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HIGHER SECONDARY POLYTOPES AND REGULAR PLABIC GRAPHS

PAVEL GALASHIN, ALEXANDER POSTNIKOV, AND LAUREN WILLIAMS

Abstract. Given a configuration A of n points in Rd−1, we introduce the higher secondary poly-

topes Σ̂A,1, . . . , Σ̂A,n−d, which have the property that Σ̂A,1 agrees with the secondary polytope of
Gelfand–Kapranov–Zelevinsky, while the Minkowski sum of these polytopes agrees with Billera–
Sturmfels’ fiber zonotope associated with (a lift of) A. In a special case when d = 3, we refer to
our polytopes as higher associahedra. They turn out to be related to the theory of total positivity,
specifically, to certain combinatorial objects called plabic graphs, introduced by the second author
in his study of the totally positive Grassmannian. We define a subclass of regular plabic graphs

and show that they correspond to the vertices of the higher associahedron Σ̂A,k, while square moves

connecting them correspond to the edges of Σ̂A,k. Finally we connect our polytopes to soliton
graphs, the contour plots of soliton solutions to the KP equation, which were recently studied by
Kodama and the third author. In particular, we confirm their conjecture that when the higher
times evolve, soliton graphs change according to the moves for plabic graphs.
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1. Introduction

Motivated by the study of discriminants, Gelfand, Kapranov, and Zelevinsky [GKZ94] introduced
the secondary polytope ΣGKZ

A for a configuration A of n points in Rd−1. Vertices of this remarkable
polytope correspond to regular triangulations of the convex hull of A, and its faces correspond to
regular polyhedral subdivisions. Billera and Sturmfels [BS92] defined a more general notion of a

fiber polytope Σfib(P
π→ Q) for any linear projection π : P → Q of polytopes. Secondary polytopes

are exactly the fiber polytopes in the case when P is a simplex.
In this paper, we extend the notion of a secondary polytope and define the higher secondary

polytopes Σ̂A,1, . . . , Σ̂A,n−d so that Σ̂A,1 coincides with the secondary polytope ΣGKZ
A up to affine

translation and dilation. An example of a higher secondary polytope is shown in Figure 1.

Our main motivation for the introduction of polytopes Σ̂A,k comes from total positivity. [Pos06]
constructed a parametrization of the totally positive part Gr>0(k, n) of the Grassmannian using
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Figure 1. The higher secondary polytope Σ̂A,k for n = 6, d = 3, k = 2, where

A ⊆ R2 is the set of vertices of a generic convex hexagon. Thus Σ̂A,k is a higher

associahedron. The polytope Σ̂A,k has 32 vertices, and two points in the interior of

Σ̂A,k (labeled by b and c), corresponding to non-regular fine zonotopal tilings, are
shown in red. The 34 points shown in this picture correspond to the 34 bipartite
plabic graphs for Gr(3, 6), and the edges connecting them represent square moves
of plabic graphs. See Section 2.3 and Example 7.9 for more details.

plabic graphs, which are certain graphs drawn in a disk with vertices colored in two colors. These
graphs have interesting combinatorial, algebraic, and geometric features. Remarkably, plabic graphs
play a role in several different areas of mathematics and physics: cluster algebras [Sco06], quan-
tum minors [Sco05], soliton solutions of Kadomtsev-Petviashvili (KP) equation [KW11, KW14],
scattering amplitudes in N = 4 supersymmetric Yang-Mills (SYM) theory [AHBC+16], electrical
networks [Lam18], the Ising model [GP18], and many other areas.

Plabic graphs are also closely related to polyhedral geometry. There are two variations of plabic
graphs: trivalent plabic graphs and bipartite plabic graphs. [Gal18] showed that trivalent plabic
graphs can be identified with sections of fine zonotopal tilings of 3-dimensional cyclic zonotopes. A
related construction [Pos18] identified trivalent plabic graphs with π-induced subdivisions for a pro-
jection π from the hypersimplex ∆k,n to an n-gon. From both points of view, it is natural to define
the subclass of regular plabic graphs. Such regular plabic graphs can be explicitly constructed from
a vector h ∈ Rn. Regular trivalent plabic graphs correspond to (1) sections of regular fine zonotopal

tilings of a 3-dimensional cyclic zonotope, and (2) vertices of the fiber polytope Σfib(∆k,n
π→ n-gon)

associated to a projection of a hypersimplex ∆k,n to a convex n-gon.

While regular trivalent plabic graphs correspond to vertices of the fiber polytope Σfib(∆k,n
π→

n-gon), regular bipartite plabic graphs also correspond to vertices of certain polytopes, which do
not fit into the framework of fiber polytopes. In general, these polytopes are deformations of fiber
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Figure 2. A contour plot coming from a point in Gr>0(2, 4) undergoing a cluster
mutation as time varies.

polytopes, obtained by contracting certain edges of fiber polytopes. These polytopes, whose vertices

correspond to regular bipartite plabic graphs, are the higher secondary polytopes Σ̂A,k, where A
is the configuration of vertices of a convex n-gon. We call these polytopes higher associahedra,
because, for k = 1, they are the usual secondary polytopes of n-gons, which are exactly the
celebrated associahedra of Stasheff [Tam51, Sta63].

The study of soliton solutions of the Kadomtsev-Petviashvili (KP) equation also leads to regular
trivalent plabic graphs [KW11, KW14, KK18], which were called realizable plabic graphs in [KK18],
in the case that A = ((κ1, κ

2
1), . . . , (κn, κ

2
n)). To understand a soliton solution uA(x, y, t) of the KP

equation coming from a point A in the positive Grassmannian, one fixes the time t and plots the
points where uA(x, y, t) has a local maximum. This gives rise to a tropical curve in the xy-plane;
as soliton solutions model shallow water waves, such as beach waves, this tropical curve shows the
positions in the plane where the corresponding wave has a peak. As was shown in [KW11, KW14],
this tropical curve is a reduced plabic graph, and hence the Plücker coordinates naturally labeling
the regions of the curve form a cluster for the cluster structure on the Grassmannian; the authors
moreover speculated in [KW11] that when the time t varies, one observes the face labels of the
soliton graph change by cluster transformations, see Figure 2. We prove this conjecture using the
connection between soliton graphs and regular plabic graphs.

Acknowledgements. This project grew out of discussions during the Fall of 2017, while all au-
thors were in residence at the Mathematical Sciences Research Institute in Berkeley, CA. They are
grateful to MSRI for providing an ideal work environment. The first author is grateful to Miriam
Farber for discussions regarding Figure 1 during the development of [FG18]. The third author
would like to thank Yuji Kodama for their joint work on KP solitons, which provided part of the
motivation for this project. This work was partially supported by the National Science Foundation
under Grant No. DMS-1764370, No. DMS-1440140, No. DMS-1600447, and No. DMS-1854512.
Any opinions, findings and conclusions or recommendations expressed in this material are those of
the authors and do not necessarily reflect the views of the National Science Foundation.

We now discuss our constructions and results in more detail.

2. Main results

2.1. Background on secondary and fiber polytopes. Let A = (a1, . . . ,an) be a configuration
of n points in Rd−1, and let Q ⊆ Rd−1 be the convex hull of A. We assume that the points in A
affinely span Rd−1. An A-triangulation is a polyhedral subdivision of Q formed by simplices of the
form ∆B := conv{ai | i ∈ B} for d-element subsets B of [n] := {1, . . . , n}. We view such simplices
∆B as labeled by subsets B, see Remark 3.7. To every A-triangulation τ , Gelfand–Kapranov–
Zelevinsky [GKZ94] associated a point vertGKZ(τ) ∈ Rn defined by

(2.1) vertGKZ(τ) :=
∑

∆B∈τ
Vold−1(∆B) · eB,
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where Vold−1 is the usual Euclidean volume in Rd−1, e1, e2, . . . , en is the standard basis of Rn, and
we set eB :=

∑
i∈B ei for B ⊆ [n]. The secondary polytope ΣGKZ

A of A is defined as the convex hull

of vectors vertGKZ(τ) where τ ranges over all A-triangulations. It turns out [GKZ94, Chapter 7,
Theorem 1.7] that the vertices of ΣGKZ

A correspond precisely to regular A-triangulations, defined in
Section 6.

Billera and Sturmfels [BS92] introduced a more general notion of a fiber polytope Σfib(P
π→ Q)

for any affine projection of polytopes π : P → Q, which we review in Section 3.1. If P := ∆n−1 =
conv(e1, . . . , en) is the standard (n− 1)-dimensional simplex in Rn, Q := convA, and π is defined

by π(ei) = ai for all i, then the fiber polytope Σfib(∆n−1 π→ Q) is a dilation of the secondary

polytope ΣGKZ
A , see [BS92, Theorem 2.5]. Therefore the vertices of Σfib(∆n−1 π→ Q) correspond to

regular A-triangulations.
Another interesting case is when P = � n = [0, 1]n is the standard n-cube. Let us denote by

V := (v1, . . . ,vn) the lift of A, i.e., the vector configuration in Rd obtained from A by setting
vi := (ai, 1) ∈ Rd for i = 1, . . . , n, and let ZV :=

∑n
i=1[0,vi] ⊆ Rd be the zonotope associated to

V. We have a projection � n
π→ ZV , defined by π(ei) = vi for all i, and in this case, the fiber

polytope Σfib( � n
π→ ZV) is called the fiber zonotope of ZV . Its vertices correspond to regular

fine zonotopal tilings of the zonotope ZV , discussed below. Restricting this projection map π
to the hypersimplex ∆k,n := � n ∩ {x ∈ Rn | x1 + · · · + xn = k}, and denoting its image by

Qk := π(∆k,n) = ZV ∩ {y ∈ Rd | yd = k}, we obtain a fiber polytope Σfib(∆k,n
π→ Qk) which

has recently appeared in the theory of total positivity for Grassmannians [Gal18, Pos18] and was
studied further in [OS19].

2.2. Higher secondary polytopes. Given a configuration of n points A ⊆ Rd−1 and its lift

V ⊆ Rd as above, we introduce a family of polytopes Σ̂A,1, . . . , Σ̂A,n−d, called higher secondary

polytopes, defined as follows. For a d-element subset B of [n], let Vold(ΠB) := |det(vi)i∈B| be the
volume of the parallelepiped ΠB spanned by the vectors {vi | i ∈ B}. For a pair of disjoint subsets

A,B of [n] such that |B| = d and Vold(ΠB) > 0 (i.e., such that B is a basis of V), define the shifted
parallelepiped ΠA,B ⊆ ZV by

ΠA,B :=
∑
a∈A

va +
∑
b∈B

[0,vb].

Clearly Vold(ΠA,B) = Vold(ΠB) for any A. A fine zonotopal tiling of ZV is (roughly speaking) a
collection T of parallelepipeds ΠA,B that form a polyhedral subdivision of ZV , see Definition 3.6,
and we say that T is regular if it can be obtained as a projection of the upper boundary of a
(d+ 1)-dimensional zonotope onto ZV , see Definition 6.3.

Definition 2.1. For a fine zonotopal tiling T of ZV and k ∈ Z, we introduce a vector

(2.2) v̂ertk(T ) :=
∑

ΠA,B∈T
|A|=k

Vold(ΠB) · eA ∈ Rn.

It is clear that v̂ertk(T ) = 0 if k /∈ [n − d]. For k ∈ [n − d], the higher secondary polytope Σ̂A,k is
defined by

Σ̂A,k := conv
{

v̂ertk(T )
∣∣∣ T is a fine regular zonotopal tiling of ZV

}
.

We expect that the word regular can be omitted from the above definition, see Conjecture 6.6. As

we will see in Proposition 6.7, for each k ∈ [n − d], the polytope Σ̂A,k has dimension n − d. An
example of a higher secondary polytope is shown in Figure 1.

For simplicity, we formulate the following result modulo affine translation. A more precise

formulation will be given in (6.3). For polytopes P, P ′ ⊆ Rm, we write P
shift
== P ′ if P = P ′ + γ for

some γ ∈ Rm.
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Theorem 2.2. Let A ⊆ Rd−1 be a point configuration. Recall that Q = convA, V ⊆ Rd is the lift
of A, ZV is the zonotope of V, and Qk = ZV ∩ {y ∈ Rd | yd = k} is the k-th section of ZV . Then
we have the following.

(i) ΣGKZ
A

shift
== 1

(d−1)! Σ̂A,1, equivalently, Σfib(∆n−1 π→ Q)
shift
== 1

d!Vold−1(Q)
Σ̂A,1.

(ii) Σfib( � n
π→ ZV)

shift
== 1

Vold(ZV )

(
Σ̂A,1 + · · ·+ Σ̂A,n−d

)
.

(iii) Σfib(∆k,n
π→ Qk)

shift
== 1

Vold−1(Qk)

(
p0,dΣ̂A,k + p1,dΣ̂A,k−1 + · · ·+ pd−1,dΣ̂A,k−d+1

)
for all k ∈

[n− 1], where pr,d is the probability that a random permutation in Sd has r descents.

(iv) Duality: Σ̂A,k
shift
== −Σ̂A,n−d−k+1 for all k ∈ [n− d].

Here we assume that Σ̂A,k is a single point if k /∈ [n− d]. The volume forms Vold and Vold−1 on Rd
are scaled so that Vold([0, 1]d) = Vold−1([0, 1]d−1×{yd}) = 1 for any yd ∈ R. The numbers pr,d are

given by the formula pr,d =
〈dr〉
d! , where

〈
d
r

〉
is the Eulerian number, i.e., the number of permutations

of 1, 2, . . . , d with exactly r descents.

Remark 2.3. Theorem 2.2(i) is not an obvious consequence of the definitions: it says that ΣGKZ
A

(defined by (2.1)) is the convex hull of points

(2.3)
1

(d− 1)!

∑
ΠA,B∈T
|A|=1

Vold(ΠB) · eA

for all regular fine zonotopal tilings T of ZV . The formulae (2.1) and (2.3) are quite different: we
have eB in (2.1) as opposed to eA in (2.3), and we have |A| = 0 in (2.1) as opposed to |A| = 1
in (2.3).

On the other hand, it is easy to see from the definitions that the last higher secondary polytope

Σ̂A,n−d satisfies ΣGKZ
A

shift
== − 1

(d−1)! Σ̂A,n−d. Thus Theorem 2.2(i) follows from Theorem 2.2(iv).

Remark 2.4. The polytope Σ̂A,k in Figure 1 is centrally symmetric, in agreement with Theo-

rem 2.2(iv): we have k = 2 = n− k − d+ 1, thus Σ̂A,k
shift
== −Σ̂A,k.

Example 2.5. Let d = 1 and let A be the configuration of n points a1 = · · · = an = 0 ∈ R0.
Then V is the configuration of n vectors v1 = · · · = vn = (1) ∈ R1, and the zonotope ZV is the
interval [0, n] ⊆ R1. There are n! fine zonotopal tilings of ZV (see Definition 3.6), in bijection with
the permutations w ∈ Sn. More specifically, for each w ∈ Sn, we have the following fine zonotopal
tiling Tw of ZV :

Tw :=
{

Π∅,{w1},Π{w1},{w2}, . . . ,Π{w1,...,wn−1},{wn}
}
.

Even though geometrically the tilings Tw are the same for all w ∈ Sn, we treat them as different
tilings because we take into account the labels of the tiles, see Remark 3.7. We have v̂ertk(Tw) =

e{w1,...,wk}, thus Σ̂A,k is the hypersimplex ∆k,n. It is straightforward to see from the definitions

(cf. [BS92, Example 5.4] or [Zie95, Example 9.8]) that n · Σfib( � n
π→ ZV) is the permutohedron

Permn := conv{(w1, . . . , wn) | w ∈ Sn}. Thus Theorem 2.2(ii) recovers the following well known
decomposition [Pos09, Section 16] (implicit in [GS87]) of the permutohedron as a Minkowski sum
of hypersimplices:

Permn = ∆1,n + ∆2,n + · · ·+ ∆n−1,n.

More generally, one can consider the case1 where V is a cyclic vector configuration C(n, d), i.e.,

is given by vi = (ud−1
i , . . . , ui, 1) for i ∈ [n] and 0 < u1 < u2 < · · · < un ∈ R. Thus Example 2.5

corresponds to the case d = 1. If d = 2, then the zonotope ZV is a 2n-gon, and fine zonotopal

1Even more generally, we could choose a sequence of n vectors such that det(vi)i∈B > 0 for all B ⊆ [n] of size k.
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Figure 3. A plabic graph and its bipartite version.

(M1) (M2) (M3)

Figure 4. Moves on plabic graphs.

tilings are exactly the rhombus tilings of the 2n-gon. They correspond to commutation classes of
reduced decompositions of the longest permutation w0 ∈ Sn [Eln97]. It would be interesting to
understand the structure of the associated higher secondary polytopes in more detail.

Remark 2.6. For a cyclic vector configuration C(n, d), Ziegler [Zie93] identified the fine zonotopal
tilings of the cyclic zonotope ZV with elements of Manin-Shekhtman’s higher Bruhat order B(n, d)
[MS89], also studied by Voevodsky and Kapranov [VK91]. Note that B(n, 1) coincides with the
weak Bruhat order on permutations, corresponding to the case d = 1 in Example 2.5.

We next proceed to the case d = 3.

2.3. Higher associahedra and plabic graphs. Our main motivating example is the case when

Σ̂A,k is a higher associahedron, that is, when d = 3 and A is the configuration of vertices of a convex
n-gon in R2. For example, one could take the points in A lying on a parabola, in which case the
lift V of A is a cyclic vector configuration C(n, 3). It turns out that the combinatorics of higher
associahedra is directly related to bipartite plabic graphs that were introduced in [Pos06] in the
study of the totally nonnegative Grassmannian Gr≥0(k, n).

A plabic graph is a planar graph embedded in a disk such that every boundary vertex has degree
1 and every interior vertex is colored either black or white. A plabic graph is called trivalent if
every interior vertex has degree 3, and it is called bipartite if no two interior vertices of the same
color are connected by an edge. Note that taking a trivalent plabic graph G and contracting all
edges between interior vertices of the same color produces a bipartite plabic graph denoted Gbip.

There is a special class of (k, n)-plabic graphs (cf. Definition 7.1), that were used in [Pos06]
to parametrize the top-dimensional cell of Gr≥0(k, n). Each (k, n)-plabic graph has n boundary
vertices and k(n− k) + 1 faces, and its face labels (cf. Definition 7.2) form a cluster in the cluster
algebra structure on the coordinate ring of the Grassmannian [Sco06].

Given a plabic graph, one can apply certain moves to it, as shown in Figure 4. Any two trivalent
(k, n)-plabic graphs can be connected using moves (M1)–(M3), see [Pos06, Theorem 13.4]. Since
applying the moves (M1) and (M3) to G does not change its bipartite version Gbip, it follows that
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any two bipartite (k, n)-plabic graphs can be connected using only the square move (M2).2 For
example, there are 34 bipartite (3, 6)-plabic graphs corresponding to the 34 points in Figure 1
(including the two points labeled by b and c), and square moves between them correspond to the
edges in Figure 1.

Building on the work of Oh–Postnikov–Speyer [OPS15], it was shown in [Gal18] that trivalent
(k, n)-plabic graphs are exactly the planar duals of the horizontal sections of fine zonotopal tilings
of the zonotope ZV (where V ⊆ R3 is the lift of A as above), see Theorem 7.3. It was later observed
in [Pos18] that trivalent (k, n)-plabic graphs correspond to π-induced subdivisions for the map
π : ∆k,n → Qk.

We say that a trivalent (k, n)-plabic graph G is A-regular if it is the planar dual of a horizontal
section of some regular fine zonotopal tiling of ZV , or equivalently, if it corresponds to a regular
π-induced subdivision of Qk. We say that a bipartite (k, n)-plabic graph G′ is A-regular if it equals
to Gbip for some A-regular trivalent (k, n)-plabic graph G. For example, if A is the set of vertices
of a generic hexagon, then there are 32 A-regular bipartite (3, 6)-plabic graphs, corresponding to
the 32 vertices of the polytope shown in Figure 1. See Example 7.9 for more details.

Theorem 2.7. Let d = 3 and A be the configuration of vertices of a convex n-gon. Then:

(i) For each k ∈ [n− 3], the vertices of Σ̂A,k correspond to A-regular bipartite (k + 1, n)-plabic

graphs, and the square moves connecting them correspond to the edges of Σ̂A,k.

(ii) For each k ∈ [n−1], the vertices of Σ̂A,k+ Σ̂A,k−1 + Σ̂A,k−2 (equivalently, of Σfib(∆k,n
π→ Qk))

correspond to A-regular trivalent (k, n)-plabic graphs, and the moves (M1)–(M3) connecting

them correspond to the edges of Σ̂A,k + Σ̂A,k−1 + Σ̂A,k−2.

Example 2.8. The number of bipartite (2, n)-plabic graphs equals to the number of trivalent (1, n)-

plabic graphs, and is given by the Catalan number Cn−2, where Cm := 1
m+1

(
2m
m

)
. In both cases, all

such plabic graphs are regular, and the corresponding polytope is Σ̂A,1 which by Theorem 2.2(i) is
a realization of the associahedron.

Example 2.9. Since Σ̂A,k has dimension n− d by Proposition 6.7, it follows from Theorem 2.7(i)
that every A-regular bipartite (k, n)-plabic graph admits at least n − d = n − 3 square moves.
Figure 5 contains a (both trivalent and bipartite) (4, 8)-plabic graph that admits only 4 square
moves, and therefore is not A-regular for any A. This plabic graph contains as a subgraph another
plabic graph known in physics as the “four-mass box”, see [AHBC+16, Section 11.1].

An example of a trivalent (9, 18)-plabic graph that is not A-regular for any A was constructed
in [KK18, Section 6].

Let us say that the diameter of a polytope is the maximal graph distance between its vertices

in its 1-skeleton. It would be interesting to find the diameter of a higher associahedron Σ̂A,k,
which equals the maximal square move distance between two A-regular plabic graphs. Finding

the diameter of the usual associahedron Σ̂A,1 is a well-studied problem: answering a question of
Sleator–Tarjan–Thurston [STT88], Pournin [Pou14] showed that it equals 2n − 10 for all n > 12.
The following conjecture is due to Miriam Farber.

Conjecture 2.10 ([Far]). Let n = 2k. Then the diameter of the higher associahedron Σ̂A,k−1

equals 1
2k(k− 1)2. More generally, for any bipartite (k, 2k)-plabic graph G, the minimal number of

square moves needed to connect G with Gop equals 1
2k(k − 1)2, where Gop is obtained from G by a

180◦ rotation followed by changing the colors of all vertices.

2We make the convention that applying a square move (M2) to a bipartite graph Gbip means first uncontracting
some vertices of Gbip so that the vertices of the square become trivalent, then performing the square move, and then
taking the bipartite version of the resulting graph.
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Figure 5. A trivalent, bipartite (4, 8)-plabic graph which admits only 4 square
moves, superimposed onto its dual plabic tiling. This plabic graph is not A-regular
for any A, see Example 2.9.

An example for k = 3 is shown in Figure 1. The diameter of this polytope is equal to 1
2k(k−1)2 = 6,

and moreover the graph distance between any vertex and its antipodal vertex is also equal to 6.
It was shown in [BW18, Section 6] that for certain bipartite (k, 2k)-plabic graphs G (coming

from double wiring diagrams of [FZ99]), the square move distance between G and Gop is at least
1
2k(k − 1)2, giving a lower bound on the diameter of Σ̂A,k−1 in Conjecture 2.10. See [BW19] for
related results.

2.4. Vertices, edges, and deformations. For simplicity, we assume here that A is a generic
point configuration in Rd−1. The extension of the results in this subsection to arbitrary point
configurations will be given in Section 6.3.

It is well known (cf. Lemma 6.5) that any two regular fine zonotopal tilings of ZV can be related
to each other by a sequence of flips. A flip is an elementary transformation of a zonotopal tiling: if
V ′ consists of d+ 1 vectors that span Rd then ZV ′ admits precisely two fine zonotopal tilings. For
general vector configurations V, applying a flip F = (T → T ′) to a fine zonotopal tiling T of ZV
amounts to finding a shifted copy of a fine zonotopal tiling of ZV ′ for some V ′ ⊆ V of size d + 1,
and replacing it with the other fine zonotopal tiling of ZV ′ , which produces another fine zonotopal
tiling T ′ of ZV , see Figure 8 (left). Flips can occur at different levels: if the above copy of ZV ′ is
shifted by y ∈ Rd, then the last coordinate yd of y belongs to {0, 1, . . . , n− d− 1}, and we define
the level of the flip F to be level(F ) := yd + 1. See Definition 5.8 and Example 5.10.

Since flips of regular fine zonotopal tilings correspond to the edges of the fiber zonotope Σfib( � n
π→

ZV), we define the level of an edge of Σfib( � n
π→ ZV) to be the level of the corresponding flip.

Let us say that a polytope P is a parallel deformation of another polytope P ′ if the normal fan of
P is a coarsening of the normal fan of P ′, see e.g. [PRW08, Theorem 15.3] and [ACEP19, Section
2.2]. Roughly speaking, P is a parallel deformation of P ′ if P is obtained from P ′ by moving its
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faces while preserving their direction. During this process, every edge of P ′ stays parallel to itself
but gets rescaled by some nonnegative real number.

We say that two fine zonotopal tilings T and T ′ of ZV are k-equivalent if they can be connected by
flips F such that level(F ) 6= k. Similarly, we say that two flips F = (T1 → T2) and F ′ = (T ′1 → T ′2 )
of level k are k-equivalent if T1 is k-equivalent to T ′1 and T2 is k-equivalent to T ′2 .

Proposition 2.11. Let A be a generic configuration of n points in Rd−1, and let k ∈ [n− d].

(i) The vertices of the higher secondary polytope Σ̂A,k are in bijection with k-equivalence classes
of regular fine zonotopal tilings of ZV .

(ii) The edges of Σ̂A,k correspond to k-equivalence classes of flips of level k.
(iii) For any nonnegative real numbers x1, . . . , xn−d, the Minkowski sum

1

Vold(ZV)

(
x1Σ̂A,1 + · · ·+ xn−dΣ̂A,n−d

)
is a parallel deformation of the fiber zonotope Σfib( � n

π→ ZV), where edges of level k are
rescaled by xk for all k = 1, . . . , n− d.

2.5. Soliton graphs. Finally we give applications of our previous results to the soliton graphs
[KW11, KW14, KK18] associated to the Kadomtsev-Petviashvili (KP) equation. To understand a
soliton solution uA(x, y, t) of the KP equation coming from a point A in the positive Grassmannian,
one fixes the time t and plots the points where uA(x, y, t) has a local maximum. This gives rise
to a tropical curve in the xy-plane. By [KW11, KW14], this tropical curve is a reduced plabic
graph, and as discussed in [KK18, Section 2.3], it comes from a regular subdivision of a three-
dimensional cyclic zonotope; we give a precise statement in Corollary 8.6. We then apply some of
our previous results to classify the soliton graphs coming from the positive Grassmannian when
the time parameter t tends to ±∞, and to show that generically, when the higher time parameters
evolve, the face labels of soliton graphs change via the square moves (cluster transformations) on
plabic graphs.

3. Fiber polytopes and zonotopal tilings

We give further background on fiber polytopes of [BS92] and discuss several specializations of
their construction. More details can be found in [BS92], [GKZ94, Chapter 7], and [Zie95, Lecture 9].

3.1. Fiber polytopes. Let P ⊆ Rn be a polytope, and let π : P → Q be a linear projection of
polytopes. We denote by {pi}i∈[m] the vertex set of P (for some m ≥ 1). For i ∈ [m], let qi := π(pi),

and let A := {qi}i∈[m] be the associated point configuration. The fiber polytope Σfib(P
π→ Q) is

defined as the Minkowski integral

Σfib(P
π→ Q) :=

1

Vol(Q)

∫
x∈Q

(π−1(x) ∩ P ) dx.

Here Vol denotes the dim(Q)-dimensional volume form on the affine span of Q, and the Minkowski
integral can be understood in several ways, for example, as the set of points

∫
x∈Q γ(x) dx ∈ Rn,

where γ : Q→ P runs over all sections of π [BS92, BS94].
However, instead of working with the Minkowski integral, we will use the following description of

Σfib(P
π→ Q) as a convex hull of points. Recall that an A-triangulation τ = {∆B} is a triangulation

of Q into simplices ∆B := conv{qi | i ∈ B}, where B ⊆ [m] is a (dim(Q) + 1)-element subset.

Proposition 3.1 ([BS92, Corollary 2.6]). The fiber polytope Σfib(P
π→ Q) equals the convex hull

Σfib(P
π→ Q) = conv{vertfib(τ) | τ is an A-triangulation}, where
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(3.1) vertfib(τ) :=
1

(dim(Q) + 1)Vol(Q)

∑
∆B∈τ

(
Vol(∆B) ·

∑
i∈B

pi

)
∈ Rn.

Definition 3.2 ([Zie95, Definition 9.1]). Let π : P → Q be a projection of polytopes as above. A
π-induced subdivision of Q is a collection T of faces of P such that

• the images {π(F ) | F ∈ T } form a polyhedral subdivision3 of Q;
• for any F, F ′ ∈ T such that π(F ) ⊆ π(F ′), we have F = F ′ ∩ π−1(π(F )).

A π-induced subdivision T is called fine if all of its faces have dimension at most dim(Q).

Definition 3.3. For a polytope P ⊆ Rn and a vector h ∈ Rn, let (P )h denote the face of P that
maximizes the scalar product with h. Every vector h ∈ Rn gives rise to a π-induced subdivision
Th of Q obtained as follows: for each point q ∈ Q, consider the preimage P ∩ π−1(q) of q under
π, and let Pq,h be the unique minimal by inclusion face of P that contains (P ∩ π−1(q))h. The
subdivision Th consists of the faces Pq,h for all q ∈ Q. A π-induced subdivision T of Q is called
regular if it equals Th for some h ∈ Rn.

Our notion of a regular π-induced subdivision coincides with the notion of a π-coherent subdivision
from [BS92, Section 1] and [Zie95, Definition 9.2].

It turns out (see the paragraph before [BS92, Corollary 2.7]) that if T is a fine π-induced
subdivision then the vector vertfib(τ) is the same for any triangulation τ of T . We denote this
vector by vertfib(T ).

Corollary 3.4 ([BS92, Corollary 2.7]). The fiber polytope Σfib(P
π→ Q) equals the convex hull

Σfib(P
π→ Q) = conv{vertfib(T ) | T is a fine π-induced subdivision of Q}.(3.2)

The vertices of Σfib(P → Q) are the vectors vertfib(T ), where T ranges over all regular fine π-
induced subdivisions of Q, and in particular,

Σfib(P
π→ Q) = conv{vertfib(T ) | T is a regular fine π-induced subdivision of Q}.(3.3)

We now specialize this construction to the case where P is either a cube or a (hyper)simplex.
In these cases, regular fine π-induced subdivisions recover well-studied objects such as regular
triangulations and regular fine zonotopal tilings. We discuss them briefly here, and in more detail
in Section 6. In what follows, we will repeatedly use the following notation.

Notation 3.5. Let A = (a1, . . . ,an) be a point configuration in Rd−1 which affinely spans Rd−1.
Let V := (v1, . . . ,vn) be the lift of A, thus vi := (ai, 1) ∈ Rd for i = 1, . . . , n. Then the endpoints
of the vectors in V belong to H1, where the hyperplane Hk is defined by Hk := {y ∈ Rd | yd = k}
in Rd. The zonotope ZV is defined as the Minkowski sum of line segments:

ZV :=
n∑
i=1

[0,vi] ⊆ Rd.

We also let Qk := ZV ∩Hk ⊆ Rd. Let π be the projection π : Rn → Rd defined by π(ei) = vi for
all i, where e1, . . . , en is the standard basis in Rn.

3.2. Fiber polytopes for projections of a cube: fiber zonotopes. Let P = � n := [0, 1]n =∑n
i=1[0, ei] ⊆ Rn be the standard n-dimensional cube. We have a linear projection π : � n → ZV

given by π(ei) = vi, for i ∈ [n]. The fiber zonotope of ZV is the fiber polytope Σfib( � n
π→ ZV).

Recall that for A ⊆ [n], we set eA :=
∑

i∈A ei. Faces �A,B of the n-cube � n are labeled by
pairs (A,B) of disjoint subsets A and B of [n]. They are given by

3Recall that a polyhedral subdivision of a polytope Q is a polytopal complex C (any two elements of C intersect in
a common face) with underlying set Q.
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�A,B := eA+
∑
b∈B

[0, eb] = {(x1, . . . , xn) ∈ � n | xa = 1 for a ∈ A, and xc = 0 for c ∈ [n]\ (AtB)}.

Definition 3.6. A fine zonotopal tiling T of ZV is a collection of d-dimensional faces �A,B of the
n-cube such that

(1) The images ΠA,B := π(�A,B), for all �A,B ∈ T , are d-dimensional parallelepipeds that form
a polyhedral subdivision of the zonotope ZV .

(2) For any two faces �A1,B1 , �A2,B2 ∈ T , we have

π(�A1,B1 ∩�A2,B2) = ΠA1,B1 ∩ΠA2,B2 .

From our definition, it is clear that each fine zonotopal tiling is a fine π-induced subdivision. We
say that a fine zonotopal tiling is regular if the corresponding fine π-induced subdivision is regular.
See Section 6.1 for several alternative definitions.

Remark 3.7. We refer to the d-parallelepipeds ΠA,B = π(�A,B) as (labeled) tiles. It may happen
that for two different pairs (A1, B1) and (A2, B2), the two tiles ΠA1,B1 and ΠA2,B2 coincide as

subsets of Rd. However, we regard them as different labeled tiles, because they are labeled by
different pairs. We will identify a fine zonotopal tiling T with the collection of such labeled tiles
ΠA,B.

The fiber zonotope of ZV can be described explicitly as follows.

Proposition 3.8. Let V ⊆ Rd be as in Notation 3.5. The fiber zonotope Σfib( � n
π→ ZV) equals

the convex hull

Σfib( � n
π→ ZV) = conv{vertfib(T ) | T is a fine zonotopal tiling of ZV}, and(3.4)

vertfib(T ) =
1

Vol(ZV)

∑
ΠA,B∈T

Vold(ΠB) ·
(
eA +

1

2
eB

)
.(3.5)

Proof. We use (3.1), and let τ be a triangulation of a fixed tile ΠA,B of T . More specifically, we use
Stanley’s triangulation [Sta77] of � d into d! equal-volume simplices ∇w labeled by permutations
w ∈ Sd:
(3.6) ∇w := {(y1, . . . , yd) ∈ [0, 1]d | 0 < yw1 < · · · < ywd

< 1}.

This gives rise to a triangulation τ of ΠA,B into d! simplices, each of volume Vold(ΠB)
d! . By symmetry,

we know that the combined contribution of these simplices to (3.1) has the form x·eA+y·eB for some

x, y ∈ R. Each simplex ∇w contributes Vold(ΠB)
d!Vol(ZV )eA +u(w) for some u(w) ∈ Rn. Let w̄ ∈ Sd be the

permutation given by w̄i = wd+1−i for all i ∈ [d]. It is easy to see that u(w) +u(w̄) = Vold(ΠB)
d!Vol(ZV )eB,

thus x = Vold(ΠB)
Vol(ZV ) and y = Vold(ΠB)

2Vol(ZV ) . �

3.3. Fiber polytopes for projections of a simplex: secondary polytopes. Let A and V be
as in Notation 3.5. Let P = ∆n−1 = conv(e1, . . . , en) be the standard (n− 1)-dimensional simplex
in Rn, and π : P → Q := convA the projection defined by π(ei) = ai for all i.

Definition 3.9 ([GKZ94, Definition 1.6]). The secondary polytope ΣGKZ
A is defined as the convex

hull

ΣGKZ
A := conv{vertGKZ(τ) | τ is an A-triangulation}, where(3.7)

vertGKZ(τ) :=
∑

∆B∈τ
Vold−1(∆B) · eB.(3.8)
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The relationship between the polytopes ΣGKZ
A and Σfib(∆n−1 π→ Q) is given in [BS92, Theorem 2.5]:

Σfib(∆n−1 π→ Q) =
1

d ·Vold−1(Q)
ΣGKZ
A .

Remark 3.10. Every fine zonotopal tiling T gives rise to anA-triangulation τ := {∆B | Π∅,B ∈ T },
in which case we denote vertGKZ(T ) := vertGKZ(τ).

3.4. Fiber polytopes for projections of a hypersimplex: hypersecondary polytopes.
Recall the definitions of V, ZV , π, Hk, and Qk from Notation 3.5. Also recall that ∆k,n = � n ∩
{x ∈ Rn | x1 + · · · + xn = k}. Note that if k = 1, then ∆1,n = ∆n−1. We discuss the fiber

polytope Σfib(∆k,n
π→ Qk). Such polytopes have been recently studied in [OS19] under the name

hypersecondary polytopes (not to be confused with higher secondary polytopes Σ̂A,k introduced in
this paper).

For integers r and d, the Eulerian number
〈
d
r

〉
is defined as the number of permutations in Sd

with r descents, where a descent of a permutation w is a position i such that wi > wi+1 (thus
〈
d
r

〉
is zero if r /∈ [0, d− 1]). For example, we have

〈
3
0

〉
= 1,

〈
3
1

〉
= 4,

〈
3
2

〉
= 1.

Lemma 3.11. Let T be a fine zonotopal tiling of ZV ⊆ Rd. Then for all r ∈ [d− 1] and ΠA,B ∈ T ,
we have

(3.9) Vold−1(ΠA,B ∩H|A|+r) =

〈
d−1
r−1

〉
(d− 1)!

Vold(ΠB).

Proof. We have ΠA,B = π( �A,B) for A,B disjoint subsets and |B| = d. The intersection ΠA,B ∩
H|A|+r is the image of a hypersimplex ∆r,d ⊆ �A,B

∼= � d under π. By [Sta77], ∆r,d can be

triangulated into
〈
d−1
r−1

〉
equal-volume simplices, and the image of each of these simplices under π

has volume Vold(ΠB)
(d−1)! . �

Proposition 3.12. The fiber polytope Σfib(∆k,n
π→ Qk) equals the convex hull

Σfib(∆k,n
π→ Qk) = conv{vertfib

k (T ) | T is a fine zonotopal tiling of ZV}, where(3.10)

vertfib
k (T ) :=

1

d! ·Vold−1(Qk)

d−1∑
r=1

∑
ΠA,B∈T
|A|=k−r

Vold(ΠB) ·
〈
d− 1

r − 1

〉
· (d · eA + r · eB).(3.11)

Proof. Let T be a fine zonotopal tiling of ZV . Then T ∩ Hk := {ΠA,B ∩ Hk | ΠA,B ∈ T } is a

fine π-induced subdivision for the projection ∆k,n
π→ Qk. A tile ΠA,B ∈ T has a full-dimensional

intersection with Hk whenever |A| + r = k for some r ∈ [d − 1]. In this case, ΠA,B ∩ Hk can

be triangulated into
〈
d−1
r−1

〉
simplices as in the proof of Lemma 3.11. Proceeding as in the proof

of Proposition 3.8, we find that the combined contribution of these simplices to (3.1) is precisely
Vold(ΠB)

d!·Vold−1(Qk)
(d · eA + r · eB). Thus we have shown that Σfib(∆k,n

π→ Qk) contains the right hand

side of (3.10).
On the other hand, by (3.3), it is enough to consider only regular fine π-induced subdivisions,

and every such subdivision clearly arises as T ∩Hk for some regular fine zonotopal tiling T . This

shows that the right hand side of (3.10) contains Σfib(∆k,n
π→ Qk). �

Example 3.13. For d = 2, (3.11) becomes

(3.12) vertfib
k (T ) :=

1

Vold−1(Qk)

∑
ΠA,B∈T
|A|=k−1

Vold(ΠB) ·
(
eA +

1

2
eB

)
.



HIGHER SECONDARY POLYTOPES AND REGULAR PLABIC GRAPHS 13

Example 3.14. Substituting k = 1 into (3.11) and comparing the result with (3.8), we find

vertGKZ(T ) = d ·Vold−1(Q1) · vertfib
1 (T ) and ΣGKZ

A = d ·Vold−1(Q1) · Σfib(∆1,n
π→ Q1),(3.13)

in agreement with (3.3).

4. Vertices of fiber polytopes and vertices of higher secondary polytopes

Recall the definitions of V ⊆ Rd,ZV , Hk, Qk, and π from Notation 3.5. Also recall that ∆k,n =
� n ∩ {x ∈ Rn | x1 + · · · + xn = k}. In this section, we prove Theorem 4.6, which gives a duality

identity, and expresses the vertices of fiber polytopes Σfib( � n
π→ ZV), ΣGKZ

A , and Σfib(∆k,n
π→ Qk)

as linear combinations of the vectors v̂ertk(T ) defined in (2.2). This will constitute one of the main
steps in the proof of Theorem 2.2, which we give in Section 6.2.

We start by giving a refinement of the simple fact that for any fine zonotopal tiling T , the sum∑
ΠA,B∈T Vold(ΠB) equals Vold(ZV), and therefore does not depend on T . For k ∈ [n− 1], we let

(4.1) βk := Vold−1(Qk),

and we set βk := 0 for k /∈ [n− 1].

Proposition 4.1. Fix a vector configuration V ⊆ Rd as in Notation 3.5. For each k ∈ [0, n − d],
there exists a number γdk(V) = γk(V) ∈ R>0 such that for any fine zonotopal tiling T , we have

(4.2) γdk(V) = γk(V) =
∑

ΠA,B∈T
|A|=k

Vold(ΠB).

Proof. Let us temporarily denote

γ̃k(T ,V) :=
∑

ΠA,B∈T
|A|=k

Vold(ΠB)

for all k ∈ Z. Then βk = Vold−1(Qk) = Vold−1(ZV ∩Hk) =
∑

ΠA,B∈T Vold−1(ΠA,B ∩Hk). Apply-

ing (3.9), we find that βk =
∑d−1

r=1 γ̃k−r(T ,V) · 〈
d−1
r−1〉

(d−1)! . Since the coefficient of γ̃k−1 in the right hand

side is equal to 1
(d−1)! , the numbers γ̃k(T ,V) can be expressed in terms of the βr’s by induction

for k = 0, 1, . . . , n − d. Explicitly, let Ad−1(x) :=
∑d−2

r=0

〈
d−1
r

〉
xr be the Eulerian polynomial, and

let c0, c1, · · · ∈ Z be defined by 1
Ad−1(x) = c0 + c1x + c2x

2 + . . . (thus c0 = 1). Then we have

γ̃k(T ,V) = c0βk+1 + c1βk + c2βk−1 + · · ·+ ck+1β0 for all k ∈ [0, n−d]. It is clear that γ̃k(T ,V) does
not depend on T , and so we can refer to it as γk(V). �

Example 4.2. For d = 2, 3, 4, we have respectively

γ2
k(V) = βk+1,(4.3)

γ3
k(V) = βk+1 − βk + · · ·+ (−1)k+1β0,(4.4)

γ4
k(V) = βk+1 − 4βk + 15βk−1 − 56βk−2 + . . . ,(4.5)

where the coefficients of (4.5) form the sequence A125905 in the OEIS [OEI].

For i ∈ [n], let V − i denote the vector configuration in Rd obtained from V by omitting vi. For
each k ∈ [0, n− d], we introduce a vector δ(k,V) ∈ Rn whose ith coordinate equals

(4.6) δi(k,V) := γk(V)− γk(V − i) for all i ∈ [n].

For k /∈ [0, n − d], we set γk(V) := 0 ∈ R and δ(k,V) := 0 ∈ Rn. Recall that the vectors of V are
assumed to linearly span Rd. If the vectors of V − i all belong to a lower-dimensional subspace of
Rd, we say that i is a coloop and set γk(V − i) := 0 for all k.

http://oeis.org/A125905
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vi∑
ΠA,B∈T

|A|=k, i/∈AtB

Vold(ΠB)

∑
ΠA,B∈T

|A|=k+1, i∈A

Vold(ΠB)
γk(V − i)

T T − i

Figure 6. Deleting vi from V and its effect on a tiling T , see (4.8).

The following result will be useful in the proof of Theorem 4.6.

Proposition 4.3. For all k ∈ [0, n− d], we have

(4.7)
∑

ΠA,B∈T
|A|=k

Vold(ΠB) · (eA + eB) =
∑

ΠA,B∈T
|A|=k+1

Vold(ΠB) · eA + δ(k,V).

Proof. Fix i ∈ [n]. We first show that

(4.8)
∑

ΠA,B∈T
|A|=k+1, i∈A

Vold(ΠB) +
∑

ΠA,B∈T
|A|=k, i/∈AtB

Vold(ΠB) = γk(V − i).

Assume that i is a coloop, which means that the vectors in V − i do not linearly span Rd, in which
case the right hand side of (4.8) is zero. On the other hand, for each tile ΠA,B ∈ T , we must have
i ∈ B, which shows that the left hand side of (4.8) is also zero. Assume now that i is not a coloop.
Then each fine zonotopal tiling T of ZV gives rise to a fine zonotopal tiling T − i of ZV−i defined
by

T − i := {ΠA\{i},B | ΠA,B ∈ T , i ∈ A} t {ΠA,B | ΠA,B ∈ T , i /∈ A tB}.
Using this observation, we see that (4.8) follows from the definition (4.2) of γk(V − i). For the
example in Figure 6, for k = 1, the left hand side of (4.8) is equal to 3 + 2 as shown in Figure 6
(middle) while the right hand side of (4.8) is equal to 5 as shown in Figure 6 (right).

To prove (4.7), it is enough to verify what it says for the ith coordinate, which is:

(4.9)
∑

ΠA,B∈T
|A|=k, i∈AtB

Vold(ΠB) =
∑

ΠA,B∈T
|A|=k+1, i∈A

Vold(ΠB) + δi(k,V).

Adding
∑

ΠA,B∈T
|A|=k, i/∈AtB

Vold(ΠB) to both sides of (4.9) and applying (4.8) gives γk(V) = γk(V − i) +

δi(k,V), which is precisely the definition (4.6) of δ(k,V). �

Corollary 4.4. Recall the definition of v̂ertk(T ) from (2.2). Let K ⊆ Z and choose some numbers
xk, yk ∈ R for each k ∈ K. Then

(4.10)
∑

ΠA,B∈T
k:=|A|∈K

Vold(ΠB) · (xkeA + ykeB) =
∑
k∈K

(
(xk − yk)v̂ertk(T ) + yk(v̂ertk+1(T ) + δ(k,V))

)
.
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Proof. This follows by replacing xkeA + ykeB on the left hand side of (4.10) with (xk − yk)eA +
yk(eA + eB), and applying Proposition 4.3. �

Definition 4.5. Given two disjoint sets A,B ⊆ [n], let C := [n] \ (A t B), and denote ΠA,B,C :=
ΠA,B. For each zonotopal tiling T of ZV there exists “the opposite” zonotopal tiling T op of ZV
given by T op := {ΠC,B,A | ΠA,B,C ∈ T }, see Figure 7.

Theorem 4.6. Recall the definitions of vertfib(T ), vertfib
k (T ), and vertGKZ(T ) from (3.5), (3.11),

and Remark 3.10. We have

vertfib(T ) =
1

Vold(ZV)

(
n−d∑
k=1

v̂ertk(T ) +
1

2

n−d∑
k=0

δ(k,V)

)
;(4.11)

vertfib
k (T ) =

1

Vold−1(Qk)

(
d−1∑
r=0

〈
d
r

〉
d!

v̂ertk−r(T ) +

d−1∑
r=1

r ·
〈
d−1
r−1

〉
d!

δ(k − r,V)

)
;(4.12)

vertGKZ(T ) =
1

(d− 1)!

(
v̂ert1(T ) + δ(0,V)

)
;(4.13)

v̂ertk(T ) + v̂ertn−d−k+1(T op) = γk−1(V) · e[n] − δ(k − 1,V).(4.14)

Proof. Applying Corollary 4.4 to (3.5) with K = [0, n− d], xk = 1
Vol(ZV ) , and yk = 1

2Vol(ZV ) for all

k ∈ K, we obtain (4.11).

Similarly, applying Corollary 4.4 to (3.11) with K = [k − d+ 1, k − 1], xk−r =
d·〈d−1

r−1〉
d!Vold−1(Qk)

, and

yk−r =
r·〈d−1

r−1〉
d!Vold−1(Qk)

for all r ∈ [d− 1], we get

vertfib
k (T ) =

1

Vold−1(Qk)

d−1∑
r=1

(
(d− r) ·

〈
d−1
r−1

〉
d!

v̂ertk−r(T ) +
r ·
〈
d−1
r−1

〉
d!

(v̂ertk−r+1(T ) + δ(k − r,V))

)

=
1

Vold−1(Qk)

d−1∑
r=0

(
(d− r) ·

〈
d−1
r−1

〉
+ (r + 1) ·

〈
d−1
r

〉
d!

v̂ertk−r(T ) +
r ·
〈
d−1
r−1

〉
d!

δ(k − r,V)

)
.

Applying the well known recurrence (d − r) ·
〈
d−1
r−1

〉
+ (r + 1) ·

〈
d−1
r

〉
=
〈
d
r

〉
for Eulerian numbers

yields (4.12).
For k = 1, combining (4.12) with (3.13) yields (4.13).
Finally, to show (4.14), we use |A|+ |C| = n− d and (2.2) to write

v̂ertn−d−k+1(T op) =
∑

ΠC,B,A∈T op

|C|=n−d−k+1

Vold(ΠB) · eC =
∑

ΠA,B∈T
|A|=k−1

Vold(ΠB) · (e[n] − eA − eB),

and by (4.2) and (4.7), this is equal to

γk−1(V) · e[n] −
∑

ΠA,B∈T
|A|=k−1

Vold(ΠB) · (eA + eB) = γk−1(V) · e[n] − δ(k − 1,V)− v̂ertk(T ). �

Example 4.7. For d = 2, (4.12) becomes

vertfib
k (T ) =

1

2Vol1(Qk)

(
v̂ertk(T ) + v̂ertk−1(T ) + δ(k − 1,V)

)
.(4.15)
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Figure 7. A vector configuration V, a fine zonotopal tiling T of ZV , and its
“opposite” tiling T op for d = 2 and n = 4. We label each vertex vi1 + · · · + vik by
i1 · · · ik.

Example 4.8. Consider the case n = 4, d = 2, and let V be the vector configuration given in

Figure 7 (left), so the vectors v1,v2,v3,v4 of V are the column vectors of the matrix

(
2 1 0 −1
1 1 1 1

)
.

If B = {i, j} for 1 ≤ i < j ≤ 4 then Vold(ΠB) = j − i. We have

Vold(ZV) = 10, Vold−1(Q1) = 3, Vold−1(Q2) = 4, Vold−1(Q3) = 3,

where Vold(ZV) is the area of ZV and Vold−1(Qk) is the length of the horizontal section of ZV by

the line y2 = k. By (4.3), γk(V) is equal to βk+1 = Vold−1(Qk+1). Using this to compute γk(V)
(and also γk(V − i) for i = 1, 2, 3, 4), we get

γ0(V) = 3, γ1(V) = 4, γ2(V) = 3;

δ(0,V) = (1, 0, 0, 1), δ(1,V) = (2, 1, 1, 2), δ(2,V) = (3, 3, 3, 3).

Let T and T op be as in Figure 7. The corresponding vertices of the higher secondary polytopes are
given by

v̂ert1(T ) = (0, 3, 0, 1), v̂ert2(T ) = (0, 3, 3, 0), v̂ert1(T op) = (2, 0, 0, 2), v̂ert2(T op) = (2, 0, 3, 1).

We would like to verify the formulas from Theorem 4.6. First, (4.14) clearly holds: for k = 1
and k = 2, we have

v̂ert1(T ) + v̂ert2(T op) = (2, 3, 3, 2), γ0(V)e[n] − δ(0,V) = 3 · (1, 1, 1, 1)− (1, 0, 0, 1) = (2, 3, 3, 2),

v̂ert2(T ) + v̂ert1(T op) = (2, 3, 3, 2), γ1(V)e[n] − δ(1,V) = 4 · (1, 1, 1, 1)− (2, 1, 1, 2) = (2, 3, 3, 2).
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Using (3.5) and (3.12), we find

vertfib(T ) =
1

10

(
2
e{2,4}

2
+
e{1,2}

2
+
(
e4 +

e{2,3}

2

)
+
(
e2 +

e{3,4}

2

)
+ 2

(
e2 +

e{1,3}

2

)
+3
(
e{2,3} +

e{1,4}

2

))
=

1

10
(3, 8, 5, 4);

vertfib
1 (T ) =

1

3

(
2
e{2,4}

2
+
e{1,2}

2

)
=

1

6
(1, 3, 0, 2);

vertfib
2 (T ) =

1

4

((
e4 +

e{2,3}

2

)
+
(
e2 +

e{3,4}

2

)
+ 2

(
e2 +

e{1,3}

2

))
=

1

8
(2, 7, 4, 3);

vertfib
3 (T ) =

1

3
· 3
(
e{2,3} +

e{1,4}

2

)
=

1

2
(1, 2, 2, 1).

We indeed see that (4.11) and (4.12) (which specializes to (4.15) for d = 2) hold as well:

vertfib(T ) =
1

10
(3, 8, 5, 4) =

1

10

(
v̂ert1(T ) + v̂ert2(T ) +

1

2
(δ(0,V) + δ(1,V) + δ(2,V))

)
;

vertfib
1 (T ) =

1

6
(1, 3, 0, 2) =

1

2 · 3

(
v̂ert1(T ) + 0 + δ(0,V)

)
;

vertfib
2 (T ) =

1

8
(2, 7, 4, 3) =

1

2 · 4

(
v̂ert2(T ) + v̂ert1(T ) + δ(1,V)

)
;

vertfib
3 (T ) =

1

6
(3, 6, 6, 3) =

1

2 · 3

(
0 + v̂ert2(T ) + δ(2,V)

)
.

5. Flips of zonotopal tilings

Zonotopal tilings form a poset under refinement whose minimal elements are fine zonotopal
tilings. Two fine zonotopal tilings differ by a flip (cf. Definition 5.6) if there exists a zonotopal
tiling that covers both of them in this poset. In this section we describe (see Corollaries 5.9 and 5.16)

how the vectors v̂ertk(T ) and v̂ertk(T ′) differ when the fine zonotopal tilings T and T ′ differ by a
flip. This will be useful in Section 6 for describing the 1-skeleton of a higher secondary polytope.

5.1. Oriented matroids and signed circuits. Each vector configuration V = (v1, . . . ,vn) span-
ning Rd defines a rank d oriented matroid M =MV . We refer to [BLVS+99] for the definition of an
oriented matroid, but note that it is completely determined by its set C(M) of circuits introduced
below. We denote by B(M) the collection of bases of V, that is, d-element subsets B ⊆ [n] such
that the vectors {vi}i∈B form a linear basis of Rd. We say that the vector configuration V is generic

if B(M) =
([n]
d

)
:= {B ⊆ [n] | |B| = d}, that is, if every d vectors of V form a basis of Rd. An

independent set is a subset I ⊆ [n] such that there is a basis B ∈ B(M) satisfying I ⊆ B.
Let us mention a well known property of fine zonotopal tilings, see Figure 7 for an example.

Proposition 5.1 ([She74, (56)]). Let T be a fine zonotopal tiling of ZV . Then the map ΠA,B 7→ B
is a bijection between T and B(M). In other words, for each basis B ∈ B(M) of V, there exists a
unique set A ⊆ ([n] \B) such that ΠA,B belongs to T .

Definition 5.2. A signed set is a pair X = (X+, X−) of disjoint subsets of [n]. Its support is
X := X+ tX−, and we set X0 := [n] \X, thus [n] = X+ tX0 tX−. For each j ∈ [n] we write

(5.1) Xj =


+1, if j ∈ X+;

−1, if j ∈ X−;

0, if j ∈ X0.
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For j ∈ X, we denote X(j) := X \ {j}. We also let −X := (X−, X+) denote the opposite signed
set.

Definition 5.3. A circuit of V is a signed set C = (C+, C−) such that C(j) is an independent set
for each j ∈ C, but there exists a vector α(C) ∈ Rn satisfying

αj(C) > 0 for j ∈ C+, αj(C) < 0 for j ∈ C−, αj(C) = 0 for j ∈ C0, and
∑
j∈C

αj(C)vj = 0.

Such a vector α(C) is unique up to multiplication by a positive real number. We denote by C(M)
the collection of all circuits of V.

Throughout, for A ⊆ [n] and j ∈ [n], we abbreviate A ∪ j := A ∪ {j} and A \ j := A \ {j}.

5.2. Circuit orientations. A convenient way to work with flips of fine zonotopal tilings is to use
the language of circuit orientations.

Definition 5.4. A circuit orientation is a map σ : C(M)→ {+1, 0,−1} satisfying σ(−C) = −σ(C)
for all C ∈ C(M). We say that σ is generic if σ(C) ∈ {+1,−1} for all C ∈ C(M).

We describe a way to associate a generic circuit orientation (called colocalization in [GP17]
because they are dual to the localizations of [BLVS+99, Definition 7.1.5]) to each fine zonotopal
tiling T of ZV . Let T be such a tiling. Define its set of vertex labels (cf. Figure 7) by

(5.2) Vert(T ) := {I ⊆ [n] | A ⊆ I ⊆ A tB for some ΠA,B ∈ T }.4

Given a set S ⊆ [n] and a circuit C ∈ C(M), we say that S orients C positively if C+ ⊆ S and
C− ∩ S = ∅. Similarly, we say that S orients C negatively if C− ⊆ S and C+ ∩ S = ∅. We say
that a collection D ⊆ 2[n] orients C positively if some set in D orients C positively but no set in D
orients C negatively. Similarly, we say that a collection D ⊆ 2[n] orients C negatively if some set
in D orients C negatively but no set in D orients C positively.

Proposition 5.5 ([GP17, Theorem 2.7 and Corollary 7.22]). Let T be a fine zonotopal tiling of ZV
and let C ∈ C(M). Then the collection Vert(T ) either orients C positively or orients C negatively
(but not both).

Note that Proposition 5.5 can alternatively be deduced by combining Proposition 2.2.11, The-
orem 2.2.13, and Proposition 7.1.4 of [BLVS+99]. We define a generic circuit orientation σT :
C(M)→ {+1,−1} by setting

(5.3) σT (C) :=

{
+1, if Vert(T ) orients C positively,

−1, if Vert(T ) orients C negatively,
for all C ∈ C(M).

Definition 5.6. Consider two fine zonotopal tilings T , T ′ of ZV , and let σ := σT , σ′ := σT ′ be
the corresponding generic circuit orientations. We say that T and T ′ differ by a flip if there exists
a circuit C ∈ C(M) such that σ(C) = +1, σ′(C) = −1 and σ(X) = σ′(X) for all X ∈ C(M) such
that X 6= ±C. In this case, we denote this flip by F := (T → T ′) and say that F is a flip along C.

Our next goal is to describe the effect of a flip F = (T → T ′) on the tiles of T and on v̂ertk(T ).

4 Given a fine zonotopal tiling T , the collection Vert(T ) defined in (5.2) coincides with the collection defined
in [GP17, Eq. (2.1)]. The two definitions look slightly different because in [GP17], a tiling is a collection of faces of
all different dimensions, whereas here we identify a tiling with its collection of top-dimensional faces.
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Figure 8. A flip for the case when V is generic (left) and non-generic (right).

5.3. Flips for generic vector configurations. Recall that a vector configuration V is called

generic if B(M) =
([n]
d

)
. Before proceeding to the general case, we describe flips of zonotopal

tilings and their effect on the vertices of higher secondary polytopes in the case when V is generic.
Thus in this subsection we restrict our attention to generic vector configurations. We
postpone the proofs of all results until Section 5.4.

Recall that the vector α(C) from Definition 5.3 is defined up to a positive real constant. We
start by fixing a choice for this constant: for each C ∈ C(M), define α(C) ∈ Rn by

(5.4) αj(C) := Cj ·Vold(ΠC(j)) for all j ∈ [n],

where Cj ∈ {+1, 0,−1} and C(j) ∈ B(M) are given in Definition 5.2. As we will see in Lemma 5.11,
α(C) satisfies the assumptions of Definition 5.3.

Proposition 5.7. Let F = (T → T ′) be a flip along C ∈ C(M). Then there exists a set A :=
A(F ) ⊆ [n] \ C such that

T \ T ′ =
{

ΠA∪j,C(j)

}
j∈C+

t
{

ΠA,C(j)

}
j∈C−

and T ′ \ T =
{

ΠA,C(j)

}
j∈C+

t
{

ΠA∪j,C(j)

}
j∈C−

.

Definition 5.8. Using the notation of Proposition 5.7. we define level(F ) := |A(F )|+ 1 ∈ [n− d].

Corollary 5.9. Let k ∈ [n− d] and F = (T → T ′) be a flip along C ∈ C(M). Then

v̂ertk(T )− v̂ertk(T ′) =

{
α(C), if level(F ) = k,

0, otherwise.

Example 5.10. Let V and T be as in Example 4.8. An example of a flip F = (T → T ′) is
shown in Figure 8 (left). Here we have C = ({3}, {1, 4}) and thus α(C) = −e1 + 3e3 − 2e4 =
(−1, 0, 3,−2). We also have A(F ) = {2} and level(F ) = 2. Recall from Example 4.8 that we

had v̂ert1(T ) = (0, 3, 0, 1) and v̂ert2(T ) = (0, 3, 3, 0). Similarly, we find v̂ert1(T ′) = (0, 3, 0, 1)

and v̂ert2(T ′) = (1, 3, 0, 2). Thus v̂ert1(T ) − v̂ert1(T ′) = 0 and v̂ert2(T ) − v̂ert2(T ′) = α(C), in
agreement with Corollary 5.9.

5.4. Flips for arbitrary vector configurations. We generalize the results of the previous sub-
section to vector configurations that are not necessarily generic.

For a circuit C ∈ C(M), denote by

B(M/C) :=
{
J ⊆ ([n] \ C)

∣∣∣ (J t C(j)) ∈ B(M) for all j ∈ C
}

the set of bases of the contracted oriented matroid M/C. In other words, B(M/C) is the set of
bases of the vector configuration that is the image of V in the quotient space Rd/ 〈vj | j ∈ C〉.
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For any circuit C ∈ C(M) and J ∈ B(M/C), define the vector α(C, J) ∈ Rn by

(5.5) αj(C, J) := Cj ·Vold(ΠC(j)tJ) for all j ∈ [n].

We also define

(5.6) α(C) :=
∑

J∈B(M/C)

α(C, J).

When V is generic, the set B(M/C) = {∅} consists of a single element, and α(C, ∅) = α(C)
specializes to the vector α(C) defined in (5.4).

Lemma 5.11. Let C ∈ C(M) be a circuit of M. Then for each J ∈ B(M/C), the vector α(C, J)
satisfies the assumptions of Definition 5.3. In particular, the vectors {α(C, J) | J ∈ B(M/C)} and
also α(C) coincide up to rescaling by a positive real number.

Proof. By (5.5), we only need to check that α(C, J) gives a linear dependence between the vectors
of V, i.e.,

∑
j∈C αj(C, J)vj = 0. Let I := C t J = {j1 < · · · < jd+1}. The kernel of the

d × (d + 1) matrix M with columns vj1 , . . . ,vjd+1
is given by

∑
i∈[d+1](−1)i∆I\ji(M) · ei ∈ Rd+1,

where ∆I\ji(M) := det(vji)i∈I\ji denotes the corresponding Plücker coordinate of M . If ji ∈ J
then ∆I\ji(M) = 0. If ji ∈ C then |∆I\ji(M)| = |αji(C, J)|, and the sign agrees with Cj . �

We now show the following generalization of Proposition 5.7, see Figure 8 (right) for an example.

Proposition 5.12. Let F = (T → T ′) be a flip along C ∈ C(M). Then for each J ∈ B(M/C),
there exists a set A(F, J) ⊆ [n] \ (C t J) such that

T \ T ′ =
⊔

J∈B(M/C)

({
ΠA(F,J)∪j,C(j)tJ

}
j∈C+

t
{

ΠA(F,J),C(j)tJ

}
j∈C−

)
, and

T ′ \ T =
⊔

J∈B(M/C)

({
ΠA(F,J),C(j)tJ

}
j∈C+

t
{

ΠA(F,J)∪j,C(j)tJ

}
j∈C−

)
.

Before proving Proposition 5.12, we explain how to reconstruct a fine zonotopal tiling T from
the associated generic circuit orientation σT defined in (5.3). Consider a generic circuit orientation
σ : C(M) → {+1,−1} and a basis B ∈ B(M) of V. Given j ∈ [n] \ B, there exists a unique
circuit C ∈ C(M) such that j ∈ C+ and C ⊆ B t {j}. Following [LP], we say that j is externally
semi-active (with respect to σ and B) if σ(C) = +1, and we denote by Extσ(B) ⊆ ([n] \B) the set
of all externally semi-active j. Define a collection Tσ of tiles by

(5.7) Tσ := {ΠA,B|B ∈ B(M), A = Extσ(B)} .

Lemma 5.13. Let T be a fine zonotopal tiling of ZV and let σ := σT be the associated generic
circuit orientation. Then T = Tσ.

Proof. Let B ∈ B(M) be a basis of V. By Proposition 5.1, there exists a unique A ⊆ ([n] \B) such
that ΠA,B ∈ T . It suffices to show that A = Extσ(B). Let j ∈ ([n] \ B) be any element, and let
C ∈ C(M) be the unique circuit such that C ⊆ B ∪ j and j ∈ C+. We would like to show that
j ∈ A if and only if σ(C) = +1.

Suppose that j ∈ A. Then C+ \ j is an independent set contained in B and thus A ∪ C+ =
At (C+ \ j) belongs to Vert(T ), see (5.2). We also see that (A∪C+)∩C− = ∅, so A∪C+ orients
C positively, and thus σ(C) = +1.

Conversely, suppose that j /∈ A. Then C− ⊆ C(j) is an independent set contained in B and thus
A ∪ C− ∈ Vert(T ). But now A ∪ C− orients C negatively, and thus σ(C) = −1. �
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Corollary 5.14. Let F = (T → T ′) be a flip along C ∈ C(M), and let ΠA,B ∈ T . Then:

• if B = C(j) t J for some j ∈ C+ and J ∈ B(M/C) then j ∈ A and ΠA\j,B ∈ T ′;
• if B = C(j) t J for some j ∈ C− and J ∈ B(M/C) then j /∈ A and ΠA∪j,B ∈ T ′;
• otherwise, ΠA,B ∈ T ′.

Proof. By Proposition 5.1, there exists a unique set A′ such that ΠA′,B ∈ T ′. By Lemma 5.13, we
have A = Extσ(B) and A′ = Extσ′(B), where σ := σT and σ′ := σT ′ . By Definition 5.6, the values
of σ and σ′ only differ on ±C. By (5.7), for each j ∈ ([n]\B) such that C 6⊆ (B∪ j), we have j ∈ A
if and only j ∈ A′. If C ⊆ B ∪ j then we have B = C(j) t J for some J ∈ B(M/C), and depending
on whether j ∈ C+ or j ∈ C−, we either get j ∈ A \A′ or j ∈ A′ \A, respectively. �

Proof of Proposition 5.12. Fix J ∈ B(M/C) and let σ := σT . By Corollary 5.14, in order to prove
Proposition 5.12, it suffices to show that

(5.8) for any j ∈ C, if we let B := C(j) t J , then Extσ(B) \ j is independent of j.

Indeed, in this case, the set A(F, J) := Extσ(B) \ j clearly satisfies the assumptions of Proposi-
tion 5.12.

To prove (5.8), choose any j1, j2 ∈ C, and let B1 := C(j1)tJ , B2 := C(j2)tJ , A1 := Extσ(B1)\j1,
A2 := Extσ(B2) \ j2. We need to show that A1 = A2.

Let D := Vert(T ) ∪ Vert(T ′). By Proposition 5.5 and Definition 5.6, for any X ∈ C(M) such
that X 6= ±C, D orients X either positively or negatively (but not both). Next, we have

(5.9) A1 t I, A2 t I ∈ D for all I ⊆ (C t J).

Indeed, by Corollary 5.14, we either have A1 t (I \ j1) ∈ Vert(T ) and A1 t (I ∪ j1) ∈ Vert(T ′) or
vice versa, and the argument for A2 is completely similar.

We would like to show A1 ⊆ A2. Otherwise, assume that i ∈ A1 \ A2. Let X ∈ C(M) be the
unique circuit satisfying X ⊆ B2 ∪ i and i ∈ X+. Then X 6= ±C and X− ⊆ B2. By (5.9), we have
A2 tX− ∈ D. Since i /∈ A2, we have A2 ∩X+ = ∅, thus D orients X negatively.

Suppose that j1 /∈ X+. By (5.9), A1 ∪ X+ = A1 t (X+ \ i) belongs to D, thus D orients X
positively, and we get a contradiction.

Thus j1 ∈ X+. After possibly switching the direction of the flip F (which amounts to replacing
C with −C), we may assume that j1 ∈ C−. Applying the circuit elimination axiom [BLVS+99,
Definition 3.2.1 (C3)] to X, C, and j1, we see that there exists Y ∈ C(M) satisfying

Y + ⊆ (X+ ∪ C+) \ {j1}, Y − ⊆ (X− ∪ C−) \ {j1}.

We have Y 6= ±C and i /∈ Y −. By (5.9), the sets A1∪Y + = A1t (Y + \ i) and A2tY − both belong
to D. Moreover, A1 ∪ Y + orients Y positively while A2 t Y − orients Y negatively. We arrive at a
contradiction, which shows A1 ⊆ A2. By symmetry, we get A1 ⊇ A2, therefore A1 = A2. �

Definition 5.15. Using the notation of Proposition 5.12, for J ∈ B(M/C), we define level(F, J) :=
|A(F, J)|+ 1.

Corollary 5.16. Let k ∈ [n− d] and F = (T → T ′) be a flip along C ∈ C(M). Then

v̂ertk(T )− v̂ertk(T ′) =
∑

J∈B(M/C)
level(F,J)=k

α(C, J).

Proof. Recall from Lemma 5.11 that
∑

j∈C αj(C, J)vj = 0. Since the last coordinate of each vj is

equal to 1, (5.5) implies that

(5.10)
∑
j∈C+

Vold(ΠC(j)tJ) =
∑
j∈C−

Vold(ΠC(j)tJ).
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Combining (2.2) with Proposition 5.12, we see that there exists u ∈ Rn such that

v̂ertk(T ) = u+
∑

J∈B(M/C)
level(F,J)=k

∑
j∈C+

Vold(ΠC(j)tJ)eA(F,J)∪j +
∑

J∈B(M/C)
level(F,J)=k+1

∑
j∈C−

Vold(ΠC(j)tJ)eA(F,J),

v̂ertk(T ′) = u+
∑

J∈B(M/C)
level(F,J)=k

∑
j∈C−

Vold(ΠC(j)tJ)eA(F,J)∪j +
∑

J∈B(M/C)
level(F,J)=k+1

∑
j∈C+

Vold(ΠC(j)tJ)eA(F,J).

By (5.10), the difference of the right hand sides equals to

∑
J∈B(M/C)
level(F,J)=k

∑
j∈C+

Vold(ΠC(j)tJ)ej −
∑
j∈C−

Vold(ΠC(j)tJ)ej

 =
∑

J∈B(M/C)
level(F,J)=k

α(C, J). �

Example 5.17. Let n = 5, d = 2, and let V consist of the column vectors of the matrix(
2 1 0 0 −1
1 1 1 1 1

)
, as shown in Figure 8 (right). Thus v3 = v4, and let C = ({3}, {4}). We

have B(M/C) = {{1}, {2}, {5}}.
An example of a flip F = (T → T ′) along C is shown in Figure 8 (right). Geometrically, the

tiling has not changed, but some vertex labels have changed, replacing 3 with 4. The values of
α(C, J), A(F, J), level(F, J) for various J ∈ B(M/C), as well as the values of v̂ertk(T ), v̂ertk(T ′),
v̂ertk(T )− v̂ertk(T ′) for various k ∈ [n− d], are given in the following tables.

J α(C, J) A(F, J) level(F, J)

{1} 2(e3 − e4) {5} 2
{2} e3 − e4 {1, 5} 3
{5} e3 − e4 {1, 2} 3

k v̂ertk(T ) v̂ertk(T ′) v̂ertk(T )− v̂ertk(T ′)
1 (2, 0, 0, 0, 2) (2, 0, 0, 0, 2) 0
2 (2, 1, 2, 0, 3) (2, 1, 0, 2, 3) 2(e3 − e4)
3 (2, 1, 3, 1, 2) (2, 1, 1, 3, 2) 2(e3 − e4)

This again agrees with Corollary 5.16.

6. Regular zonotopal tilings and higher secondary polytopes

In this section we start by introducing regular fine zonotopal tilings. We then define higher
secondary polytopes, compute their dimension, and prove Theorem 2.2.

Let A, V, and Q = convA be as in Notation 3.5, and let h = (h1, . . . , hn) ∈ Rn be a height
vector. Then the upper boundary of the polyhedron conv{(ai, hi − t) | i ∈ [n], t ≥ 0} ⊆ Rd
projects piecewise-linearly onto Q, and projections of its facets give rise to a polyhedral subdivision
of Q. Such a subdivision is called regular, and in particular, the A-triangulations that can be
obtained this way from a height vector h are called regular A-triangulations. Again, the notion
of a regular A-triangulation coincides with the notion of a regular fine π-induced subdivision from
Definition 3.3.

6.1. Regular zonotopal tilings. Let V be a vector configuration in Rd as above. First, we
define the notion of a generic height vector h ∈ Rn. Recall the vector α(C) from (5.6), which by
Lemma 5.11 satisfies the assumptions of Definition 5.3. Let 〈·, ·〉 denote the standard inner product
on Rn, and define the secondary hyperplane arrangement

(6.1) HV := {h ∈ Rn | 〈h,α(C)〉 = 0 for some C ∈ C(M)}.

Definition 6.1. We say that a height vector h ∈ Rn is generic (for V) if it does not belong to HV .
In this case, we write h ∈ Rn \ HV .
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For h ∈ Rn \ HV , let σh : C(M)→ {+1,−1} be the generic circuit signature given by

(6.2) σh(C) :=

{
+1, if 〈h,α(C)〉 > 0,

−1, if 〈h,α(C)〉 < 0,
for all C ∈ C(M).

Recall from (5.3) that each fine zonotopal tiling T gives rise to a generic circuit signature
σT : C(M)→ {+1,−1}.
Proposition 6.2. Let h = (h1, . . . , hn) ∈ Rn \ HV be a generic height vector. Then T := Th from
Definition 3.3 is the unique fine zonotopal tiling of ZV satisfying σT = σh.

Proof. The uniqueness part follows from Lemma 5.13. Consider the π-induced subdivision T := Th
from Definition 3.3. Since h is generic, it follows that T is a fine zonotopal tiling of ZV .

It remains to show that σT = σh. Otherwise, suppose that C ∈ C(M) is a circuit such that
σT (C) = −1 and σh(C) = +1. Then there must exist a set S ∈ Vert(T ) that orients C negatively, so
C− ⊆ S and C+∩S = ∅. By Definition 3.3, having S ∈ Vert(T ) implies that 〈eS ,h〉 ≥ 〈x,h〉 for all
x ∈ � n∩π−1(π(eS)). On the other hand, sinceα(C) satisfies the assumptions of Definition 5.3, and
S orients C negatively, it is clear that eS+εα(C) belongs to � n∩π−1(π(eS)) for all sufficiently small
ε > 0. But now because σh(C) = +1 is equivalent to 〈α(C),h〉 > 0, we get a contradiction. �

Definition 6.3. A fine zonotopal tiling T of ZV is called regular if T = Th for some h ∈ Rn \HV .

Thus regular fine zonotopal tilings are precisely the regular fine π-induced subdivisions for the case
π : � n → ZV .

Remark 6.4. The usual definition of Th makes use of the zonotope ZṼ associated with the vector

configuration Ṽ = (ṽ1, . . . , ṽn) in Rd+1 given by ṽi := (v, hi). Namely, Th is obtained by projecting
the upper boundary of ZṼ down to ZV via a map that forgets the last coordinate. (Here the upper
boundary is defined as the set of all points x on the boundary of ZṼ such that x+ εed+1 /∈ ZṼ for
all ε > 0.) It is straightforward to see that this construction gives rise to the same tiling, see [BS92,
Lemma 4.2].

The following result is well known, see e.g. [BS92, Corollary 4.2]. We include a proof since we
will use a similar construction later in the proof of Proposition 6.9.

Lemma 6.5. Any two regular fine zonotopal tilings T , T ′ can be connected by a sequence of flips.

Proof. In order to construct the desired sequence of flips, we first choose generic h,h′ ∈ Rn \ HV
such that T = Th, T ′ = Th′ , and the line segment h(t) := th+ (1− t)h′ connecting them intersects
at most one hyperplane in HV at a time. (That is, for each 0 ≤ t ≤ 1, h(t) is orthogonal to α(C) for
at most one pair ±C of opposite circuits.) Then the (finite) sequence Th(t), defined for all 0 ≤ t ≤ 1
such that h(t) ∈ Rn \ HV , connects T to T ′ by flips. �

We also note that if T = Th for some h ∈ Rn \ HV then T−h = T op (see Definition 4.5).

6.2. Higher secondary polytopes. We use the conventions of Notation 3.5. Recall from Defi-

nition 2.1 that for each k ∈ [n − d], the higher secondary polytope Σ̂A,k is defined as the convex
hull

Σ̂A,k := conv
{

v̂ertk(T )
∣∣∣ T is a fine regular zonotopal tiling of ZV

}
,

where the vector v̂ertk(T ) is defined in (2.2). As mentioned in Section 2, we expect that the word
regular can be omitted from the above definition.

Conjecture 6.6. The higher secondary polytope Σ̂A,k is equal to

Σ̂A,k = conv
{

v̂ertk(T )
∣∣∣ T is a fine zonotopal tiling of ZV

}
.

That is, for each (not necessarily regular) fine zonotopal tiling T , the vector v̂ertk(T ) lies in Σ̂A,k.
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See Figure 1 for an illustration.

We start by computing the dimension of Σ̂A,k.

Proposition 6.7. The dimension of Σ̂A,k is equal to n− d.

Proof. Let M be the d × n matrix whose columns are v1, . . . ,vn. Then the row span U of M
is a d-dimensional subspace of Rn. Let W ⊆ Rn be the (n − d)-dimensional subspace spanned
by the vectors α(C) for all C ∈ C(M). It is clear that U and W are orthogonal subspaces and
Rn = U ⊕W . By Corollary 5.16, Lemma 5.11, and Lemma 6.5, we see that all edge directions of

Σ̂A,k belong to W . Thus dim(Σ̂A,k) ≤ n− d.
By Corollary 5.16, it remains to show that for each circuit C ∈ C(M), there exists a flip F =

(T → T ′) along C and J ∈ B(M/C) such that level(F, J) = k, that is, |A(F, J)| = k − 1. Choose
any J ∈ B(M/C) and any (k − 1)-element set S ⊆ ([n] \ (C t J)), and let T := [n] \ (C t J t S).
Choose any height vector h = (h1, . . . , hn) ∈ Rn such that 〈h,α(C)〉 = 0, 〈h, α(X)〉 6= 0 for all
X 6= ±C, and for all s ∈ S, b ∈ C t J , and t ∈ T , we have hs > 0, ht < 0, and |hs|, |ht| � |hb|.
Let h+,h− ∈ Rn \ HV be generic height vectors given by h+ := h + ε · α(C), h− := h − ε · α(C)
for some small ε > 0, and let T := Th+ , T ′ := Th− . Then F := (T → T ′) is a flip along C (recall
Definition 5.6, (6.2), and Proposition 6.2), and it is easy to see from (5.7) and (5.8) using σh+ = σT
that A(F, J) = S, thus level(F, J) = k. �

Example 6.8. For the case d = 1 from Example 2.5, we have a circuit C = ({i}, {j}) for all

1 ≤ i 6= j ≤ n. We see that for each k ∈ [n − d], the higher secondary polytope Σ̂A,k = ∆k,n

contains an edge parallel to ei − ej for all i 6= j, in agreement with the proof of Proposition 6.7.

We now proceed to proving Theorem 2.2. Recall from Definition 3.3 that for a polytope P ⊆ Rn
and a vector h ∈ Rn, (P )h is the face of P that maximizes the scalar product with h.

Proposition 6.9. Let h ∈ Rn \ HV be a generic height vector, and let Th be the corresponding
regular fine zonotopal tiling of ZV . Recall the definitions of vertfib(T ), vertfib

k (T ), and vertGKZ(T )
from (3.5), (3.11), and Remark 3.10.

(i) (ΣGKZ
A )h = vertGKZ(Th).

(ii) (Σfib( � n
π→ ZV))h = vertfib(Th).

(iii) (Σfib(∆k,n
π→ Qk))

h = vertfib
k (Th) for all k ∈ [n− 1].

(iv) (Σ̂A,k)
h = v̂ertk(Th) for all k ∈ [n− d].

Proof. Parts (i)–(iii) are well known, see [BS92, Proposition 1.2, the proof of Theorem 2.5, Corol-
lary 4.2], or [Zie95, the proof of Theorem 9.6]. To prove (iv), we need to show that for any regular

fine zonotopal tiling T ′ := Th′ of ZV (where h′ ∈ Rn \HV), we have 〈h, v̂ertk(Th)〉 ≥ 〈h, v̂ertk(T ′)〉.
We proceed as in the proof of Lemma 6.5. After slightly modifying h′ without changing Th′ , we
may assume that every point of the ray {h′ + th | t ≥ 0} is orthogonal to α(C) for at most one
pair ±C of opposite circuits. The corresponding finite sequence of flips connects T ′ to T . Suppose
that for some t > 0 and C ∈ C(M), we have 〈h′ + th,α(C)〉 = 0. Choose a small positive ε so
that the tilings T− := Th′+(t−ε)h and T+ := Th′+(t+ε)h differ by a flip F = (T+ → T−) along C.

By Definition 5.6 and Proposition 6.2, 〈h,α(C)〉 > 0. By Corollary 5.16, v̂ertk(T+) − v̂ertk(T−)

is a positive scalar multiple of α(C), so 〈h, v̂ertk(T+)〉 > 〈h, v̂ertk(T−)〉. Thus the dot product of

v̂ertk(Th′+th) with h increases weakly as t grows from 0 to ∞, and when t is sufficiently large, we
obviously have Th′+th = Th. �
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Proof of Theorem 2.2. All four parts of Theorem 2.2 follow from Theorem 4.6, Proposition 6.9, and
(3.3). Explicitly, the polytopes in question are related as follows:

(6.3)

ΣGKZ
A =

1

(d− 1)!

(
Σ̂A,1 + δ(0,V)

)
;

Σfib( � n
π→ ZV) =

1

Vold(ZV)

(
Σ̂A,1 + · · ·+ Σ̂A,n−d +

1

2

n−d∑
k=0

δ(k,V)

)
;

Σfib(∆k,n
π→ Qk) =

1

Vold−1(Qk)

(
p0,dΣ̂A,k + p1,dΣ̂A,k−1 + · · ·+ pd−1,dΣ̂A,k−d+1

+
d−1∑
r=1

r

d
· pr−1,d−1δ(k − r,V)

)
for all k ∈ [n− 1];

Σ̂A,k =− Σ̂A,n−d−k+1 + γk−1(V) · e[n] − δ(k − 1,V) for all k ∈ [n− d].

Here we set pr,d =
〈dr〉
d! as before. �

6.3. Vertices, edges, and deformations. In this section, we prove Proposition 2.11. We state
it more generally for point configurations that are not necessarily generic. For a flip F = (T → T ′)
along a circuit C and J ∈ B(M/C), recall the definition of level(F, J) ∈ [n−d] from Definition 5.15.
Let us write Level(F ) := {level(F, J) | J ∈ B(M/C)}.

Extending the definitions of Section 2.4, we say that two fine zonotopal tilings T and T ′ of ZV
are k-equivalent if they can be connected by flips F such that k /∈ Level(F ). Similarly, we say that
two flips F = (T1 → T2) and F ′ = (T ′1 → T ′2 ) are k-equivalent if T1 is k-equivalent to T ′1 and T2 is
k-equivalent to T ′2 .

Proposition 6.10. Let A be an arbitrary configuration of n points in Rd−1, and let k ∈ [n− d].

(i) The vertices of the higher secondary polytope Σ̂A,k are in bijection with k-equivalence classes
of regular fine zonotopal tilings of ZV .

(ii) The edges of Σ̂A,k correspond to k-equivalence classes of flips F such that k ∈ Level(F ).
(iii) For any nonnegative real numbers x1, . . . , xn−d, the Minkowski sum

1

Vold(ZV)

(
x1Σ̂A,1 + · · ·+ xn−dΣ̂A,n−d

)
is a parallel deformation of the fiber zonotope Σfib( � n

π→ ZV), where an edge corresponding
to a flip F along C ∈ C(M) is rescaled by

∑
J∈B(M/C) xlevel(F,J).

Proof. Parts (i) and (ii) follow from part (iii). As for part (iii), the statement about the parallel
deformation is an immediate consequence of Theorem 2.2(ii), together with the fact ([Zie95, Propo-
sition 7.12]) that the normal fan of a Minkowski sum of two polytopes is the common refinement
of the individual normal fans. The statement about the edges follows from Proposition 6.9. �

7. Higher associahedra and plabic graphs

In this section, we give background on plabic graphs, and explain the relation between plabic
graphs and higher associahedra, which are the higher secondary polytopes in the case that d = 3
and A is the set of vertices of a convex n-gon in R2. We then prove Theorem 2.7 and discuss several
combinatorial notions arising from our construction.
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Figure 9. A plabic tiling of a hexagon Q3, with vertices of Q3 labeled by the cyclic
intervals of size 3. The dual graph is a (neither trivalent nor bipartite) (3, 6)-plabic
graph. The strand from 5 to 2 is shown in green. A face label contains 2 if and only
if it is to the left of this strand.

7.1. Background on plabic graphs. Recall the definition of a plabic graph G and its bipartite
version Gbip from Section 2.3. We always assume that plabic graphs have no interior vertices of
degree 1 or 2. A strand in a plabic graph G is a directed path p defined as follows:

• p starts and ends at a boundary vertex of G;
• at each black interior vertex of G, p turns “maximally right”;5

• at each white interior vertex of G, p turns “maximally left”.

From now on, fix n and 1 ≤ k ≤ n− 1.

Definition 7.1. A (k, n)-plabic graph is a plabic graph G with n boundary vertices such that:

(1) for each i ∈ [n], the strand starting at vertex i ends at vertex i+ k (modulo n);
(2) G has k(n− k) + 1 faces.

Condition (2) could be replaced by describing several forbidden patterns for the way the strands
in G may look, see [Pos06, Theorem 13.2]. Note that k(n− k) + 1 is the minimal number of faces
a plabic graph satisfying condition (1) can have. We label the faces of a plabic graph as follows.

Definition 7.2. Given a (k, n)-plabic graph G, we label each face F of G by a set S(F ) ⊆ [n],
defined by the condition that for each i ∈ [n], S(F ) contains i if and only if F is to the left of the
unique strand in G that ends at vertex i.

It turns out [Pos06] that S(F ) has size k. Let F(G) := {S(F ) | F a face of G} ⊆
([n]
k

)
.

7.2. Plabic graphs from fine zonotopal tilings. Throughout the rest of Section 7, we fix d = 3.
We also fix a configuration A = (a1, . . . ,an) of vertices of a convex n-gon in R2, and let V, ZV , Qk,

and π be as in Notation 3.5. Recall that we have a projection ∆k,n
π→ Qk from the hypersimplex

5Here by a maximally right (resp., left) turn we mean that if an interior vertex w of G is incident to edges e1, . . . , em
in clockwise order and p passes through ei and then through w, it must then pass through ei−1 (resp., ei+1), where
the indices are taken modulo n.
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to the k-th horizontal section of ZV . In this section we recall how to obtain plabic graphs from fine
zonotopal tilings, based on results of [Gal18] and [Pos18, Section 11].

Given a subset S ⊆ [n], we let

vS :=
∑
i∈S

vi.

Clearly Qk is a convex n-gon in the affine plane Hk = {(y1, y2, y3) | y3 = k}, with vertices
v[1,k],v[2,k+1], . . . ,v[n,k−1], corresponding to all consecutive cyclic intervals of size k in [n]. Each

two-dimensional face F of ∆k,n is a triangle with vertices eS , eT , eR for some S, T,R ∈
([n]
k

)
. More-

over, we have either |S ∩ T ∩ R| = k − 1 or |S ∪ T ∪ R| = k + 1, in which case we say that F is
isomorphic to ∆1,3, or ∆2,3, respectively. The fine π-induced subdivisions of Qk come from collec-
tions of two-dimensional faces of ∆k,n. Moreover, the fine π-induced subdivisions are in bijection
with the tilings of the n-gon Qk by triangles, such that:

• Each vertex has the form vS for some S ∈
([n]
k

)
.

• Each edge has the form [vS ,vT ] for two k-element subsets S and T such that |S∩T | = k−1.
• Each face is a triangle which is the projection of a two-dimensional face of ∆k,n isomorphic

to either ∆1,3 or ∆2,3 (in which case we say that the face is white, or black, respectively).

Such a tiling of Qk is called a triangulated plabic tiling, and its dual graph G (which has white and
black vertices corresponding to the white and black faces of the tiling) is a trivalent plabic graph,
see Figure 9.

In the other direction, given a (k, n)-plabic graph G, the corresponding plabic tiling PT(G) is a
polyhedral subdivision of Qk into convex polygons colored black and white: for each black (resp.,
white) vertex w of G that is adjacent to faces F1, . . . , Fm in clockwise order, PT(G) contains a black
(resp., white) polygon with boundary vertices vS(F1), . . . ,vS(Fm). By the results6 of [OPS15], PT(G)
is the planar dual of G: the vertices/edges/faces of PT(G) correspond to the faces/edges/vertices
of G, respectively, see Figure 9.

Theorem 7.3 ([Gal18, Theorem 1.2]).

(i) For each trivalent (k, n)-plabic graph G, the triangulated plabic tiling PT(G) coincides with
the horizontal section T ∩Hk of some fine zonotopal tiling T of ZV .

(ii) For each fine zonotopal tiling T of ZV , the intersection T ∩Hk coincides with PT(G) for a
unique trivalent (k, n)-plabic graph G.

For a fine zonotopal tiling T of ZV , we denote by Gk(T ) the trivalent (k, n)-plabic graph G from

Theorem 7.3(ii), and we let Gbip
k (T ) denote its bipartite version.

Recall that (k, n)-plabic graphs are connected by moves (M1)–(M3) from Figure 4. For the
following result, illustrated in Figure 10, see [Gal18, Section 3].

Theorem 7.4. Suppose that F = (T → T ′) is a flip and level(F ) = k.

• We have Gr(T ) = Gr(T ′) for all r 6= k, k + 1, k + 2;
• the graphs Gk(T ) and Gk(T ′) are related by move (M1);
• the graphs Gk+1(T ) and Gk+1(T ′) are related by move (M2);
• the graphs Gk+2(T ) and Gk+2(T ′) are related by move (M3).

7.3. Vertices of higher associahedra. Each fine zonotopal tiling T of ZV gives rise to a point

v̂ertk(T ) ∈ Rn and to a bipartite (k + 1, n)-plabic graph Gbip := Gbip
k+1(T ). The definition (2.2) of

v̂ertk(T ) can be expressed in a simple way in terms of PT(Gbip), which we now explain.
Recall that PT(Gbip) consists of black and white polygons corresponding to black and white

vertices of Gbip (cf. Figure 9). Let w be a white interior vertex of Gbip, and let F1, . . . , Fm be

6The authors of [OPS15] only work with bipartite (k, n)-plabic graphs. For general (k, n)-plabic graphs, one needs
to “uncontract” some interior vertices of G and add some diagonals to the corresponding faces of PT(G).
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Figure 10. The zonotope ZV associated to V = (va,vb,vc,vd) has precisely two
fine zonotopal tilings, which differ by a flip. The horizontal sections give rise to
triangulated plabic tilings and, dually, to trivalent (k, n)-plabic graphs for n = 4
and k = 1, 2, 3 (from bottom to top). The flip corresponds to applying the moves
(M1), (M2), (M3) on plabic graphs, as in Theorem 7.4.

the faces of Gbip adjacent to it. By the construction of face labels in Section 7.1, we see that

the face labels S(F1), . . . , S(Fm) ∈
( [n]
k+1

)
have intersection S∩(w) :=

⋂m
i=1 S(Fi) of size k, see

Figure 11 (left). Thus every white face w∗ of PT(Gbip) is naturally labeled by a set S∩(w) of size
k. Let Area(w∗) denote the area of this white face w∗ (viewed as a metric convex polygon inside
Hk+1

∼= R2), see Figure 11 (right).

Proposition 7.5. Let T be a fine zonotopal tiling of ZV and let Gbip := Gbip
k+1(T ) be the corre-

sponding bipartite (k + 1, n)-plabic graph. Then

(7.1) v̂ertk(T ) = 2
∑
w

Area(w∗) · eS∩(w),

where the sum is taken over all white interior vertices w of Gbip.

Proof. We use (2.2). It is not hard to see that each tile ΠA,B ∈ T gives rise to a white triangle w∗

in the plane y3 = |A| + 1 whose face label is S∩(w) = A. Moreover every white face in the plabic
tilings associated to T comes from a tile of T . Therefore in (2.2), instead of summing over tiles
ΠA,B with |A| = k, we can sum over white triangles in the plane y3 = k+ 1. Also note that we can
relate the volume of ΠA,B to the area of the corresponding white triangle, using the normalization
of our volume form given in the discussion preceding Remark 2.3. The result follows. �

Example 7.6. Applying Proposition 7.5 to the zonotopal tiling whose horizontal section is shown
in Figure 11, we obtain

v̂ert2(T ) = 8e{1,6} + 11e{4,6} + 7e{3,6} + 6e{3,4} + 6e{2,3} = (8, 6, 19, 17, 0, 26).



HIGHER SECONDARY POLYTOPES AND REGULAR PLABIC GRAPHS 29

1 2 3

1 2 61 3 6

1 4 6

1 5 6

2 3 4

2 3 6

3 4 5 3 4 6

4 5 6

2 3

1 6

3 6

4 6

3 4

1 2 3

1 2 61 3 6

1 4 6

1 5 6

2 3 4

2 3 6

3 4 5 3 4 6

4 5 6

1 2 3

1 2 61 3 6

1 4 6

1 5 6

2 3 4

2 3 6

3 4 5 3 4 6

4 5 6

3.0

4.0

3.5

5.5

3.0

1 2 3

1 2 61 3 6

1 4 6

1 5 6

2 3 4

2 3 6

3 4 5 3 4 6

4 5 6

Figure 11. A plabic tiling associated to a bipartite (k + 1, n)-plabic graph, with
k + 1 = 3 and n = 6. The labeling of white faces by k-element sets is shown at the
left, while the areas of the white faces are shown at the right.

7.4. Regular plabic graphs. Recall from Section 2.3 that A-regular trivalent (k, n)-plabic graphs
are by definition the horizontal sections of regular fine zonotopal tilings of ZV , while A-regular bi-
partite (k, n)-plabic graphs are those that are obtained from A-regular trivalent ones by contracting
edges. Let us give an explicit algorithm of reconstructing a trivalent (resp., bipartite) A-regular

(k, n)-plabic graph Gk,h (resp., Gbip
k,h) from a given height function h. In order to do so, we specialize

some general constructions from Sections 5 and 6.
If V is a configuration of n vectors in R3 such that their endpoints are vertices A of a convex

n-gon in H1
∼= R2, then the circuits of V are given by

C(M) = ±{({a, c}, {b, d}) | 1 ≤ a < b < c < d ≤ n} .

For each circuit C = ({a, c}, {b, d}), we have a (unique up to rescaling by a positive real number)
vector

(7.2) α(C) = xaea − xbeb + xcec − xded
whose coordinates are the coefficients of the linear dependence xava−xbvb+xcvc−xdvd = 0. (Here
xa, xb, xc, xd > 0.) Given a generic height vector h ∈ Rn \ HV , we define (as in (6.2)) the generic
circuit signature σh(C) := ±1 depending on whether µh(a, b, c, d) := xaha − xbhb + xchc − xdhd ∈
R \ {0} is positive or negative (it cannot be 0 precisely because h is generic).

Definition 7.7. We say that I ⊆ [n] is (A,h)-compatible if for all 1 ≤ a < b < c < d ≤ n, we have:

• if a, c ∈ I and b, d /∈ I then µh(a, b, c, d) > 0;
• if a, c /∈ I and b, d ∈ I then µh(a, b, c, d) < 0.

We denote F(A, k,h) :=
{
I ∈

([n]
k

) ∣∣∣ I is (A,h)-compatible
}

.

By Proposition 6.2, the regular zonotopal tiling T := Th satisfies σT = σh. But now by (5.3),
we see that the k-element sets in Vert(T ) are precisely the elements of F(A, k,h). Therefore
by Theorem 7.3, F(A, k,h) is the set of labels of some triangulated plabic tiling, and hence by

[OPS15], F(A, k,h) coincides with F(Gbip
k,h) for a unique bipartite (k, n)-plabic graph Gbip

k,h, and

this graph Gbip
k,h can be explicitly reconstructed from F(A, k,h) as in [OPS15, Section 9]. To find

the unique trivalent (k, n)-plabic graph Gk,h, we use [Gal18, Proposition 4.6]: the face labels of

Gk,h are given by F(Gk,h) = F(A, k,h), and two faces labeled by S, T ∈
([n]
k

)
are connected by an
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Figure 12. A point configuration A, and the corresponding bipartite and trivalent
plabic graphs for k = 2 and h as in Example 7.8.

edge in PT(Gk,h) if and only if S ∩T ∈ F(A, k− 1,h) and S ∪T ∈ F(A, k+ 1,h). This completely
determines the triangulated plabic tiling PT(Gk,h) from which Gk,h can be reconstructed as a

planar dual. By Theorem 7.3, PT(Gk,h) is the horizontal section of Th by Hk, and PT(Gbip
k,h) is

obtained from it by removing all edges that are adjacent to two faces of the same color.

Example 7.8. Let V = (v1, . . . ,v5) be given by the column vectors of

0 1 2 1 0
0 0 1 2 1
1 1 1 1 1

, thus A

is the point configuration shown in Figure 12 (left). Let h := (1, 0, 3, 0, 0) ∈ Rn. For each circuit
C = ({a, c}, {b, d}) for a < b < c < d, the values of α(C) (computed using (5.4)) and µh(a, b, c, d)
are given in the following table (which shows that h ∈ Rn \ HV is generic).

α(C) µh(a, b, c, d)

(2,−3, 2,−1, 0) +8
(2,−2, 1, 0,−1) +5
(2,−1, 0, 1,−2) +2
(2, 0,−1, 2,−3) −1
(0, 1,−1, 1,−1) −3

Let k = 2. We find that F(A, k,h) = {12, 23, 34, 45, 15, 13, 35}, where we abbreviate {a, b} as ab.

Thus the unique bipartite (k, n)-plabic graph Gbip
k,h with face labels F(Gbip

k,h) = F(A, k,h) is shown

in Figure 12 (middle). To find the trivalent plabic graph Gk,h, observe that {1, 3, 4} ∈ F(A, k+1,h)
while {3} ∈ F(A, k− 1,h), so there must be an edge connecting {1, 3} to {3, 4} in PT(Gk,h). Thus
Gk,h is the trivalent plabic graph given in Figure 12 (right).

7.5. Proof of Theorem 2.7. (i): Our goal is to show that given two generic height vectors

h,h′ ∈ Rn \ HV , we have v̂ertk(Th) = v̂ertk(Th′) if and only if Gbip
k+1,h = Gbip

k+1,h′ . By (7.1),

if Gbip
k+1,h = Gbip

k+1,h′ then clearly v̂ertk(Th) = v̂ertk(Th′). Conversely, assume that v̂ertk(Th) =

v̂ertk(Th′). Then by Proposition 2.11(i), the tilings Th and Th′ are k-equivalent. By Theorem 7.4,
we see that the trivalent graphs Gk+1,h and Gk+1,h′ are related by moves (M1) and (M3), thus
their bipartite versions coincide. Similarly, combining Proposition 2.11(ii) with Theorem 7.4, we

find that the edges of Σ̂A,k correspond to square moves of A-regular bipartite (k + 1, n)-plabic
graphs.
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Figure 13. The four plabic graphs, corresponding to the points in Figure 1 labeled
a, b, c, d. These are the only (3, 6)-plabic graphs that are not A-regular for some A,
see Example 7.9. Similar figures can be found in [KK18, Figure 18] or [OS19,
Figure 1].

(ii): First, note that by Theorem 2.2(iii), the vertices and edges of Σ̂A,k + Σ̂A,k−1 + Σ̂A,k−2 are

in bijection with vertices and edges of 1
Vold−1(Qk)

(
Σ̂A,k + 4Σ̂A,k−1 + Σ̂A,k−2

)
shift
== Σfib(∆k,n

π→ Qk).

The statement that the vertices and edges of Σ̂A,k + Σ̂A,k−1 + Σ̂A,k−2 correspond to trivalent plabic
graphs and moves (M1)–(M3) connecting them follows by combining Proposition 2.11(iii) with
Theorem 7.4. �

Example 7.9. Let n = 6 and k = 3. An example of a higher associahedron Σ̂A,k, where A is the
point configuration from Figure 13 (top left) is shown in Figure 1. The plabic graphs corresponding

to the points of Σ̂A,k labeled by a, b, c, d are shown in Figure 13. The points labeled by b and c

belong to the interior of Σ̂A,k. On the other hand, for the point configuration A′ from Figure 13

(bottom left), the points labeled a and d belong to the interior of Σ̂A′,k, while the points labeled

by b and c are among the vertices of Σ̂A′,k. If A′′ is such that the three diagonals of the hexagon
Q = convA′′ intersect at a single point then none of the four points a, b, c, d are among the 30

vertices of Σ̂A′′,k. A similar computation can be found in [KK18, Theorem 4.2].
The plabic graphs labeled by b and d arose in [RW17, Section 8] in the context of mirror symmetry

for Grassmannians. If one considers the Newton-Okounkov bodies ∆G associated to a plabic graph
G for Gr(3, 6), then 32 of the 34 plabic graphs give rise to integral polytopes ∆G; b and d label the
non-integral ones.



32 PAVEL GALASHIN, ALEXANDER POSTNIKOV, AND LAUREN WILLIAMS

When A is the set of vertices of a convex n-gon, the combinatorics of the associahedron Σ̂A,1
does not depend on the specific choice of this n-gon. Example 7.9 shows that this is not the case
for higher associahedra. Computational evidence suggests that the following result still holds.

Conjecture 7.10. Suppose that A is the set of vertices of a generic convex n-gon. Then the

f -vector of Σ̂A,k depends only on n and k.

For instance, we saw in Example 7.9 that Σ̂A,k has 32 vertices when A is generic and n = 6. The

number of vertices of Σ̂A,k for generic A, n ≤ 7, and k ∈ [n− 3] is given in the following table.

n
4 2
5 5 5
6 14 32 14
7 42 231 231 42

7.6. Large heights. Fix a configurationA of vertices of a convex n-gon in R2. Let w = (w1, . . . , wn) ∈
Sn be a permutation of [n]. Choose a height vector h(w) = (h1, . . . , hn) ∈ Rn satisfying

(7.3) hw1 � hw2 � · · · � hwn > 0.

In (7.3), our usage of � means that the heights are large compared to the coefficients appearing
in (7.2) (for all circuits C), or more precisely: for each 4-tuple a < b < c < d, we have that
µh(a, b, c, d) = xaha + xchc − xbhb − xdhd > 0 if and only if max(ha, hc) > max(hb, hd). Our goal

is to explicitly describe F(A, k,h(w)). First we need a few definitions.
Fix n, and choose s, t ∈ [n]. We let [s, t) be the cyclic interval between s and t−1: if s ≤ t, then

[s, t) := {s, s+ 1, . . . , t− 1}, and if s > t, then [s, t) := {s, s+ 1, . . . , n, 1, 2, . . . , t− 1}. We similarly
define cyclic intervals (s, t] and [s, t].

For S ⊆ [n] and 0 ≤ j ≤ |S|, we define top
(w)
j (S) to be the j-element subset T of S such that

ht > hs (equivalently, wt < ws) for all t ∈ T and s ∈ S \ T .

Proposition 7.11. Let w ∈ Sn and h(w) be as in (7.3). Then for each 1 ≤ k ≤ n, we have

(7.4) F(A, k,h(w)) =
k⊔
r=1

{
[s, t) t top

(w)
k−r([t, s))

∣∣∣ s, t ∈ [n] such that |[s, t)| = r
}
t
{

top
(w)
k ([n])

}
.

Proof. It is easy to see that each set in the right hand side of (7.4) is (A,h(w))-compatible. Con-

versely, consider I ∈
([n]
k

)
and write I as a union of cyclic intervals I1 ∪ · · · ∪ Im with m as small

as possible. For example, if I = {1, 3, 4, 5, 7, 8, 10} ⊆ [10] then we write I = [10, 1] ∪ [3, 5] ∪ [7, 8].

Clearly, I being (A,h(w))-compatible means that whenever we choose i, i′ ∈ I from two distinct
cyclic intervals Ia and Ib, either hi or hi′ is greater than any hj for j /∈ I.

Therefore at most one of the cyclic intervals I1, . . . , Im can contain elements whose height is less
than the height of any element not in I. Let [s, t) be that cyclic interval (if it exists, otherwise we

must have I = top
(w)
k ([n])), and let r := |[s, t)| ≤ k. Since we need all remaining elements of I to

have greater heights than all elements of [n] \ I, we find I = [s, t) t top
(w)
k−r([t, s)). �

Remark 7.12. Note that by Proposition 7.11, the set F(A, k,h(w)) explicitly constructed in Propo-
sition 7.11 depends only on the ordering of the largest k heights.

Example 7.13. Fix k and n and suppose that w = w0 := (n, n − 1, . . . , 1). Then F(A, k,h(w))
consists of [n−k+1, n] together with the k-element subsets [i, i+j)∪(n−k+j, n] for 1 ≤ i ≤ n−k
and 1 ≤ j ≤ k. Note that if we interpret k-element subsets of [n] as Young diagrams contained in
a k × (n− k) rectangle (by identifying each Young diagram with the path consisting of unit steps
west and south from (n− k, k) to (0, 0) which cuts it out and then reading off the positions of the
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vertical steps), then F(A, k,h(w)) corresponds to the rectangles which fit inside the k × (n − k)
rectangle. This collection was called the rectangles cluster in [RW17] and comes from the plabic
graph associated to the Le-diagram of [Pos06].

On the other hand, suppose that w = id := (1, 2, . . . , n). Then F(A, k,h(w)) consists of [k]
together with the k-element subsets [1, i) ∪ [j, j + k − i] for 1 ≤ i ≤ k and i + 1 ≤ j ≤ n − k + i.
If we interpret k-element subsets of [n] as Young diagrams contained in a k × (n− k) rectangle as

before, then F(A, k,h(w)) corresponds to Young diagrams which are complements of rectangles in
the k × (n− k) rectangle.

7.7. Black-partite and white-partite plabic graphs. By Theorem 2.7, the vertices of Σ̂A,k
correspond to bipartite plabic graphs, while the vertices of Σ̂A,k + Σ̂A,k−1 + Σ̂A,k−2 correspond to

trivalent plabic graphs. It is thus natural to also consider the polytope Σ̂A,k + Σ̂A,k−1.

Definition 7.14. A plabic graph G is called black-partite if all interior white vertices of G are
trivalent, and no edge of G connects two black interior vertices.

We similarly define white-partite plabic graphs by switching the roles of black and white in the
above definition. For example, for each n ≥ 3, there is only one white-partite (1, n)-plabic graph.
As discussed in Example 2.8, there is a Catalan number Cn−2 of black-partite (1, n)-plabic graphs,
and the number of white-partite (2, n)-plabic graphs is also equal to Cn−2. As we will show in
Proposition 7.15 below, this is not a coincidence.

It follows from [Pos06, Theorem 13.4] that any two black-partite (k, n)-plabic graphs are related
by moves (M1) and (M2), and any two white-partite (k, n)-plabic graphs are related by moves (M2)
and (M3). We deduce the following surprising bijection from the results of [Gal18].

Proposition 7.15. For k < n, black-partite (k, n)-plabic graphs are in bijection with white-partite
(k + 1, n)-plabic graphs.

Proof. We describe a construction that gives the desired bijection. Given a plabic graph G, denote
by Gbpt (resp., Gwpt) the black-partite (resp., white-partite) plabic graph obtained from G by
contracting all edges connecting two black (resp., white) interior vertices. Given a fine zonotopal

tiling T of ZV , denote by Gbpt
k (T ) and Gwpt

k (T ) the black-partite and white-partite (k, n)-plabic
graphs obtained from the trivalent plabic graph Gk(T ) from Section 7.2. For each T and each

k < n, we say that the plabic graphs Gbpt
k (T ) and Gwpt

k+1(T ) are linked.

Lemma 7.16. Every black-partite (k, n)-plabic graph is linked with exactly one white-partite (k +
1, n)-plabic graph, and every white-partite (k + 1, n)-plabic graph is linked with exactly one black-
partite (k, n)-plabic graph.

Proof. It follows from the results of [Gal18] that every trivalent (k, n)-plabic graph G appears
as Gk(T ) for some fine zonotopal tiling T of ZV . Thus every black-partite (k, n)-plabic graph

is equal to Gbpt
k (T ) for some T , and is linked with the graph Gwpt

k+1(T ). Every white vertex of

Gbpt
k (T ) is trivalent, thus the three faces incident to it are labeled by sets A ∪ b1, A ∪ b2, A ∪ b3 for

some b1, b2, b3 /∈ A, and the horizontal section T ∩Hk contains a white triangle with vertex labels
A ∪ b1, A ∪ b2, A ∪ b3. We find that ΠA,B ∈ T for B := {b1, b2, b3}, but then a black triangle with
vertex labels A ∪ {b1, b2}, A ∪ {b1, b3}, A ∪ {b2, b3} appears in T ∩Hk+1. Conversely, every black

triangle in T ∩Hk+1 corresponds to a white triangle in T ∩Hk. We have shown that Gwpt
k+1(T ) is

uniquely determined by Gbpt
k (T ). The proof that Gbpt

k (T ) is uniquely determined by Gwpt
k+1(T ) is

completely analogous. �

It is clear that Lemma 7.16 gives the desired bijection, finishing the proof of Proposition 7.15. �

We return to the study of the polytope Σ̂A,k + Σ̂A,k−1. We say that a black-partite (k, n)-plabic

graph G is A-regular if it can be obtained as Gbpt
k (T ) for some regular fine zonotopal tiling T of
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ZV . We similarly define A-regular white-partite (k + 1, n)-plabic graphs, and clearly the bijection
of Proposition 7.15 restricts to such plabic graphs. Observe also that by Theorem 7.4, applying the
moves (M1) and (M2) to a black-partite (k, n)-plabic graph G corresponds to applying the moves
(M2) and (M3) to the unique (k+ 1, n) white-partite plabic graph linked with G. The proof of the
following result is analogous to that of Theorem 2.7.

Corollary 7.17. Let d = 3 and A ⊆ R2 be the configuration of vertices of a convex n-gon.

(i) The vertices of Σ̂A,k+Σ̂A,k−1 are in bijection with A-regular black-partite (k, n)-plabic graphs,
as well as with A-regular white-partite (k + 1, n)-plabic graphs.

(ii) The edges of Σ̂A,k + Σ̂A,k−1 correspond to the moves (M1) and (M2) of A-regular black-
partite (k, n)-plabic graphs, as well as to the moves (M2) and (M3) of A-regular white-partite
(k + 1, n)-plabic graphs.

8. Applications to soliton graphs

In this section we start by explaining how tropical hypersurfaces are dual to regular subdivisions
of a related zonotope, see Definition 8.2. We then explain how, when d = 3, we can recover the con-
struction of soliton graphs—contour plots of soliton solutions of the KP equation (see Corollary 8.6
and Definition 8.7)—and in particular, recover the fact that they are realizations of reduced plabic
graphs. We conclude with applications of our previous results to soliton graphs.

8.1. Tropical hypersurfaces and regular zonotopal tilings.

Definition 8.1. A tropical polynomial is a function F : Rd−1 → R that can be expressed as
the tropical sum of a finite number of tropical monomials. More precisely, if we let X denote
(X1, . . . , Xd−1), then a tropical polynomial F is the maximum

F = max
I∈B

FI(X1, . . . , Xd−1) = max
I∈B

FI(X)

of a finite set {FI |I ∈ B} of linear functionals7 FI : Rd−1 → R. The tropical hypersurface V (F )
is the set of points in Rd−1 where F is non-differentiable. Equivalently, V (F ) is the set of points
where the maximum among the terms of F is achieved at least twice.

Note that V (F ) is a codimension-one piecewise-linear subset of Rd−1. Moreover, the complement
of V (F ) is a collection of (top-dimensional) regions of Rd−1, where each region R = R(I) is naturally
associated to some I ∈ B; more specifically, we have that FI(X) > FJ(X) for all points X =
(X1, . . . , Xd−1) ∈ R(I) for all J 6= I.

We now look at some particularly nice examples of tropical hypersurfaces. Fix positive numbers
n, d and k, and let A = (a1, . . . ,an) be a point configuration in Rd−1 as before.

Definition 8.2. Let h ∈ Rn. For 1 ≤ i ≤ n, define a linear functional fi,h : Rd−1 → R by

(8.1) fi,h(X) := 〈X,ai〉+hi, equivalently, fi,h(X1, . . . , Xd−1) = ai,1X1 + · · ·+ai,d−1Xd−1 +hi.

For I ∈
([n]
k

)
, let FI,h =

∑
i∈I fi,h.

We consider the tropical polynomial

(8.2) Fk,h(X) = max
I∈([n]

k )
FI,h(X),

and define Vk,h to be the tropical hypersurface V (Fk,h). We denote by F(Vk,h) ⊆
([n]
k

)
the collection

of all sets I ∈
([n]
k

)
that appear as a face labels of regions in the complement of Vk,h.

7In tropical geometry one typically uses integer or rational coefficients, because these coefficients come from
valuations of power series, but in this paper everything will make sense for real coefficients.
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Recall from Notation 3.5 that for a point configuration A ⊆ Rd−1, ZV denotes the zonotope
associated with the lift V ⊆ Rd of A. Recall also that each generic height vector h ∈ Rn \ HV
determines a regular fine zonotopal tiling Th of ZV , and that its set of vertex labels is denoted by
Vert(Th) ⊆ 2[n], see (5.2).

Proposition 8.3. Let A and V be as above, and let h ∈ Rn \HV be a generic height vector. Then

F(Vk,h) = Vert(Th) ∩
(

[n]

k

)
.

Proof. Let Ṽ = (ṽ1, . . . , ṽn) be the lift of V to Rd+1 given by ṽi := (v, hi). Let I ∈
([n]
k

)
. By

Remark 6.4, I ∈ Vert(Th) if and only if ṽI :=
∑

i∈I ṽi belongs to the upper boundary of ZṼ .

Equivalently, there exists a vector X̃q := (X, q, 1) ∈ Rd+1 (for some X ∈ Rd−1 and q ∈ R) such

that the dot product with X̃q is maximized over ZṼ at ṽI . Since ZṼ =
∑

i∈[n][0, ṽi], we see

that this happens precisely when 〈X̃q, ṽi〉 is positive for i ∈ I and negative for i /∈ I. Note that

〈X̃q, ṽi〉 = 〈X,ai〉 + q + hi = fi,h(X) + q. We have shown that I ∈ Vert(Th) if and only if there

exist X ∈ Rd−1 and q ∈ R such that for all i ∈ I and j /∈ I, we have fi,h(X) + q > 0 > fj,h(X) + q.

The latter condition can be restated as: there exists X ∈ Rd−1 such that for all i ∈ I and j /∈ I,
we have fi,h(X) > fj,h(X), which is equivalent to FI,h(X) > FJ,h(X) for all J 6= I. Therefore a
k-element subset I lies in Vert(Th) if and only I ∈ F(Vk,h). �

8.2. Soliton graphs. In the case that d = 3, we recover the soliton graphs which were studied
in [KW11, KW14] in order to study soliton solutions to the KP equation. We briefly review that
construction here.

The KP equation
∂

∂x

(
−4

∂u

∂t
+ 6u

∂u

∂x
+
∂3u

∂x3

)
+ 3

∂2u

∂y2
= 0

was proposed by Kadomtsev and Petviashvili in 1970 [KP70], in order to study the stability of the
soliton solutions of the Korteweg-de Vries (KdV) equation under the influence of weak transverse
perturbations. The KP equation can be also used to describe two-dimensional shallow water wave
phenomena (see for example [Kod10]). This equation is now considered to be a prototype of an
integrable nonlinear partial differential equation.

Let t = (t3, t4, . . . , tn) be a vector of “higher times” (often one sets t4 = · · · = tn = 0 and
t3 = t, but it will be convenient for us to use the higher times.) There is a well known recipe
(see [Hir04, CK08]) for using a point A in the real Grassmannian Gr(k, n) together with n real
parameters κ1 < · · · < κn to construct a τ -function τA(x, y, t), such that a simple transformation
of it

uA(x, y, t) = 2
∂2

∂x2
ln τA(x, y, t)

is a soliton solution of the KP equation.
The τ -function is defined as follows. For i ∈ [n], set

hi := κ3
i t3 + · · ·+ κni tn and Ei(x, y, t) := exp(κix+ κ2

i y + hi).

For I = {i1 < · · · < ik} ∈
([n]
k

)
, set

(8.3) KI :=
∏
`<m

(κim − κi`) and EI(x, y, t) := KI · Ei1 · · ·Eik .

For A ∈ Gr(k, n), we define

(8.4) τA(x, y, t) =
∑

I∈([n]
k )

∆I(A)EI(x, y, t),
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where ∆I(A) is the Plücker coordinate of A ∈ Gr(k, n) indexed by I as before.
If one is interested in the behavior of the soliton solutions when the variables (x, y, t) are on

a large scale, then, as in [KW14, Section 4.2], it is natural to rescale the variables with a small
positive number ε,

x −→ x

ε
, y −→ y

ε
, t −→ t

ε
,

which leads to

τ εA(x, y, t) =
∑
I∈M

exp

1

ε

k∑
j=1

(κijx+ κ2
ijy + hij ) + ln(∆I(A)KI)

 ,

whereM =M(A) := {I | ∆I(A) 6= 0} ⊆
([n]
k

)
and I = {i1 < · · · < ik}. Then we define a function

FA(x, y, t) as the limit

(8.5) FA(x, y, t) = lim
ε→0

ε ln (τ εA(x, y, t)) = max
I∈M


k∑
j=1

(κijx+ κ2
ijy + hij )

 .

Since the above function depends only on the collection M, we also denote it as FM(x, y, t).

Definition 8.4 ([KW11, KW14]). Fix t = (t3, . . . , tn) ∈ Rn−2. Given a solution uA(x, y, t) of the
KP equation as above, we define its (asymptotic) contour plot Ct(M) to be the set of all (x, y) ∈ R2

where FM(x, y, t) is not linear.

The contour plot approximates the locus where the corresponding solution of the KP equation
has its peaks, and we label each region in the complement of Ct(M) by the k-element subset I
which achieves the maximum in (8.5).

Remark 8.5. Comparing (8.5) with Definition 8.2 in the case that M =
([n]
k

)
, we see that

FM(x, y, t) is a tropical polynomial for d = 3, fi(x, y) = κix + κ2
i y + hi for i ∈ [n], and the

asymptotic contour plot Ct(M) is the tropical hypersurface Vk(f1, . . . , fn).

Let d = 3 and A = {a1, . . . ,an} for ai = (κi, κ
2
i ). Consider its lift V and the zonotope ZV ⊆ R3

as in Notation 3.5. Denote h := (h1, . . . , hn) where hi = κ3
i t3 + · · ·+κni tn, and recall that Th is the

regular zonotopal tiling of ZV induced by h. Applying Proposition 8.3 to these contour plots, we
obtain the following result.

Corollary 8.6. Assume that M =
([n]
k

)
and I = {i1, . . . , ik} ∈ M. Then there exists a point

(x, y) ∈ R2 lying in the region of the complement of Ct(M) labeled by I if and only if vi1 + · · ·+vik
is a vertex of Th.

Note that Corollary 8.6 is closely related to the discussion in [KK18, Section 2.3].

Definition 8.7 ([KW11, KW14]). We associate a soliton graph Gt(M) to each contour plot Ct(M)
by marking any intersection of three line segments by either a white or black vertex, depending
on whether there is a unique line segment directed from the vertex towards y → ∞ or a unique
line segment directed from the vertex towards y → −∞ (it is impossible for a line segment to be
parallel to the x-axis).

When M =
([n]
k

)
, and for generic times t = (t3, . . . , tn), all intersections of line segments are

trivalent intersections, and by [KW14, Corollary 10.9], the graph Gt(M) is a (k, n)-plabic graph,
see Figure 14. Corollary 8.6 then says the following (for A ⊆ R2 as above).

Corollary 8.8. Each soliton graph Gt(M) associated to M =
([n]
k

)
is a trivalent A-regular (k, n)-

plabic graph.
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Figure 14. A soliton graph Gt(M) coming from Gr(2, 6).

Figure 14 shows the contour plot associated to the positive Grassmannian Gr>0(2, 6); each

region is labeled by an element I = {i1, i2} ∈
(

[6]
2

)
which indicates that in that region, FI(x, y) =

fi1(x, y) + fi2(x, y) > FJ(x, y) for all other J ∈
(

[6]
2

)
. The trivalent intersections of line segments

are marked by white or black vertices as in Definition 8.7.
It is natural to ask how the soliton graph (plabic graph) changes when the higher times t =

(t3, . . . , tn) evolve. In [KW11], the authors speculated (cf. Figure 2) that the face labels of the
soliton graph should change via cluster transformations, or in other words, via moves (M1)–(M3)
of the plabic graph from Figure 4. This is now a consequence of Theorem 2.7.

Corollary 8.9. Fix A and M as in Corollary 8.6, and consider the associated soliton graphs
Gt(M). Then as the higher times t = (t3, . . . , tn) evolve, Gt(M) changes via the moves from
Figure 4. In particular the face labels change via square moves.

Proof. Changing the higher times continuously corresponds to changing the heights continuously,

which by Theorem 2.7 corresponds to walking around the normal fan of Σ̂A,k+ Σ̂A,k−1 + Σ̂A,k−2. �

In [KW14, Theorem 8.5 and Theorem 8.9], the authors classified the contour plots Ct(M) ob-
tained when t = (t3, 0, . . . , 0) and t3 → ±∞. We can now give a generalization of their results (cf.

Corollary 8.11) in the case thatM =
([n]
k

)
and the κi’s are positive. Let us write t ≥ 0 if ti ≥ 0 for

i = 3, . . . , n.

Proposition 8.10. Assume that M =
([n]
k

)
, the numbers κ1 < · · · < κn are positive, and that the

vector t ≥ 0 is nonzero. Then Ct(M) can be identified with the plabic graph associated to the Le-

diagram, and its regions are labeled by the elements of F(A, k,h(w)) for w = w0 as in Example 7.13.

Similarly, the regions of C−t(M) are labeled by the elements of F(A, k,h(w)) for w = id.

Proof. Recall that vi = (κi, κ
2
i , 1) and hi = κ3

i t3 + · · · + κni tn. Our goal is to show that hn �
hn−1 � · · · � h1 in the sense of (7.3). In other words, we need to show that µh(a, b, c, d) < 0

for all 1 ≤ a < b < c < d ≤ n. For 3 ≤ j ≤ n, let h(j) ∈ Rn be given by h
(j)
i := κji tj , thus

h =
∑n

j=3 h
(j). It suffices to show µh(j)(a, b, c, d) < 0. It follows from (7.2) and (5.4) that

µh(j)(a, b, c, d) = −det

( 1 1 1 1
κa κb κc κd
κ2a κ2b κ2c κ2d
tjκ

j
a tjκ

j
b tjκ

j
c tjκ

j
d

)
= −tj ·K{a,b,c,d} · s(j−3)(κa, κb, κc, κd),

where K{a,b,c,d} was defined in (8.3) and sλ is the Schur polynomial associated with a partition
λ = (λ1, . . . , λm), see [Sta99, §7.15]. Thus s(j−3) = hj−3 is the complete homogeneous symmetric
polynomial [Sta99, §7.5]. Since κ1 < · · · < κn, we find K{a,b,c,d} > 0. Since we have also assumed
that κ1, . . . , κn > 0, we find s(j−3)(κa, κb, κc, κd) > 0. We have shown µh(j)(a, b, c, d) < 0 for all
j such that tj > 0, which implies µh(a, b, c, d) < 0. For the case of C−t(M), the same argument
shows µh(a, b, c, d) > 0. �
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In Proposition 8.10, we required the κ-parameters to be positive. For the case t = (t3, 0, . . . , 0)
studied in [KW14], this assumption can be lifted.

Corollary 8.11. Proposition 8.10 still holds when the numbers κ1 < · · · < κn are not necessarily
positive, provided that t = (t3, 0, . . . , 0) with t3 > 0.

Proof. Indeed, in this case the polynomial s(j−3) = s(0) from the proof of Proposition 8.10 is equal
to 1, thus we have µh(a, b, c, d) < 0 regardless of the sign of the κ-parameters. �

Since the generic soliton graphs Gt(M) for M =
([n]
k

)
are trivalent (k, n)-plabic graphs, it is

natural to ask which (k, n)-plabic graphs are realizable as soliton graphs. Similarly to Section 2.3,
let us say that a bipartite (k, n)-plabic graph is realizable if it can be obtained from some Gt(M) by
contracting unicolored edges. Thus every realizable (k, n)-plabic graph is also A-regular for some
A. (It is not clear to us whether the converse is true.) In [KW11, KW14], the authors showed that
all bipartite (2, n)-plabic graphs are realizable. In [KK18], building on work of [Hua15], Karpman
and Kodama showed that for k = 3 and n = 6, 7, 8, every bipartite (k, n)-plabic graph is realizable
for some choice of κ- and t-parameters (see however Example 7.9 and [KK18, Theorem 4.2]).
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