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In brief

Wigdor et al. find evidence supporting a

female protective effect against autism

spectrum disorder (ASD): (1) siblings of

female ASD probands are more likely to

be diagnosed with ASD than siblings of

male ASD probands and (2) mothers carry

more common, inherited genetic risk for

ASD than fathers. Taken together, these

results emphasize the breadth of the role

of sex in ASD risk and could impact the

design and interpretation of genetic and

neurobiological studies of ASD.
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SUMMARY
Autism spectrum disorder (ASD) is diagnosed three to four times more frequently in males than in females.
Genetic studies of rare variants support a female protective effect (FPE) against ASD. However, sex differ-
ences in common inherited genetic risk for ASD are less studied, particularly within families. Leveraging
the Danish iPSYCH resource, we found siblings of female ASD cases (n = 1,707) had higher rates of ASD
than siblings of male ASD cases (n = 6,270; p < 1.0 3 10�10). In the Simons Simplex and SPARK collections,
mothers of ASD cases (n = 7,436) carried more polygenic risk for ASD than fathers of ASD cases (n = 5,926;
0.08 polygenic risk score [PRS] SD; p = 7.0 3 10�7). Further, male unaffected siblings under-inherited poly-
genic risk (n = 1,519; p = 0.03). Using both epidemiologic and genetic approaches, our findings strongly sup-
port an FPE against ASD’s common inherited influences.
INTRODUCTION

Autism spectrum disorder (ASD) is diagnosed three to four times

more frequently in males than in females.1–3 The possibility of a

‘‘female protective effect’’ (FPE) against ASDhas beendescribed

extensively and has received consistent support from the results

of genetic studies of de novo variants.4–13 Many types of ASD-

associated de novo variants are observed more frequently in fe-

malecases.4–13 Ingeneral, themoreASD risk carriedbyadenovo

variant class, the greater its overrepresentation among affected

females.8 This suggests that, on average, females accumulate

more risk than males before being ascertained as ASD cases.
This is an open access article und
Male-female differences are less clear in the context of ASD’s

common, inherited genetic influences, which constitute the ma-

jority of genetic risk for ASD.14 Given the findings above, we

may expect elevated polygenic risk for ASD in female cases;

however, that has not been consistently observed.4,15,16 Incon-

sistent observations could be a function of statistical power, as

the polygenic risk score (PRS) for ASD currently explains limited

case-control variance on the liability scale (<3%), and under

4,000 female cases are present in published ASD genome-wide

association study (GWAS) meta-analyses.4,15 A recent study

found evidence for increased burden of combination polygenic

risk (ASD + schizophrenia + educational attainment) in female
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ASD cases,16 further suggesting a male-female difference may

appear using the ASD PRS alone were it better powered.

In this study, we used two complementary strategies to better

understand the relationship between sex and inherited genetic

risk for ASD. We first conducted a large sibling recurrence anal-

ysis, leveraging the Danish Lundbeck Foundation Initiative for

Integrative Psychiatric Research (iPSYCH) resource. We then

examined the relationship between sex and common, autosomal

polygenic risk for ASD in whole families, focusing on both

affected and unaffected family members.

Under the FPE model, one expects a greater aggregation of

ASD risk in female cases than in male cases. In the context of in-

herited genetic risk, which is shared within families, that expecta-

tion extends to the familymembers of female cases. For example,

we expect siblings of femaleASDcases to carrymore risk for ASD

than siblings of male ASD cases, regardless of whether they are

categorically affected themselves.17 Sibling recurrence is a

particularly useful metric of inherited or familial risk. Full siblings

share 50% of their segregating DNA variants and are typically

close enough in age to share diagnostic environments. Shared

diagnostic environment is important when considering ASD

recurrence. The estimated prevalence of ASD has increased

over 30-fold over the last four decades,18 primarily due to diag-

nostic expansion.19,20Members of previous generations, particu-

larly those able to live independently as adults, were far less likely

to receive an ASD diagnosis in childhood than children born as of

writing.19,20 For this reason, inclusion of parents or aunts and un-

cles in familial recurrence analyses can complicate data interpre-

tation. Our analysis was accordingly limited to siblings.

Severalpreviousstudieshaveconsidered theFPE through famil-

ial recurrence,with inconsistent results.21–24 To improvedata inter-

pretability,weusednationalpatient registrydataandstratifiedASD

cases based on presence or absence of co-diagnosed intellectual

disability (ID). Despite sharing the majority of their rare variant

influences,7 IDandASDdonotappear to share their commonpoly-

genic influences:ascurrentlyestimated, thegeneticcorrelationbe-

tween ID and ASD is not significantly different fromzero.25 Further,

evidence suggests reduced SNP heritability for forms of ASD in

whichco-diagnosed ID ismorecommon.15,25As (1) lowerheritabil-

ity predicts lower familial recurrence and (2) ascertained female

ASD cases are more likely to have co-diagnosed ID, failing to

stratify by ID could render a male-female comparison difficult to

interpret. Our recurrence analyses focused on ASD without co-

diagnosed ID (from here: ASDnoID) and used ID without co-diag-

nosed ASD (from here: IDnoASD) as a negative control. We

excluded individuals with diagnoses of both ASD and ID (approxi-

mately 15% of ASD cases in Denmark), as there were too few

cases in that group for an independent sibling recurrence analysis

(n = 372 female cases with at least one sibling). We then comple-

ment the epidemiologic analyseswith a statistical genetic compar-

ison using multiple members of ASD-affected families and a new

ASD PRS from a large, unpublished GWASmeta-analysis.

RESULTS

FPE and sibling recurrence
The Danish Psychiatric Central Research Register and the

Danish National Patient Register are unique resources, well
2 Cell Genomics 2, 100134, June 8, 2022
suited to careful consideration of sibling recurrence. They are

complete until 2012 and 2013, respectively, and contain medical

record data on the entire Danish population born betweenMay 1,

1981 and December 31, 2005 (n = 1,472,762). We linked the psy-

chiatric and patient registers to find all Danish families with two

or more full siblings born during this time period. We identified

94,790 such families. We then identified the families with at least

one child with ASDnoID or IDnoASD. This analysis included all

diagnosed ASDnoID and IDnoASD cases in this population dur-

ing this period. When a family included more than one affected

child, we selected one at random to be the ‘‘index case’’ (from

here: cases). We analyzed one sibling per family; if the family

included more than one sibling, we selected one at random for

inclusion in the analysis. We examined ASD and ID diagnoses

in the selected siblings. As the focus of the analysis was

recurrence of ASD and ID and any selection among

siblings was performed at random, sibling selection was not

diagnosis dependent (i.e., if the family included a sibling with

ASD and a sibling without, either could be selected, with equal

probability). A detailed description of this process can be found

in the STAR Methods: Sibling recurrence of ASD and ID.

To investigate the FPE, we examined whether siblings of fe-

male cases of ASDnoID (n = 1,707 siblings) have higher risk for

ASD and/or ID themselves than the siblings of male cases of

ASDnoID (n = 6,270 siblings). We were adequately powered to

examine co-occurring ASD and ID (ASDandID) as an outcome

in the siblings. In siblings, there were accordingly three potential

outcomes: ASDnoID, ASDandID, and IDnoASD. We estimated

sibling risk by comparing diagnosis rates in the siblings with

diagnosis rates in age- and sex-matched controls, drawn at

random from the Danish population. To increase power, we

used 2:1 control to case matching. We followed the same

procedures for siblings of female cases of IDnoASD (n = 506 sib-

lings) and siblings of male cases of IDnoASD (n = 811 siblings).

The primary results are presented in Figure 1. An odds ratio

(OR) of more than 1 suggests that case siblings were more likely

to receive a diagnosis than age- and sex-matched individuals

from the general population. Siblings of female ASDnoID cases

were approximately seven times as likely (OR = 7.19; 95%

confidence interval [CI] = 5.09–10.09) to receive a diagnosis of

ASDnoID themselves than a general population individual. For

siblings of male ASDnoID cases, there was a nearly 4-fold

(OR = 3.76; 95% CI = 3.10–4.54) increase in risk. In fact, while

all siblings of ASDnoID cases were at increased ASD risk

(p < 1.34 3 10�4 for all comparisons), the siblings of female

ASDnoID cases were at even greater risk than the siblings of

male ASDnoID cases (p < 0.01 for both comparisons). This is

consistent with expectations of the FPE. We only compared

risk between siblings of female and male cases if both sibling

groups showed elevated risk against the general population.

This is akin to only testing for an interaction in the presence of

significant main effects.

The pattern was different for the siblings of IDnoASD cases.

First, neither siblings of female cases (n = 506; ASDandID:

OR = 2.00, 95% CI = 0.12–32.07; ASDnoID: OR = 2.01, 95%

CI = 0.80–5.12) nor siblings of male cases (n = 811; ASDandID:

OR = 6.02, 95% CI = 0.63–57.95; ASDnoID: OR = 1.49, 95%

CI = 0.79–2.80) showed increased risk for ASD (with or without



Figure 1. Sibling recurrence of ASD and ID

Red bars represent odds ratios (ORs) for siblings of

female cases, and teal bars represent ORs for sib-

lings of male cases. ORs indicate the increase in risk

for each diagnosis among siblings of cases, as

compared with age- and sex-matched controls,

derived from logistic regression (STAR Methods;

Sibling recurrence of ASD and ID). Error bars

represent 95% confidence intervals. p values are

from a Wald test to determine whether ORs are

significantly different from one another. p values for

the male-female comparison were only calculated

when both ORs were significantly different from 1.

Underlying data are in Tables S1 and S2.
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co-diagnosed ID) at these sample sizes. As increased risk

for ASD could not be detected, we did not test for a difference in

ASD risk between siblings of female versus male IDnoASD

cases. The siblings of IDnoASD cases were, however, at

significantly increased risk for IDnoASD themselves

(p < 3.13 3 10�6 for both comparisons). This was true for both

siblings of male cases and the siblings of female cases. Sibling

risk of IDnoASD recurrence did not significantly differ by the

sex of the IDnoASD case (p = 0.12).

We were not statistically powered to simultaneously consider

sex of the case and sex of the sibling. However, in an analysis of

risk to male versus female siblings of all ASD cases, risk did not

differ meaningfully by sex of the sibling when using a sex-spe-

cific general population rate (Figure S1; Table S8; STAR

Methods: Sibling recurrence of ASD and ID; Methods S1: Sibling

recurrence of ASD and ID, by sibling sex).

FPE and ASD parents
We next examined the FPE in two genetically characterized ASD

cohorts: the Simons Simplex Collection (SSC)26 and the Simons

Foundation Powering Autism Research for Knowledge (SPARK)

cohort.27,28 The SSC consists of families with one affected child

and two confirmed unaffected parents. SPARK includes families

with a variety of structures.

Parent-child designs present an opportunity to examine the role

of theFPE inparentsof cases, aswell as inASDcases themselves.

Weexpect parents of ASDcases to havegreater than average risk

for ASD, simply because they have a child with ASD. The parents,

however, are usually categorically unaffected. SomeASDstudies,

like the SSC, screened parents for ASD and ASD-like symptom-

atology. If a parent met criteria for an ASD diagnosis or had an
obvious and substantial concentration of

ASD-like traits, the family could not partici-

pate in the study.26 Families with ASD-diag-

nosed parents can participate in SPARK,

but we excluded these families from our

analysis. SPARK parents remaining in the

analysis could still have a substantial aggre-

gation of ASD symptomatology.

Weexpectmothersand fathersof children

with ASD to carry elevated ASD risk relative

to the general population. To estimate this

increased risk, we integrated the SSC and
SPARK data with a large general population cohort, the UK Bio-

bank (UKB).29 Using standard deviations (SDs) on the UKB ASD

PRS distribution as our scale, we then estimated the burden of

common polygenic risk for ASD in all European ancestry parents

in SPARK and SSC, as well as in ancestry-matched controls from

UKB, controlling for the first 15 principal components (PCs) of

ancestry. As expected, parents of ASDcases carriedmore genetic

risk for ASD than controls (0.23 SD; p = 1.93 10�7; Figure 2).

Under an FPE model, mothers would, on average, be able to

carry more ASD risk than fathers before meeting ASD case

criteria. Consistent with FPE expectations, we found that

mothers of ASD cases carried significantly more polygenic risk

for ASD than fathers of ASD cases (n = 7,436 mothers; n =

5,926 fathers; 0.09 SD; p = 7.0 3 10�7; Figure 2). The increase

inASDPRS inASDmothers comparedwith females in thegeneral

population was about 50%greater than the increase in ASD PRS

in ASD fathers compared with males in the general population.

This mother-father difference is present independently in

both SSC (n = 2,061 mothers; n = 2,079 fathers; 0.08 SD;

p = 8.03 10�3) and SPARK (n = 5,375mothers; n = 3,847 fathers;

0.09 SD; p = 5.2 3 10�5). It is also present when comparing

full trios: families where both parents are present in the dataset

(n = 4,809 complete trios; p = 1.4 3 10�5). Further, while ASD

cases had significantly greater PRS for ASD than their unaffected

mothers on average (n = 7,628; 0.09 SD; p = 1.23 10�8; Figure 2),

that elevation was strikingly similar to the elevation observed be-

tweenmothers and fathers.At this sample size, there is no sexdif-

ference in ASD PRS in UKB (p = 0.15). This is expected of any

population sample when using an autosomally constructed PRS.

Finally, we compared the polygenic burden of male and

female ASD probands, controlling for comorbid ID (STAR
Cell Genomics 2, 100134, June 8, 2022 3



Figure 2. The continuum of ASD polygenic

risk in the general population and families

with an ASD case

Between-group differences in polygenic score for

ASD and p values from linear regression comparing

group polygenic scores while controlling for 15

principal components of ancestry. ASD groups are

combined across the SSC and SPARK collections.

Autosomal polygenic risk scores were calculated

using weights from a GWAS of ASD cases (n =

19,870) and controls (n = 39,078) from the iPSYCH

consortium in Denmark (STAR Methods: Generation of polygenic risk score). Group differences are standardized using the UK Biobank ASD PRS distribution.

Underlying data are in Tables S3–S6.
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Methods: Polygenic risk comparisons). As a greater fraction of

female probands have comorbid ID, ID could otherwise

confound this comparison. We thus restricted the analysis to

probands with measured IQ and defined ID as full-scale

IQ < 70 in SSC or a notation of ‘‘cognitive impairment’’ in

SPARK. As expected under a FPE, we observed nominally

higher ASD polygenic burden in female compared with male pro-

bands (0.08 SD; p = 0.03; n = 789male probands with ID; n = 230

female probands with ID; n = 3,422 male probands without ID;

n = 662 female probands without ID).

FPE and the polygenic transmission disequilibrium test
(pTDT)
The pTDT compares polygenic risk between parents and their

children. It leverages the expectation that, in a random sample

of parent-child trios, the mean of the children’s PRS for any trait

will equal themeanof themid-parent PRS (defined as the average

of the mothers’ and fathers’ PRSs). Ascertainment for a pheno-

typic deviation between children and parents, for example, sam-

pling children with ASD and parents without ASD, breaks that

expectation and allows one to identify polygenic risk factors that

are associatedwith the ascertainedoutcome.Wehavepreviously

shown that children with ASD, on average, substantially over-

inherit their parents’ polygenic risk for ASD, as well as for schizo-

phrenia and increased educational attainment.4

Larger ASD datasets, in conjunction with a new and better-

powered ASD PRS, allow us to revisit pTDT in light of the differ-

ential parental polygenic risk (Figure 2). The difference in average

ASD PRS between case mothers and case fathers changes our

understanding of the mid-parent PRS. On average, male siblings

of children with ASD are now expected to inherit more risk for

ASD than is carried by their fathers (Figure 3). To the extent

that themean difference in parental PRS reflects a sex difference

in ASD risk tolerance, male siblings have substantially increased

risk compared with female siblings. The difference in ASD PRS

between ASD case mothers and fathers should be better toler-

ated in female siblings than in male siblings. The average mid-

parent risk is less than the average risk carried by unaffected

mothers of ASD cases, meaning females can tolerate higher

risk than that expected in female siblings.

To investigate the FPE throughout families affected by ASD,

we identified families in SSC and SPARK that include (1) an

affected child, (2) two unaffected parents, and (3) an unaffected

sibling and performed pTDT on male and female unaffected

siblings (n = 1,519 males; n = 1,611 females; STAR Methods:
4 Cell Genomics 2, 100134, June 8, 2022
Polygenic risk comparisons). We found that male unaffected sib-

lings significantly under-inherit their parents’ polygenic risk for

ASD (p = 0.03; Figure 3). This is consistent with an average

requirement for their PRS to decline from the mid-parental

PRS to around that of their unaffected fathers, in order to remain

unaffected themselves. We did not see a deviation from expec-

tation in female siblings (p = 0.39; Figure 3). While this is consis-

tent with the FPE, the difference in transmission between male

and female siblings is not statistically significant and should be

re-investigated with larger samples.

Weusedexomesequencedata fromSSCandSPARK to identify

the subset of ASD cases carrying a high-impact de novo variant,

specifically predicted to disrupt the function of a constrained

gene (12% of cases across both cohorts; see STAR Methods: De

novo variant analysis). We hypothesized that high-impact de

novo variants and the FPE create differences in the amount of lia-

bility space remaining to be filled by common polygenic variation.

These differences may create the following ordering of polygenic

over transmission (lowest to highest): (1) male cases with a high-

impact de novo variant (n = 436), (2 and 3) either female cases

with a high-impact de novo variant (n = 159) or male cases without

a high-impact de novo variant (n = 3,468), and (4) female cases

without a high-impact de novo variant (n = 757).

The pTDT results reflected this expected gradient (Figure 3).

Male probands with high-impact de novo variants had the lowest

polygenic over-inheritance (0.08 SD; p = 0.10), which was not

significantly different from mid-parent expectation and was

similar to that of their unaffected mothers (0.06 SD from the

mid-parent value). Female cases without a high-impact de

novo variant had nearly three times the polygenic over-inheri-

tance (0.23 SD; p = 7.82 3 10�11) of male cases with a high-

impact de novo variant (p = 0.02).

DISCUSSION

Evidence from multiple types of genetic risk, and multiple mem-

bers of families affected by ASD, supports a FPEmodel, in which

females have a higher liability threshold for receiving a diagnosis

of ASD.We note that, in this analysis, female protection andmale

risk are one and the same. With only two categories and no

insight into mechanism, they are in fact indistinguishable. We

also note that polygenic risk for ASD is, in the general population,

associated with many positive traits.4,15,30 Dozens of studies

have noted a positive, general population correlation between

polygenic risk for ASD and greater educational attainment,



Figure 3. Polygenic transmission disequilib-

rium in ASD cases and unaffected siblings

Transmission disequilibrium standardized to the

mid-parent PRS distribution with error bars denoting

95% confidence intervals. p values are from a two-

sided, one-sample t test and estimate the proba-

bility that polygenic deviation is equal to 0. Cases

and controls are combined across SSC and SPARK

cohorts. The mother and father PRS mean lines are

the mean values from pTDT of each parent against

the mid-parent expectation (symmetric by defini-

tion). Summary statistics for the PRS are from a

GWAS of ASD cases (n = 19,870) and controls (n =

39,078) from the iPSYCH consortium in Denmark

(STAR Methods: Danish ASD GWAS). Underlying

data are in Table S7.
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stronger reasoning ability, andmany other beneficial attributes in

a cognitively demanding economy. In females, the ability to

tolerate more ASD risk without manifesting some of the more

isolating elements of diagnosed ASD can benefit individuals,

families, and communities. While one may be tempted to quan-

tify a formal expectation of ASD’s genetic architecture under

specified circumstances (e.g., female with a high-impact de

novo variant; male without), such expectations would depend

on a stable, or at least fairly predictable, phenotype. ASD, as

currently diagnosed, is neither. There are predictable elements

of sex by phenotype interaction in diagnosed cases, for

example, escalating male-to-female ratio with increasing case

IQ.31 However, even after conditioning on IQ, one is left with re-

sidual phenotypic associations to sex among ascertained cases.

For example, females are on average diagnosed later than

males.20 Similarly, sex differences in genetic architecture remain

after conditioning on presence or absence of a strong acting de

novo variant. Across individuals with ASD, de novo variant count

is associated with variant impact: as de novo variant count in-

creases, so does their average effect size contribution to

ASD.4 Fewer of the variants are benign; more are likely clinically

returnable.

Further, one must make several assumptions in order to easily

interpret a PRS comparison betweenmale and female cases. For

example, one must assume equivalent genetic architecture be-

tween ASD as diagnosed in males (male ASD) and as diagnosed

in females (female ASD). The previously described differences in

rare variant burden, alongwith preliminary evidence from studies

of SNP heritability, already violate that assumption.5–8,15 In addi-

tion, one needs to assume that male ASD and female ASD have

equivalent polygenic influences (a genetic correlation of 1). This

is unclear at current sample sizes.15 Even once that analysis be-

comes adequately powered, the correlation will be difficult to

interpret. The male-to-female ratio in ASD increases with

increasing case IQ, and this brings with it additional average dif-

ferences in behavioral, cognitive, and medical comorbidities.19

Any estimated genetic correlation between male and female

ASD could accordingly conflate sex-based and phenotype-

based heterogeneity.
We do not know what renders females more tolerant of ASD’s

genetic risk factors or what, if anything, the mechanisms under-

lying that tolerance have in common with ASD genetic risk. Anal-

ysis at the molecular level will be necessary to address that

question. At the statistical level, assuming adequate phenotypic

stability and characterization, increasing sample sizeswill lead to

increasingly clear male-female differences. Future studies can

further explore this axis of heterogeneity in ASD.

Limitations of the study
This study has several limitations. The true ID rate in ASD cases

in Denmark is likely higher than reported. If consistent with the

rate of ID in ASD cases in the United States or the United

Kingdom, it would be approximately 40% over this diagnostic

period.20 ID in the context of ASD is often underreported in

medical record and registry data, as it is rarely prescription

associated. If comorbid ID was in fact present in ‘‘ASD no

ID’’ index cases, we would expect their siblings to be more

likely to receive a diagnosis, which would increase overall

recurrence rates among siblings and bias our results toward

the null hypothesis. We could not attempt to identify additional

individuals with ID through information on educational

attainment, standardized testing, or assessments of cognitive

performance, as these are not linked to the Danish medical

registry. We are also limited by the relative scarcity of IDnoASD

diagnoses in this dataset. A recent nationally comprehensive

survey of the Danish registry data noted that, by age 18, the cu-

mulative incidence of ID diagnoses in males (1.5%) is lower

than the cumulative incidence of ASD diagnoses in females

(1.9%).32 Our exclusion of case children with both ID and

ASD, along with the analytic requirement for two-child families,

rendered the IDnoASD analyses small in comparison to those

focused on ASD alone.

It is worth noting that the influences on differential rates of ASD

diagnosis are clearly multifactorial, extending beyond solely

genetic influence. One well-known influence is diagnostic bias,

which may occur for many reasons, including societal norms of

behavior, bias in assessment tools, the sex of evaluators, misdi-

agnosis of female cases, better ‘‘masking’’ of autistic traits in
Cell Genomics 2, 100134, June 8, 2022 5
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

HapMap 3 The International HapMap 3

Consortium, 201034
ftp://ftp.ncbi.nlm.nih.gov/hapmap/

Human Genome Diversity Project (HGDP) Bergström et al., 202035 ftp://ngs.sanger.ac.uk/production/hgdp/

hgdp_wgs.20190516/

SFARI-generated genotype array data SFARI https://www.sfari.org/resource/sfari-base/

SFARI-generated whole exome sequencing data SFARI https://www.sfari.org/resource/sfari-base/

UK Biobank genotype array data Bycroft et al., 201829 https://www.ukbiobank.ac.uk/enable-your-

research/apply-for-access

Software and algorithms

ADMIXTURE Alexander et al., 200936 https://dalexander.github.io/admixture/

Eagle v2.3.5 Loh et al., 201637 https://www.hsph.harvard.edu/alkes-price/software/

EIGENSOFT (including smartPCA) Price et al., 2006

Galinsky et al., 201638,39
https://www.hsph.harvard.edu/alkes-price/software/

Genome Analysis Toolkit (GATK) v4.1.2.0

HaplotypeCaller

GATK Team https://hub.docker.com/r/broadinstitute/gatk/

Hail https://hail.is/ https://github.com/hail-is/hail/

IMPUTE2 Howie et al., 200940 https://mathgen.stats.ox.ac.uk/impute/impute_v2.html

LDpred 1.0.11 Vilhjálmsson et al., 201541 https://github.com/bvilhjal/ldpred

METAL Willer et al., 201042 https://genome.sph.umich.edu/wiki/METAL

Minimac3 Das et al., 201643 https://genome.sph.umich.edu/wiki/Minimac3

picopili Walters et al., 201844 https://github.com/Nealelab/picopili

PLINK 1.9 PLINK Working Group45 https://www.cog-genomics.org/plink/1.9/

PLINK 2 PLINK Working Group45 https://www.cog-genomics.org/plink/2.0/

PRIMUS Staples et al., 201346 http://primus.gs.washington.edu

R 3.3.1 R Core Team https://www.r-project.org/

Ricopili Lam et al., 202047 https://hub.docker.com/r/bruggerk/ricopili

SHAPEIT Delaneau et al., 201148 https://mathgen.stats.ox.ac.uk/genetics_

software/shapeit/shapeit.html
RESOURCE AVAILABILITY

Lead contact
Further information and requests may be directed to the lead contact Elise Robinson (erob@broadinstitute.org).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d The iPSYCH data reported in this study cannot be deposited in a public repository because of the sensitive nature of the data.

The iPSYCH Consortium is working with GDPR compliant models for remote access. To request access, please contact au-

thors Preben Bo Mortensen (pbm@econ.au.dk) and Anders D. Børglum (anders@biomed.au.dk) for more details.

d The imputed SPARK dataset used in this analysis has been deposited with the Simons Foundation Autism Research Initiative

(SFARI) for public distribution. Scientists wishing to access the data set can do so through application to SFARI.

d Approved researchers can access UK Biobank data by applying at https://www.ukbiobank.ac.uk/enable-your-research/

apply-for-access

d The HapMap 3 and HGDP data are publicly available and listed in the key resources table.

d This study did not generate original code.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Simons simplex collection (SSC)
The SSC consists of over 2,500 simplex families with a child diagnosed with ASD.26 We performed both family-based and case-con-

trol analyses using European ancestry individuals from SSC (see STAR Methods: Ancestry definition). For analyses without family

structure (Figure 2), we analyzed 2,005 probands, 2,061 mothers and 2,079 fathers. For analyses with family structure (Figure 3),

we analyzed 1,644 trios with two parents and an ASD offspring, and 1,571 trios with two parents and an unaffected sibling.

Simons foundation powering autism research for knowledge (SPARK)
SPARK is a large-scale ongoing collection consisting of families with a child diagnosed with ASD.27 Unlike SSC, parents in SPARK

can also have an ASD diagnosis, and we subset to families where both parents do not have ASD. We performed both family-based

and case-control analyses using European ancestry individuals from SPARK (see STAR Methods: Ancestry definition). For analyses

without family structure (Figure 2), we analyzed 5,623 probands, 5,375 mothers, and 3,847 fathers from SPARK. For analyses with

family structure (Figure 3), we analyzed 3,176 SPARK trios with two parents and an ASD offspring, and 1,559 trios with two parents

and an unaffected sibling.

UK Biobank
The UK Biobank is a cohort of 500,000 individuals living in the UKwho were recruited between 2006 and 2010, aged between 40 and

69 years at recruitment. For ease of computation, we randomly selected 20,000 samples fromUKB to serve as the population control

cohort in our analyses.

iPSYCH
The Danish Psychiatric Central Research Register and the Danish National Patient register, complete until 2012 and 2013, respec-

tively, contain medical record data on the entire Danish population born betweenMay 1, 1981 and December 31, 2005 (n = 1,472,76).

The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH) consortium has established a large Danish

population-based psychiatric case–cohort sample (iPSYCH2012) from this data to investigate the genetic and environmental

architecture of severe mental disorders.49

METHOD DETAILS

Identifying families in Danish registry data
In this work, we focus specifically on ASD cases from iPSYCH (n = 16,146), defined as individuals with ICD-10 codes F84.0, F84.1,

F84.5, F84.8 or F48.9, as well as ID cases (n = 4,727), defined as individuals with any ICD-10 codes from F70-F79. Controls were

population representative, randomly sampled individuals from the Danish population (n = 30,000). Controls may have psychiatric

disorders, with prevalence levels amongst controls matching those seen in the Danish general population.

The iPSYCH2012 cohort contains medical diagnoses, prescribed medicine, and social and socioeconomic data for 449,882

individuals, and their first-degree relatives. Of those, 39,491 individuals had a missing identification number for one or both of their

parents or were missing phenotypic sex. In total, there were 410,391 individuals with first degree relatives for which we had pheno-

typic sex, and an identification number for both parents. Amongst these 410,391 individuals, we identified 274,837 families. We

further subset these families to those with more than one offspring (n = 94,790 families).

Sibling recurrence of ASD and ID
For each family, we selected an index case based on two criteria: (1) sex (male or female), and (2) neurodevelopmental diagnosis

(ASDnoID, ASDandID, or IDnoASD). Families without an index case were not considered. If more than one child in a family met

the given criteria, one was randomly selected as the index case, with each offspring having an equal probability of being selected

as the index case.

We then selected one sibling per index case. If an index case had more than one sibling, one was randomly selected, with each

sibling having an equal probability of being selected. Selected siblings were subset to those born between 1981 and 2005. Each of

these siblings were matched with two age-and sex-matched Danish population representative controls. All siblings of index cases

were removed from the control cohort before being matched.

We then ran logistic regressions NDD case status � 1sib of case (where 1sib of case is an indicator variable for whether the individual

was the sibling of an NDD case [1], or an age and sex matched control [0]), to investigate whether siblings of index cases have an

increased risk for ASDnoID, ASDandID, and IDnoASD compared to age and sex matched controls.

ORs for increased risk with sibling case status are the exponentiated effect size for the association between sibling case status and

diagnosis of a psychiatric disorder. To compare the ORs between siblings of female and male cases, we conducted aWald test. The

Wald test determines whether ORs (from the above described logistic regressions) are significantly different from one another.

This analysis was run for six types of index case: (1) female ASDnoID, (2) male ASDnoID, (3) female ASDandID, (4) male ASDandID,

(5) female IDnoASD, and (6) male IDnoASD.
e2 Cell Genomics 2, 100134, June 8, 2022
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We performed a similar analysis to investigate increased risk of ASD diagnosis by sibling sex, selecting one ASD index case at

random for each family, regardless of index case sex and comorbid ID status. If there was more than one offspring with ASD in a

family, one offspring was randomly selected as the index case, with each offspring having an equal probability of being selected.

Details of this analysis can be found in Methods S1: Sibling recurrence of ASD and ID, by sibling sex, Figure S1 and Table S8.

Danish genotype data imputation
The iPSYCH2015 sample is an extension of the iPSYCH2012 sample expanding the birth cohorts by 3 years up to 2008 and extending

the follow up to 2015, as well as drawing another 20,000 random samples for the random population subcohort. The new additional

subsample is called iPSYCH2015i. Details of the sample, genotyping and call sets can be found in prior iPSYCH publications.15,49,50

Briefly, DNAwas extracted fromGuthrie cards in the Danish Neonatal Screening Biobank at Staten Serum Institute (SSI) andwhole

genome amplified. The two subsamples, iPSYCH2012 and iPSYCH2015i, were processed independently. Genotyping of the iP-

SYCH2012 sample was performed in 26 waves at the Broad Institute of Harvard and MIT using the PsychChip array from Illumina

and the iPSYCH2015i sample was genotyped on the Global Screening Array v2 at the SSI.

Two stages of pre-imputation QC were conducted. In the first stage, we performed a near default Ricopili QC.47 First, SNPs with a

call rate < 0.95 were removed. Next, sample QC was run: we retained individuals with a call rate in cases or controls R 0.95 and an

autosomal heterozygosity deviation (FHET) within +/� 0.20 of cases or controls. Subsequently, we ran marker QC; retaining markers

with call rate R 0.98, difference in missingness %0.02 between cases and controls, minor allele frequency (MAF) R 0.01, Hardy-

Weinberg equilibrium (HWE) in controls (p R 1.0 3 10�6), and HWE in cases (p R 1.0 3 10�10). See https://sites.google.com/a/

broadinstitute.org/ricopili/preimputation-qc for further details.

The second stage of pre-imputationQCwas targeted at batch effects. In iPSYCH2012we considered three types of potential batch

effects: pre-processing plate, array plate and wave, and in iPSYCH2015i we considered pre-processing plate, array plate, and array

batch.Weevaluatedbatcheffects usingunrelated, ancestrymatched individuals in order to avoidconfoundingbatcheffectswithpop-

ulation stratification or cryptic relatedness. For each of the three batch types, we looped over batches, performing a GWAS of each

batch against the remaining batches. Association testing was conducted using PLINK (version 1.9). The exclusion of SNPs strongly

associated with any of the batch types was based on theminimump-value across all associations per batch type. The p-value cut-off

for the wave and array batch was minimum p < 2.03 10�10, and for pre-processing plate and array plate, minimum p < 2.03 10�12.

Imputation was performed separately for the two samples following Ricopili defaults prephasing using Eagle v2.3.551 and

imputation using Minimac3.43 As reference we used the public part of the Haplotype Reference Consortium52

(EGAD00001002729) prepared for the pipeline by the Ricopili team.47

Danish ASD GWAS
Our GWAS cases (n = 19,870) and controls (n = 39,078), are composed of iPSYCH2015 individuals with ASD and without ASD,

respectively.

We defined sample ancestry based on a principal component analysis (PCA) using smartPCA.38,53 We removed regions of

extended linkage disequilibrium54 (including the HLA region), and thinned the SNPs using PLINK245,54 by pruning those with pairwise

r2 > 0.075 in a window of 1000 SNPs with and step size of 100 SNPs, leaving roughly 30k markers.

Using PLINK’s identity by state analysis, we identified pairs of samples with bp > 0.2, and excluded one sample from each pair at

random (with a preference for keeping cases). We restricted the cohort to individuals of European ancestry: within an ellipsoid in the

space of PCs 1-3, centered on the mean of samples with all parents and grandparents born in Denmark according to national reg-

istries, and within 8 SDs along each of the first three principal axes. Following restriction to these samples, we conducted a second

PCA on these individuals and used the PCs as covariates for the association analysis.

We conducted association analyses separately in iPSYCH2012 and iPSYCH2015i using PLINK on the imputed dosage data, and

controlling for the first ten PCs. We meta-analyzed the results of the two ASD GWAS using METAL42 (July 2010 version) with an in-

verse variance weighted fixed effect model.55

SSC imputation
The imputation and QC of SSC genotype data has been described previously.4 Each member of the family was genotyped on one of

the following arrays: Illumina Omni2.5, Illumina 1Mv3, or Illumina 1Mv1 (hg19). Note that the SSC cohort only includes unaffected

parents and a single ASD proband. A single unaffected sibling per family is included in analysis; if there are multiple in a family,

the sibling closest in age to the proband (SSC: ‘‘designated sibling’’) is included.

SPARK imputation
SPARKsampleswere genotypedon the Illumina InfiniumGlobal ScreeningArray-24 v1.0 (GRCh38). Liftover fromGRCh38 to hg19was

carried out using Hail (https://hail.is/). SPARK data were processed, restricted to individuals of European ancestry, and imputed using

the Picopili pipeline44 (https://github.com/Nealelab/picopili), which is an adaptation and extension of Ricopili47 for family data. Phasing

and imputation were conducted using SHAPEIT48 and IMPUTE2,40 respectively, using Haplo-type ReferenceConsortium52(HRC) data

and genomebuild hg19.Genotypeswere called for 7,124,628 autosomal SNPs (minimumposterior probability >0.8), with a genotyping

rate of 0.995 across 16,965 samples of European ancestry. We removed SPARK parents with an ASD diagnosis from analysis. We
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included all probands from multiplex families as well as all unaffected siblings. Additional details on genotype QC and imputation of

SPARK data can be found in Methods S2: SPARK ancestry assignment, pre-imputation quality control, and imputation.

De novo variant analysis
Wedownloaded gVCFs generated byGATK for 27,270 individuals fromSFARIbase (/SPARK/Regeneron/SPARK_Freeze_20190912/

Variants/GATK/). All gVCFs were generated with GATK v4.1.2.0 HaplotypeCaller using default thresholds and based on hg38 refer-

ence and target files provided by Regeneron (genome.hg38rg.fa and xgen_plus_spikein.b38.bed respectively). We then performed

joint calling of these 27,270 sample gVCFs via GATK to produce one unified vcf for the SPARK cohort. Subsequent variant filteringQC

of SPARK data, as well as de novo variant detection, were carried out using consistent thresholds with those described previously.7

Whole-exome sequencing and QC of SSC data has been described previously.7,11

We identified the ASD probands in SSC and SPARKwho carried a de novo variant in a class previously associated with ASD risk.56

These variants constitute three groups: (1) protein-truncating variants to genes intolerant of heterozygous loss of function variation

(constrained gene: probability of loss of function intolerance > 0.9),57 (2) copy number variants (deletions or duplications) affecting at

least one constrained gene4,7 and (3) predicted protein-altering missense variant in a missense constrained gene or region, defined

by a Missense badness, PolyPhen-2, and Constraint (MPC) score R 258 (missense class B variant4,7). Collectively, 11.6% of SSC

probands carry at least one of these variants, while 12.2% of SPARK probands carry at least one. Across SSC and SPARK,

11.2% of male probands carry at least one of these variants, while 17.4% of female probands carry at least one.

Ancestry definition in SSC, SPARK and UKB
We randomly selected 20,000 samples from UKB to serve as the population control cohort. Using PLINK (version 1.9), we then con-

structed amerged filewith these genotyped controls, SSC (n = 10,206), SPARK (n = 16,965) andHapMap 334 (n = 988) for the purpose

of defining ancestry. We retained SNPs with MAF >0.01 and missingness < 0.25%. Of the remaining SNPs, we randomly sampled

10,000 for ease of computation when calculating PCs. We then used PLINK to calculate the PCs. To define ancestry, we merged all

48,159 samples, performed PCA, and selected a sub-sample of our cases and controls that clustered with Europeans in HapMap

(�0.002 < PC1 < 0.003, �0.004 < PC2 < 0.003) (Figure S2).

We then calculated PCs in this European ancestry subset of UKB, SSC and SPARK (Figure S3). First, we retained SNPs with MAF

>0.01 and missingness < 1%. Then, we performed LD pruning using PLINK to retain SNPs in approximate linkage equilibrium (–in-

dep-pairwise 50 5 0.15). Next, we removed SNPs in 24 regions of long-range LD (mean partition size: 5.5Mb).54 We then used PLINK

to perform PCA on the remaining 95,509 SNPs and used the first 15 PCs for downstream analyses to control for ancestry.

Generation of polygenic risk score
Weused LDpred41 (version 1.0.11) and themarginal effect sizes from the iPSYCH2015 ASDGWAS to generate a polygenic risk score,

using the infinitesimal model, European ancestry subset of Hapmap 3 for LD reference, and an LD radius of 384 SNPs (per LDpred

guidance). The weights from LDpred were used to calculate per sample ASD PRS using linear scoring in PLINK. There were 630,583

markers in common between the genotypes and the markers in the iPSYCH2015 ASD GWAS summary statistics, all of which were

used in the polygenic risk score.

Polygenic risk comparisons
We performed two classes of analyses to compare polygenic burden between groups. The first is a between-group comparison,

where the PRS between two groups is compared using linear regression while controlling for PCs, specifically:

ASD PRS � group indicator + PCs 1 � 15. Here, only samples of European ancestry and their PCs are used (as discussed above

in ‘‘Ancestry definition’’). This approach was performed for comparisons in Figure 2. The between group differences in PRS are scaled

by the standarddeviationof thedistributionofASDPRS in theUKBiobankcontrols (SD=1.01310�7). Ina similar analysis,wecompared

PRS betweenmale and female cases, controlling for comorbid ID:ASD PRS � sex + ID status + PCs 1 � 15: The second approach

is a within-family pTDT,4 where a t-statistic of the deviation of the offspring’s polygenic risk from the mean parent expectation is

compared to the null hypothesis of 0, using a two-sided one-sample t-test. This approachwasperformed for all comparisons in Figure 3.

There is no restriction of ancestry in this analysis as comparisons arewithin family transmission tests. Polygenic deviations are scaledby

thestandarddeviationof thedistributionofmid-parentPRS forall familieswithasequencedproband inSSC+SPARK (SD=7.25310�8).

The comparison of pTDT values between groups in Figure 3 is performed as a two-sided two-sample t-test of each pTDT deviation

distribution.

All underlying data to generate figures can be found in Tables S1–S7.

QUANTIFICATION AND STATISTICAL ANALYSIS

The quantitative and statistical analyses are described in the relevant sections of theMethod details or in the table and figure legends.
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