding, in line with its higher affinity. A larger ACD-CDB area could
still be associated with high binding affinity, due to solvent-entropy contributions and/or a more
enthalpically favored bound state.

It should also be noted that the ACD-CDB distributions, and the clustering results for
that matter, are highly dependent on the peptide environment, or membrane position used
when simulating the analogs, as shown by the five panels of Figure 4-5. When moving the
analogs out of the membrane, from position 1 (membrane center) towards position 5 (pure
water), the dielectric environment becomes increasingly polar, having dramatic effects on the
dynamics of the peptide analogs. The effects of the membrane environment are most
prominent in the case of the linear antagonist (analog 5); despite its theoretically higher
flexibility, this analog contains a salt bridge between the basic side chain of Orn 2 and the
carboxylate of Arg 6. The Orn 2/Arg 6 salt bridge stabilizes analog 5 in a conformation similar to
that of the cyclic analog 3, and is most stable in the low dielectric environment of the membrane
center (position 1). At other membrane positions, and in pure water, the distributions of the
pharmacophore points of analog 5 are quite irregular with respect to all pharmacophore
descriptors causing analog 5 to typically cluster separately from all other analogs. Thus, the
membrane center is an optimum description of the surrounding environment for this ligand
family, for the purpose of ligand-based pharmacophore modeling. This optimum location does
not need to coincide with the exact binding site in the C5aR complex, which is predicted

between the membrane center and surface by experimental and modeling studies [155].
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Table 4-2 Extended list of C5aR hexapeptide antagonists with sequences and activities.

Reported receptor Reported antagonist

#  Group Sequence®’ affinity (uM) activity (M) Ref. #
11 hydrocinnamate-[OPdChaWR] 0.22 0.031 [154]
12 v Ac-F-[OFdChaWR] 2.43 N.D. [154]
13 Ac-F-[OPdChawR] 30.4 N.D. [154]
14 Ac-F-[OPfYR] 69.2 N.D. [154]

®Bold letters indicate amino acid postions that differ from the parent peptide (analog 1).
®Lowercase letters indicate D amino acids.

Further assessment of the ACD-CDB pharmacophore descriptor was achieved by
studying an extended set of ligands, including four additional peptide analogs with varying
affinity (Table 4-2). The additional analogs have substitution types/positions not observed in the
initial ligand set, and therefore will test the overall predictive value of the ACD-CDB
pharmacophore descriptor. The procedure followed for the initial ligand set was applied to
generate MD snapshots for each additional analog at membrane position 1, and to produce
ACD-CDB pharmacophore descriptors. Clustering comparing all 14 analogs based on the ACD-
CDB pharmacophore descriptor is illustrated as a dendrogram in Figure 4-6. The Figure 4-6
dendrogram shows a primary cluster containing all higher affinity analogs with 1Csovalues of less
than 3 uM, including analogs 11 and 12, which cluster with the group | analogs. Of the group IV
analogs (orange, Figure 4-6), analog 14 appears to be an anomaly, since it clusters with analogs
3 and 5 despite having much lower affinity. It is likely that the lower binding affinity of analog 14
arises from factors not captured by the ACD-CDB pharmacophore descriptor, such as the
transfer of the highly polar Tyr5 hydroxyl group to the complex interior, or unfavorable

interactions of the same group with C5aR.
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Figure 4-6 Clustering of the extended set of C5aR antagonists based on the ACD-CDB pharmacophore
descriptor at membrane position 1. The coloring code is as follows: group | analogs are in green, group Il
analogs are in blue, group Ill analogs are in black, and group IV are in orange.

It should be noted that the probability distributions of useful free-ligand
pharmacophore descriptors (such as the ACD-CDB combination) should not always be
interpreted as representative of the actual ligand geometry in the complex. As a GCPR, C5aR
exhibits high conformational freedom as it changes conformations to accommodate various
sizes of ligands [155]. Also, the peptide analogs of the PMX-53 family are believed to bind C5aR
in a buried cavity in the transmembrane region, which would likely induce large changes in the
conformation and dynamics of the peptide. Comparison between the pharmacophore
descriptors of free analogs and bound PMX-53 (analog 2) was performed in order to analyze the
effects of binding to C5aR on PMX-53, and to ascertain the potential reasons of why the
distributions of ACD-CDB and AD-CB are important for binding.

A docked complex of PMX-53:C5aR has recently been generated based on a novel
docking procedure that incorporates rigid-ligand docking and CHARMM implicit-membrane MD

simulations [in preparation]. A 20 ns implicit membrane molecular dynamics simulation, similar
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to that described for the free peptide analogs, was carried out for the docked PMX-53:C5aR
complex. The angles ACD and CDB, as well as distances AD and CB, were calculated for each of
the bound snapshots, and scatter plots comparing the free and bound structures are shown in
Figure 4-7. Interestingly, even though the most active analogs share a similar distribution of
ACD-CDB in their unbound state, an induced-fit effect stabilizes a different PMX-53
conformation in the complex (Figure 4-7A, red points). On the other hand, the AD-CB
distribution of bound PMX-53 (Figure 4-7B, red points) falls inside the distributions
corresponding to the most active analogs (Figure 4-7B, green points). Thus, from the point of
view of AD-CB, a conformational selection mechanism contributes to the binding of the peptide

antagonists and is indicative of affinity.
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Figure 4-7 Comparison of free group | — lll analogs with PMX-53 bound to C5aR. Superimposed scatter
plots for the ten training analogs and a docked pose of PMX-53 (analog 2) are presented based on two
measurement combinations: (A) angles ACD and CDB; (B) distances AD and CB. The coloring code is as
follows: group | analogs are in green, group |l analogs are in blue, group Ill analogs are in black, and bound
analog 1is in red.

In this study, we have developed a conformationally sampled pharmacophore model for
C5aR peptide antagonists of the PMX-53 family. We have identified two pharmacophore
descriptors, ACD-CDB and AD-CB, as indicative of peptide affinity. The proposed
conformationally sampled pharmacophore model was evaluated using four peptide analogs not

included in the initial ligand set, and showed predictive ability useful in the design of novel C5aR
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antagonists. The novel methodological aspects of the conformationally sampled pharmacophore
approach introduced here, specifically the inclusion of the C5aR environment by a high-accuracy
implicit-membrane model, and the use of clustering analyses, proved to be critical to the
success of this study. Additionally, these novel methods could have great utility in the
study/design of ligands targeting GPCRs and other membrane receptors, as well as ligands for

other protein targets.

4.3. VIRTUAL SCREENING TARGETING COMPLEMENT RECEPTOR C5AR

4.3.1. Introduction

Following the success of our conformationally sampled pharmacophore model, and the
development of our PMX-53:C5aR model, the next logical step is design of new antagonists
targeting C5aR. One popular approach is virtual screening [5], which utilizes docking algorithms
to orient and rank entire databases of known compounds, with the goal of identifying potential
small molecule binders. Virtual screening is much cheaper than traditional high-throughput
screening approaches, since computation and structural knowledge are used to prescreen
compounds prior to experiment. Virtual screening also has the advantage of identifying small
molecules, which are often preferred to peptidic therapeutics due to their better bioavailability
and cheaper manufacturing cost. Therefore, the goal of this study is to apply the knowledge
gained from our conformationally sampled pharmacophore model and PMX-53:C5aR model

development efforts to perform virtual screening studies of C5aR.
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4.3.2. Methods

In this study, two approaches have been adopted to aid in the search for novel small
molecule inhibitors of C5aR, one based purely on C5aR and a second based on the known potent
antagonist PMX-53. All evaluated compounds, in both approaches, came from the ZINC
database (UCSF) [13] comprised of commercially-available compounds for virtual screening. The
first approach, C5aR-based, utilized the Drugs Now subset of the ZINC database, which currently
contains ~6 million compounds. The Drug Now subset is filtered based on the Lipinski rules [176]
for  selecting compounds. For the C5aR-based approach we utilized a
step-wise reduction of the entire ~6 million compounds based on docking each compound to
C5aR using DOCK6 [4], with the complexity of the scoring increasing after each step. In this
study, we used C5aR receptor structures and binding site representations for the C5aR-based
screening that were generated during development of the PMX-53:C5aR model discussed in
section 4.2.2. Five molecular dynamics snapshots of C5aR, which resulted in the best bound
conformations of PMX-53 (specifically poses 22, 6, 1, 3, and 4), were selected for use in the
docking calculations of this study. All of the selected C5aR structures resulted from the elevated
temperature simulations, discussed in section 4.2.2, which provide better docking poses due to
their more open binding site conformations.

The initial screen of the C5aR-based approach involved docking the ~6 million
compounds of the Drugs Now subset to the initial (open) structure of pose 22 (best agreement
with experimental data) from the PMX-53:C5aR docking study. The anchor-and-grow flexible
ligand algorithm of DOCK6 [4] was used to orient the ligands in the C5aR binding site. A bump
filter was employed to exclude docking poses/orientations with more than 3 receptor-ligand

clashes, with a clash being defined as an atom-atom overlap of more than 50 percent. Simplex
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minimization was applied to optimize ligand orientation, and resulting poses were scored using
the grid-based scoring function (grid resolution of 0.3 A), which accounts for van der Waals and
electrostatics contributions to binding. The ~6 million compounds were ranked according the
grid scores for the pose 22 based docking, and the top 50,000 compounds were selected for
further analysis. These top 50,000 compounds were subsequently docked to 4 additional C5aR
structures (initial structures from poses 6, 1, 3, and 4) in order to incorporate receptor flexibility
into the virtual screening procedure. A second compound filtering was performed to identify the
top 1000 compounds by ranking the compounds according to the minimum of the 5 grid scores,
which are a result of docking each compound to the initial structures of poses 22, 6, 1, 3, and 4.
The top 1000 compounds were subjected to a final round of optimization by rescoring the
lowest energy pose of each compound using the Amber Score function of DOCK6. The Amber
Score function includes energy minimization and molecular dynamics for the bound complex, as
well as the free receptor and ligand, in order to incorporate flexibility, and scores the relaxed
pose based on an association free energy using the AMBER forcefield. All atoms within 7 A of
the binding site were free during the 500 steps of molecular dynamics, as well as during the 100
steps of energy minimization before/after MD, while all other atoms were constrained.

The second virtual screening approach employed in this study utilizes a pharmacophore
search performed using the online utility ZINCPharmer [177] to prescreen the ZINC database,
prior to docking calculations. The ZINCPharmer webserver compares a pharmacophore query
against the over 17 million purchasable compounds of the entire ZINC database, with the
conformational space being extended by 10 structures per compound. The lowest energy
structure from pose 6 of PMX-53 bound to C5aR was used to represent the optimum

configuration of pharmacophore points. The pharmacophore query utilized in this study, which
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was selected based on the results of our conformationally-sampled pharmacophore model for
PMX-53 analogs (section 0), is illustrated by Figure 4-8. The pharmacophore query (Figure 4-8)
identified 323 structures satisfying the pharmacophore model, which correspond to 141 unique
compounds. The identified compounds were ranked using the Amber Score function of DOCKS,
as described above; however, molecules were not oriented in the binding site of C5aR using
DOCK®, instead superposition of pharmacophore points onto the bound model of PMX-53 was
utilized. This approach forces identified ligands to be oriented in a manner similar PMX-53, in
accordance with similar physicochemical characteristics. Initial conformations of superimposed
ligands likely clash with C5aR, but the energy minimization and molecular dynamics should relax

the system.

Figure 4-8 Molecular representation of PMX-53 based pharmacophore query. PMX-53 is represented by
the stick CPK model, while the mesh spheres represent selected pharmacophore points: purple, aromatic;
green, hydrophobic; blue, positive ion.

During the selection phase of the virtual screening, clustering based on 2D molecular
similarity was performed using the ChemmineR [178] library to insure the selection of a
structurally diverse set of compounds. ZINC compounds were converted from the MOL2 format
to SDF format using iBabel and Open Babel [179]. Atom pairs for each compound were

generated by importing the compounds in SDF format and using the sdf2ap() function of
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ChemmineR. Binning clustering was performed using the cmp.cluster() function of ChemmineR

based on a cutoff of 0.5.
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Figure 4-9 Comparison between Grid and Amber Scores for the top C5aR compounds. Compounds are
ordered according to their Grid Score (blue circles), while Amber Scores (red squares) are also included for
comparison.

4.3.3. Results and Discussion

In this study we have performed two virtual screens to identify antagonists of
complement receptor C5aR, one based solely on C5aR and a second incorporating knowledge of
a known potent antagonist of C5aR, PMX-53. The first approach filtered the ~6 million
compounds of the Drugs Now ZINC database subset based on three rounds of docking with
multiple C5aR structures. This resulted in ~6 million compounds being scored once, 50,000 of
those compounds being score 4 additional times, and 1,000 compounds being scored a sixth and
final time. The first two rounds of screening were performed using a grid-based score, which is
rather efficient, while the final ranking was performed using the rigorous Amber Score function,

which is based on the AMBER implicit solvent molecular mechanics forcefield. Due to difficulties
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in parameterizing ligands for the Amber Score function, ~800 compounds were scored using
AMBER, and comparison between the Grid Scores and corresponding Amber Scores are
provided in Figure 4-9.

Inspection of Figure 4-9 makes clear that there is little correlation between the Grid and
Amber Scores, with the best compounds based on the Grid Score resulting in positive Amber
Scores. This is slightly concerning, given that the Grid Score was used to rank the compounds in
the first two rounds of docking, but isn’t unexpected since the Amber Score incorporates
dynamics. Also, inspection of the Amber Score results shows that numerous compounds result
in unrealistically low scores, which correspond to unrealistic ligand conformations. As a result,
only Amber Scores in the range of -200 to 0 were considered in compound selection. As is the
case with most virtual screening studies, the ultimate goal of this study is to identify compounds
to be experimentally evaluated; therefore, two sets of ligands were selected based on the C5aR
driven approach: (i) according to the Grid Score ranking (Table 4-3 and Figure 4-10); (ii)
according to the Amber Score ranking (Table 4-4 and Figure 4-11). A third set of compounds
were also selected based on Amber Scores for the compounds resulting from the
pharmacophore search (Table 4-5 and Figure 4-12). All three sets were selected using a
combination of molecular similarity clustering and score-based ranking in order to identify a

diverse set of compounds.
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Table 4-3 List of C5aR predicted ligands based on Grid Score rank.

# ZINCID Grid Score
1 ZINC05288919 -80.3
2 ZINC27345053 -64.2
3  ZINC12770553 -63.6
4  ZINC12768157 -62.9
5 ZINC08635662 -62.5
6  ZINC09052093 -62.1
7  ZINC12573047 -62.0
8 ZINC24973120 -61.8
9 ZINC52627542 -61.7
10 ZINC12363678 -61.5
11 ZINC09335727 -60.9
12 ZINC20201915 -60.7
13  ZINC32967121 -60.6
14 ZINC33033451 -60.5
15 ZINC40412053 -60.5
16 ZINC20805647 -60.5
17 ZINC06949197 -60.2
18 ZINC08900797 -60.2
19 ZINC25326585 -60.2
20 ZINC12482524 -60.2

ZINC05288919 ZINC27345053 ZINC08635662

Figure 4-10 Molecular representations of 3 examples of C5aR predicted ligands based on Grid Score rank.
Compounds are presented as ball and stick models with atoms being colored by element type.
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Table 4-4 List of C5aR predicted ligands based on Amber Score rank.

# ZINCID Amber Score
1 ZINC05445586 -187.4
2 ZINC22913610 -160.4
3  ZINC32895775 -147.9
4  ZINC20997469 -146.5
5 ZINC22922139 -146.4
6 ZINC20503850 -144.5
7  ZINC22909999 -143.9
8 ZINC11936238 -143.4
9 ZINC11874131 -139.2
10 ZINC09549560 -136.2
11 ZINC61722095 -135.9
12 ZINC11872853 -121.9
13 ZINC32547819 -119.8
14 ZINC08428537 -118.4
15 ZINC04954691 -117.4
16 ZINC20462720 -111.8
17 ZINC08610590 -111.5
18 ZINC12436369 -108.4
19 ZINC39412862 -106.6
20 ZINC12593746 -105.7

ZINC05445586 ZINC22913610 ZINC20997469

Figure 4-11 Molecular representations of 3 examples of C5aR predicted ligands based on Amber Score
rank. Compounds are presented as ball and stick models with atoms being colored by element type.
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Table 4-5 List of C5aR predicted ligands based on pharmacophore search.

# ZINCID Amber Score
1 ZINC01771771 -75.0
2 ZINC12482083 -72.1
3  ZINC08432273 -70.6
4  ZINC12457584 -70.4
5 ZINC09892477 -65.0
6 ZINC12888898 -61.2
7  ZINC09380650 -60.9
8 ZINC14039645 -59.4
9 ZINC08386651 -58.6
10 ZINC60136689 -55.9
11 ZINC09508368 -55.4
12  ZINC12560926 -54.4
13 ZINC36557582 -53.9
14 ZINC12957734 -53.7
15 ZINC13863813 -52.5
16 ZINC12546616 -51.2
17 ZINC52627922 -48.9
18 ZINC62042084 -46.7
19 ZINC13694604 -46.0
20 ZINC40986324 -45.8

ZINCO01771771 ZINC12482083 ZINC08432273

Figure 4-12 Molecular representations of 3 examples of C5aR predicted ligands based on pharmacophore
search. Compounds are presented as ball and stick models with atoms being colored by element type.
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Figure 4-13 Molecular similarity clustering comparing the three sets of selected compounds. The color of
the circles indicates the compound set: blue, Amber Score (Table 4-4); green, Grid Score (Table 4-3); red,
pharmacophore search (Table 4-5). The size of the circle indicates the rank of the compounds in each
respective set: large — small, 1 — 20, best — worst.

Molecular similarity clustering was also applied to compare the compounds of the three
sets selected based on the virtual screening results (Table 4-3, Table 4-4, and Table 4-5).
Clustering results were visualized using multi-dimensional scaling to identify the level of
similarity between the compounds of the three selected sets (Figure 4-13). Here, the distance
between points is proportional to similarity, and we can see that there is some crossover
between the three sets of compounds. The pharmacophore search set (red, Figure 4-13) clusters
mostly on its own, which is in accordance with the larger size of most of these compounds as
seen in Figure 4-12. In contrast, there is a fair amount of similarity between the compounds of
the Amber (blue, Figure 4-13) and Grid Score (green, Figure 4-13) sets. In closing, these

compounds represent a diverse set of potential C5aR ligands ready for experimental evaluation.
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5. CONCLUSION

Molecular modeling is a powerful tool for investigating the complex nature of
biomolecular interactions, with utility in understanding the molecular basis of disease and in the
design of novel therapeutics. Due to the immense complexity of biological environments,
various methods have been developed to capture different aspects involved in biomolecular
function [2-8]. A combination of modeling approaches can provide a more comprehensive view
of a particular system, and can have great utility in protein/drug design.

Of the described molecular modeling methods, electrostatics calculations can efficiently
provide insight into biomolecular recognition and binding, and therefore can be performed on a
much larger scale than simulations such as molecular dynamics [3,9]. Our computational
framework, Analysis of Electrostatic Similarities Of Proteins (AESOP) [25,38], takes advantage of
the scalability of electrostatics calculations in order to design new protein analogs with tailored
electrostatic character. The AESOP framework utilizes theoretical mutagenesis, electrostatic
clustering, free energies of association, and calculations of ionization properties to elucidate the
role of each charged residue in association. Initial application of the AESOP framework to the
gold-standard system barnase-barstar showed the its predictive value in ascertaining the effects
of mutations on protein association [25]. However, the design of new SUMO4 substrate analogs
was the first application of AESOP in which in the predictions were used to successfully guide
experiment (section 2.5). In addition to design, the AESOP framework has also been used to
elucidate the role of electrostatics in association for various protein systems [26,38,139,180-
183], and has potential utility for analyzing any other electrostatically-driven biomolecular

interaction.
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The complement system, an ancient component of innate immunity, is a cascade of
protein interactions that are largely driven by electrostatic forces. Upon activation the
complement system leads to opsonization of foreign pathogens, initiation of an inflammatory
response, and bacterial cell lysis [77]; however, over-activation of the complement system can
lead to disease [78]. The electrostatic character of complement regulators, such as factor H,
drives the recognition of C3b bound to host cells and in healthy individuals to prevent further
activation of the complement system [180]. Complement proteins, such as complement
fragment C3d, have evolved to contain electrostatic “hot-spots” which guide recognition and
often coincide with two distinct functional sites: an ancient site that is part of innate immunity
and a newer site that is a link between innate and adaptive immunity (section 3.3). Additionally,
we have also investigated the role of electrostatics in the C3d-CR2 interaction, which has been a
subject of controversy over the last decade. Due to this crucial role of electrostatics complement
system function, pathogens often utilize electrostatics in evasion tactics by inhibiting
complement interactions [139] and mimicking native complement regulators, such as Kaposica
(section 2.2) [37]. In addition to gaining insight into the role electrostatics in complement
system function, these studies of factor H and C3d could also serve as springboards for the
electrostatic-based design of complement inhibitors and vaccine adjuvants, respectively.

One of the more popular applications of molecular modeling is computational drug
design, which utilizes simulation to identify potential new therapeutics. Various approaches
have been developed, which utilize structural information of targets of interest, as well as
known ligands of a given target. On the complement system, one of the prime drug targets is
anaphylatoxin receptor C5aR, which has been implicated in numerous inflammatory diseases

due to its role in chemotaxis and activation of leukocytes [155]. We have developed a ligand-
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based conformationally-sampled pharmacophore model for antagonists of C5aR, which is
capable of distinguishing the level of affinity of various analogs (section 4.2). Our
pharmacophore model provides insight into the mode of action of C5aR antagonists, and could
aid in the design/analysis of novel antagonists. Additionally, since small organic compounds are
often preferred therapeutic candidates, we have also performed virtual screening of C5aR,
based on a recently developed model of the C5aR-PMX-53 interaction. During the screening
process we utilized structural knowledge of C5aR and known antagonist PMX-53, to identify a
structurally diverse set of potential C5aR ligands. The next step in this project, to be carried out
in the near future, involves the experimental evaluation of identified C5aR compounds by our
collaborators at University of Queensland and University of Sheffield.

In general, the studies presented here represent a collection of methods and
applications that can be utilized in the analysis of biomolecular interactions, as well as in
protein/drug design. In addition to the direct findings of these studies, our work provides a
blueprint of an approach that has broad application in protein/drug design. Our AESOP
framework also will be made available to the public in the near future and should be of interest
to researchers of the field. Moving forward, the most important aspect of the
methods/approach developed here is its flexibility and adaptability, which allow the addition of
new utilities to solve unforeseen problems and to account for new advances. Also, since the
principles for understanding biomolecular interactions are ubiquitous, the developed approach

can be applied in broad range of systems.
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Appendix B Sequences of the flexible linkers of FH CCP modules and the N- and C-termini outside
the first and last CCP modules and their net charges. CCP modules are defined with boundaries
the first and last conserved cysteine of each module.

Linker | Sequence Length | Charge
NT ED 2 -2
1-2 QKRP 4 +2
2-3 EVVK 4 +0
3-4 VEIS 4 -1
4-5 EEKS 4 -1
5-6 TLKP 4 +1
6-7 LRK 3 +2
7-8 IRVKT 5 +2
8-9 IKS 3 +1
9-10 YERE 4 -1
10-11 | KEQVQS 6 +0
11-12 | IVEEST 6 -2
12-13 | VAIDKLKK 8 +2
13-14 | SMAQIQL 7 +0
14-15 | VEKIP 5 +0
15-16 | EGLP 4 -1
16-17 | IKTD 4 +0
17-18 | RDTS 4 +0
18-19 | KDSTGK 6 +1
19-20 | LHP 3 +0
CT AK 2 +1
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Appendix C List of hydrogen bonds formed between Factor H (CCP1-4) and C3b.

Factor H C3b i
. . . - Distance
Residue | Residue Atom Residue | Residue Atom | Domain (R)

Type Number Type Number

ARG 39 NE ASN 738 (0] a'NT 3.87
ARG 39 NH2 ASN 738 (0] a'NT 3.18
ARG 39 NH2 SER 900 0oG MG7 2.94
LEU 41 (0) ILE 733 N a'Nt 3.18
ARG 60 NH2 ASP 732 OD1 | a'Nt 2.75
ARG 65 NE GLU 737 0] a'Nt 3.74
ARG 65 NE ASN 738 OoD1 a'NT 3.77
ARG 65 NH2 GLU 737 o) a'NT 2.78
ASP 72 OoD2 LYS 774 NZ MG6 2.69
GLU 98 OE1 ARG 570 NH1 MG6 4.08
GLY 153 (0) SER 159 N MG2 2.97
GLN 154 NE2 ASP 156 OD1 MG2 3.66
ALA 155 (0) SER 157 0oG MG2 4.10
ALA 155 N SER 157 (0] MG2 2.83
ARG 157 NE GLU 189 OE2 MG2 3.09
ARG 157 NH2 GLU 189 OE2 | MG2 2.75
GLU 171 OE1 THR 140 0G1 MG2 3.06
GLU 171 OE2 THR 140 0OG1 MG2 3.02
GLN 205 N GLU 1138 OE2 C3d 3.14
LYS 206 N GLU 1138 OE2 C3d 3.60
ARG 214 NH1 ASN 1069 OD1 C3d 2.69
GLN 216 OE1 SER 1075 oG C3d 2.88
GLU 227 OE2 LYS 43 NZ MG1 3.10
ARG 228 NH1 VAL 1068 (0) C3d 4.14
ARG 228 NH2 GLY 42 (0] MG1 3.07
GLU 235 OE2 ARG 72 NH2 | MG1 3.14

Colored blocks denote FH modules CCP 1 to 4.

The CCP1-CCP2 linker block is not colored.

Relaxed distance and angle criteria were used.
Bold face indicates salt bridges.
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Appendix D List of Coulombic interactions (up to 8 A) formed between Factor H (CCP1-4) and
C3b.

Factor H C3b .
Distance
Residue [ Residue |, Residue | Residue || Unfavorable (A)
om Atom | Domain
Type Number Type Number
ARG 60 cz ASP 732 CG a'NT 4.69
ARG 60 (c GLU 731 CcD a'NY 6.97
ARG 65 cz LYS 891 NZ MG7 YES 7.73
ARG 65 cz GLU 737 CD a'NT 5.11
HIS 69 NE2 LYS 774 Nz MG6 4.19
HIS 69 ND1 ASP 775 CG MG6 6.59
HIS 69 ND1 GLU 244 CD | a'NT 3.90
ASP 72 [o[c] LYS 274 NzZ | MGé6 3.63
ASP 72 CG GLU 744 CD a'NT YES 6.58
GLU 98 CD ARG 570 Ccz MG6 6.02
ASP 114 CG GLU 737 CD a'NT YES 5.87
LYS 138 NZ HIS 1290 ND1 CUB 7.66
GLU 145 CD HIS 1287 ND1 CcuB 5.57
HIS 151 NE2 LYS 154 NZ MG2 6.52
HIS 151 NE2 ASP 156 CG MG2 5.72
ARG 157 cz LYS 75 NZ MG1 YES 6.34
ARG 157 cz GLU 189 CD | MG2 3.83
GLU 170 CD ARG 72 CZ MG1 5.33
GLU 171 CcD GLU 189 CcD MG2 YES 4.33
LYsS 206 NZ GLU 1137 CD C3d 7.10
LYS 206 NZ GLU 1138 CD C3d 6.44
ARG 214 Ccz LYsS 44 NZ MG1 YES 7.91
ARG 214 CZ ASP 1134 CG C3d 6.94
GLU 227 cb LYS 43 NZ | MG1 3.89
GLU 227 CD LYS 1028 NZ C3d 7.72
GLU 227 CD HIS 38 NE2 MG1 5.39
ARG 228 cz LYS 44 NZ MG1 YES 4.61
GLU 235 CcD ARG 72 cz MG1 4.81
GLU 235 CD GLU 73 CD MG1 YES 7.80
ARG 239 Ccz GLU 73 CD MG1 6.86

Colored blocks denote FH modules CCP 1 to 4.

The CCP1-CCP2 linker block is not colored.

The central atom of the charged center was used to calculate distances.
Bold face indicates distance < 5 A.

Underlining indicates distance < 4 A.
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Appendix E List of all intramolecular interactions (up to 5 A) formed between Factor H (CCP1-4)
and C3b.

Factor H C3b Distance
Residue | Residue Atom Residue | Residue Atom | Domain (A)
Type Number Type Number
TYR 38 (0] ASN 738 OoD1 a'NT 4.11
ARG 39 NH2 SER 200 oG | MGZ 2.94
ARG 39 NH2 ASN 738 o a'NT 3.18
ARG 39 cD PHE 898 cz MG7 3.40
ARG 39 NH2 ILE 734 CG2 a'NT 37/7/
ARG 39 NH2 ILE 739 CA a'NT 4.20
SER 40 CA PHE 898 CE1 MG7 3.78
SER 40 (o] ILE 734 CD1 a'NT 3.83
SER 40 (o] ILE 733 (o} a'NT 4.18
SER 40 N ASN 738 ND2 a'NT 4.40
SER 40 (0] ALA 735 N a'NT 4.56
LEU 41 o ILE 733 o a'NT 2.74
LEU 41 CcD2 HIS 897 o MG7 3.40
LEU 41 CD1 PHE 898 CD1 MG7 3.47
LEU 41 CD2 ASP 732 OoD1 a'NT 3.65
LEU 41 CD2 HIS 896 C MG7 3.88
LEU 41 N ILE 734 CD1 a'NT 4.41
LEU 41 (0] GLU 731 C a'NT 4.60
LEU 41 (o] ASP 730 (0] a'NT 4.80
GLY 42 N ILE 733 (o} a'NT 4.81
ARG 60 NH2 ASP 732 OD1 | a'NT 2.75
ARG 60 NH2 GLU 731 C a'NT 4.94
LYsS 61 (o] PHE 898 CE1 MG7 4.98
GLN 63 cB PHE 898 cz MG7 4.22
ARG 65 NH2 GLU 237 o a'NT 2.78
ARG 65 NE ASN 738 oD1 a'NT 3.77
ARG 65 NH2 VAL 740 CG2 a'NT 4.05
PRO 66 (o] VAL 740 CG2 | a'NT 3.12
PRO 66 CD ASN 738 (o} a'NT 4.42
CYs 67 CA VAL 740 CG2 a'NT 4.37
GLY 68 N VAL 740 CG1 | a'NT 3.37
HIS 69 CB GLU 744 CG a'NT 3.39
HIS 69 CE1l LYs 774 NZ MG6 3.83
HIS 69 CD2 LEU 773 (0} MG6 4.30
HIS 69 CB ASP 775 OoD1 MG6 4.40
HIS 69 NE2 PHE 772 CB MG6 4.53
GLY 71 CA GLU 744 OE2 a'NT 3.63
ASP 72 oD2 LYS 7724 NZ | MG6 2.69
ASP 72 N GLU 744 OE1 a'NT 4.49
PHE 75 CE1 SER 170 0G MG2 3.87
PHE 75 CE1 LEU 124 CD2 MG2 4.56
THR 77 CG2 ASN 752 OoD1 MG6 3.64
PHE 78 CE1 PHE 772 CD2 MG6 4.28
PHE 78 CZ PHE 772 cB MG6 4.70
PHE 78 cz PHE 772 CD2 MG6 4.72
PHE 78 CE1 PHE 772 CE2 MG6 4.76
PHE 78 CE1 PHE 772 CG MG6 4.79
PHE 78 cz PHE 772 CG MG6 4.94
PHE 78 CE1 PHE 772 cB MG6 4.97
LEU 80 CD2 PHE 772 cz MG6 3.52
ASN 84 o PHE 772 CE1 MG6 3.30
ASN 84 ND2 GLN 558 NE2 | MG6 3.49
VAL 85 N PHE 772 CE1 MG6 4.73
PHE 86 cz PHE 772 CcD1 MG6 3.40
PHE 86 CE2 GLY 556 (o) MG6 3.60
GLU 98 OE1 GLN 163 OE1 MG2 3.66
GLU 98 OE1 ARG 570 NH1 MG6 4.08
GLU 98 OE2 ASN 162 (0] MG2 4.12
TYR 100 OH SER 170 oG MG2 4.76
ASP 114 OD1 GLU 737 OE2 a'NT 3.91
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Appendix E (cont.)

Factor H C3b Distance
Residue | Residue Residue | Residue .

Type Number i Type Number AtomDomain (A
ILE 203 CD1 GLN 1076 OE1 C3d 3.77
ILE 203 CG2 GLN 1139 OE1 C3d 4.28
ILE 203 CD1 SER 1075 CB C3d 4.63
ILE 203 (o} GLU 1138 OE1 C3d 4.79

SER 204 CB GLU 1138 OE1 C3d 3.36

GLN 205 N GLU 1138 OE2 C3d 3.14

LYS 206 N GLU 1138 OE2 C3d 3.60
ASN 212 (o} ASP 1134 0oD2 C3d 4.41
ARG 214 NH1 ASN 1069 (OD1| C3d 2.69
ARG 214 CB ASP 1134 (0] C3d 3.64
ARG 214 CD ILE 1135 CG1 C3d 3.82
ARG 214 NH1 VAL 1068 CG2 C3d 3.96

GLN 216 OE1 SER 1075 oG C3d 2.88
GLN 216 NE2 ILE 1135 CG2 C3d 3.57
GLN 216 CG GLN 1139 OE1 C3d 4.33
GLN 216 NE2 ASP 1134 (o} C3d 4.54
TYR 225 CD2 ALA 1072 CB C3d 4.03

GLU 227 OE2 LYS 43 Nz MG1 3.10
GLU 227 (o} ALA 1072 CB C3d 3.61
GLU 227 OE2 GLN 87 OE1 MG1 4.10
GLU 227 OE2 HIS 38 CE1 MG1 4.57
GLU 227 (o} ILE 1071 C C3d 4.89

ARG 228 (o] VAL 1068 o C3d 2.97

ARG 228 NE ASN 1069 o C3d 3.03

ARG 228 NH2 GLY 42 (o] MG1 3.07

ARG 228 NH2 LYS 44 NZ MG1 3.82

ARG 228 CD ILE 1071 (0] C3d 4.20

ARG 228 CD LEU 1070 N C3d 4.21

ARG 228 C ALA 1072 cB C3d 4.29

ARG 228 NH2 LYS 43 (0] MG1 4.60
GLY 229 N ALA 1072 CB C3d 4.08
GLY 229 N ILE 1071 (o} C3d 4.95
ASP 230 oD1 VAL 1068 (o} C3d 4.04

GLU 235 OE2 ARG 72 NH2 | MG1 3.14
SER 236 0G ARG 72 NH2 MG1 4.07
SER 236 oG GLU 73 OE2 MG1 4.41
TRP 238 (o} LYS 44 (o} MG1 4.98

ARG 239 NE LEU 45 CD2 MG1 3.79

ARG 239 CG LYS 44 (o} MG1 3.94

PRO 240 CA LYS 44 o MG1 3.37
PRO 240 CB LYS 43 (o} MG1 3.97
LEU 241 N LYS 44 (o} MG1 4.39
LEU 241 CD1 VAL 46 CG1 MG1 4.87

Colored blocks denote FH modules CCP 1 to 4.
The CCP1-CCP2 linker block is not colored.
Bold face indicates distance < 3.5 A.

Underlining indicates distance < 3 A.

161




Appendix F List of available experimentally determined structures of Factor H modules.

PDB Code Module(s) Experimental Reference
method

2RLP 1-2 NMR [184]
2RLQ 2-3 NMR [184]
2Wi1l 1-4 X-ray [102]
- 5 NMR [100]*
2W80 6-7 X-ray [15]
2W81 6-7 X-ray [15]
2JGW 7 NMR [18]
2JGX 7 NMR [18]
2UWN 6-8 X-ray [119]
2V8E 6-8 X-ray [119]
2KMS 12-13 NMR [185]
1HFH 15-16 NMR [186]
1HFI 15 NMR [186]
1HCC 16 NMR [187]
2BZM 19-20 NMR [188]
2G71 19-20 X-ray [121]

*Coordinates from: http://www.bionmr.chem.ed.ac.uk/bionmr/public_html/FH~05.pdb

Appendix G List of experimental coordinate files used for Factor H electrostatics and reasoning.

Domain PDB Code Reason for selection

CCP1 2RLP Only available structure

CCP2 2RLQ More secondary structure

CCP3 2RLQ Only available structure

CCP4 2WII Only available structure

CCP5 Online® Only available structure

CCP6 2UWN No MSE® residues

CCP7 2UWN No MSE residues

CCP8 2UWN No MSE residues

CCP12 2KMS Only available structure

CCP13 2KMS Only available structure

CCP15 1HFI More secondary structure

CCP16 1HCC More secondary structure

CCP19 2BZM X-ray structure is missing side chains
CCP20 2BZM X-ray structure is missing side chains

®MSE: selenomethionine.
®from http://www.bionmr.chem.ed.ac.uk/bionmr/public_html|/FH~05.pdb.
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Appendix H Template modules used for homology modeling of Factor H and percent identities.
The coordinate files for the template structures are as in Appendix G.

Model Template :{;
CCP9 CCPT7 35
CCP10 CCP16 27
CCP11 CCP19 34
CCP14 CCP15 37
CCP17 CCP16 31
CCP18 CCP19 40

alpha-NT -5
TED -4
CcuB -6
LNK +2
C345C -12

Appendix | Spatial distributions of electrostatic potential of the non-MG C3b domains (PDB Code 2107).
The amino acid ranges for the non-MG C3b domains are: alpha-Nt (730-745), C3d (or TED, 970-1264), CUB
(912-969 & 1265-1330), LNK (578-642), and C345C (1475-1641). The net charge of each domain is marked
in the figure. Electrostatic potentials were calculated using ionic strengths corresponding to 0 mM
counterion concentration. The color code for isopotential contours is blue for positive and red for
negative electrostatic potential. Isopotential contours are plotted at 3 kBT/e. Ribbon representations of
each domain are also provided to illustrate the orientations used for the isopotential contours.
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Appendix J Complement regulators and receptors bind the acidic “hot-spot” of complement C3d.
Cumulative electrostatic similarity distribution for 24 homologues projected onto the surface of human
C3d (same as Figure 2B) [blue — green — red; low to high similarity] with host ligands superimposed.
Ribbon representations are used for the host ligands: FH 4 — white (PDB: 2WII); FH 19/20 — gray (PDB:
2XQW); CR2 — black (PDB: 30ED). Two rotations of C3d are provided to show the two electrostatic “hot-
spots”: (A) CR2-face and (B) thioester-face.

Appendix K Pathogenic inhibitors of the complement system target the conserved electrostatic “hot-
spots” of complement C3d. Cumulative electrostatic similarity distribution for 24 homologues projected
onto the surface of human C3d (same as Figure 2B) [blue — green — red; low to high similarity] with S.
aureus virulence factors superimposed. Ribbon representations are used for the S. aureus virulence
factors: Ehp — white (PDB: 2NOJ); Efb-C — gray (PDB: 2GOX); Sbi — black (PDB: 2WY7). Two rotations of C3d
are provided to show the two electrostatic “hot-spots”: (A) CR2-face and (B) thioester-face.
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Appendix M Sequence and charge clustering of C3d homologues using whole sequences. Dendrograms
with distance matrix heatmaps illustrate sequence clustering based on: (A) percent identity and (B)
number of positions with the same charge. Net charge of each sequence is provided in parentheses.
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Appendix N Sequence similarity clustering for the two sides of C3d. Dendrograms with distance matrix
heatmaps illustrate clustering of the 24 C3d homologues based on percent identities within the two
functional regions as defined by Appendix O: (A) CR2-face and (B) thioester-face. Net charge of each
homologue is provided in parentheses.
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Appendix O lllustration of the two functional regions used for sequence analysis of complement C3d.
Residues were assigned to the two regions according to their x-coordinates. The CR2-face (colored in red)
includes residues that contain at least one atom with an x-coordinate < (mean(x) — 5 A), while thioester
face includes residues that contain at least one atom with an x-coordinate > (mean(x) + 5 A).

167



Appendix P List of complement C3d homologues with UniProt accession ID, human C3d percent
identity, and net charge.

Name Scientific name UniProt I_’erce_nt Net
ID identity charge

Human Homo sapiens P01024 - -1
Hamster Mesocricetus auratus Q92115 85 -4
Mouse Mus musculus P01027 85 -7
Cow Bos taurus Q693V9 80 +0
Chicken Gallus gallus Q2MV09 65 +4
Duck Anas platyrhynchos B5AG23 65 +0
Cobra Naja naja Q01833 58 +2
Copper head Austrelaps superbus AORZG2 57 +1
Trout-1 Oncorhynchus mykiss P98093 49 +1
Trout-3 Oncorhynchus mykiss Q98977 48 -3
Trout-4 Oncorhynchus mykiss Q9DDV9 51 +1
Wolf fish Anarhichas minor Q98TS6 52 +8
Lungdfish Protopterus aethiopicus Q9W6G1 64 +4
Frog Xenopus laevis Q91588 60 +0
Lamprey Lampetra japonica Q5SGB5 47 +2
Hagfish Eptatretus burgeri P98094 40 +3
Sea squirt Halocynthia roretzi 097019 37 -10
Amphioxus Branchiostoma belcheri Q969A4 37 -2
Sea anemone (#2) Haliplanella lineata D4Q979 43 -2
Sea anemone (#1) Nematostella vectensis B9X079 41 +6
Coral Acropora millepora A0T397 42 +3

Strongylocentrotus 044344 39 -13
Sea urchin

purpuratus
Crab Tachypleus tridentatus B6ZH52 42 +6
Clam Venerupis decussatus COJPJ2 42 +6
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Appendix Q Comparison of predicted interactions between C3d homologues and human CR2.

Homology models of the hypothetical complexes

formed between 24 homologues of C3d and

human CR2 were generated with Modeller, using the complex of human C3d-CR2 (PDB Code:
30ED) as a template. The solvation free energy of association (AAG,,) for each complex was
calculated using PDB2PQR/APBS according to the thermodynamic cycle of Figure 2-1B. The

species are ranked according to AAGg),.

Name

Sea urchin
Mouse

Sea squirt
Hamster
Human
Amphioxus
Cow

Trout-3

Sea anemone (#2)
Coral

Frog

Copper head
Trout-1
Duck
Hagfish
Lamprey
Cobra
Trout-4
Chicken
Lungfish
Clam

Sea anemone (#1)
Crab

Wolf fish
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AAG;,, (kJ/mol)
-280.4
-256.0
-204.7
-191.3
-167.6
-147.3
-134.0
-98.7
-96.9
-88.3
-87.0
-84.0
-80.2
-60.8
-57.2
-56.0
-50.8
-43.0
-30.2
-25.6

-4.3
7.2
12.0
52.0



Appendix R Water representation of C5aR cavity shape. The cavity waters were selected according to the
procedure described in section 4.2.2. Water molecules are presented using only the oxygen atom, and the

molecule color is indicative of the occupancy of the molecule over the course of the trajectory (maroon is
high occupancy and cyan is low occupancy).
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Appendix S Clustering of C5aR structures based on cavity shape similarity. The cavity shapes were
characterized based on binary water finger prints as described in section 4.2.2. In the heatmap above,
each vertical column represents the binary water fingerprint of a single C5aR cavity and each row
represents a specific cavity water; here purple indicates that a water is present in a C5aR cavity structure
while white indicates that it is absent. The columns have been rearranged according to the dendrogram
(top), which was produced using hierarchical clustering as described in section 4.2.2. The horizontal color
bar below the dendrogram is provided to visualize the clusters produced during tree cutting.
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Binding site ChaR-pa structures

Dockin

. ¢

Selected C5aR structure

Docked poses

Every pose is individually scored based
on a energy function which includes an
implicit membrane/solvent environment

Appendix T Schematic of docking procedure used for generating the C5aR:PMX-53 complex. This
procedure corresponds to the methods described in section 4.2.2.
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Appendix U List of top 20 ZincPharmer compounds predicted for C5aR based on a Amber Score
ranking. Initial screening was performed by using ZincPharmer to identify compounds similar to
PMX-53 based on pose 22 (overall lowest energy conformer) of the C5aR:PMX-53 model.
Approximately 300 compounds were identified and score using the Amber Score function of
DOCK®6. Since there were only 20 compounds with a favorable (negative) Amber Score, no
additional classification or clustering was performed.

# ZINCID Amber Score
1 ZINC67890466 -135.6
2 ZINC58989853 -62.8
3 ZINC20311483 -60.2
4  ZINC09261828 -58.2
5 ZINC58989860 -56.5
6 ZINC28711445 -47.5
7 ZINC64228391 -44.9
8 ZINC20974239 -43.5
9 ZINC67890464 -35.3
10 ZINC03217449 -34.2
11 ZINC67879092 -29.4
12 ZINC03024412 -29.1
13 ZINC67879068 -26.8
14 ZINC08441234 -26.7
15 ZINC19855996 -19.5
16 ZINC59500310 -12.3
17 ZINC13510865 -10.7
18 ZINC00725906 -8.6
19 ZINC40917971 -7.9
20 ZINC67879081 -6.2

ZINC67890466 ZINC58989853 ZINC20311483

Appendix V Molecular representations of top 3 predicted C5aR ligands based on pharmacophore search of
pose 22. Compounds are presented as ball and stick models with atoms being colored by element type.
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Appendix W Net charge distributions for
sequences of the V3 loop of HIV gpl20.
Distributions are based on the analysis of
5,309 V3 loop sequences from patient
samples with known co-receptor
specificities, retrieved from the Los Alamos
HIV Databases. The three panels on the left
are based on the net charges of three
structural regions, defined as follows: base —
residues 1-6 and 30-37; stem — residues 7-10
and 24-29; tip — 11-23. The abbreviated
names in the legend are as follows: RS,
CCR5; R5X4, dual (selects both CCR5 and
CXCR4); X4, CXCRA4.

Appendix X CCR5 specific V3 loop sequence composition per position.
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174

%



100

82

100

97

72

929

929

929

95

71

10

79

11

82

12

48

20

10

13

77

13

77

14

96

15

96

16

929

17

56

56

29

18

77

77

19

79

20

91

91

21

62

62

22

93

23

81

24

38

29

38

25

93

26

81

81

12

27

87

28

67

29

86

30

87

31

70

12

32

87

87

33

66

17

12

34

87

13

87

35

929

99

36

929

99

37

175



Appendix Y CCR5/CXCR4 specific V3 loop sequence composition per position.
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48
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11
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37
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16

10

63

14

96

15

88

16

95

17

47

47

41

18

53

15

20

53

19
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20

75
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21

51

33
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78
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52
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11

12

13

18

25
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23
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69
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70
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20
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32

69
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20
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Appendix Z CXCR4 specific V3 loop sequence composition per position.
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Appendix AA UCSF Chimera Introduction

Additional Help

All of the commands and functions discussed in this brief tutorial are explained in much more
detail in the UCSF Chimera User Guide:
http://www.cgl.ucsf.edu/chimera/1.4/docs/UsersGuide/index.html

For complete list of all command line functions and options please see the following link:
http://www.cgl.ucsf.edu/chimera/1.4/docs/UsersGuide/framecommand.html

Getting Started

All of the examples herein will be based on structures of the SUMO1:SENP2 (PDB Code: 1tgz)
and SUMO2:SENP2 (PDB Code: 2i00) complexes. Both files can be imported directly into
Chimera by using the drop-down menu and going to File > Fetch by ID... (A similar notation will
be used throughout when referring to the drop down menus.).

After opening the PDB files, | recommend removing all solvent or heteratoms which can be
achieved using the following command:

del ~protein #Which deletes everything that's not (~) the protein.

Superposition

The first step for this comparison is to superimpose the two models (A “model” for Chimera
refers to a file, e.g. one PDB file, and not to whether or not the structure was experimentally
determined.). The easiest method is MatchMaker, which can be found under Tools > Structure
Comparison > MatchMaker. The MatchMaker function first performs a sequence alignment to
determine what portions of the two models are similar, prior to fitting the atomic coordinates.
MatchMaker can superimpose two structures even if the there are not the same number of
atoms in each structure, where other methods require that the same number of atoms be given.

One measure of the fit or similarity between two structures is the root mean squared deviation,
or RMSD, which can be calculated for all or a subset of atoms. In Chimera the command line
function rmsd will perform this calculation when given two atom specifications (The format for
atom specification is #model:residues.chain@atom. See below for examples, also see Quick
Reference Guide). The rmsd function requires that the same number of atoms be given by each
specification, so you will need to examine the sequence alignment from MatchMaker to
determine which residues are conserved.

rmsd #0:366-589 #1:366-589
rmsd #0:366-589@ca,n,c,o0 #1:366-589@ca,n,c,0
rmsd #0:366-589@ca #1:366-589@ca

If it is desired that only a specific subset of the structure be used for the superposition, which
cannot be achieved using MatchMaker, the match function provides such functionality. The
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match function performs a least squares fit based on the specified atom coordinates, and
automatically returns an RMSD.

match #0:366-589.A@ca #1:366-589.A@ca
match #0:366-589.A@ca,n,c,0 #1:366-589.A@ca,n,c,0
match #0:366-589.A #1:366-589.A

Representations

All representations (Atom/Bond, Ribbon, Surface) can be found under the Actions drop-down
menu, with each having its own options. If representations are applied with no atoms selected,
the representation will be applied to all models. Below you will find a few examples of the
commands to achieve these different representations using the command line. Multiple
representation types can be used simultaneously, and atom specifiers can be used to apply to
representations to only portions of the model.

Atom/Bond:

show (All atoms and bonds will be shown)

rep bs (Change atom/bond represenation to ball and stick, also can use stick
and wire, or alternatively you can use sphere for a van der Waals
representation.)

show #0@ca (C-alpha trace. Here this should show only atoms in model #0.)

show #0@n,ca,c,0 (Backbone)

~show (Hide atom/bonds)

Ribbon:

ribbon (Show all ribbons)

ribrep edged (Change representation. Other options are flat or smooth, which is
default.)

~ribbon (Hide all ribbons)

Surface:

surface #0 (Surface model #0.)

surfrep dot (Surfaces can be represented in dot, mesh, or solid, where solid is the
default.)

surftransparency 70 (Change surface transparency. Takes a percent as an input, where 0 is
opaque and 100 is fully transparent.)

Color

The color of specific models or representations can be changed by using the Actions > Color
menu. Selections can be made using the command line or the mouse prior to applying a color, if
no selection is made it is applied to all models.

color gray #0:.A (Color chain A of model 0 gray.)

color yellow hydrophobic
color red negative
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color blue positive
rainbow

Analyzing Complexes

It is often desired to analyze which interactions or contacts contribute to the stability of proteins
or protein complexes. One approach to achieve such an analysis is to use zone selections, in
which one can select residues (zr) or atoms (zr) according to its proximity to other atoms or
residues.

show #0:.A zr< 5 & #0:.B (Show residues with at least one atom within 5 A of chain A of
model #0 and is within chain B of model #0. The second portion
of this selection, “& #0:.B”, is used to exclude other models and
chain A.)

sel #0:.A zr < 5 & #0:.B (Alternatively the same arguments can be used to select the
residues, which can subsequently be written to file at Actions >
Write List ...)

For charge-charge interactions it is typically desired to find specific atoms, those that are
possibly charged, with in the vicinity of a specific charged group. Such a comparison can
be made using similar syntax to above, as follows:

sel #0:63.B@CZza <5 & :glu@cd & #0:.A
Hydrogen bonds can be determined by: Tools > Structure Analysis > FindHBonds

Delta SASA of binding for a complex can be determined as follows (requires newer version of
Chimera, 1.4.1 or higher):

measure buriedArea #0:.A #0:.B
measure buriedArea #1:.A #1:.B

Saving Images
When saving images it is typically better to have a white background to save ink etc., and this
can be set through the Action > Color drop down menu, or with the following command: set
bg_color white

Chimera is capable of producing very high-resolution images for publication. This can be
achieved by File > Save Image..., and following the dialog boxes. The copy command can be used

as shown in the following example: copy file /Users/ckieslich/test.png png

! Extra note: It is also possible to save edited structures as PDBs and to save Sessions where
models and representations are save for later use (File > ...)
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Appendix BB Dock 6 Outline

1) Prepare Structures
1. Forthe receptor: Use DockPrep function in Chimera
®* Deletes solvent
®* Mutates MSE to MET
®* AddsH
o Possible Methods
- Stericonly
- Consider H-bond network
o Histidine Protonation
- Residue name based
- Individually chosen
- Unspecified (determined by method)
®* Adds Charge
®* (Newer Version: Can replace incomplete side chains using a library of
rotomers. If this option is not used, it is necessary to mutate residues with
incomplete side chains to Ala or Gly)
* After completing above steps, need to save two files: 1) mol2 file and 2)
PDB without hydrogens (needed to create molecular surface later)
2. For the ligand:
®* Protein ligand: Repeat above steps but no PDB file needed
®* Small molecule ligand: 2 options (Repeat above (No PDB) or submit to
ZINC)

) Generate Spheres
1. Generate molecular surface
®* Based on PDB file of receptor

®* DMS (included with DOCK)
o Uses a ball with the radius of water (like APBS)
2. Generate spheres surrounding receptor

®* Spheres generated for entire surface
o Spheres are produced with sizes on a given range (default: 1.4 - 4A)
o Produced spheres are tangent to the molecular surface

* Filtered, keeping only the largest sphere associated with each surface
atom

* Filtered set of spheres are then clustered using a single linkage algorithm

3. Select a subset of spheres
® Can choose the largest cluster (Typically represents binding site)
®* Can select spheres within a given radius of a desired location
®* Add spheres manually, if a known binding site is poorly represented
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)

Iv)

Grid Generation
1. Defines area used for calculation of docking score
2. Must answer a series of questions.

Docking

1. Rigid Ligand

Typically used to explore the matching and minimization algorithms
Also useful if searching a conformationally expanded database
In conceptual terms, the algorithm matches the centers of the ligand
heavy atom to the centers of the receptor site spheres. The algorithm
follows the steps below:

o Generate node
Label as match if atom and sphere edges are equivalent
Extend match by adding more nodes
Exhaustively generate set of non-degenerate matches
Use matches to create transformation matrices to move the entire
molecule

o
o
o
o

node = pairing of one heavy atom and one sphere center

edge length = Euclidean distance between atom or sphere centers

Once an orientation has been generated, the interaction between the
ligand and the receptor can be energetically optimized, in this case using a
simplex minimizer (Nelder, et al. Computer Journal 1965). During
minimization, the ligand is allowed to be flexible, but the receptor
remains rigid. The final score in the output file is the best pose generated
from the orienting and minimization procedure.

2. Flexible Ligand

Allows ligand to structurally rearrange in response to the receptor
All bonds within molecular rings are treated as rigid.

To treat such phenomena as sugar puckering and chair-boat hexane
conformations, the user needs to supply each ring conformation as a
separate input molecule.

If the molecule does not have a ring, the largest rigid segment is specified
as the anchor.

Additional bonds may be specified as rigid by the user.
Next is the identification of flexible bonds

The location of each flexible bond is used to partition the molecule into
rigid segments, where a segment is the largest local set of atoms that
contains only non-flexible bonds.
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V) Amber Scoring

When a user calls for Amber score, the program performs minimization, MD simulation, and
more minimization on the individual ligand, the individual receptor, and the ligand-receptor
complex, and calculates the score as follows:

Ebinding = Ecumplex - (Ereceptor + EIigand)

where E is obtained from:

E = Emm + (Ep-sol + Epp-sol)

Emm = Epag + Evaw + Ees

Ep-sol: Electrostatic part of solvation energy using GB
Enp-sol: Non-polar part of solvation energy using SA
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