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SPECIFICITY IN TRANSCRIPTIONAL REGULATION 

Robert Shelansky 

Abstract 
Gene-specific regulation of transcription is achieved through the binding of          

transcription factors to DNA sequences. Many Eukaryotic transcription factors         

maintain affinity differences between target and non-target sequences that appear          

too small to explain the specificity observed for the genes they regulate. How is              

specificity achieved in Eukaryotic gene expression? In eukaryotes, DNA is spooled           

around histone protein octamers to form nucleosomes. The nucleosome represses          

transcription by acting as a barrier to the binding of transcription factors. Thus, gene              

activation requires the recruitment of ATP-dependent chromatin remodelers which         

remove nucleosomes covering important regulatory sequences. However, promoter        

nucleosome structure is heterogeneous even under activating conditions. ​Why does          

the cell expend energy to maintain heterogenous promoter chromatin in the           

promoters of actively transcribing genes?  

In Chapter 1, I present a model of gene transcription which represents a             

unified solution to these questions, among others. I show that activator mediated            

ATP dependent stochastic removal and reformation of nucleosomes on promoter          

DNA may be used for the kinetic proofreading of activator-DNA interactions. The            

specificity enhancement due to kinetic proofreading is an archetype that, in part, can             

be used to explain the observed specificity in Eukaryotic gene expression. I show             

that contrary to expectation, heterogeneity in promoter chromatin structure reduces  
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the variation observed in gene expression. Additionally, I provide insight into           

the necessity of transcriptional bursting for regulated, highly expressed genes. 

In Chapter 2, I present a number of experimental tests of the proofreading             

model. We observe transcriptional bursting, chromatin remodeling and activator         

binding at a classic model gene, ​PHO5, ​in ​Saccharomyces cerevisiae​. I show that             

transcriptional bursting of ​PHO5 ​occurs in at least two distinct timescales, an            

expectation of the proofreading model. In addition, I show that mutation of a single              

chromatin remodeler, Isw2, is sufficient to disrupt correlation at the longer timescale.            

I present a model of kinetic proofreading of activator specificity by Isw2 and test              

conjectures such a model purports. 

In chapter 3, I present a technique for studying eukaryotic gene expression            

by generating and testing the expression of >400,000 permuted synthetic cassettes           

generated from 26 genes from ​Saccharomyces cerevisiae​. 
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This thesis is dedicated to the pursuit of objective truth, 

 and the accompanying loss of certainty. 
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Chapter 1: Nucleosomal proofreading of activator–promoter      
interactions 
 

Robert Shelansky, Hinrich Boeger 

 

Specificity in transcriptional regulation is achieved by the binding of gene-specific           

transcriptional activators to specific DNA sequences, “enhancers”. Mutation of a          

single activator binding site may abolish regulation ​[1]​. The activator, once bound,            

stimulates transcription indirectly by recruitment of other, gene agnostic factors such           

as chromatin remodelers, histone modifying enzymes, Mediator and SAGA,         

eventually leading to the formation of the pre-initiation complex and finally           

polymerase release ​[2–5]​. 

 Activators find their DNA binding sites by trial and error ​[6]​. To quickly find              

their target sequence activators maintain high on-rates. Thus, the affinity for           

nonspecific DNA is high, equilibrium dissociation constants fall into the micromolar           

range ​[7]​. Different enhancers and core promoters may be mixed and matched ​[8]​.             

Suggesting that activators may stimulate transcription from both target enhancers,          

which bear specific binding sites for the activator, and non-target enhancers, which            

do not. Thus, the question arises of how binding at target and not target enhancers               

triggers transcription? 

 Activator specificity is achieved through differences in affinity between correct          

and incorrect sequence binding. High regulatory specificities may be obtained either           

1 
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https://paperpile.com/c/NeCB25/58ceZ
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by activator on-rates close to zero, or large affinity differences between correct and             

incorrect sequence binding. Higher affinities generally imply extended DNA dwell          

times; the observed rate constants of the on-reaction are closely similar for different             

DNA sequences of the same activator ​[7,9,10]​. Notably, measured affinity          

differences between correct and incorrect sequences are small, -3 kcal/mol, about           

three times the average kinetic energy of a molecule at 25℃ or less ​[9]​. The cell                

may tune activator concentration to decrease on-rate but small activator on-rates           

result in long search times for target sequences. Gene regulation requires both high             

specificity ​and openness to change, “controllability”. The specificity problem is thus           

introduced, how is activation both specific and controllable given the apparent           

affinities of activators for their target and non-target sequences. The specificity           

problem is further exacerbated by the fact that non-target enhancers greatly           

outnumber target enhancers. 

 Molecular biological enzymes (DNA and RNA polymerases, aminoacyl-tRNA        

synthetases, the spliceosome and ribosome) face a similar specificity problem, as           

they must discriminate between correct and incorrect substrates on the basis of            

small differences in binding energy, ΔΔG°. Remarkably, molecular biological         

enzymes exhibit error frequencies well below the lower limit imposed by the            

energetics of substrate-enzyme binding of , which is attainable only in       ε0 = e RT
 ΔΔG°

        

the asymptotic limit of infinitely slow catalysis ​[11]​. Specificity enhancement is           

achieved by the insertion of an additional energy consuming delay step, the            

'proofreading reaction', into the Michaelis Menten pathway. Differences in sojourn          

2 
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time of the activator at the catalytic center are exploited twice, before and after the               

proofreading reaction, reducing the minimal error frequency from to ​[12]​.        ε0   ε2
0   

Kinetic proofreading is a biochemical mechanism of “double-checking” substrate         

recognition. 

 The dynamics of promoter chromatin structure, inferred from analysis of          

single gene molecules ​[13–15]​, suggests a comparable solution to the activator           

specificity problem. The nuclear DNA of eukaryotic cells is spooled onto octamers of             

histone proteins ​[16,17]​. These spools, or 'nucleosomes', the basic structural unit of            

chromatin, impede access to DNA and thus are universal repressors of transcription            

[18]​. 

 Promoter nucleosomes have been viewed as an impediment to transcription          

that is overcome once, during the transition from transcriptionally repressed to active            

chromatin ​[19]​. Analysis of the ​PHO5 gene of yeast led to a different conclusion:              

promoter nucleosomes are continually removed and reformed as the promoter          

stochastically transitions between alternative nucleosome configurations, including       

the fully nucleosomal and nucleosome-free promoter ​[13,20]​. Activator binding         

increases the transition probability from configurations with more to those with fewer            

nucleosomes, increasing the structural heterogeneity of promoter chromatin ​[13]​. 

 Initially, this probabilistic theory of promoter chromatin dynamics was         

conceived to reconcile apparently contradictory experimental findings that suggested         

both loss and presence of nucleosomes at transcriptionally active promoter          

3 
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sequences ​[21,22]​. The theory was subsequently employed to explain the statistical           

distribution of promoter nucleosome configurations observed by electron microscopy         

[13]​. However, the biological question remained of why cells allow for, or perhaps             

prefer, structurally heterogeneous over homogeneous promoter chromatin.       

Heterogeneity is caused by the random transitioning between nucleosome         

configurations, some conducive to transcription and others not. This random          

transitioning should increase noise and thus reduce the signal-to-noise ratio in gene            

expression ​[23]​. 

 Here we show that, to the contrary, stochastic structural dynamics in           

promoter chromatin, when maintained at a distance from equilibrium, may both           

increase specificity and attenuate transactional noise. We propose the kinetic          

proofreading of activator-DNA interactions by nucleosomes as a partial solution to           

the specitity problem introduced above. 

Results 

A framework for characterizing specificity in transcription 

To model activator specificity, we consider two genes that are identical, except that             

one copy bears the binding site for a specific activator (​figure 1​A​) whereas the other               

does not. We define 'regulatory specificity' or 'activator fidelity', , as a measure of         f      

the activator's ability to distinguish between target and non-target promoters, where  

(1) 

4 
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where is the average steady-state rate of transcription for target promoter v t            

binding and for non-target promoter binding. The fidelity is defined by the ratio of  v n              

transcriptional output from target and non-target promoters. Thus, when the activator           

promotes transcription indiscriminately, or transcription is activator-independent,       

.1f =   

 Free-energy differences for activator-DNA binding reactions, ΔΔG°, are        

generally determined by differences in the activator's DNA-residence time ​[7,9,10]​.          

Thus, , where is the off-rate of the activator at targetΔG° T ln( )Δ =  − R kt
kn    kt         

sequences and is the off-rate at non-target sequences, and  .kn  kt < kn  

For all following calculations, we set , by normalizing all rate constants      1 kt =        

by . In addition, for ease of argument we set the ratio . reflects the  kt            00kt
kn = 1  kt

kn   

effective energy difference between target and non-target promoter binding. A value           

of 100 corresponds to an estimate of the energy difference, -2.7 kcal/mol,          ΔG° Δ =    

between target and non-target sequences for a typical activator of yeast, e.g. Pho4             

the activator of Pho5 ​[9]​. For stochastic simulations and noise calculations we            

assumed an average expression level of 50 transcripts per cell, corresponding to a             

strongly transcribed gene of yeast, ​e.g​. the fully induced ​PHO5 gene ​[1]​. While the              

numerical results of our calculations depend on the choice of specific parameter            

values, our principal conclusions do not (see Appendix). 

In the simplest case, the standard model of transcriptional regulation (Model           

1; ​figure 1​A​), the promoter transitions between two states: activator-bound and           

5 
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unbound, where only the activator-bound state is transcriptionally active ​[24]​. We           

assume that and linearly depend on the steady-state probability of finding the  vt   vn           

promoter in its transcriptionally active state, the activator bound state. Activator           

fidelity for Model 1, a two-state promoter model, thus, is given by 

(2) 

(see Appendix 3). The maximal fidelity, , is attained as the activator on-rate, ,      f 0         κ   

which linearly depends on the concentration of the activator, tends to zero (​figure             

1​B​). We will refer to the upper limit to regulatory specificity imposed by the              

energetics of activator-DNA binding as the 'Hopfield barrier' to activator fidelity ​[25]​. 

 As tends to zero, the activator's search time for its binding sequence tends k              

to infinity. Thus, increasingly long pauses of inactivity in the activator unbound state             

are interrupted by periods of transcriptional activity with short pauses between           

initiation events in the activator-bound state. As periods of inactivity grow, to maintain             

a constant average rate of transcription, , the rate of transcription in the     v t        

activator-bound state, , must increase. Increasing further exacerbates the  μ     μ     

discrepancy between short pauses, with average length , and long pauses, with       1
μ      

average length . As long pauses grow longer and short pauses shorter,  k
1           

transcription in stochastic bursts becomes increasingly manifest (​figure 1​C​). The          

strength of bursting or magnitude of 'transcription noise' may be expressed in terms             

of a population statistic, the Fano factor, the variance of mRNA abundance            

normalized by its mean (see Appendix 3). As activator fidelity approaches the            

6 
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Hopfield barrier, the noise of transcription tends to infinity (​figure 1​D​). Approaching            

this limit, of course, is unrealistic: The activator concentration, cannot and does not             

come arbitrarily close to zero (​figure 1​B​), nor may transcript initiation-rate tend to             

infinity. This simple model of specificity illustrates the important trade-offs in           

balancing specificity, expression and noise. The biological problem to be solved is            

how to reconcile the requirements for finite activator on-rates and finite off-rates with             

the need for high regulatory specificity.  

The kinetic proofreading of activator promoter interactions  

We now discuss a model, model 2 (the proofreading model) which is a             

potential solution to this biological problem. For simplicity, we consider a promoter            

(enhancer plus core promoter) with a single nucleosome position and single activator            

binding site (model 2, ​figure 2​A​). The nucleosome is subject to stochastic removal             

and reformation ​[13]​. Removal may occur by nucleosomes sliding away from           

promoter sequences ​[26] or disassembly ​[27]​. Our promoter model encompasses          

four states: with nucleosome but without activator (state 1), with nucleosome and            

activator (state 2), with activator but without nucleosome (state 3), and without both             

(state 4). 

 We assume: that transcription requires both activator binding and         

nucleosome removal, transcription occurs in state 3 alone; the activator recruits           

chromatin remodeling activities to the promoter that catalyze removal of the           

nucleosome, nucleosome removal in the presence of the activator occurs at a faster             

7 
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rate than its absence, in ​figure 2​A​. In addition, for simplicity, we assume that    α > λ            

the kinetics of activator binding are not altered by the nucleosome, the energetics of              

activator binding are the same for all models discussed here. However, similar            

conclusions may be drawn from more complex models where activator binding           

dynamics are altered by the nucleosome. 

 Our model, thus, entails two types of promoter states, activator-bound and           

unbound, ​with different nucleosome removal kinetics. This kinetic asymmetry implies          

the system is not in equilibrium; the system maintains a closed loop of reactions              

where transition cycles in one direction (clockwise in ​figure 2​A​) are more probable             

than transition cycles in the reverse direction (see Appendix 3). 

 For every clockwise cycle of promoter state transitions, transcription requires          

the bound activator twice: for removal of the nucleosome ​and initiation of            

transcription. This sequential twofold requirement allows for kinetic discrimination         

between target and non-target promoter binding twice, transitions and         2 → 1   3 → 4  

in ​figure 2​A​. As a consequence, without changing the energetics of activator-DNA            

binding, the upper limit of activator fidelity increases from to (see Appendix 3).         f  
0   f 2

0     

Thus, activator fidelity of this model may significantly surpass the Hopfield barrier;            

and it always exceeds the fidelity afforded by Model 1 (​figure 2​B​). An analogous              

result was obtained by Hopfield for enzyme kinetics ​[12]​. Following Hopfield, we call             

the mechanism which affords this increase in activator fidelity 'kinetic proofreading'           

[25]​. 
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 With kinetic proofreading fidelities close to the Hopfield barrier may be           

attained with faster activator on-rates, , than without. This is because the     k        

nucleosome ‘filters out’ many incorrect activator binding events. Fast on-rates for the            

activator markedly dampen temporal fluctuations in transcript number (compare blue          

trace and grey trace in ​figure 2​C​). Thus, at equal fidelity, kinetic proofreading affords              

lower transcription noise (compare blue and stippled curve in ​figure 2​D​). 

Activator-dependent nucleosome removal, , entails the preference of clockwise   α > λ       

cycles over counterclockwise cycles and is essential for nucleosome-mediated         

kinetic proofreading. The preference for cycles in one direction over another requires            

energy expenditure and deviation of the steady state from equilibrium. If, , the           α = λ   

system steady state is also thermodynamic equilibrium or 'detailed balance': forward           

and reverse transition of all reactions are equally probable (see Appendix 3).            

Clockwise and anticlockwise cycles are equally probable and kinetic proofreading is           

lost: (​figure 2​B​). Activator fidelity, again, is limited from above by the f  
1 = f  

2              

Hopfield barrier,  (see Appendix 3).  

Therefore, in equilibrium the transcript number wildly fluctuates for fidelities close to            

(​figure 2​C​) since fidelities close to require activator on-rates, , close to zero,f 0        f 0     k      

reference equation for . Random transitioning between transcriptionally conducive   f  
1       

and inconducive states, exacerbates the noise in transcription, as expected (​figure           

2​D​), the slower the nucleosome dynamics the higher the noise. 
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 Maintenance of nucleosome dynamics away from equilibrium requires        

entropy production, free energy dissipation. The greater the distance from          

equilibrium, the more energy must be dissipated per unit time (​figure 2​E​). Although             

kinetic proofreading in Model 2 requires non-equilibrium promoter dynamics, ,         α = λ  

increasing free energy expenditure to increase the rate of nucleosome removal does            

not monotonically improve activator fidelity (​figure 2​B​). The reason is simple: kinetic            

proofreading requires nucleosome removal kinetics that are slow relative to the           

dissociation kinetics of activators that bind the promoter nonspecifically. As          

nucleosome removal speeds up past this point, specificity approaches, , while the         f 0    

energy required to remove nucleosomes faster ever increases. 

 Effective kinetic proofreading requires that initiation of transcription is tied to           

activator binding. If transcription persists after dissociation of the activator, model 3            

(​figure 3​A​), kinetic discrimination between correct and incorrect activators occurs          

only once: before removal of the nucleosome, transition . The double         2 → 1    

checking mechanism is lost. Since transcription is partially uncoupled from activator           

binding, activator fidelity remains well below the fidelity afforded by Model 1, despite             

nucleosome dynamics away from equilibrium (​figure 3​B​; see Appendix 3). In           

addition, the noise in transcription rises faster in Model 3 than Model 1 as fidelity               

increases with decreasing activator on-rate (​figure 3​C​). Energy expenditure alone is           

insufficient to yield kinetic proofreading, coupling of the presence of the activator in             

multiple steps is also a requirement. 
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 Additional steps of kinetic proofreading may further increase activator fidelity.          

The central component for core promoter recognition of all genes, the TATA box             

binding protein, TBP, is thought to be recruited to promoters by activators as a              

subunit of either the SAGA or TFIID complex ​[28]​. The enzyme Mot1 couples ATP              

hydrolysis to the removal of TBP from DNA ​[29,30]​. Thus, Mot1 must drive the              

TBP-DNA binding reaction away from equilibrium. This may afford a second step of             

activator proofreading. If transcriptional initiation requires continued activator binding         

for steps downstream of TBP binding, Model 4 (​figure 3​D​), the system may             

discriminate between target and non-target activator binding thrice, before         

nucleosome removal, transition , after nucleosome removal, transition ,    2 → 1       3 → 4  

and after TBP binding, transition . The second proofreading step increases      5 → 6       

the upper limit of fidelity to (​figure 3​E​) and, as may be expected, affords further      f 3
0          

noise suppression (​figure 4​). 

Discussion 

In equilibrium, there is a fundamental limit, the 'Hopfield barrier', to how well any              

information processing task can be undertaken, ​e.g​. transcription of specific genes in            

response to an environmental signal ​[25]​. However, the Hopfield barrier may be            

surpassed at the expense of free energy to maintain the system away from             

equilibrium. Outside of equilibrium the system dynamics are irreversible, for some           

sequence of events, forward and reverse direction are statistically distinguishable          

(see Appendix 3); in the proofreading model, Model 2 (​figure 2​A​), clockwise cycles             
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are more probable than counterclockwise cycles, indicating irreversibility and         

maintenance away from equilibrium. 

 Non-equilibrium dynamics, irreversibility, corresponds to entropy production       

(​figure 2​E​). Therefore, nucleosomal proofreading of activator-DNA binding calls for          

enzymes that couple the catalysis of nucleosome dynamics to exergonic, entropy           

producing, reactions. That such enzymes indeed exist, ATP-dependent chromatin         

remodelers ​[31]​, fulfills a critical demand of our theory. 

 Irreversibility is a necessary but by no means sufficient condition for kinetic            

proofreading. For instance, in the Model 2 if nucleosome removal was much faster             

than the off-rate of the incorrect activator, , the promoter dynamics would still       < αk 
n <        

be irreversible. Yet, the expenditure of energy would afford no increase in activator             

fidelity. The ability to distinguish between target and non-target promoter binding in            

state 2 no longer exists. This explains the monotonic decrease in activator fidelity             

beyond an optimal rate for activator-controlled nucleosome removal (​figure 2​B​).          

Activators must promote nucleosome removal to increase activator fidelity, however,          

if nucleosome removal is too effective the fidelity gain is lost. Therefore,            

transcriptionally active promoters must not be nucleosome-free, on average, in good           

agreement with experimental observation ​[13,32]​. 

 Our theory implies that ATP hydrolysis by one or more chromatin remodelers            

recruited to the promoter is not used to speed up the approach to equilibrium but to                

maintain nucleosome dynamics away from equilibrium. This demand may be difficult           
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to satisfy if removal of nucleosomes occurred by sliding alone. For the same             

remodeler may use ATP hydrolysis both to slide nucleosomes away from the            

promoter and back. Thus, ​removal of nucleosomes by sliding is an inefficient use of              

ATP hydrolysis to drive nucleosome dynamics away from equilibrium. Although, if           

activators propagate uni-directional sliding this inefficiency would be assuaged. In          

contrast, nucleosome removal by ATP-dependent nucleosome disassembly couples        

ATP hydrolysis only to removal. The reverse reaction, nucleosome reassembly,          

entails synthesis of ATP from ADP and phosphate, which under physiological           

conditions, renders the reverse reaction highly improbable. This may explain why           

nucleosomes are removed from transcriptionally active promoters and not simply slid           

away ​[27]​. 

 Are the dynamics of activated promoter nucleosomes non-equilibrium        

dynamics? In our theory, irreversibility is engendered by activator-stimulated         

nucleosome removal. Consistently, Pho4, the transcriptional activator of the ​PHO5          

gene, promotes loss of ​PHO5 promoter nucleosomes ​[19,22]​, not by occluding           

nucleosomes but by recruitment of ATP-dependent chromatin remodelers ​[13,33,34]​.         

Therefore, It is likely no accident that assumptions of irreversibility, the unidirectional            

sliding and ordered removal of nucleosomes ​[13,20]​, helped to explain the observed            

statistical frequencies of ​PHO5 promoter nucleosome configurations. Accordingly,        

nucleosome occupancy at many promoter sequences in yeast is not explained by the             

thermodynamics of nucleosome formation ​[35]​. 
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 Kinetic proofreading involves continual reactivation of transcription: to test for          

the continued presence of the (correct) activator, the promoter stochastically returns           

to nucleosome configurations that suppress transcription, despite environmental        

conditions that induce gene activity. Thus, the variation in promoter chromatin           

structure must be intrinsic, independent of the ​environment. This prediction of the            

theory has been tested ​[23]​. If the nucleosomal variation was imposed by            

environmental variation, the nucleosome configuration of one promoter copy would          

be stochastically dependent on the configuration of another copy within the same            

cell. Contrary to this expectation, electron microscopic analyses of ​PHO5 promoter           

pairs in single cells showed that both copies were stochastically independent ​[23]​.            

The heterogeneity of promoter chromatin cannot be reduced to environmental          

variation; it must arise 'intrinsically'. Thus, promoter nucleosome dynamics fulfill          

another critical demand for kinetic proofreading. 

A theory of kinetic proofreading by nucleosomes suggests that activators          

promote multiple steps toward transcription. Notably, eukaryotic activators do not          

bear specific activities to stimulate transcription, but promiscuously recruit other          

factors instead ​[2,3]​. Promiscuous recruitment easily affords the same activator the           

ability to promote multiple, biochemically distinct, steps toward transcription. In          

addition, recruitment delays the activator's effect on transcription, a critical          

requirement for effective kinetic proofreading (​figure 2​B​). Thus, we predict activation           

by promiscuous recruitment is a feature of eukaryotic activators which enhances           

specific activation, contrary to intuitive expectation.  
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It is possible that transcription may not strictly be limited to activator-bound            

promoter states because past activator binding events are remembered in form of            

other factors, ​e.g​. TBP, that are recruited by the activator but may remain at the               

promoter after dissociation of the activator. This uncoupling of transcription from           

activator binding diminishes the effectiveness of kinetic proofreading, and in fact           

reduces specificity in general (​figure 3​B​). We predict that the cell makes an effort to               

ensure that transcription only occurs when the activator is present. Thus, our theory             

requires the existence of an enzyme that removes TBP from promoter DNA: Mot1.             

TBP removal by Mot1 erases the memory of past activator binding events. Erasure             

maintains a close relationship between transcription and activator binding; as a           

consequence, maintenance of transcription requires continual reactivation. 

Mot1 may contribute to activator fidelity in yet another way. Energy           

expenditure by Mot1 affords a second kinetic proofreading step, Model 4 (​figure 3​D​).             

Mot1 must drive the TBP-DNA binding reaction away from equilibrium, which may be             

used by the cell to significantly increase activator fidelity (​figure 3​E​). In this context it               

is of interest that both Mediator and TBP are recruited to promoters in association              

with repressing factors ​[36–38]​, which may provide additional proofreading steps.          

However, whether relief of this repression requires free-energy expenditure is not           

known. Multiple kinetic proofreading steps are likely required to solve the activator            

specificity problem in eukaryotes. 

 We note, the free energy for regulatory specificity may be provided by            

activator-DNA binding alone. However, higher binding affinities entail longer dwell          
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times of the activator on its target sequence. Thus, activated genes are not easily              

turned off again. Activator fidelity may be increased by decreasing activator           

concentration. In this case, the price to be paid is long activator search times. Long               

search times imply erratic promoter activity, blurring the correspondence between          

regulatory signal and transcriptional response (​figure 2​C​). Kinetic proofreading of          

activator-promoter interactions may be used to resolve this dilemma. The free energy            

required to increase specificity and dampen transcription noise is provided by ATP            

hydrolysis and not by increasing the binding energy for activator-promoter          

recognition, by increasing the average lifetime of the activator on the DNA. Thus,             

kinetic proofreading reconciles high specificity with fast promoter state kinetics,          

controllability. 

 Archaea possesses a precursor of the nucleosome ​[39]​, but eubacteria lack           

nucleosome-like structures entirely. How do eubacteria solve the problem of          

regulatory specificity? Surprisingly, many regulators of transcription in eubacteria,         

e.g​. the TetR and lac repressors, recognize their target sequences with greater            

specificity than most eukaryotic activators: the equilibrium dissociation constants         

often fall into the picomolar range and energy differences between target and            

non-target promoter binding are two or three times larger compared to most            

eukaryotic activators ​[7,9,40,41]​. Eubacteria solve the specificity/controllability       

problem in a different way. The entailed problem of long DNA dwell times is solved               

by controlling the activity of transcriptional regulators ​via allosteric effectors, ​e.g​.           

tetracycline and allolactose, that upon binding induce large changes in the affinity of             
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the transcription factor for its target sequence ​[42]​. Thus, the free energy required to              

reconcile controllability with specificity is spent creating or localizing allosteric          

effector molecules. The evolution of transcriptional activators in the presence of a            

ubiquitous repressor of transcription, the nucleosome ​[43]​, may have proffered          

kinetic proofreading as a solution to the specificity problem instead. 

 Irreversibility is a probabilistic and not deterministic phenomenon ​[44]​.         

Transcription and its regulation may be fully understood only on the basis of             

probabilistic theories, whether kinetic proofreading is employed to: increase activator          

fidelity, as suggested here, sharpen the gene regulatory function ​[25]​, increase the            

fidelity of substrate recognition by RNA polymerase ​[45] or promoter recognition by            

general transcription factors ​[46]​. The randomness of molecular interaction is built           

into biological function. Rigorous testing of theories that assert random molecular           

behavior requires methods for the analysis of gene expression at the level of single              

gene molecules ​[47]​.  
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Figure 1​. Specificity and noise in the two-state promoter model: ​Activator fidelity            
is bounded by the Hopfield barrier. ​(A) Transition graph of Model 1. (B) Activator              
fidelity approaches its upper limit or Hopfield barrier, , as the activator on         f 0 = e RT

− ΔΔG°

      
rate, , tends to zero. To calculate the graph, we assumed , . Actual k           kt = 1  00kn = 1   
fidelities must be markedly lower than : For instance, measured off-rates for Pho4      f 0        
of yeast (the activator of PHO5) for target and non-target sequences are ~0.01 s​-1              
and 1 s​-1​, respectively ​[7,9]​. From Pho4's equilibrium dissociation constant for correct            
binding of =11 nM ​[9]​, and nuclear concentration of ~60 nM ​[48] (assuming a  Kd             
nuclear volume of 4 femtoliters), both the on-rate, =0.06 s​-1 (indicated by a vertical        k       
line) and relative fidelity (indicated by horizontal line) may be calculated; the unit on              
the abscissa, then, is 0.01 s​-1​. (C) Representative ‘sample path’ (single cell trajectory             
of mRNA abundance) at relative activator fidelity of 0.95; the sample path was             
obtained with Gillespie's stochastic simulation algorithm ​[49] with , ,        k .05= 0   kt = 1  

(rate constant for mRNA degradation) and average rate of transcription,.1δ = 0            
. ​(D) ​The Fano factor tends to infinity as activator fidelity, , approaches thevt = 5            f 1    

Hopfield barrier, . Calculations were based on rate constants from C. Both Fano  f0

f1            
factor and fidelity were calculated as functions of the activator on-rate, (see           k  
Appendix 3). 
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Figure 2​. Nucleosome dynamics away from, but not in, equilibrium allow for            
increased activator fidelity and attenuation of transcription noise: (A) Transition          
graph of Model 2. (B) Activator fidelity of Model 2, , normalized by the fidelity of          f 2       
Model 1, , as a function of the rate of nucleosome removal in the activator-bound  f 1              
state, , normalized by the rate of removal in the unbound state, . For calculations α            λ    
we assumed , , , , and . The gray dot indicates the  k = 1  kc = 1  00kn = 1  β = 2   .1λ = 0       
equilibrium state. ​(C) Representative sample paths at relative activator fidelity          

and for non-equilibrium nucleosome dynamics (dark gray;.95f0

f2 = 0  vt = 1        
), which required and ; and equilibrium dynamics (light, λα = 2  = 0    .26k = 4   3.26μ = 1      

gray; ), which required and . For both simulations we ,α λ = 2    .053k = 0   98.68μ = 1      
assumed , . ​(D) Transcription noise as a function of relative activator .1δ = 0 vt = 5           
fidelity, , for Model 2 in equilibrium (light gray, ), away from equilibrium f0

f (k, μ)         ,α λ = 2     
(blue, ), and Model 1 (stippled line, 1; same as in Fig. 1D). For all , λ .1α = 2  = 0               
calculations we assumed, as above, ​figure 1​. Fano factor and activator fidelity were             
calculated as functions of the activator on-rate, , and the rate of transcription in the       k         
active state, (see Appendix 3). ​(E) Entropy production (in units of , the  μ           kb   
Boltzmann constant) as a function of nucleosome removal rate in the activator-bound            
state, , relative to the rate in the unbound state, , for . The gray dot α          λ = 2   k = 1     
indicates the equilibrium state. 
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Figure 3​. Kinetic proofreading requires coupling of transcript initiation to          
activator binding; multiple proofreading steps improve fidelity: (A) Transition         
graph of Model 3. (B) Activator fidelity of Model 3, , relative to the fidelity of Model          f 3        
1, , as a function of activator on-rate, ; with , , , and f 1        k   kc = 1  00kn = 1  ,α β = 2   λ = 0  
(for , fidelities further decrease). (C) Transcription noise as a function of relative λ > 0             
activator fidelity, , for Model 3 (yellow, 3), Model 4 (green, 4), and Model 1  f0

f (k, μ)              
(gray stippled, 1). As in calculations for ​figure 2​, we assumed and ; for           .1δ = 0   vt = 5   
Model 4 alone: and to reflect both active removal (by Mot1) and   .1λ = 0   , 0z ζ = 1          
high concentration of TBP; all other parameters were as indicated above. Fano factor             
and fidelity were calculated as functions of the activator on-rate, , and the rate of          k      
transcription in the active state, (see Appendix 3). ​(D) ​Transition graph of Model 4.     μ           
(E) Activator fidelities of Model 4 (green, 4) and Model 2 (blue, 2) relative to fidelity                
for Model 1 as a function of . For Model 4, we assumed and and       λ

α       α = ζ   , .1λ η = 0  
.0z = 1  
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Figure 4​. Additional proofreading steps further attenuate noise: Transcription         
noise as a function of relative activator fidelity, , for Model 4 (green, 4,4’,4’’) and        f0

f (k,μ)         
Model 2 (blue, 2). All parameter values were as indicated in the legends to ​figure 2                
and ​figure 3​, except 4 ( ) and 4’ ( )  and 4’ ( ).10, z 0ζ =   = 1 2, zζ =   = 2 2, z 0ζ =   = 1  
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Chapter 2: Loss of isw2 abolishes temporal correlation        
between bursts generated by nucleosome dynamics 
 

Robert Shelansky, Chris Brown, Michael Doody, Kevin Chen, Stacy Harvey,          

Eduardo Hirata, Heta Patel, Gustav Peterson, Sara Abrahamson, Dan Larson,          

Tineke Lenstra, and Hinrich Boeger 

 

Within each Eukaryotic cell, DNA is spooled around histone protein octamers to form             

nucleosomes. The nucleosome acts as a general repressor of gene expression.           

Repression is established by the occlusion of DNA from transcription factors ​[50]​.            

Occlusion of transcription factors is maintained passively, by masking or destabilizing           

interactions with DNA ​[51,52]​, or actively, by eviction via catalysis of nucleosome            

sliding by ATP-dependent chromatin remodelers ​[53]​. To relieve repression         

nucleosomes must be removed. Gene activation engenders a quantitative change in           

promoter chromatin structure; a transition from a nucleosome-rich structure in          

repressing conditions to a nucleosome-depleted, but not nucleosome free, structure          

in activating conditions ​[54,55]​.  

When promoter chromatin structure is interrogated through methods which         

rely on statistical averaging, structural variation between molecules becomes         

obfuscated ​[56]​. For example, ​transcriptionally active genes across eukaryotes         

maintain nucleosome depleted regions (NDRs) ​[57–59] flanked by a pair of well            

positioned nucleosomes, the ‘-1’ and ‘+1’. Surprisingly, when viewed at single           
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molecule precision in activating conditions, promoter chromatin varies drastically         

from gene molecule to gene molecule ​[55]​. This may manifest by a complete             

collapse of the NDR or a more subtle shift in the position of a nucleosome over                

important regulatory sequences. Thus, assuming ergodicity, individual gene        

molecules either randomly return to or remain in a repressed state under activating             

conditions. While the purpose of nucleosome removal is evident, the persistence           

and/or reformation of promoter nucleosomes under activating conditions is not. Why           

does the cell expend so much energy to maintain heterogenous promoter chromatin?            

Which regulatory structures are “active” structures? The specific biochemical steps in           

NDR formation, activator binding, and transcription remains elusive ​[60,61]​. 

Regulation of transcription including the removal of nucleosomes is achieved          

through specific activation by transcriptional activators or repressors which bind to           

specific DNA sequences in the promoter region of their target genes. Specificity in             

gene selection therefore requires that transcription factors maintain a higher affinity           

for their target sequences over other non-target sequences. Differences in          

transcription factor affinity are primarily determined by differences in the off-rate           

constant. However, A stably bound activator is not easily removed. The cell must             

make a compromise between specificity and controllability (see Chapter 1). 

Sparse activator binding is a requirement for high specificity. However, as           

activator search-times tend to zero, the search time for specific binding sequences            

tends to infinity. It becomes increasingly difficult to quickly activate target-genes and            

controllability is lost (see Chapter 1). In addition, highly expressed genes face yet             
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another challenge. To compensate for long time intervals between binding events,           

the rate of transcript initiation while the activator is bound on the DNA must be high.                

Long periods of inactivity are interrupted by shorter periods of high activity.            

Transcription occurs in random bursts. The correspondence between gene activity          

and physiological state becomes blurred. Thus, increasing specificity and reducing          

gene expression noise are competing requirements (see Chapter 1). 

Specificity and fast regulatory kinetics may be reconciled through the          

insertion of an energy-dissipating delay step into the activation process which           

kinetically distinguishes between target and non-target activator binding twice (see          

Chapter 1). The activator's presence is “double checked”: once prior to the removal             

of a transcriptional repressor, the nucleosome, and once again subsequently ​[62]​. As            

activators bind and unbind, so do promoter nucleosomes. This dynamic process           

which occurs on single gene molecules produces structural heterogeneity of          

individual gene molecules. Thus, the structural variation observed across a          

population of gene molecules is pivotal to regulation, rather than a hindrance.  

The increase in activator fidelity is attained without increasing the affinity           

between activator and target promoter. This allows for the retention of both fast             

activator on- and off-rates. Thus, fast regulatory kinetics are achievable while           

maintaining high activator fidelities close to or above the limit imposed by the             

“hopfield barrier”, the maximal fidelity dictated by the energetics of activator-DNA           

binding. Furthermore, fast regulatory kinetics reduce gene expression noise.         
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Enhanced fidelity and fast regulatory kinetics come at a cost, continual free-energy            

consumption (entropy production).  

Activators are thought to recruit ATP-dependent chromatin remodelers to         

promoters, coupling nucleosome transitions to both ATP hydrolysis and activator          

binding. An irreversible cyclical process ensues (​figure 5​, the proofreading model),           

same model as Chapter1, ​figure 2​A​. This cyclical process maintains a sequence of             

molecular transitions with cycles in one direction of rotation which are statistically            

preferred over cycles in the reverse direction: activator binding → nucleosome           

removal → activator loss → nucleosome reformation, is more likely than,           

nucleosome loss → activator binding → nucleosome reformation → activator loss.           

Free energy is spent to create this statistical preference in one direction over the              

other, affording kinetic proofreading. The free energy for irreversibility is provided by            

ATP-dependent chromatin remodeling. Additionally, kinetic proofreading of       

activator-promoter interactions requires that transcription is linked to the presence of           

the activator on the DNA (in ​figure 5​, only state 3 is transcriptionally active).              

Activators must facilitate additional steps toward transcription following nucleosome         

removal. 

 As discussed above, linking transcription to the transient DNA-binding of          

activators engenders transcriptional bursting, periods of correlated initiation events.         

Similarly nucleosome removal and reformation dynamics should introduce additional         

temporal correlations, possibly at longer timescales. Slow proofreading kinetics are          

more effective in increasing the specificity of activator-promoter interactions than fast           
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kinetics. On the other hand, proofreading kinetics must not be too slow, or else the               

kinetics of regulation, again, become slow and the noise of expression high. The             

phenomena of transcriptional bursting may be viewed as a byproduct of the            

biochemical processes required to maintain specificity in activation for highly          

expressed genes. 

Whether chromatin remodelers effect transcriptional bursting and if so at          

which timescale is unknown (see Appendix 1). To address this question, we            

analyzed the transcriptional activity, ​in vivo​, of single gene molecules of a classic             

model of eukaryotic promoter chromatin structure, the yeast ​PHO5 ​locus (see           

Appendix 2). Using multifocus fluorescence microscopy, we found that transcription          

signals are correlated at two distinct timescales, consistent with transcriptional          

bursting. Mutations in the activation domain of Pho4, the activator of ​PHO5​, affected             

both burst frequency and size. This is consistent with the multiple roles the activator              

plays in transcription. Surprisingly, loss of a single ATP-dependent chromatin          

remodeler, Isw2, abolished long-timescale correlations but not transcription,        

suggesting that the absence of Isw2 locks the promoter in a state conducive to              

transcription. We hypothesize that Isw2 is a critical component for the kinetic            

proofreading activator-DNA interactions. 

In addition, we wished to investigate the relationships between activator          

binding, and chromatin remodeling at the ​PHO5 ​locus. Using Chromatin Endogenous           

Cleavage Cross Linking Kinetic (ChEC-CLK) analysis, we found that activator          

binding kinetics correspond to “fast” timescale bursting and that the activation           
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domain of the activator Pho4 modulates its own binding. We then test a model by               

which Pho4’s regulation of nucleosome dynamics at the PHO5 locus modulates           

activator binding in the promoter using electron microscopy of single gene           

molecules.  

Results 

Transcriptional bursting of ​PHO5​ occurs at distinct time scales 

To attain high regulatory specificity, promoters must randomly transition between          

transcriptionally conducive ('ON') and inconducive (OFF') states. The transitioning         

between ON and OFF states entails the grouping of transcription events into bursts             

and, potentially, groups of bursts. Thus, transcription events become temporally          

correlated, possibly at different timescales.  

To observe temporal correlations between transcription events, we analyzed         

nascent transcript number dynamics for individual ​PHO5 ​gene molecules by          

performing live-cell ​RNA visualization using fluorescence MultiFucus Microscopy        

(MFM). Using MFM we captured a 7 frame z-stack spanning the volume of the yeast               

nuclei as quickly as 5 frames per second ​[63]​. Faster acquisition is possible by MFM;               

however, acquisition speed is limited by our use of a whole cell RNA labeling              

technique. We necessarily analyze nascent RNA, and so must “blur” cytoplasmic           

transcripts using a long, >150ms, exposure. Without “blurring” it becomes difficult to            

differentiate cytoplasmic and nascent transcripts. 

Labeling of ​PHO5 RNA was achieved with the PP7 labeling technique ​[64]​.            

The PP7 technique relies on the insertion of sequential repeats into a gene of              
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interest (​figure 6​). These repeats encode RNA hairpin motifs, PP7, which are            

recognized and bound specifically by a RNA binding protein, PP7 coat protein (PCP),             

fused to a fluorescent protein, GFPenvy ​[65]​. We inserted 14 PP7 repeats, each             

containing two binding sites for PCP, into the 5’ end of the ​PHO5 locus and               

expressed PCP endogenously under control of the yeast ​RPS2​ promoter. 

We tracked fluorescent puncta associated with the site of transcription (TS)           

from individual cells (​figure 7​A, ​blue trace) and partitioned these individual time            

series into periods of transcriptional a​ctivity (≥1 nascent transcripts were detected)           

and inactivity (transcript absence) by change point detection (CPD) (​figure 7​, grey            

shaded areas). ​On average active periods were short, 124s ±13s. These short active             

periods were separated by longer periods of inactivity that lasted 449 ± 66s, on              

average. Thus, the probability of transcriptional activity was 0.19. Active periods           

appeared to correspond to bursts of transcription, i.e​. multiple initiation events in            

short sequence, rather than single initiation events. Several observations support this           

conclusion. i) The average lifetime of the active periods exceeds the expected            

lifetime of a nascent transcript by a factor 2. ii) The statistical distribution for the               

length of active periods was better described by an exponential distribution, as            

expected for the sojourn in an ON state, and not the distribution for the lifetime of the                 

nascent transcript. iii) The intensity profiles of many active periods appeared to            

increase and decrease in a stepwise fashion, suggesting the release of multiple            

transcripts in short sequence (​figure 19​B​). iv) If active periods corresponded to single             

initiation events, the cell would synthesize only one transcript every 7.5 minutes on             

average. This low initiation-rate would make it difficult to account for the large             
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number of cytoplasmic transcripts observed by single molecule fluorescent in situ           

hybridization (smFISH), ~40 on average (​figure 11​A, blue histogram). v) Active           

periods with an average of 1 nascent transcript contradicts TS intensity distributions            

determined by smFISH (​figure 19​A​). Thus, we infer that periods of activity and             

inactivity correspond to bursts of transcription (see appendix 1). 

Ignoring signal fluctuations during active and inactive periods,        

fluorescence-time series may be replaced by step functions that alternate between           

two values only: 1 (active) and 0 (inactive) (​figure 7​A, ​black line). This approximation              

captured temporal correlations in our data well, the autocorrelation function (​acf​)           

calculated from step functions closely resembled the ​acf obtained from          

fluorescence-time series. This implies that much of the correlation observed in our            

nascent transcript fluctuations corresponds to the correlation introduced by         

active/inactive transitioning alone and not by variation in transcript number. This           

finding significantly simplified both the mathematics of the autocorrelation function          

(see appendix 3) and interpretation of the data, the number of model parameters was              

reduced. Using this approximation we demonstrated the logical consistency of          

results obtained by autocorrelation and change point analysis.  

A simple bursting process (a two-state promoter model) produces temporal          

correlations determined by the length of both active and inactive periods. The active             

period lifetimes are set by the rate of transition from active to inactive, . While the             κA    

inactive period lifetimes are set by the rate of transition between inactive to active, .             κI  

The ​theoretical ​acf of a two-state promoter model is that of a bernoulli process,              
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represented by a single exponential function , where (see appendix      e−λ t1   λ  κ1 =  A + κI   

3). However, we found that the observed ​acf did not fit a single exponential but the                

sum of two weighted exponentials. The two exponential distributions had markedly           

different kinetic parameters, fast (1.6 X 10​-2 s​-1​) and slow (4.4 X 10​-3 s​-1​). Thus, we                

conclude that the standard 2-state model is insufficient to account for our            

observations. The data suggest at least two routes into the active state indicated by              

the two exponential fit. 

In contrast, the proofreading model, which encompasses more than one          

inactive state and thus allows for both bursts and the groups of bursts, was              

consistent with our observations; a close fit between experimental and theoretical ​acf            

could be attained that also recapitulates the results from CPD, and smFISH and             

activator binding dynamics.  

Each additional promoter state adds an additional weighted exponential to          

the ​acf ​(see appendix 3). For the proofreading model, the parameters of the             

exponentials are polynomial functions of all rate constants with the exception of the             

first exponential parameter , the sum of the activator's on- and   λ  κ1 =  ON + κOFF         

off-rate. However, if the dynamics of nucleosome removal, β, and reformation, α, are             

significantly slower than the dynamics of activator-promoter binding, the additional          

parameters simplify to and (see appendix 3); thus, while one   λ  ≈ λ1 2    ≈ α λ3 2
1 + β        

exponential parameter reflects the kinetics of activator binding and unbinding, ,          λ1  

the other, , corresponds to the kinetics of ATP-dependent nucleosome removal  λ3          

and reformation. Slow proofreading kinetics may engender long-timescale        
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correlation, and thus explain the appearance of a second exponential with a slower             

kinetic parameter (​figure 7​C​, blue curve). We therefore tentatively conclude that           

bursting occurs in at least two distinct timescales, a “slow” timescale generated by             

slow proofreading dynamics, and a second “fast” timescale generated by the           

dynamics of the activator. We note here that many more sophisticated multi-state            

models with a wide variety of topologies may explain the dynamics observed at             

PHO5. 

It must be kept in mind that the classifying of transitions between model             

states as distinct physical transitions is at best an approximation; for practical and             

epistemic reasons models must be less detailed than reality. As long as we conflate              

observed active periods with the sojourn in the unobserved ON state, the rate             

constants that determine the kinetics of transitioning from OFF to ON (​figure 5​), the              

on-rate of the activator, , and the rate constant for nucleosome removal, , must    kON         α   

encompass additional steps toward transcription, such as the binding of general           

transcription factors, open complex formation, transcript initiation, and promoter         

clearance. For example, the assumption of a single activator on-rate for both the             

nucleosomal and nucleosome free promoter ​(​figure 5​) imply that kinetics of additional            

steps toward transcription that only occur after nucleosome removal must be           

subsumed into the rate constants available in the the proofreading model; it is likely              

not the case that binding of the activator is the only step required in the absence of                 

the nucleosome for the gene to initiate transcription. This assumption is expedient            

rather than realistic. The specific rates inferred are thus likely false. However, the             

proofreading model, surprisingly, explains our observations while predicting a         
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problem to be solved by its implementation: activator-promoter specificity. We use           

this simplified model as a tool to better understand regulation, specificity, and the             

emergence of transcriptional bursting.  

Nucleosome dynamics generate correlation at a “slow” timescale In         

PHO5 transcription 

To test the notion that ATP-dependent chromatin remodeling engenders         

long-timescale correlations, we recorded fluorescence-time series of ​PHO5 in         

various chromatin remodeler mutants (​figure 17​B-C​, ​figure 18​B-C​). We expected          

loss of specific chromatin remodelers to impact the slow exponential of the acf.             

Surprisingly, we found that loss of the ATP-dependent chromatin remodeler Isw2,           

virtually abolished long-timescale correlations (​figure 9​C​, gold curve), but not          

transcription. Although expression from the ​PHO5 ​locus in the isw2 delete was            

reduced to 72% of wild type (WT).  

Evidently, loss of Isw2 abolished nucleosomal repression under activating         

conditions, the acf of the proofreading model for WT closely fit the experimental acf              

of the mutant simply by setting β = 0. However, the Isw2 phenotype was more               

complex. Loss of nucleosome repression should increase burst frequency. However,          

burst frequency seemingly decreased, the inactive periods significantly increased in          

length to 612s ±13s, while burst duration decreased, the active period times were             

111s ±13s (​figure 9​). In the context of the proofreading model and in the absence of                

nucleosomal repression, these changes must be attributed to a decrease in the rate             
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of activator binding, , and an increase in the rate of activator dissociation, .   κON          κOFF  

The opposing effect on both rate constants explained why their sum, inferred from             

the ​acf​, remained virtually unaltered. Additionally, the deviation in activator binding           

kinetics observed between Isw2 delete and WT may be attributed to the            

simplification of the model by setting β = 0; the model becomes a two-state model.               

Rate constants that had previously been encapsulated within the nucleosome          

dynamics in a simpler model now impacted inferred activator binding kinetics. Thus,            

loss of Isw2 traps the promoter into a subset of states, in the proofreading model               

states without the nucleosome, while at the same time inhibiting activator binding            

and leading to increased activator removal. 

Loss of other chromatin remodelers, however, did not have the same impact.            

For instance, loss of Chd1 had little effect on the ​acf but did lead to reduced ​PHO5                 

expression similarly to that of Isw2 (​figure 10​). In contrast to Isw2, the ​acf ​of the                

Chd1 deletion ​was fit well by two exponentials with parameters closely similar to WT,              

fast (1.6 X 10​-2 s​-1​) and slow (4.1 X 10​-3 s​-1​). There was only a mild effect on the                   

weights of the exponential terms, causing a slight shift of the ​acf toward shorter              

correlation times (​figure 10​C, ​green curve). CPD analysis indicated both a shortening            

of active periods, 107s ±13s, and extension of inactive periods to 538 ± 50s. CPD               

was in good agreement with the observed decrease in ​PHO5 expression to about             

78% of WT. Loss of Chd1 (like Isw2) reduced both burst frequency and duration.              

However, unlike loss of Isw2, Chd1 had no discernible effect on the kinetics of the               

proofreading step, long-timescale signal correlations were virtually unchanged. Loss         
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of function of other remodelers had either no effect on ​PHO5 expression (Isw1) or              

abolished ​PHO5​ expression entirely (Swi/Snf).  

We have made two deletions in different chromatin remodelers, Isw2 and           

Chd1, which impact PHO5 promoter chromatin struct​ure ​and likely play different           

roles in regulation of transcription and chromatin architecture. These impacts on           

chromatin structure propagate to changes in transcriptional dynamics, changes in          

burst frequency and duration. We conclude Isw2 is required for generation of groups             

of bursts in Pho5 transcription. Loss of Isw2 abolished nucleosomal repression under            

activating conditions. We infer Isw2 establishes a repressed state under activating           

conditions.  

Pho4 regulates burst frequency and burst duration 

To test the proofreading model further various mutations were introduced into the            

Pho4 ​activation domain. These sequentially larger deletions of the activation domain           

result in a continuous loss of expression (​figure 11​A-E​) ​[66]​. Since activators are             

thought to accelerate multiple steps toward transcription, ​e.g​. nucleosome removal          

and recruitment of GTFs to the promoter etc., we expected that activator mutations             

slow down promoter transitions and thus decrease one or more exponential           

parameters in the ​acf​. We were surprised, therefore, to find the opposite. The ​acf              

obtained from mutant cells that bore a deletion mutation in the activation domain of              

Pho4, Pho4Δ75-90, showed 85% reduced expression but the ​acf was shifted toward            

shorter correlation times with exponential parameters that were larger than for WT            

(​figure 12​C​, red curve). This observation implied that some rate constants increased.            
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In support of this notion, the proofreading model for WT could be refit to the               

experimental ​acf of the activator mutant by increasing the rate of nucleosome            

removal, alone. However, this contradicts observations by CPD which indicated β           

that some rate constants must have decreased; CPD suggested a decrease in burst             

frequency indicated by a marked increase in the lifetime of inactive periods, 1261             ±  

110s (​figure 12​A​, red vs. blue bar plot). Although, CPD does recapitulate the             

observation of an increased rate parameter. The mutant maintained shortened active           

periods, 87 15s, indicative of faster transitions from active to inactive (​figure 12​B​,  ±            

red vs. blue bar plot). This apparent contradiction is solved with the hypothesis that              

the activator regulates rates of both nucleosome removal and reformation. An           

equally good fit could be obtained by both decreasing the rate of nucleosome             

removal, , and increasing the rate of nucleosome reformation, . Our findings α         β    

suggest that activators both increase the rate of nucleosome removal, as suggested            

earlier, and inhibit nucleosome reformation, possibly by recruitment of GTFs.          

Additionally, decreased active time and increased inactive time may be explained on            

the basis of changing activator binding kinetics. It is feasible, increased nucleosome            

occupancy over the promoter due to mutation in the activation domain, increased            

activator off-rate and a decreased activator on-rate (see below).  

As suggested previously, the active time encompanses the sojourn time of all            

of the biochemical steps which coincide with the lifetime of the nascent transcript on              

the DNA ​[67]​. In the regime of a two state model, as burst size becomes small, gene                 

expression appears more and more Poissonian ​[68]​. The active time becomes more            
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and more dominated by the dynamics of transcript polymerization, as observed at            

the Gal3 locus under UAS mutation ​[67]​. Under a weakly expressing ​PHO4 mutation             

it becomes exceedingly rare to observe more than one nascent transcript at ​PHO5​,             

the observed variance in transcript intensity decreased drastically. It is therefore           

likely that the active time in the activator mutant is more dominated by the average               

transcript polymerization time for a ​PHO5 ​transcript. The full length ​PHO5 ​construct            

is 2.3kb implying a transcription-rate of ~26 bp/s. However, it is unclear when the              

transcript becomes visible; it is unknown how many PP7 stem loops must be             

transcribed and bound by PCP-GFP to detect the signal. Thus, the effective visible             

size of a nascent transcript varies from 1.4 - 2.3 kbs implying a transcription-rate 16 -                

26 bp/s, on the low end of observations for transcription-rate for RNA polymerase II.              

However, even in the activator mutant the distribution of active times remains well fit              

by an exponential decay function. It seems likely that transcriptional kinetics must            

play a significant role in the sojourn of the active state in the activator mutant. As a                 

consequence, it is likely our estimate of model rate parameters maintain higher error             

in the activator mutant. Additionally, because bursts of transcription were rare in the             

activator mutant we have fewer samples of active and inactive period lengths. 

From live-cell microscopy we conclude that the Pho4 activation domain          

modulates both burst size and burst frequency. Mechanistically this can be           

understood on the basis that the activator mutant is less able to recruit chromatin              

remodelers and GTFs. The loss of recruitment of chromatin remodelers explains           

reduced burst frequency, it is harder to remove nucleosomes and therefore get into             

an active state; while loss of recruitment of remodelers and GTFs explains the             
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decreased burst duration, nucleosome reformation is inhibited, possibly, by the          

presence of GTFs and certain chromatin remodelers. We conclude that activators           

antagonistically regulate the forward and reverse reaction of the proofreading step.           

The activator regulating multiple distinct steps toward initiation is a key prediction of             

high specificity and kinetic proofreading. Notably, the dynamics of ​PHO5 expression           

were similarly affected upon deletion of Chd1, suggesting that the activator recruits            

Chd1 to the promoter. Loss of Chd1 decreases the average number of nucleosomes             

over PHO5. 

Pho4 activator modulates its own binding dynamics 

Specificity requires that active periods, bursts, are nested within the          

promoter's sojourn in the activator-bound state; and because proofreading, on          

average, delays the start of transcriptional activity, active periods are expected to be             

significantly shorter than the lifetime of the activator-bound state (​figure 5​). ​Live cell             

fluorescent MFM data of nascent ​PHO5 ​RNA suggest that activator binding           

dynamics occur at the timescale of “fast” decay in the ​acf​. In addition, the reduced               

expression and changes in promoter dynamics upon mutation of the activation           

domain and chromatin remodelers, Chd1 and Isw2, are explained by a hypothesis of             

altered activator binding kinetics, decreased on-rate and increased off-rate. To test           

the relationship between activator binding dynamics and transcriptional dynamics,         

we measured Pho4 binding dynamics at UAS1, the weak Pho4 binding site of ​PHO5​,              

by employing Chromatin Endogenous Cleavage Cross-Linking Kinetic (ChEC-CLK)        

analysis. ChEC-CLK, like CLK measures DNA binding dynamics of activators by           

taking advantage of the time dependence of formaldehyde cross linking of DNA            
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bound proteins (​figure 13​B​) ​[69]​. ChEC-CLK is a modified CLK where CheC is             

employed in place of Chromatin Immunoprecipitation (ChIP). ChEC employs the          

tethering of an activatable nuclease to a DNA binding protein ​[70]​. After fixation by              

formaldehyde crosslinking the nuclease is activated and only DNA crosslinked by the            

fusion protein is cleaved. In this way, bound DNA molecules may be accounted for              

by northern analysis. Thus, activator occupancies are measured at specific genomic           

locations, en-vivo, at varying formaldehyde crosslinking times by CheC. Then binding           

dynamics are inferred by explicitly modeling both DNA binding and formaldehyde           

crosslinking (​figure 13​A​). From ChEC-CLK activator on-rate, absolute initial         

occupancy and absolute maximum occupancy may be inferred.  

Inference of both the maximal and initial activator occupancy depends on the            

number of total available binding sites. Nucleosomes occlude DNA binding proteins;           

therefore, we predict that for most activators the binding site availability is            

significantly less than 100% (​figure 13​B​, rightmost column). Thus, the estimated           

relative maximum occupancy measured by CLK should be strictly less than the            

absolute activator occupancy; while the relative initial occupancy should be strictly           

greater than the absolute initial occupancy. We note here that relative occupancy            

measurements are sufficient for correct inference of on and off-rates ​[69]​. However,            

to measure occupancy directly and to observe how changing nucleosome occupancy           

impacts binding a method like ChEC that accounts for total bound molecules is             

required.  
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To perform ChEC-CLK at the UAS1 binding site of the ​PHO5 Promoter, we             

inserted a HA tagged micrococcal nuclease (MNase) into the 3’ end of ​PHO4 to              

create a Pho4-MNase fusion. The Pho4-MNase fusion activates ​PHO5 ​expression          

equally well as WT ​[51]​. Formaldehyde crosslinking does not significantly deplete the            

total pool of unbound Pho4, an important assumption of CLK. However, crosslinking            

slowly abrogates the ability of a subpopulation of Pho4-MNase to cleave DNA. Loss             

of activity is made evident at long crosslinking times, >20 minutes. Thus, we             

conclude occupancy measurements to be lower bounds. 

Cells containing Pho4-MNase fusion were crosslinked for various time         

lengths and quenched with glycine to inhibit further crosslinking. To activate the            

nuclease cell extracts were incubated with Ca​2+ ions. DNA was isolated and digested             

with restriction enzymes, Apa1 and Pst1, to create a full length ubound ​PHO5             

fragment, 2800 bps. Then, northern analysis was performed to determine cleavage           

frequencies. As seen previously, activated ​PHO5 promoter is cleaved at two sites            

corresponding to the two Pho4 binding sites, UAS1 and UAS2. The probe used binds              

upstream of UAS1 which allows for specific quantification of UAS1 occupancy but            

not UAS2 occupancy; cleavage at UAS1 cleavage “erases” cleavage at UAS2.  

From CLK we infer the average time between Pho4 binding events at UAS1             

is ~30s and once bound the average lifetime of the bound state is ~200s (​figure               

13​C​, blue curve). The lifetime of the activator bound state is comparable with the              

lifetime of the active gene, 124s, as observed by live cell microscopy. In addition, the               

active fraction, 0.19, as measured by live-cell microscopy, is smaller than the            
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occupancy of Pho4 at UAS1, 0.24, suggesting that a bound UAS1 is required for              

entrance into the actively transcribing state; a requirement for activator specificity.           

This suggests activator dynamics play an important role in regulating at the timescale             

of the “fast” decay component observed in the acf​. The Pho4 on-rate was fast              

enough to be near the edge of detection for CLK using our experimental setup, in               

this regime parameter inference is highly error prone. However, using inferred           

kinetics and an estimate for the nuclear volume for haploid yeast with the equilibrium              

dissociation constant we back calculated the expected concentration of Pho4 in the            

nucleus which closely matched published Pho4 molecule counts. In addition, the           

observed kinetics for Pho4 binding are comparable with what has been observed for             

other yeast specific activators measured by alternate techniques ​[9,67]​. Notably, the           

activator on-rate is faster than we expect it to be when inferred from live cell               

microscopy of nascent transcripts. We must conclude that activator binding is not            

rate limiting for entrance into the actively transcribing state. However, it seems likely             

that the presence of the activator is a requirement for maintenance of the active              

state.  

Under activating conditions most binding sites remain unavailable for Pho4          

binding. The occupancy of Pho4 at ​PHO5 UAS1 under activating conditions is 0.24             

(​figure 13​C, ​blue curve meets the y-axis) while the maximal occupancy is 0.29 (​figure              

13​C, ​blue dashed line)​. Since unbound Pho4 was not depleted by crosslinking this             

suggests that 70% of ​PHO5 UAS1 DNA is not available for binding, even under              

activating conditions. In addition, of the available UAS1 binding sites, most, 81%,            

are occupied by Pho4. The small maximum occupancy of Pho4 at UAS1 is             
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unexpected given the observations of nucleosome occupancy at that location (see           

below). It is likely that not all crosslinking events lead to DNA cleavage and              

occupancy measurements are at best lower bounds. Notably, nucleosome loss is not            

observed in the time course. The maximal occupancy stabilizes well below 100%            

and remains constant for >15 minutes, suggesting that either nucleosome removal           

dynamics are too slow to be observed by CLK or crosslinking prevents nucleosome             

dynamics entirely as depicted in ​figure 13​B​ (middle row). 

Upon mutation of the activation domain of Pho4, nucleosome occupancy over           

important regulatory sequences increases (see below). We predict that the activator           

modulates its own activator binding dynamics mediated by recruitment of chromatin           

remodelers. Decreased on-rate and increased off-rate of the activator are predicted           

from mutations to the activation domain of Pho4 on the basis of the proofreading              

model fits to live-cell microscopy data under various mutations. We completed           

CheC-CLK of the ​PHO5 ​UAS1 in a Pho4Δ85-99 context, to investigate the role of              

chromatin structure on maximal activator occupancy and activator dynamics (​figure          

13​C, ​red curve)​. A reduction in the fraction of total available UAS1 binding sites,              

maximal occupancy, to 0.25 was observed (​figure 13​C, ​blue to red dashed line)​.             

From this we infer a decrease in the fraction of available UAS1 sites by 0.16. In                

addition, upon mutation, the average Pho4 occupancy at UAS1 is reduced from 0.24             

to 0.16 (​figure 13​C, red curve meets the y-axis)​. Thus, both the average number of               

available Pho4 binding sites and the average number of bound Pho4 decreases. The             

average lifetime of the activator bound UAS1 was shorter than WT, 93s, and the              

lifetime of the unbound UAS1 was longer than WT, 55s. We conclude the Pho4              
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activation domain impacts Pho4 binding dynamics. Changing activator binding         

kinetics supports the reduction in active time and the increase in inactive time             

observed with live cell microscopy for comparable mutations in the activation domain            

of Pho4. ​Effects on the binding dynamics of the activator are observed by ChEC-CLK              

for activator mutations that severely reduce expression of ​PHO5​. Low expression           

made analysis of these same mutations impossible by live-cell microscopy. 

Promoter chromatin structure is dynamic, and these intrinsic dynamics         

generate discrete promoter nucleosome structures ​[55,71]​. Each of these structures          

is likely differentially capable of binding activators; obvious in the case of the fully              

nucleosomal and nucleosome free promoter. Activators recruit chromatin remodeling         

activities by virtue of their activation domain. Thus, activation domain mutations           

inhibit chromatin remodeling and push the promoter toward structures that are more            

nucleosomal. These structures in turn hinder activator binding, by either obstruction           

or destabilization. ​It has been shown for ​PHO5 that Pho4 activator strength            

correlates with Pho4 occupancy and is anticorrelated with nucleosome occupancy          

and dynamics ​[55,66]​. Changing nucleosome occupancy leads to a change in           

absolute activator occupancy and potentially a change in activator binding kinetics. It            

remains unclear what features in promoter chromatin structure are important for           

determining this relationship. To test models by which ​PHO5 ​promoter nucleosome           

structure and dynamics alter Pho4 binding dynamics we observed the nucleosome           

architectures of single ​PHO5 ​gene molecules.  
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Shortened NDR correlates with decreased activator on-rate and        

increased activator off-rate 

To explain the changes in activator binding kinetics at UAS1 due to mutation in the               

activator binding domain of Pho4, we hypothesize that the Pho4 activation domain            

prepares its own binding sites with enhanced binding kinetics by recruiting chromatin            

remodelers which leads to NDR formation, altering both the rate of binding and the              

stability of the Pho4-DNA complex. To explore the role of promoter chromatin            

structure and dynamics on activator kinetics we mapped nucleosomes across          

chromatin rings containing the ​PHO5 locus isolated from living cells ​[55]​. Briefly, site             

specific recombination sequences and an affinity tag are inserted flanking the PHO5            

locus allowing for the formation, isolation and purification of chromatin rings formed            

in vivo (​figure 14​A​) ​[54]​. Nucleosome positions are “etched” onto the DNA by             

psoralen crosslinking and visualized by EM as depicted in ​figure 14​B ​[72]​; psoralen             

is a DNA intercalator that when exposed to UV irradiation preferentially cross links             

between nucleosomes. This technique allows for an estimate of both the absolute            

nucleosome occupancy along ​PHO5 ​as well as the correlation in occupancy between            

multiple positions within individual ​PHO5​ gene molecules.  

From single molecule data we estimated the nucleosome occupancy over the           

entire PHO5 locus (​figure 14​C​) (see methods). To look at the correspondence            

between activator occupancy and nucleosome occupancy, we interrogated        

nucleosome occupancy over UAS1. Under activating conditions, the average         

nucleosome occupancy over UAS1 was 0.34; ​UASp1 was considered occupied if           
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mapped within a nucleosome-sized single-stranded DNA bubble (>90 bps) (​figure          

14​C, red curve in between the dashed vertical lines). ​While EM analysis indicated             

that 66% of all UAS1 sequences were nucleosome-free, ChEC-CLK analysis          

suggested that only 30% were accessible to Pho4 binding. Our analysis only            

included nucleosomes which completely covered UAS1. It is likely that proximal           

nucleosomes additionally inhibit Pho4 binding in multiple ways. However, as          

discussed above, it is also likely that we do not observe every Pho4 binding event by                

ChEC-CLK. It is likely that this discrepancy occurs due to measurement error from             

CheC-CLK. 

To identify which factors in promoter chromatin structure impact activator          

binding kinetics, we analyzed NDR formation on individual gene molecules. We           

characterized the NDR from each gene molecule by determining the length of            

available DNA between UAS1 and its most proximal nucleosomes upstream and           

downstream (see methods). As was observed previously, we found large variation in            

NDR size, ~10 - 800 bps, including molecules that have the same size NDR as               

repressed PHO5 ​[55]​. The median length of the linker spanning UAS1 under            

activating conditions is ~350 bps, a 4-fold increase from repressing conditions (​figure            

15​A,B​). In line with this observation, the closest nucleosome to UAS1 on average, is              

~100 bps away, a 5-fold increase from repressing conditions. Notably, nucleosome           

proximity is unequal on either side of UAS1. The 5’ edge of the downstream              

nucleosome, under activating conditions, is generally shifted toward the TS (​figure           

15​B​, cartoon). This is likely due to cooperativity in nucleosome removal between            

sequence regulatory elements; ​PHO5 possesses multiple regulatory sequences        
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downstream of UAS1 that each may bind transcription factors which recruit           

chromatin remodeling activities. Directionality in transcription is instilled at ​PHO5 by           

the TATA box; loss of the TATA box abrogates transcription. However, loss of the              

TATA box does not lead to loss of NDR extension toward the TS. The presence of a                 

second PHO4 binding site, UAS2, is likely the source of stretching of the NDR              

toward the TS. The location of the 5’ edge of the downstream nucleosome seems              

continuous across the promoter, suggesting that this nucleosome is being slid away            

from UAS1 (​figure 15​D​). However, when the average occupancy of identified           

downstream NDR nucleosomes was analyzed, evidence for distinct positioning         

emerges as suggested in ​[55]​. Under activating conditions two distinct positions for            

downstream nucleosomes occur ~200 bp apart from one another (​figure 15​E, ​blue            

area). The positions are distinct from the single position found in repressing            

conditions. This suggests that while being slid the downstream nucleosome is           

“trapped” in new positions and/or that an entire nucleosome is occasionally removed.            

The 5’ edge of the downstream nucleosome in activating conditions often coincides            

with the nucleosome position traditionally called “+1”, defined as the first nucleosome            

whose dyad axis occurs after the TS. ​Notably, under repressing conditions, the            

nucleosome in the “+1” position occupies the TATA box (​figure 16​A​, grey curve),             

however, when activated the “+1” position shifts sufficiently (​figure 16​A​, blue curve)            

to uncover this important regulatory sequence, suggesting a potential mechanism for           

Isw2-mediated repression of transcription under activating conditions. Notably,        

strong positioning away from the TATA box appears to be lost in TATA delete cells               

45 

https://paperpile.com/c/NeCB25/Zf8EM


(​figure 16​B​, pink curve). Suggesting that recruitment of TBP to the promoter is             

required for repositioning of the nucleosome occupying the “+1” position. 

The contradiction between occupancy data, the observation of distinct         

nucleosome positions, and 5’ edge data, perceived continuous positioning, may arise           

due to variance in identifying the 5’ edge of each nucleosome which is less apparent               

in occupancy data. Error in edge detection is introduced by “leaking” of crosslinks             

into the edges of a nucleosome; we employed multiple long rounds of crosslinking to              

ensure complete crosslinking. While, the position of nucleosomes estimated by          

overall occupancy was better preserved. In addition, single stranded DNA has           

variable length. Thus, Inference of ​PHO5 ​coordinates based on single stranded DNA            

must maintain this variance.  

Upon mutation of ​PHO4 ​with Δ85-99, Pho4 occupancy at UAS1 is reduced.            

From ChEC-CLK we determined the reduction in occupancy is the result of a change              

in both stability and binding rate of Pho4. This recapitulates a prediction generated             

by fits of the proofreading model to the ​acf ​from live-cell microscopy data of various               

mutants that kinetics are both sped up and slowed down; we observe a decrease in               

on-rate and an increase in off-rate as nucleosome occupancy increases. The           

change in activator off-rate may be explained by a change in proximity of adjacent              

nucleosomes to activating sequences. We therefore predict a change in nucleosome           

proximity to UAS1. The closest nucleosome to UASp1, upstream or downstream,           

was ~50 bps away on average, a 2-fold reduction from WT (​figure 15​C, ​cartoon). To               

explain the change in binding rate we analyzed overall NDR size. Under the             
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hypothesis that activators first bind DNA weakly then traverse in one dimension            

along the DNA to find their binding site ​[73]​, we expect that the more available DNA                

for binding the larger the observed activator binding rate. ​Thus, the NDR length and              

activator on-rate should increase together. This theory explains, in part, why           

nucleosomes must be removed from eukaryotic promoters. Long NDRs act as a            

scaffold to recruit DNA binding proteins. ​As NDR size increases so does available             

DNA to bind the activator, specifically or non-specifically. The average NDR size            

decreases ~1.5 fold. As described above, most of this change is due to repositioning              

of the downstream nucleosome (​figure 15​E, ​cartoon red line). 

Importantly, large amounts of variation was observed for NDRs across          

conditions measured (​figure 15​A-C​); small and large NDRs were observed in both            

activated and repressed conditions. Activator on and off-rates should vary greatly           

from cell to cell and over time; we expect that activator binding in a context of a large                  

NDR to be significantly faster than the average. Measurements of activator binding            

that average across a population, like ChECLK, average across all of these            

chromatin contexts.  

Discussion 

Using live cell fluorescence microscopy of nascent PHO5 transcripts, we show that            

correlation in ​PHO5 ​transcription under activating conditions is generated on at least            

two distinct timescales, one at ~100s and one at ~3 minutes. Correlation at the “fast”               

timescale is caused by brief periods of activity separated in time by longer periods of               

inactivity. Active periods are not fully defined by the elongation-rate of individual            
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transcripts, rather windows of activity encompass multiple transcription events,         

suggesting bursts of transcript initiation. This is made most evident upon Pho4            

mutation, when the average number of transcripts in the active window is reduced to              

~1 and the average active time is reduced to the elongation time of ~1 ​PHO5               

transcript; a similar phenomenon has been observed and verified by elongation-rate           

measurements for a GAL regulated gene ​[74]​. The exponential decay component           

observed at the “slow” timescale is generated by correlation introduced between           

bursts of transcription. 

Deletion of an individual chromatin remodeler Isw2 is sufficient to completely           

abolish “slow” timescale correlation. This suggests that chromatin dynamics over the           

PHO5 ​promoter are responsible for generating correlation between bursts of          

transcription. We hypothesize that correlation is introduced through dynamic         

repression by Isw2. However, we must also conclude that Isw2 does more to             

regulate transcription. We observed a decrease in active times and an increase in             

inactive times of the TS by live-cell microscopy suggesting altered activator binding            

kinetics. This may be explained by the hypothesis that alterations of chromatin            

structure and dynamics imparted by an ​isw2 deletion impact activator binding           

dynamics directly. Loss of other remodelers either changed expression but had little            

effect on long-timescale correlation (Chd1), had no effect on ​PHO5 ​expression           

(Isw1) or abolished ​PHO5 ​expression entirely (Swi/Snf). 

Electron microscopic analyses of ​PHO5 molecules supported the notion that          

the activator on-rate decreases and off-rate increases with increasing promoter          

nucleosome density (see below). This corroborates the notion that chromatin          
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dynamics are a likely source of correlation in ​PHO5 transcription. To explain live-cell             

microscopy data we hypothesize that dynamic repression by Isw2 is responsible for            

generating correlation between bursts of transcription. However, the nature of the           

biochemical relationship between Isw2 ​and transcriptional activation remains elusive.         

ISW2 is implicated as an antagonist to RISC and SWI-SNF, shrinking the NDR and              

shifting the +1 nucleosome toward the promoter ​[75]​. The +1 nucleosome often            

occupies the TATA box, obstructing the transcriptional machinery. We observe a           

repositioning, away from the promoter, of the +1 nucleosomes when ​PHO5 is            

activated. It is reasonable to expect that dynamic repositioning in the +1 nucleosome             

leads to stochastic availability of crucial DNA binding elements. Loss of the            

antagonist Isw2 could lead to trapping of the system in the active state, abolishing              

the transition between nucleosome configurations which are conducive for         

transcription to those that are inconducive to transcription. Thus, correlation in           

transcription is lost. This mechanistic understanding of Isw​2 ​assumes the trapping of            

promoter chromatin in an active state. Naively, we would predict increased           

expression. However, ​PHO5 ​expression in the Isw2 delete decreases 2-fold. We           

must therefore resort to the auxiliary hypothesis that Isw2 plays multiple roles in             

regulating PHO5 expression; a likely hypothesis given our observation that          

alterations to NDR size has a significant impact on both activator stability and binding              

rate. This model implies that nucleosome heterogeneity on promoter elements          

produces heterogeneity in gene expression. This work suggests that ​Isw2 plays an            

essential role in proofreading activator binding by acting as a repressive force to the              

assembly of the pre-initiation complex. Thus, the activator is constantly required to            
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re-remodel chromatin, expending energy to continually form promoter structures         

conducive to expression. In potentially a serendipitous coincidence, energy         

expenditure is used in the erasure of promoter memory ​[76]​.  

It is also plausible that the rate limiting step which causes long time scale              

correlation is actually acetylation and/or methylation of nucleosomes required for the           

appropriate remodeling by ISW2 ​[77]​. In this case the energy for kinetic proofreading             

of activator/DNA recognition would come from the chromatin modifiers and the           

remodelers together. We take the opportunity to note here that energy expenditure of             

ISWI family chromatin remodelers has previously been implicated in kinetic          

proofreading ​[78–82]​; in this case the energy is used toward increasing the specificity             

of recognition of Isw’s target substrate, modified nucleosomes. It will be interesting to             

see if/how the energy of ATP hydrolysis is shared between enhancing           

ISW/nucleosome recognition and activator/DNA recognition. It may be a general rule           

for ATP hydrolyzing chromatin remodelers that energy expenditure is used toward           

achieving multiple goals.  

We find that mutations to the activation domain of Pho4, the specific activator             

of PHO5, modulated both burst frequency and burst duration. However, these           

mutations appear to have minimal impact on transcriptional correlation in general.           

These two observations combined imply that two separate rate constants must be            

altered, one which is increased and one which is decreased. Thus, the changes in              

inactive and active time may be explained by the hypothesis that the activator             

recruits chromatin remodelers and the GTFs to the promoter. By increasing the rate             

of removal of nucleosomes the rate of entrance into the active state is increased.              
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Similarly, the presence of GTFs and remodelers may stabilize the active state by             

preventing nucleosome assembly. Alternatively, changes in rate constants may be          

due to changes in the activators ability to bind key UAS elements. We observe              

changing binding dynamics of the activator upon mutation. It is likely a combination             

of these two regulatory forces that lead to the transcriptional dynamics we observe at              

PHO5. 

The proofreading model requires close coupling between activator binding         

and transcription, burst duration must not exceed the lifetime of the activator.            

Otherwise, activator specificity is lost. Using ChEC-CLK we show that Pho4’s binding            

dynamics correspond to the timescale faster than our “fast” correlations, <30s.           

However, the on fraction of the activator recapitulates the on fraction of the active              

state. We found that the average lifetime of the Pho4 activator at UASp1 was ~200s,               

~75s longer than the average active period inferred from microscopy. Thus, as            

predicted the active time is shorter than the dwell time of the activator. 

The discrepancy between burst duration and sojourn of the activator on the            

promoter may be explained on the assumption that one or more additional slow             

steps are required after activator binding but before initiation of the first transcript.             

Thus, these additional steps delay a burst of transcription by ~75s. We speculate             

that, in our proofreading model, the transition from an activator-less state to an             

activator-bound state must encompass the sojourn of these additional steps. Our           

ChEC-CLK analysis indicated a faster activator on-rate than predicted by fitting the            

proofreading model to microscopy data. The difference between the inference of time            
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between activator binding events from microscopy and the observed time between           

activator binding events determined by CheC-CLK agreed nearly perfectly with the           

observed difference between active time and activator sojourn time, ~75s. Thus, we            

conclude that the inferred transition kinetics between the activator unbound promoter           

and the activator bound but actively transcribing promoter must include additional           

steps with sojourn ~75s. We suspect that this quirk in the model fit is due to the                 

requirement in the proofreading model of state 3 to be an actively transcribing state;              

the model assumes, likely incorrectly, that transition from an activator-less promoter           

to an activator bound promoter, in the absence of a nucleosome, is sufficient to be               

actively transcribing.  

Some of the time between activator binding and the initiation of transcription            

is likely consumed by assembly of the G-lobe of the preinitiation complex, composed             

of promoter DNA with general transcription factors TBP, TFIIA, TFIIE and TFIIH.            

However, once the G-lobe is formed, activator-mediated recruitment of TFIIB may           

lead to rapid RNA polymerase binding and transcription; the persistence of the            

G-lobe following promoter clearance by RNA polymerase allows for rapid reinitiation           

of transcription. The G-lobe complex is sedimented as a single entity in a glycerol              

gradient, attesting to its stability. While the dissociation of TFIIB upon promoter            

clearance accounts for the persistent need of the activator for transcript initiation.            

Thus, subsequent to G-lobe formation, activator binding events lead to recruitment of            

TFIIB and bursts of transcript initiation. Otherwise, once the G-lobe was assembled            

activator presence would become redundant and specificity would be lost.  
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Similarly, after dissociation of the activator, the complex of G-lobe proteins           

with promoter DNA, must disintegrate quickly, or else fast rebinding of the activator             

would extend the burst. Burst duration would exceed the sojourn of the activator on              

its specific binding sequence and specificity would be lost; we however found the             

opposite. Therefore, it seems likely that the majority of activator binding events lead             

to the reformation of the G-lobe complex. It is also feasible that the delay between               

binding and formation of the G-lobe complex may increase regulatory specificity by            

filtering out short activator binding events that do not successfully lead to formation             

of the G-lobe. In addition, active disassembly of the G-lobe complex by Mot1, which              

uses the free energy of ATP hydrolysis to dissociate TBP from DNA, may explain              

short burst duration. Alternatively, the activities of chromatin remodelers like the RSC            

complex, as suggested for Ace1 at the ​CUP1 locus ​[83]​, or ISW2 as we have               

suggested may be responsible for disassembly of the G-lobe. Notably, the proposed            

mechanism of RSC toggling of the -1 nucleosome in both directions to rip activators              

from DNA would inhibit activator specificity ​[83]​.  

From both CheCCLK and live cell microscopy it seems clear that activator            

dynamics play a significant role in generating correlation in transcription at the fast             

timescale. This supports previous work suggesting Gal4 binding dynamics generate          

GAL transcriptional dynamics ​[74]​. However, we do not observe that the dwell time of              

the activator coincides perfectly with the sojourn of the active state. Rather, we             

propose assembly of the G-lobe to be rate limiting. Notably, “slow” time scale             
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correlations are also observed for GAL and other genes ​[67,84]​. Our work suggests             

that these correlations are likely produced by slower promoter chromatin dynamics.  

We observe by ChEC-CLK that mutations in the activation domain of Pho4            

impact both on-rate and off-rate of the activator. We show that these differences             

correspond to structural changes in promoter chromatin structure by analyzing single           

gene molecules by psoralen crosslinking and EM. We predict that nucleosome           

proximity to UAS binding sites decreases activator stability. Upon mutation of the            

activator, we observe the proximity of the most adjacent nucleosomes to UAS1            

shrinks two-fold, from ~100 bps to ~50 bps on average. It is unclear if this decrease                

in stability is due to the presence of a single nucleosome or interactions between              

adjacent nucleosomes. We hypothesize that disruption in Pho4 stability is likely           

achieved by interactions between nucleosomes both upstream and downstream from          

the UAS1.  

The on-rate of Pho4 at UAS1 is seemingly also impacted by NDR length. It              

has been conjectured that activators find their binding sites through facilitated           

diffusion ​[6,10]​. Thus, Pho4 likely transitions between 3-dimensional searching and          

1-dimensional searching along linker DNA between nucleosomes. We predict         

nucleosomes inhibit 1-dimensional searching ​[73]​; long stretches of naked DNA are           

rare on nucleosomal DNA. Upon activation the stretch of naked DNA containing            

target sequences increases, for the ​PHO5 NDR this is roughly ~5 fold. Thus, the size               

of the available DNA to initiate 1 dimensional searching increases upon activation.            

This increased size enhances the apparent target site on-rate. A similar change in             

activator on-rate was observed for Ace1 at the ​CUP1 ​locus in response to deletion of               
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the RSC complex ​[83]​. However, it appears that disruption of NDR positioning over             

the UAS is only observed under inactivating conditions. We predict that the average             

length of the ​CUP1 ​NDR shrinks and nucleosome proximity to the ​CUP1 ​UAS             

increases even under activating conditions.  

Creating a large “landing pad” over the promoter increases the on-rate of all             

DNA binding transcription factors; however, it seems not for all activators. The            

on-rate of the activator Rap1, which is classified as a “pioneering” transcription factor             

for its ability to bind DNA within a nucleosome, is insensitive to removal of a               

nucleosome within its binding site ​[85]​. We speculate that pioneering factors maintain            

an alternative search strategy which allows them to efficiently find and bind their             

target sequences in the presence of nucleosomes. 

It has been suggested recently that promoter sequences generally act as            

“antennas” which actively recruit transcription factors ​[86]​. General recruitment         

enhances factor specificity for target sequences inside promoters. It makes          

functional sense that “antenna” sequences coincide with NDR formation. Promoter          

DNA that is made available to enhance factor on-rates also contains sequences            

which promote factor recruitment. This model also unifies the observation of general            

cooperativity between activators and transcription factors, without the need for them           

to interact directly. A similar model has been suggested for equilibrium binding of             

many transcription factors internal to a single nucleosome which bind and           

cooperatively destabilize the nucleosome ​[87]​. Our model differs from this type of            

cooperativity, slightly, in that it relies on the system being away from equilibrium; the              

recruitment of ATP dependent chromatin remodelers and the removal of          
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nucleosomes by an individual activator can increase the on-rates and reduce the            

off-rates of all activators at all binding sites within the NDR including itself, without              

the need for direct interaction. Importantly, it allows one binding site to maintain             

‘cooperativity’ with itself, kinetic proofreading. Notably, we observe that the NDR           

lengthens toward the TSS, uncovering key regulatory sequences. Such a          

mechanism taken together with the proofreading model suggests the major hurdle           

the cell overcomes to specifically regulate gene activation.  

These observations highlight a major challenge, and potentially suggests         

some solutions, faced in fabricating transcriptional regulatory networks; in-vitro in          

equilibrium, it is challenging to generate simple regulatory networks with many           

specific regulators without inhibitively high levels of crosstalk between regulators and           

their targets ​[88]​. Ofcourse, one solution is increasing the specificity of the regulator,             

however, this solution does not scale. As discussed in chapter 1, as specificity is              

increased controllability is lost. Thus, only in setting up a system away from             

equilibrium, be it with kinetic proofreading or allosteric effector molecules or some            

other non-equilibrium mechanism, may high specificity and controllability be realized. 

It is clear from single molecule analysis of PHO5 gene rings that there is              

extensive cell to cell variation in promoter chromatin architecture. Under activating           

conditions we see NDR lengths ranging from 10 - 800 bps. We have also shown a                

correspondence between average NDR size and activator on-rate, and nucleosome          

proximity and off-rate. Thus, we predict that each cell experiences distinct activator            

binding kinetics due to its distinct promoter chromatin architecture. With application           

of an ergodic hypothesis of chromatin remodeling ​[56]​, we expect that individual cells             
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as they remodel chromatin, transition stochastically between different activator         

kinetics in time. Therefore, the activator binding we observe by ChEC-CLK is            

representative of the average Pho4 binding kinetics at UAS1. We predict varied            

binding dynamics for Pho4 at UAS1. The on-rate should very from almost no binding              

when a nucleosome occludes activating sequences to on-rates faster than we           

observed by CheC-CLK, in cells with a full sized NDR. We predict, ~34% of cells               

should have almost no binding under activating conditions; cells with UAS1 occupied            

by a nucleosome. While, the off-rates should vary from short sojurns when UAS sites              

are adjacent or within a nucleosome, observed in-vitro for Gal4 binding ​[74]​, to             

off-rate comparable to in-vitro expectations on naked DNA ​[7]​. These observations,           

in part, may explain the unexpectedly fast activator dynamics observed by single            

molecule tracking in vivo ​[74]​. Thus, reconciling the need for specificity and the             

observation of short sojourn times of specific activators. Similarly, heterogeneity in           

activator kinetics caused by chromatin dynamics may serve as the source of the             

“slow” decay component in the ​acf ​observed by live cell microscopy and may be yet               

another mechanism by which kinetic proofreading of activator binding is achieved. 

By gene ring analysis we observed heterogeneity in nucleosome position          

over other important regulatory elements; In activating conditions a nucleosome is           

sometimes observed occupying the TATA box and in other cells it is observed to be               

adjacent to the TATA box (​figure 16​A​, ​blue curve). Notably, positioning is lost upon              

mutation of the TATA box (​figure 16​B​, ​pink curve). This heterogeneity is an             

expectation of the proofreading model by Isw2 and is suggestive that indeed the             
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theory that positioning of the “+1” nucleosome by ISW2 generates long timescale            

correlations in PHO5 transcription. 

Recent studies rely on the two state model to infer bursting dynamics            

genome wide ​[89]​. Following the two state model, It is common to define burst              

frequency as the rate at which active periods occur, burst duration as the average              

length of active periods, as we have done here. However, If a two state model is                

applied when modeling transcription of a system with more than two states, observed             

change of bursting parameters does not imply, generally, modulation of the same            

biochemical steps. For example, in our own proofreading model, modulation of either            

activator on-rate or nucleosome off-rate impacts burst frequency. In general, it can            

be shown that modification of any rate upstream of the rate limiting step of burst               

formation may appear as burst frequency modulation (data not shown). In practice,            

the biochemical topologies regulating transcription are much larger than our simple           

models. Therefore, it is often unknown what set of chemistries are encapsulated            

within burst frequency and burst duration when modeling with a two state promoter.             

Here we show experimentally that a priori assumption of the the two state model              

when inferring bursting parameters from population data, e.g. smFISH, may yield           

“incorrect” bursting parameters and lead to drawing false conclusions. The two state            

model of transcription fits our PHO5 smFISH perfectly. However, when live-cell           

microscopy is completed, it becomes clear that bursting occurs at multiple timescales            

and that the rate constants inferred by smFISh cannot explain. This contradiction            

between population data and single molecule data highlights the necessity for single            

molecule experiments when interrogating mechanisms. More theoretical work is         

58 

https://paperpile.com/c/NeCB25/N5Mx3


needed to determine how mechanistic topologies map to bursting dynamics and,           

maybe, more importantly, why the cell selects specific topologies over others to            

regulate different loci. 

To regulate gene expression the cell controls a number of specific           

parameters. Average expression, noise, gene regulatory function, inducibility and         

controllability have each been shown to be dictated by the biochemical network            

regulating expression ​[62,90–92]​. The topologies of the biochemical networks         

regulating gene expression have evolved to meet these requirements. Articulating          

the specifications the cell required for proper regulation is pivotal in understanding            

the complexity of regulation; form follows function. Of course, biological networks           

evolve under specific constraints and in certain contexts. However, the structure of a             

biochemical network limits its function. By identifying problems the cell faces we may             

better understand the biochemistries which solve those problems. In this work we            

show that a requirement for high specificity is a driving force in producing             

heterogeneity in Pho5 expression. Nucleosome dynamics held away from equilibrium          

may be used to proofread binding of the specific activator Pho4. These dynamics,             

because of the constraints of specificity, produce bursts of Pho5 transcription at the             

minute timescales. In addition, we identify a reason eukaryotes might adapt toward            

using nucleosome occlusion of transcription factors from DNA to regulate gene           

expression. Not only to repress transcription generally, but to enable specific           

activation.  
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Figure 5​. The proofreading model: ​The 4-State model of kinetic proofreading of            
activator binding mediated by activator coupled nucleosome removal. An activator          
(red) binds to a target sequence (red circle) to remove a nucleosome (grey oval).              
Present are four types of transitions: nucleosome removal/assembly transitions (grey          
arrowhead) as well as activator binding/unbinding transitions (red arrowhead). The          
dashed arrow highlights nucleosome removal in the absence of the activator which            
exemplifies the loss of nucleosome disassembly activities recruited by the activator,           
in the extreme λ = 0. Black arrows (clockwise) indicate transitions which are             
statistically preferred due to kinetic proofreading while grey arrow lines (counter           
clockwise) indicate the statistically less likely cycle. The only transcriptionally active           
state is the state containing an activator but no nucleosome (State 3), RNA             
polymerase II is indicated in yellow. Yellow highlighting marks transitions (arrows)           
which lead into the active state.   
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Figure 6​. PP7 labeling technique: (top) ​To visualize individual nascent RNA 14X            
PP7 binding motifs were inserted in the 5’ UTR of PHO5. Shown are key regulatory               
sequences: UAS1 (red circle), UAS2 (red square), TATA box (yellow square) and            
the transcription start site (bent arrow). ​(bottom) ​The PCP-GFP fusion expression           
was driven by the RPS2 promoter and targeted to the nucleus by a nuclear              
localization signal (NLS). A cartoon of a yeast cell with a nascent transcript tagged              
with localized GFP is depicted within the nucleus haze, caused by localization of             
PCP-GFP to the nucleous.  
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Figure 7​. Live-cell microscopy of nascent ​PHO5 ​RNA: ​(​A​) Example time series of             
transcription at the WT ​PHO5 ​locus (blue line) under activating conditions.           
Fluorescent intensity is normalized to the maximum intensity observed in this series.            
Grey boxes indicate predicted active periods using change point detection, while           
inactive times are represented as gaps between grey boxes. (​B​) Collection of 100             
randomly selected time series of WT ​PHO5 ​transcription. Each row represents one            
cell in time. Rows are sorted by occurrence of the first transcript detected in each               
cell. TS intensity is normalized by maximum intensity measured across all cells            
presented. (​C​) Same cells and cell order as described in ​B​, however, intensity values              
are replaced with active periods (black) and inactive periods (white) inferred from            
change point analysis.  
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Figure 8​. WT active cells exhibit short active times but maintain a long lag in               
the autocorrelation function: ​(​A​) Histogram of active times determined by change           
point analysis normalized such that the sum of all bins is 1. Error bars (black)               
represent the 90% confidence interval of 10000 bootstrapped samples from the data.            
The expected value for each bin (black dots) was calculated from a fit of all active                
times across all cells to a single exponential decay. (​B​) Same as ​A​, except              
histogram is of inactive times. (​C​) The autocorrelation function of transcriptional start            
site intensity computed at each time point (blue dots). The shaded area represents             
the 90% confidence interval of 10000 bootstrapped calculations of the          
autocorrelation function.  
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Figure 9 Deletion of Isw2​Δ is sufficient to abrogate long timescale correlation in             
PHO5 transcription: (​A​) Histogram of active times from WT (blue) and isw2Δ (gold)             
cells, as described in ​figure 8​. (​B​) Histogram of inactive times from WT (blue) and               
isw2Δ (gold) cells as described in ​figure 8​E​. (​C​) The autocorrelation functions as             
described in ​figure 8​C​, but of WTs (blue) and isw2Δ (gold) cells. 
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Figure 10​. Deletion of Chd1​Δ ​alters both burst duration and frequency of ​PHO5             
transcription: ​(​A​) Histogram of active times from WT (blue) and chd1Δ (green)            
cells, as described in ​figure 8​A (​B​) Histogram of inactive times as described in ​figure               
8​B. (​C​) The autocorrelation functions as described in ​figure 8​C​.  

65 



 

Figure 11​. smFISH of PHO5: ​(​A​) Histogram of cytoplasmic RNA counts per cell             
determined by smFISH of PHO4 WT cells (blue bars). Also plotted are the best fit to                
a poisson process (dashed line) with mean of 37 transcripts and the fit to the random                
telegraph model (blue filled area). (​B​) Same as ​A​, but for Pho4[Δ75-78] cells (light              
blue). (​C​) Same as ​A​, but for Pho4[Δ79-90] cells (pink). (​D​) Same as ​A​, but for                
Pho4[Δ91-99] cells (light red). (​E​) Same as ​A​,  but for Pho4[Δ79-92] cells (red).  
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Figure 12​. Pho4 regulates both burst duration and frequency of ​PHO5           
transcription: ​(​A​) Histogram of ​PHO5 ​active times as described in ​figure 8​A​, from             
PHO4 WT (blue) and Δ75-90 (red) cells (​B​) Histogram of inactive times as described              
in ​figure 8​B​. (​C​) The autocorrelation functions for ​PHO5 ​transcription as described            
in  ​figure 8​C​.  
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Figure 13​. ChEC-CLK of Pho4 binding dynamics at UAS1 of ​PHO5​: ​(​A​) To             
compute activator dynamics a transition in steady state upon addition of           
formaldehyde is modeled by the CLK Model ​[69]​. An activator (red) stochastically            
binds to a target sequence (red circle). The formaldehyde crosslinking (marked by an             
X) of the activator to DNA is irreversible indicated by an unidirectional transition. (​B​)              
Diagram depicting theoretical samples collected at various time points by ChEC.           
Prior to addition of formaldehyde (t = 0), activator and nucleosome binding are in              
steady state; some average number of target sequences are bound by the activator.             
Upon addition of formaldehyde (t > 0), the activator bound fraction is crosslinked.             
Nucleosomes additionally become locked in place by crosslinking. As crosslinking          
time continues more and more activators bind the available target sequence (target            
sites without nucleosomes) and become crosslinked. Thus, as crosslinking time          
approaches infinity (t = ∞), every available target site becomes saturated with            
crosslinked activators. (​C​) ChEC data of Pho4-MNase binding at UAS1 of the ​PHO5             
promoter for various formaldehyde crosslinking times (points) with standard         
deviations (error bars) for both Pho4-MNase (blue) and Pho4[Δ85-99]-MNase (red)          
cells. The inferred maximum activator occupancy (dashed line) as well as best fit by              
the CLK model (solid curve) is also indicated for each condition. The difference in              
maximal activator occupancy (*) between WT and mutant cells indicates the           
difference in the number of total available UAS1 binding sites between conditions.  
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Figure 14​. Gene ring analysis and average nucleosome occupancy across the           
PHO5 locus: ​(​A​) Diagram depicting psoralen crosslinking and gene ring purification           
for EM analysis of individual ​PHO5 gene molecules: i) nucleosomal ​PHO5 ​prior to             
recombination (top), ii) nucleosomal gene ring post recombination (middle left), iii)           
psoralen cross linked and purified gene ring (middle right), psoralen preferentially           
crosslinks linker DNA such that nucleosome positions become “etched” onto the           
DNA as single stranded bubbles when the nucleosomes are removed and the DNA             
is denatured, iv) Nco1 digested psoralen cross linked gene molecule (bottom), LexA            
binding motifs used in the purification process generates a single stranded “fork” at             
the 3’ end of the PHO5 locus. Using this distinguishing feature, individual molecules             
may be oriented to one another. (​B​) EM image of chromatinized gene ring from ​PHO               
active WT cells from ​[55]​. The position of the TS is indicated. In addition, the fork is                 
visible, left. Scale bar indicates 100 nm. (​C​) Plot of average nucleosome occupancy             
per base inferred from r-value measurements from EM images of psoralen cross            
linked PHO5 gene molecules in a repressive (grey), active (blue line), Pho4[Δ85-99]            
mutant (red line) context. A diagram of the ​PHO5 locus (top) is depicted to scale.               
Indicated is the position of UAS1 (dashed lines) highlighting the difference in average             
nucleosome occupancy between PHO4 WT and PHO4[Δ85-99] cells at UAS1 (*).            
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Figure 15​. Single molecule analysis of individual NDRs in the PHO5 promoter:            
(​A​) The “NDR” within each PHO5 gene molecule, under repressing conditions (grey),            
is identified and plotted. Individual cells (rows) are sorted by the length of the “NDR”.               
The “NDR” is identified as the longest contiguous linker region which overlaps            
activating sequences (vertical dashed lines). A diagram of the PHO5 locus is            
depicted to scale (in the x dimension), (top) showing the average “NDR” length (grey              
line) and the average position of the most proximal nucleosomes (dashed oval), the             
“-1” and “+1” nucleosomes, on either side of the “NDR”. (​B​) Same as for ​A​, but under                 
activating conditions (blue). (​C​) Same as for ​B​, but in the Pho4[Δ85-99] cells (red).              
(​D​) Plotted is the inverse cumulative density function of the end position of the “-1”               
nucleosome (top) and the cumulative density function of the start position of the “+1”              
nucleosome (bottom) for the three conditions (top). A diagram of the ​PHO5 locus             
with average “-1” and “+1” nucleosome positions is depicted (top). (​E​) Plotted is the              
average occupancy of identified ”+1” nucleosomes; the “+1” nucleosome is identified           
in the same way as ​A​. A diagram of the ​PHO5 locus depicting two subpopulations for                
positions of the “+1” nucleosome (top). 
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Figure 16​. Nucleosomes shift downstream from the TATA box upon activation.           
(​A​) Nucleosome occupancy inferred after selecting only the first nucleosome which           
overlaps the TS of each molecule; isolating nucleosomes which occupy the 3’            
position described in ​figure 15​E. ​A diagram of the ​PHO5 ​locus (top) depicting the              
shift in average nucleosome position, which uncovers the TATA box. (​B​) Same as ​A​,              
however, in cells with a TATAΔ delete (pink). Positioning of the nucleosome is             
disrupted. Each peak is depicted as a representative cartoon nucleosome (top).  
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Figure 17​. ​Single sample paths of the PHO5 TS under varying mutations: (​A-D​)             
PHO5 ​transcription site intensities for a single cell, same as ​figure 7​A​. Except with              
WT (blue), isw2Δ (gold), chd1Δ (green) and ​Δ75-90​ cells (red).  
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Figure 18​. 100 randomly sampled cell trajectory of PHO5 transcription under           
varying mutations: (​A-D​) ​PHO5 ​transcription start site intensities for 100 randomly           
selected cells, same as ​figure 7​C​, however, under varying conditions. (​E-H​) Inferred            
active and inactive periods same as ​figure 7​D​. Cells are the same as  ​A-B​.  
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Figure 19​. Distribution of transcript number in active periods: (​A​) Histogram of            
TS intensity from active WT cells determined by smFISH normalized by the mode of              
the distribution of cytoplasmic transcripts. An example smFISH image (inset) is also            
depicted with a DAPI stained nucleus (magenta) and ​PHO5 transcripts tagged with            
CY3 (yellow). The nascent transcript at the TS is marked by a white triangle. (​B​)               
Histogram of average TS intensity from individual active periods determined by           
live-cell microscopy using CPD. An example trace (inset) is depicted with active            
periods indicated (grey boxes). The average of each active period in the example             
trace (white bars) are indicated with a white triangle. Variance in transcript intensity             
indicates the variable number of transcripts present at the TS in time.  
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Chapter 3: Permutational analysis of ​Saccharomyces      
cerevisiae​ regulatory elements 
 

Namrita Dhillon, Robert Shelansky, Brent Townshend, Miten Jain, Hinrich Boeger,          

Drew Endy, Rohinton Kamakaka 

 

Gene expression requires the integration of many signals at specific regulatory           

elements at a diverse set of locations at different times. As discussed above,             

regulation is often mediated by sequence specific regulators that recognize their           

cognate binding sites in both DNA. However, regulation is also achieved through the             

recognition of regulatory elements in RNA. Mutational analysis and         

genomic/epigenomic mapping of proteins to specific genomic locations has led to the            

classification and delineation of seemingly modular sequence elements: enhancers,         

promoters, 5’ untranslated regions (5’ UTRs), open reading frames (ORFs), 3’           

untranslated regions (3’ UTRs), as well as transcriptional terminators (TTs). In yeast,            

the promoter and enhancers are often conflated together; in this document, we will             

use the term promoter to refer to the DNA elements that are bound by the general                

transcription factors and the polymerase and the term enhancer to refer to            

sequences containing UAS elements which are recognized and bound by specific           

activators ​[93]​. The enhancer, made up of UAS elements, directs the initiation of             

transcription in response to signals while the core promoter, made of the TATA box              

and initiator elements, functions as a scaffold for the binding for GTFs and RNA              

polymerase II. The 5’ UTR is involved in the association of the mRNA with the               
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ribosome. While the 3’ UTR is involved in mRNA stability and turnover. The TT              

signals to initiate poly-adenylation of nascent transcripts which leads to transcript           

release from the DNA. 

Together these elements, enhancer, promoter, 5’ UTR, 3’UTR and TTS, form           

a regulatory cassette responsible for the regulation of expression. While these           

protein bound elements are modular and interchangeable, they do not function in            

isolation. Thus, expression ultimately requires effective integration of all of the           

signals via functional communication between different regulatory elements leading         

to a defined output. Early studies on gene regulation investigated regulatory           

elements of single genes via directed mutagenesis ​[94–96]​. These analyses gave           

way to saturation mutational studies of a single well-defined element. For example,            

mutating one UAS element in an enhancer ​[97]​. These approaches studied the            

function of these elements in isolation but did not systematically study the ability of              

an element to functionally communicate with other elements in a regulatory cassette.            

To study functional interactions between elements in prokaryotes an alternative          

approach was developed which relied on the construction of large permutational           

libraries of promoters and 5’UTRs ​[98–100]​. This method used a fluorescent reporter            

introduced downstream of each cassette in the permuted library to sort cells, on the              

basis of signal intensity, into bins of various expression levels. Then the sorted             

subpopulations of cells were sequenced to identify which sequence elements and           

collections of sequence elements correspond to a given level of expression. 

We describe a simple and rapid approach to build a combinatorial library of             

regulatory elements and have used this library to study regulation of 26 different             
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genes. We develop a similar approach as described above to characterize           

regulatory elements in the eukaryote, Saccharomyces cerevisiae. To this end, we           

annotated 26 different yeast genes with four different classes of regulatory elements:            

enhancers, promoters, 5’ UTRs and 3’ UTR/TT based on published data ​[101–107]​.            

Then, we constructed a permuted library with a maximal number of 456976,            

complete synthetic genes that drove the expression of a fluorescent reporter, using a             

modular cloning system ​[108]​. Cells containing the synthetic genes were then sorted            

by fluorescence intensity and sequenced by Nanopore sequencing. Thus, the          

collective contribution of each sequence element to overall expression of each           

cassette was inferred.  

Methods 

Annotation of regulatory elements 

Approximately, 60 different yeast genes of various expression levels in glucose were            

initially screened ​[102,103,109]​. From this set we selected 26 genes for experimental            

analysis based on the availability of data mapping various epigenetic marks and            

transcription factors. This final gene set endogenously maintains various levels of           

expression in glucose. Notably, a quarter of the genes are perceived as inactive in              

glucose. The regulatory elements of these 26 genes were then annotated using            

various databases ​[101–107]​. We identified the 3’ UTR and TT sequences ​[101]​. The             

TS was identified from RNA-seq data generated from cells grown in glucose            

[101–103]​. Using TS information and the location of the most proximal start codon             

we demarcated the 5’UTRs. The core promoter was defined by the binding of TATA              
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binding protein (TBP) ​[103–107]​; we selected genes classified as both TATA-less           

and TATA containing genes ​[103]​. The enhancer was defined by the negative space             

between the most proximal upstream gene and the core promoter. The chromatin            

architecture of the upstream regulatory regions of these 26 different genes was            

mapped using ATAC-seq data ​[107]​. These accessible sites have previously been           

shown to occur at protein binding sites in chromatin (​figure 29​). The permuted library              

was constructed from these individual annotated elements, using the Golden Gate           

ligation protocol to combine them in a directed but random manner ​[108]​.  

Quantification of expression 

Cells containing the library were grown to log phase in glucose containing media and              

sorted using a fluorescence assisted cell sorter (FACS) based on expression of both             

mRuby2 and EBFP2-2. We sorted the library into 4 expression fractions (no            

expression, low, medium and high expression) (​figure 21​). The gates for fluorescent            

cell sorting were based on various control strains. 63% of the sorted cells were in the                

no expression sorted fraction, 26% were in the low expression fraction, 8% were in              

the medium expressing fraction and 3% were in the high expressing fraction.  

DNA was isolated from the four sorted pools and the entire regulatory            

cassette, including mRuby2, was PCR amplified. Barcodes were ligated to the           

amplified cassettes to distinguish the four sorted pools and the PCR products were             

subsequently sequenced using an Oxford Nanopore MinION sequencer. Long read          

sequencing is a requirement for this method in order to identify every element across              

each gene cassette, >500 bps. Otherwise, it would be impossible to identify the             

interaction between individual regulatory elements. Of the total mapped reads, 61%           
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were from the no mRuby2 expression fraction, 19% were from the low expression             

fraction, 5% were from the medium mRuby2 expression fraction and 14% were from             

the high mRuby2 expressing fraction. To ensure a sequencing depth across cell            

fractions comparable to the number of cells sorted into each fraction, samples were             

pooled with concentrations which corresponded to their ratio in the cell fraction. We             

then estimate the mean expression of a specific element or a collection of elements              

from the elements read distributions. For ease of communication we define a gene             

fragment as a contiguous piece of DNA which contains one or more elements. Thus,              

a fragment containing all 4 elements, enhancer, promoter, 5’ UTR and 3’ UTR/TT,             

represents one regulatory cassette; while a fragment with a specific enhancer and            

promoter represent the average expression from 676, 26​2​, regulatory cassettes. 

We approximate the fraction of cells from a particular FACS fraction for a             

fragment using the number of reads observed for that fragment in each FACS             

fraction. We determined the ratio of a specific regulatory fragment in each sorted cell              

fraction by estimating the number of cells observed for each regulatory fragment in             

each cell fraction. The estimate, , of the number of cells containing fragment, ,     xi,b         i  

sorted into each fraction, , was determined by normalizing the number of reads,    b          

, by multiplication with,ri,b  

 

(3) 
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where and are the total number of cells sorted and reads mapped from bin , Cb   Rb              b  

respectively; i.e. we calculated the fractional representation of fragment , in bin         i    b  

and subsequently scaled that fraction by the fraction of cells observed in bin by             b   

FACS.  

We then inferred the mean expression exhibited by each regulatory element           

by fitting an estimate of cell counts for each fragment, described above, across each              

sorted fraction to a log normal distribution ​[110]​. Thus, the minimum expression that             

could be achieved by a fragment would occur if that fragment was solely present in               

the no-expression FACS pool. Similarly, maximum expression by a fragment would           

be achieved if that fragment was solely present in the highly-expressing FACS pool.             

We assume that are random variables sampled from binned log-normal   xi,b         

distributions where the bins are determined by the FACS fraction boundaries, 

 

. 

 
 
 
(4) 

Where, , is the vector of ratios for all bins described above, , is the mean xi            μi     

expression, , is the standard deviation of expression and , is the expression σi         Ai     

value for the upper boundary of bin determined by FACS.b   
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Results 

Contribution of individual elements to expression 

We compared the distribution of enhancers in the four sorted fractions (​figure 22​).             

We expect individual elements to maintain similar expression as the endogenous           

expression for the gene they came from. For example, enhancers from genes known             

to be active in cells grown in glucose rich media, like ​TDH3 ​and ​RPL28 ​that were                

enriched in the high and medium expressing fractions ​[102,103,109]​. Similarly,          

among the genes included in our combinatorial library were a set of inducible genes,              

GAL1​, ​ADH2​, ​CUP1 ​and ​ICL1​, that are inactive in glucose rich media. The             

enhancers from these inducible genes are present almost exclusively in the           

non-expressing fraction; enhancers that were repressive in glucose conditions         

remained repressed regardless of other regulatory elements present. However,         

promoter elements show a much different result. Promoters for ​PGI1 ​and ​CDC19 ​are             

both highly expressed in glucose containing media ​[102,103,109]​, but their promoter           

fragments are present to a greater extent in the non-expressing fractions. While,            

promoters of genes not active in glucose containing media such as ​HXT2​, ​PHO5 ​and              

ADH2 ​are enriched in the highly expressing fractions. The UTR fragments have            

similar distributions across the four sorted fractions, with a few exceptions,           

suggesting that, in general, they play a lesser role in regulating gene expression.  

We then analyzed the average inferred expression of each element.          

Enhancers affect expression over a large range of expression values (​figure 23​). The             

inducible enhancers, like GAL1, were inactive in glucose rich media. While the            
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glucose induced and housekeeping enhancers, TDH3 and RPL28, were active to           

varying extents under these growth conditions (​figure 23​). The promoter fragments           

also modulate expression level, but the variation in expression is less than that             

observed with the enhancers. A similar profile was seen with the 3’ UTRs. Most of               

the 5’ UTRs cluster together indicating that the different 5’ UTRs function more or              

less equivalently. We note here that we are measuring protein levels and the fold              

difference between the highly expressed genes and the inactive genes is not as             

great as the fold difference reported for these genes via measurements of mRNA.             

This could be due to protein homeostasis dampening the expression levels of            

mRuby2. In addition, Inferred expression levels are averaged across every other           

element in the permuted collection. Thus, the average inferred expression is           

expected to be significantly different from the expression of each endogenous locus.            

Though, as suggested above we expect the expression rank to be conserved. 

Pairwise interactions between regulatory elements 

To identify interactions between pairs of regulatory elements we analyzed the           

expression of all possible pairwise interactions of two elements within our data set.             

For example, the mean expression of each enhancer element when paired on the             

same fragment with one of the 25 different promoter elements was determined            

against a background of all 25 5’ UTRs and all 25 3’ UTRs/TTs. We sorted               

enhancers based on mean expression and identified strong, intermediate and          

inactive enhancers in glucose containing media (​figure 24​A​). This rank distribution is            

consistent with published measurements of mRNA levels from these genes          

84 



[102,103,109] but there are some differences in the ranking presumably because the            

other regulatory elements alter enhancer mediated expression levels. 

The ​TDH3 ​gene is one of the most highly expressed genes in yeast. When              

we analyzed the ​TDH3 ​enhancer across promoters we found several promoters           

(​HXT2​, ​PDC1​, ​ADH1 ​etc.) that were able to increase gene expression over the             

native ​TDH3 ​enhancer/promoter pair. Similar increases in expression were observed          

for the other active enhancers as well. This change in expression was not only in one                

direction. Several promoters dampened expression from even the strongest         

enhancers. For instance, expression from the ​TDH3 ​enhancer was significantly          

reduced by the ​LEU9​, ​CUP1 ​and ​ICL1 ​promoters. This suggests that promoters            

functionally communicate with enhancers to modulate enhancer mediated        

transcription. This also suggests a method of communication that is multiplicative           

and not additive ​[91]​. An additive interaction cannot yield repression. Enhancers and            

promoters regulate distinct steps toward gene expression. 

Clustering was used to classify and subcategorize different regulatory         

elements and pairs of regulatory elements. We identify three main clusters of            

enhancers, a high and a low expressing cluster and a cluster where the enhancer is               

not active (​figure 24​B​). The difference in inferred expression between enhancer           

clusters is made by increasing the level of expression of all promoters. However,             

certain enhancers, TDH3 ​and CDC19​, appear capable of activating promoters no            

other enhancer can activate even though they are not the highest expressing            

enhancers. Clustering of promoters, though not robust, suggests that “TATA-less”          

promoters are weak promoters while the TATA containing core promoters cluster to            
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some extent as strong promoters which is consistent with studies of core promoters             

in yeast and human cells ​[111]​.  

To test the hypothesis that expression of the endogenous locus corresponds           

to strength of individual regulatory elements that make up that locus we compared             

the rank correlation between enhancer expression and promoter expression. There          

was no observed correlation between the rank order of enhancer activity and the             

rank order of promoter activity. This is likely due to the inclusion of inducible genes               

into our library which are repressed in glucose media but highly expressed when             

activated. When their native promoters are separated from their cognate enhancers           

and paired with other enhancers, these promoters’ innate ability to foster high            

expression manifests itself. It is for this reason that ​HXT2 ​and ​ADH2 ​enhancers are              

inactive but their core promoters are among the strongest. This again highlights the             

distinct roles enhancers and promoters play in regulation of expression. 

Analysis of expression for the regulatory elements indicated that the principal           

driver of variation in expression was generated by enhancers and promoters.           

Individual strong/weak promoters and enhancers dictate overall expression of a          

particular gene fragment. We sought to identify groups of enhancers and promoters            

which communicated with each other. A PCA using enhancers as samples and            

promoters as features, effectively distributed enhancers in promoter space (​figure          

25​A​). This analysis found that one predominant axis of variation across the 26             

different promoters explained ~90% of the total variance (​figure 25​A Inset graph).            

Plotting the 26 enhancers across the first two principal components shows no distinct             

clusters, rather a gradient emerges. This distribution mirrors the rank order of these             
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enhancers based on expression. We therefore infer that PC1 reflects the ability of an              

enhancer to amplify expression, we call this enhancer strength. However, we           

observed some outliers to this general trend. The RPL28 enhancer occupies a            

distinct position on PC2, while ​TDH3 ​is an outlier along PC1 demonstrating its ability              

to mediate very high levels of expression. The same analysis with promoters as             

samples and enhancers as features also showed that one principal component           

explains ~90% of the total variance (​figure 25​B inset graph). Thus, we conclude PC1              

likely reflects promoter strength, with “TATA-less” core promoters at one end and            

strong TATA containing promoters at the other. It was surprising to us that the              

presence of the TATA box simply dictated expression level and did not impart more              

sophisticated structural communication between enhancers and promoters. 

Interestingly, PC1 for 5’ UTRs and 3’ UTR’s (data not shown) explains only              

~60% of the total variance suggesting a more complex regulatory relationship           

between the UTRs though the exact nature of this variation remains to be             

determined.  

Validation of expression of gene fragments 

To verify the results obtained by FACS and Nanopore sequencing of various            

enhancer/promoter pairs, we selected 9 genes, of various strengths, from the full set             

of 26 to interrogate by an alternate technique. We built a smaller 81 cassette set with                

only permuted enhancers and promoters combined with the promoters’ cognate          

5’UTR controlling the fluorescent reporter Venus. The ​PGK1 ​3’ UTR was selected as             

a control for these constructs. We measured the expression of the fluorescent Venus             

reporter, directly, using a fluorescent plate reader. The fluorescence intensity was           
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normalized to the total intensity observed across the sum of all 81 constructs (​figure              

26​). A better solution would be to use an internal standard, i.e. control cells driving a                

known expression level of Venus, to normalize expression, as was done by FACs. In              

the absence of such a standard, normalizing by the sum was the best way to               

determine relative expression values for each gene fragment. 

In glucose containing media, the ​PGK1 ​enhancer with its cognate promoter           

generates 2.23% of the total fluorescence. This value almost doubles when the            

PGK1 enhancer is combined with either the ​TDH3 ​or the ​PDC1 ​core promoters             

(​figure 26​). Similarly, the ​TDH3 ​enhancer with its cognate promoter generates           

approximately 5.95% of the total fluorescence. This value increases to 7.85% when            

the ​TDH3 ​enhancer is combined with the ​PDC1 ​promoter. Analysis of moderately            

strong enhancers shows vast increases in expression when paired with strong           

promoters from other active genes. For example, the ​ACO1​, ​RPL28 ​and ​TPI1            

enhancers/promoter combinations generate high levels of protein but the levels can           

be increased significantly by swapping their native promoters with the strong           

promoters.  

Using these data, we show both enhancer and promoter elements positively           

and negatively influence expression. For example, the native ​TDH3 ​and ​PDC1           

cassettes are ranked 1st and 2nd in overall expression (​figure 24​A​). However, when             

the enhancer and promoter are separated, the ​PDC1 ​promoter increases expression           

from the ​TDH3 ​enhancer while the ​TDH3 ​promoter dampens expression from the            

PDC1 ​enhancer (​figure 26​) and the highest expressing cassette is the ​TDH3            

enhancer combined with the ​PDC1 ​promoter. Similarly, the native ​ICL1 ​cassette is            
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inactive in glucose rich media. However, analyzing its promoter separated from its            

native enhancer, we find that the ​ICL1 ​promoter is a moderately strong promoter.  

Total noise scales with mean expression  

FACS sorting and Nanopore sequencing allow large numbers, >400000, of permuted           

fragments to be analyzed simultaneously, however, with reduced resolution in          

evaluation of expression mean and variance. When maintaining a small number of            

bins it is difficult to infer the amount of variation in expression present in individual               

fragments. To study expression noise, we therefore investigated the smaller          

81-cassette yeast cell library using cytometry (​figure 27​). Using cytometry we           

calculated the mean fluorescence and the Fano factor values for each of the 81              

cassettes. There was an increase in Fano factor with a corresponding increase in the              

mean and the relationship appears to track a universal curve. The universal            

relationship could be caused by a number of different noise sources, both biological             

and technical but the data are consistent to what has been observed before             

[112–116]​. Since we tested TATA-containing and TATA-less promoters, our data          

indicate that the relationship is not simply dependent on the presence or absence of              

a TATA box. Notably, we observe a significant outlier to this general relationship             

between mean and noise, the fragment containing a ​TDH3 ​enhancer and the ​RPL28             

promoter. We hypothesize that this relationship between total noise and mean           

expression is generated by translation. Due to the expectation that differential           

regulation generates different levels of intrinsic RNA noise it is unlikely that this trend              

is dominated by intrinsic RNA noise. However, noise generated by translational           
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bursting should scale with the expression of a gene. Alternatively, this relationship            

could be generated by extrinsic factors to expression (see appendix 1). 

Enhancers and promoters act independently to respond to        

environmental stimuli  

We used the combinatorial library to study gene activation and repression under            

varying growth conditions (​figure 28​A-C​). To test whether repression and activation           

are achieved by enhancers and promoters independently, we chose to study           

expression of our 81-construct library in media containing glucose, galactose (a           

fermentable sugar), glycerol (a non-fermentable carbon source), as well as media           

lacking adenine.  

When comparing changes in gene expression in glucose compared to          

galactose containing media, we find that the ​ICL1 ​enhancer becomes derepressed in            

galactose. Notably, the expression of the ​ICL1 ​promoter does increase as well.            

Similarly, in glycerol containing media both the ​ICL1 ​and ​ACO1 ​enhancers become            

active while genes involved in fermentation show reduced activity. Media containing           

or lacking adenine shows a similar effect for the ​ADE2 ​enhancer. In contrast to ​ICL1​,               

the ​ACO1 ​promoter shows decreased expression. This is likely due to the general             

repression of most enhancers in the library. In addition, because we normalize to the              

sum of total intensity our estimate of expression is relative to the expression of the               

whole set. However, even without a normalizing control we observe repression and            

derepression. Thus, we conclude that in some instances both the promoter/5’UTR           

and enhancer play a cooperative role in regulation. This is unexpected because            
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activation is typically explained through the binding of specific activators to UAS. It is              

possible that uncharacterized UAS elements within the promoter generate this          

regulation. 

Chromatin structure alterations generate promoter specific regulation  

We investigated the specific change in regulation for enhancers and promoters in            

response to changes in chromatin structure by mutation of Rsc2 and Isw2. In a Rsc2               

mutant the fold expression of most genes is reduced (​figure 28​D-E​). Though, the             

opposite effect is observed at the ​LEU9 ​promoter suggesting that the repressive            

effects of the ​LEU9 ​promoter may be Rsc2 dependent. The same change in             

expression is observed in an Isw2 mutant. Risc and Isw2, as discussed above             

maintain a seemingly antagonistic behavior over the position of the “+1” nucleosome.            

A model of activation and repression of transcription that relies on the dynamic             

movement of the “+1” nucleosome would explain these results. These data suggest            

that this remodeling activity is essential for repression at some promoters but not             

others. In addition, we hypothesize that at most promoters, chromatin remodelers are            

required for proper gene activation.  

 

Discussion 

We observe that the ​RPL28 ​and the ​CDC19 ​enhancers have distinct expression            

patterns when paired with the different core promoters compared to the patterns            

observed with other glucose induced enhancers (such as ​TDH3​, ​PGK1​, ​PDC1​). The            

RPL28 ​and ​CDC19 ​genes are regulated by the transcription activators Rap1p and            
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Abf1p. Rap1p binds 300-400 bp upstream from the transcription start site and has             

the ability to evict nucleosomes ~400bp from its binding site ​[117–119]​. Genes            

required for growth in glucose containing media (such as ​TDH3​, ​PGK1​, ​PDC1​) are             

regulated in part by the transcription activators Reb1p and Gcr1p, which bind near             

the “-1” nucleosome and promote ​RSC ​mediated nucleosome mobility immediately          

downstream of their binding sites ​[117–120]​. It is possible that the ability of Rap1p to               

mobilize nucleosomes over a greater distance translates into its ability to activate            

genes from a more diverse set of promoters. Further mutagenic and molecular            

analysis of these synthetic constructs is needed to test the mechanisms underlying            

these interactions.  

We observe that the promoters affect expression independent of specific          

regulators bound to the enhancers. This suggests that the promoter acts to integrate             

signals emanating from the enhancer and to modulate overall expression. In yeast,            

there are two promoter architectures: TATA containing promoters and TATA-less          

promoters ​[96,97,111,121–123]​. However, our data suggest that the presence of a           

TATA box is likely to increase the levels of expression emparted by weak enhancers.              

The underlying molecular mechanism is most likely modulation of TBP binding. The            

presence of a TATA box at a core promoter likely increases the probability of the               

formation of a functional pre-initiation complex at the promoter since TATA boxes are             

high affinity binding sites for TBP/TFIID ​[111]​. Thus, weak activators stimulate           

transcription via a molecular mechanism that benefits from enhanced affinity of TFIID            

binding to the promoter while strong activators can mediate high-levels of           

transcription even in the presence of a sub-optimal core promoter. This begs the             
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question, why do certain genes maintain weak enhancers but strong promoters. The            

answer likely lies in the requirements for gene activation, specificity, gene regulatory            

function, etc. described in Chapters 1 and 2. From PCA, we hypothesize that, in              

general, the enhancers impact on a promoter, and vice versa, may be described by              

that element's “strength”. Thus, the expected expression of a fragment is mostly            

imparted by the combination of enhancer and promoter “strength”. Notably, this           

relationship is seemingly multiplicative. Additive relationships do not explain how an           

element may repress other elements, which we observe for both promoters and            

enhancers. This type of mechanistic relationship may only be explained with           

cooperativity by activation of distinct reaction steps ​[91]​. Thus, it is likely that             

enhancers and promoters play distinct biochemical roles in regulation.  

The standardization of regulatory elements and their characterization under         

varying growth conditions is necessary in order for regulatory elements to be            

routinely mixed and matched for use in synthetic circuits ​[124]​. We have generated a              

large, >4000000 fragment library of synthetic regulatory elements that exhibited          

varying activity levels similar to approaches previously used to explore          

enhancer-promoter combinations in prokaryotes ​[93,125,126]​. Using this library, we         

have identified combinations of regulatory elements that generate a large spectrum           

of activity which is not present in each element's endogenous context. We also show              

that these cassettes respond to external stimuli. Additionally, we have created a            

catalog of elements that is a valuable resource for the design of synthetic regulatory              

circuits in yeast.  
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Figure 20​. ​Construction of the permuted library: Each of the delineated regulatory            
elements (enhancer, promoter, 5’UTR and 3’ UTR) from the 26 genes were PCR             
amplified using specific primers and cloned into the recently described parts vector            
pYTK001 ​[108]​. Using the Golden Gate ligation protocol, the parts plasmids were            
then used to create a permutational library such that the elements would combine in              
a directed but random manner ​[108]​. This resulted in ~400,000 recombinant           
plasmids containing different permutations of the four regulatory elements, UAS          
enhancer, core promoter, 5’UTR and 3’ UTR, controlling the expression of a            
fluorescent reporter, mRuby2 (Figure 2A). The purified library was transformed into           
W-303 yeast cells, ROY5634. This strain also contained a fluorescent protein           
mTagEBFP2-2 under the control of the RPL18b promoter.   
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Figure 21​. Cytometry traces and sorted bins of yeast cells transformed with the             
permutation library: Cells with no, low, medium and high mRuby2 expression were            
collected in four fractions. Blue: no mRuby2 expression, Orange: low mRuby2           
expression, Green: medium mRuby2 expression and Purple: high mRuby2         
expression. (​A​) mRuby vs mTagEBFP2-2 fluorescence, of individual cells (dots) by           
FACS. Bin cutoffs are drawn indicated (​quadrilaterals). (​B​) mRuby2 fluorescence vs.           
cell count. 
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Figure 22​. Read histograms of regulatory elements: ​Stacked histograms of the           
fraction of each regulatory element (enhancer, promoter, 5’ UTR and 3’ UTR/TT)            
present in each of the four sorted fractions. The elements are rank ordered based on               
read fraction in the no expression bin. Color code is the same as ​figure 21​.  
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Figure 23​. Expression analysis of each regulatory element: ​The mean expression           
of a regulatory fragment was calculated as discussed in the methods. Box plots             
depicting the normalized expression of all 26 regulatory elements are shown. The            
box plot edges represent the 25th to 75th percentiles and the line across the box               
represents the median. Note, this is the average expression for a particular element             
across every other possible combination of elements.   
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Figure 24​. Expression analysis of pairwise combinations of regulatory         
elements: (​A​) The mean expression of a regulatory fragment was calculated as            
described in methods. Pairwise comparison of Enhancers (x-axis) with Promoters is           
shown. Each dot in the box plot represents one specific core promoter element. The              
color (red-blue) of the dot indicates the average expression of the corresponding            
promoter. Notably, the rank order of the colored dots remains constant across            
enhancers. The black dot represents the expression level mediated by the enhancer            
in combination with its native promoter. The black bar is the average enhancer             
expression. (​B​). Heat map and clustering of enhancers and promoters expression           
values. TATA containing promoters are labeled in red.  
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Figure 25​. ​Principal component analysis of pairwise combinations of regulatory          
elements: (​A​) The plot displays each sample with respect to the first two principal              
components with UAS enhancers as samples and core promoters as features and            
was used to determine the relationship among the samples. The percent variance            
present within each principal component is plotted in the inset. (​B​) The score plot              
displays each sample with respect to the first two principal components with            
promoters as samples and enhancers as features and was used to determine the             
relationship among the samples. The percent variance present within each principal           
component is plotted in the inset.  
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Figure 26​. Expression of enhancers with promoters/5’UTRs in glucose         
containing medium by direct observation of fluorescence: Depicted is a 9x9           
heatmap of different combinations of enhancers, promoters/5’UTRs driving        
expression of Venus with a PGK1 3’ UTR/TT. Cell color is determined by Venus              
fluorescent intensity using a flourometer. The expression of each individual pairwise           
combination was listed as a percentage of the sum of the expression values of all 81                
constructs. Clustering of elements by Ward’s method is also depicted.   
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Figure 27​. Mean vs. noise determined by cytometry: ​Cells containing the 81            
constructs were grown to log phase and analyzed in a flow cytometer to measure              
expression levels in individual cells. The mean and Fano factor, a metric which             
describes noise, were calculated for the population of cells for each construct.            
Experiment was performed in triplicate.  
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Figure 28​. Expression analysis of the 81 constructs under varying growth           
conditions. Cells containing the 81 combinations of 9 enhancers with 9 promoters/5’            
UTR were grown in different growth conditions and expression of the Venus cassette             
was measured in a fluorometer. (​A-E​) Each heatmap depicts log-fold change in            
expression that was calculated as from each condition to WT cells grown in glucose              
containing media. Three biological replicates were measured for each construct. Bar           
graphs above and on the left of the heat map are the summation of the nine                
individual values in the rows (enhancers) or columns (promoters). (​A​) Cells grown in             
medium containing galactose. (​B​) Cells grown in medium containing glycerol. (​C​)           
Cells grown in medium lacking adenine. (​D​) Cells containing an isw2 deletion grown             
in glucose. (​E​) Cells containing an rsc2 deletion grown in glucose.  
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Figure 29​. Plots of nucleosomes and transcription factor distribution at a           
subset of genes analyzed: The x-axis indicates the coordinate in the genome            
relative to the TS. The elements of each gene are indicated by shaded areas,              
enhancer (blue), promoter (yellow), 5’ UTR(green), endogenous ORF (grey) and 3’           
UTR (purple). Nucleosome occupancy as determined by mnase seq (black line),           
ATACseq (blue line). TBP occupancy determined by ChIP (red line).  
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Concluding Remarks 
 

In this thesis I presented a framework for describing the specificity of transcriptional             

regulation using continuous time markov processes, allowing for the description of           

the specificity of regulatory systems away from equilibrium. In doing so, I showed             

that stochastic removal and reformation of nucleosomes on promoter DNA may be            

used for the kinetic proofreading of protein-DNA interactions. This proposed          

proofreading model explains a number of observed biological phenomena, at least in            

part: i) why promoter nucleosome structure is heterogeneous even under activating           

conditions, ii) why transcription occurs in stochastic bursts, iii) how eukaryotic           

activators maintain high specificities while also maintaining high theoretical on-rates,          

among others. 

 

In addition, I presented multiple experimental and computational techniques to          

observe transcriptional bursting, chromatin remodeling and activator binding at a          

classic model gene, ​PHO5, ​in ​Saccharomyces cerevisiae​. Using these techniques I           

showed that transcriptional bursting of ​PHO5 ​occurs in at least two distinct            

timescales. I presented a model of kinetic proofreading of activator binding by the             

chromatin remodeler Isw2 and showed that correlation between bursts of          

transcription is lost upon deletion of Isw2. I also tested a model by which activators               

find their target sequences by 1-dimensional searching across promoter DNA          

between nucleosomes. I showed that the distance between nucleosomes in the           

PHO5 ​promoter correlates with activator on and off rates at a specific binding site              
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within the ​PHO5 ​promoter. This hypothesis potentially explains indirect cooperativity          

observed between activators. In addition, this model suggests why nucleosome          

removal is required for gene activation but not transcript elongation, to enhance            

activator on-rates. 

 

I also presented a novel technique for studying eukaryotic gene expression by            

generating and testing the expression of >400,000 permuted synthetic constructs          

generated from 26 genes from ​Saccharomyces cerevisiae​. 
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Appendix A: Background 
 

Pho5 and the ​PHO ​Pathway 
 

The yeast PHO5 Gene is a classic model of eukaryotic promoter chromatin            

structure and gene expression noise ​[127]​. Pho5 is an acid phosphatase that is             

secreted from the cell into the periplasm ​[128]​. PHO5 expression is tightly regulated             

by activation of the PHO pathway, which responds to depletion of intracellular            

phosphate concentrations ​[122]​. Upon phosphate starvation the PHO pathway         

becomes active, deploying a myriad of mechanisms to boost and maintain internal            

phosphate stores. This includes the expression Pho5, which scavenges phosphate          

from the extracellular environment ​[129]​.  

The PHO5 gene responds to two upstream activating sequences (UAS)          

which are recognized and bound by the primary specific activator of the PHO             

pathway, Pho4. Pho4 binds cooperatively with the activator Pho2 ​[130]​. Pho4 is            

constitutively expressed, however, its presence in the nucleus is regulated through a            

phosphorylated state controlled by the cyclin, Pho80, and cyclin dependent kinase,           

Pho85 ​[131]​. Active Pho85 leads to a phosphorylated Pho4 which is shuttled out of              

the nucleus repressing PHO regulated genes. We use a deletion in pho80Δ to             

inactivate Pho85 and force an active PHO5 gene. This has the experimental benefit             

of allowing PHO5 to achieve a steady state expression independent of phosphate            

concentration; as opposed to an induction of the PHO pathway by phosphate            

starvation where expression varies in time. Within this thesis discussion of activating            
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conditions usually refers to a pho80Δ as repression conditions refers to WT cells             

grown in phosphate containing media 

Conflating active and inactive periods with ‘On’ and ‘Off’         

transitioning of a two state model 

The correspondence between the observable, activity and inactivity, and the          

theoretical, ON and OFF transitioning, can be tenuous. An active period must            

encompass both the lifetime of individual transcripts on the DNA as well as the              

lifetime of the ON state. The lifetime of an active period cannot be shorter than the                

lifetime of a single transcript on the DNA. Thus, the lifetime of the transcript on the                

DNA sets the lower limit for the lifetime of the active period. While, the edges of the                 

inactive periods are demarcated by the lifetime of the OFF state but may be              

obscured by the lifetime of the transcript on DNA. In addition, Short lifetimes in ON               

states may pass without activity. Liftimes in OFF states that are shorter than the              

lifetimes of the nascent transcript are undetectable. A window of activity must always             

start after the beginning of an ON state. While an ON state may end before or after                 

the end of a window of activity. Beyond this, the determination of active and inactive               

periods is not free of arbitrary decisions (e.g. thresholding, CPD). However, CPD,            

high frequency MFM, and the use of a strongly transcribed gene with short ON              

sojourn and short transcript length, PHO5, may together provide a good estimate of             

the lifetimes for ON and OFF states through the observation of active and inactive              

periods. However, in general conflating periods of activity with the On/Off transition            

assumed from a two state promoter model yields false results. 
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Noise In Gene Expression 

Gene expression for a particular gene varies from cell to cell within a             

population and even between gene homologues within individual diploid cells ​[132]​.           

Intercellular and intracellular variability in gene expression, called transcriptional         

noise or simply noise, is caused by two types of variation: “extrinsic” and “intrinsic”              

[133]​. Extrinsic noise is generated by variation in the cellular environment where            

transcription occurs and intrinsic noise is generated within the biochemical process           

of transcription ​[134]​. Hence, extrinsic noise is the measured variation in expression            

between identical genes within two distinct cellular environments; intrinsic noise is           

the measured variation in expression between identical genes within the same           

cellular environment. Eukaryotic genes exhibit vastly different levels of intrinsic noise           

[135,136]​. Divergent intrinsic noise levels for a pair of genes, determined by context             

specific biochemistry, are explained by alternative modes of regulation. 

Noise may be quantified by the Fano factor -- a statistic that measures the              

ratio of transcript variability to transcript mean, . We may call the relationship       μ
σ2       

between the Fano factor and mean transcript copy number the noise profile of a              

gene. ​[122]​. Divergent noise profiles are explained by alternative modes of           

transcription: “Poissonian” and “bursty” ​[137]​. Poissonian transcription is observed         

when transcript initiation events are uncorrelated to one another; bursty expression is            

exemplified by discrete pulses, or bursts, of correlated transcription initiation events           

followed by periods of inactivity ​[138]​. 
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A linear noise profile at unity is well explained by a stochastic birth-death             

process ​[138]​. The birth-death model is a process in which transcripts are made at              

rate, (l), and degraded at rate, (d); this implies regulation only occurs at the level of                

transcript initiation and degradation. Noise profiles that are not linear or leave unity             

are often modeled by a random-telegraph process ​[135,136,139]​. This model          

expands on the birth-death process by formalizing the promoter state: a promoter            

may either be “active” or “inactive” ​[133,138,140,141]​. Transcripts are degraded at           

rate, (d), but can only be produced at rate, (l), if and only if the promoter is active.                  

This model introduces two new regulatory parameters: (a), the rate at which the             

promoter becomes active and (b), the rate at which the promoter becomes inactive             

again; the parameter (a) describes the burst frequency, how often the promoter turns             

“on”, and the parameter (b) describes the burst size, how long a promoter remains              

“on” once activated. Note, noise produced within a random-telegraph process may           

reduce to that of the birth-death process ​[68,122]​.  

 

Appendix B: Detailed Methods 
Microscopy 
 

Live-cell imaging 
 
Yeast Cells were grown in liquid culture to mid log-phase (3 - 5 X10^7 cells/ml). Cells                

were then concentrated and spotted onto an agar patch and #1.5 coverslip as             

described in ​[142] using the mold described in ​[143]​. Cells were then incubated at              

30°C for 30 minutes. A stage top incubator was used to maintain constant             

temperature of 30°C during imaging. MFM Images were taken in 2.5 second            
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increments over 20 minutes with an exposure time of 250ms and a laser power of               

30% (get exact power measurement). 

 
smFISH 
 
smFISH was accomplished as previously described ​[144]​. Yeast cells were grown in            

liquid culture to mid log-phase. Cells were then cross-linked with          

formaldehyde(product), lysed with liticase(product) and adhered to poly-l-lysine        

coated coverslips (product). Coverslips were then hybridized with 2.5nM probe for 5            

hrs at 37℃. Probes were targeted to the PP7 hairpin repeats and labeled with              

Quasar570 and Quasar670 (biosearch technologies). Coverslips were then mounted         

onto glass slides with mounting media containing DAPI(ProLong Gold, Life          

Technologies).  

 
 

Image Analysis 
 

Live-cell imaging  
TS fluctuation analysis is achieved in four steps: i) Identification of candidate RNA, ii)              

assignment of candidate RNA to nuclei, iii) quantification of the TS intensity, and iv)              

tracking each TS in time. Candidate RNA are identified by finding local maxima in the               

band-pass filtered maximum projection of the z-stack at each time point; the            

maximum projection minimizes fluctuations in puncta intensity due to RNA          

movement in the z direction during imaging and the filter reduces the false positive              

rate due to cytoplasmic RNA and unbound coat protein. Once identified, a candidate             

RNA is then assigned to a nucleus by colocalization with an estimate of the nuclear               
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boundary. The brightest nuclear RNA is assumed to be the TS; A ‘trace’ is formed               

by tracking an individual TS in time. If no puncta is assigned at a given time point the                  

TS position is interpolated. TS intensity quantification is achieved using an           

established gaussian mask algorithm ​[145]​. Photobleach correction is achieved by          

trace detrending as described in ​[146]​. Background normalization is achieved by           

subtracting the mode of the kernel density estimate for each trace; this assumes the              

most likely number of transcripts on the TS is zero. In autocorrelation analysis,             

median smoothing with a window size of 6, 15s (shorter than the lifetime of a single                

transcript), was used to reduce noise due to transcript movement in the z-dimension.             

As a transcript leaves focus between planes its intensity is reduced. Segmentation of             

traces into ‘active’ and ‘inactive’ periods was accomplished by CPD using a            

windowed approach with a normal cost function detailed in ​[147]​. CPD has benefits             

over traditional thresholding methods due to its ability to better approximate           

boundary frames while reducing error in transcript detection. Transcript edges often           

have reduced intensity. Thresholding techniques are tuned to miss classify these           

frames in order to reduce background noise generally. CPD combines multiple           

frames across a segment to infer transcript presence of a single frame. Thus, noise              

in transcript detection is reduced while maintaining the ability to detect transcript            

edges. Autocorrelation functions were computed with the global mean and variance           

as suggested in ​[148]​. Autocorrelation functions were fit to the 1-step promoter,            

2-step promoter and a 4-state promoter.  
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smFISH 
Cytoplasmic and nascent RNA were Identified as described above; however,          

cytoplasmic transcripts were required to lie within an estimate of the cytoplasmic            

boundary. The number of nascent RNA was calculated by normalizing the TS            

intensity with the average intensity of cytoplasmic transcripts. All analysis was           

accomplished using custom built scripts and previously established code ​[148]​. RNA           

count distributions were fit by a Poisson process and the random telegraph process             

[149,150]​.  

ChEC-CLK 
Clk and Chec were adapted from ​[151]​, and ​[152]​. Cultures were grown to mid log               

phase in YPD. Cultures were concentrated and aliquots of ~3 X10^9 cells were             

made. Cell aliquots were crosslinked in 1% formaldehyde for varying time lengths            

and quenched in 2.27M (final) Glycine. Fixed cells were washed in 125mM glycine,             

pelleted, frozen in liquid nitrogen and stored at -80°C for subsequent cleavage.  

Thawed cells were washed by bufferA​d (15mM Tris-HCl ph 7.5, 80mM KCl,            

2mM EDTA, 0.2mM spermine, 0.5mM spermidine, 5mM β-Mercaptoethanol)        

prepared fresh and supplemented with 1X PIs and 1X PMSF. Cells were washed a              

second time with bufferA​g (15mM Tris-HCl ph 7.5, 80mM KCl, 0.1mM EGTA, 0.2mM             

spermine, 0.5mM spermidine, 5mM β-Mercaptoethanol) supplemented with 1X PIs         

and 1XPMSF, also prepared fresh. Cell aliquots were split in half for the no cleavage               

control. Cleavage reactions were carried out by addition of 2.2mM (final) CaCl​2 and             

incubated at 30°C for 30 minutes. Reactions were quenched in stop buffer (1% SDS,              

200mM NaCl, 10mM EDTA, 2mM EGTA). RNA and protein were then degraded with             
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RNAse A and Proteinase K treatment and DNA was subsequently purified by            

phenol/chloroform extraction and ethanol precipitation. Southern analysis was        

performed with a DNA probe upstream of PHO5’s UAS1. Pho4 occupancy was            

determined computationally by quantifying relative band intensities for bound and          

unbound PHO5 gene molecules. 

Gene Ring Analysis 
Yeast culture, purification, psoralen crosslinking and electron microscopic imaging of          

gene rings was accomplished as described in ​[153]​. R-value analysis of each            

molecule was determined by hand tracing electron micrographs and computationally          

assigning base coordinate and occupancy status using custom built python code. In            

brief: i) Orientation of a gene molecules were determined by presence of a             

downstream “fork” ​[55]​. ii) Each DNA strand was identified and aligned to its             

complement by closest distance. iii) A coordinate was said to be nucleosome free if              

the distance between its position on the two DNA strands exceeded a threshold             

distance, determined empirically. 
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Table 1. Yeast strain construction for Chapter 2: ​Genotype changes are indicated 
in bold.  
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Table 2. Strain Construction Strategy. 
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Table 3. Primer List. 
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Appendix C: Continuous Time Markov Processes 
 

A Graphical Representation of Biochemical Processes 

We model stochastic molecular dynamics of ​PHO5 as a continuous time           

homogeneous markov process, which may be represented by a ‘directed’ graph           

[20,21,154]​. Let be a continuous time homogeneous        

Markov process with countable state space, . The sample space Ω      {1, .., }S =  . n      

corresponds to the set of all ​PHO5 genes, while the state space, S, is the set of                 

specific ​PHO5 promoter configurations. The transition graph consists of nodes,          

which correspond to elements of S, and directed edges, which indicate allowed            

transitions between states. Thus, Individual biochemical states are represented as          

nodes and transitions between biochemical states are represented as directed          

edges. represents the state of the promoter at a specific point in time t. Thus, we Y t                

can describe the probability of a promoter being in a specific state, i, at time, t,                

. The relative concentrations of individual biochemical states are(Y )P t = i          

represented by a column vector of probabilities (which sum to 1) of the system being               

in each node at time t, , while the rate of probability flow between nodes is                

described by the derivative of vector of probabilities, .  

By applying a Markov assumption, that the process is time invariant, it can be              

shown, 

(1) 
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Where W is a matrix of transition rate constants, called the ‘generator’, which defines              

the process. Equation 1 is often referred to as ‘the master equation’ of the process.               

The master equation is a series of differential equations relating the concentrations            

of individual biochemical states, probabilities of nodes, to the rates of chemical            

reactions, probability flow between nodes.  

Definition of the transition function 

The stochastic process may be defined by a matrix of transition functions with             

individual elements, , for all pairs of nodes, (j, i), in the graph including self  (t, )pji t + h              

pairs. Where, , represents the probability of being in state j after time t  (t, )pji t + h             

given the process started in state i at time t+h. The Markov assumption requires that               

the rate constants of a chemical reaction at any given time t are the same at any                 

other time t+h. Applying a time homogeneous Markov assumption we get, 

(2) 

The transition function, , is time invariant; the probability of transitioning from i   (h)pji           

to j only depends on being in state i at time t and not the process’ history prior to t.                    

With respect to our process Y, 

.  

We then may define , the square matrix of transition functions. P t = p (t)( ji )   
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. 

 

From equation 1. We see that, 

. (3) 

Where, are the initial conditions of the process. The probability of being in any               

state at time t depends only on the transition matrix and the initial conditions. The               

probability of being in state j at time t, , is equal to the sum of probability flow        (t) pj          

into and out of state j in time t, . The derivative of equation 3 yields the         (t)p (0)∑
 

i
pji i          

rate of probability flow between nodes, 

. 

(4) 

Equation 4 is a set of linear differential equations which describe the process. To              

solve this equation we must solve .Pddt t  

Derivation of the Master equation 

We derive the master equation from using a trick where we insert an      (t )pji + h         

additional state, k, in between the transition from , , such that the         i → j   i → k → j     

transition from occurs at time t, ; where k can be i or j or any other   i → k      (t , )pjki + h 0            

state. Applying the Markov assumption, we can seperate into        (t ) pjki + h   (h) p (t)pjk ki  
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because . The probability of (t , ) p (t , ) p (t, )  ≡ p (h) p (t)  pjki + h 0 =  jk + h t ki 0 jk ki     

transitioning from state i to state j in time t+h, is equal to the sum of the          (t )pji + h        

probabilities of transitioning from i to k at time t and then from k to j at time t+h over                    

all k. Thus,  we derive the Chapman-Kolmogorov equation: 

  

The Chapman-Kolmogorov equation may be written in matrix form: 

(5) 

We then take the derivative of  By definition of the derivative,.P t  

. 

 

From equation 5, we get, 

. 

 

 

Then we may pull out ,P t  

; 

 

where is the identity matrix, whose diagonal elements are all 1. We can show I               

. Intuitively, the probability of transitioning from any state, i, to any other state,P 0 = I               

j, where is 0, . Additionally, if , the probability must be 1;  =i / j   (0) ; i =pji = 0  / j    i = j       

no other transitions were possible. Thus, , a matrix whose diagonal entities,      P 0 = I       
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the entries, are all 1’s and all other elements, , are 0’s. From this follows i = j         =i / j       

with substitution, 

, 

 

because is independent of h. From the definition of the derivative again, we get:P t  

. 

 

We then define W, where ,W = dt
dP 0  

. 

(6) 

The generator W is a constant matrix, whose entries are the transition ‘rate             

constants’ of the process. The diagonal elements are equal to the inverse of the sum               

of their columns, a byproduct of the conservation of probability mass; The rate out of               

a node is equal to the sum of the rates into other nodes from that node. These rate                  

constants dictate the sojourn time before each transition. For the solution of , see            P t   

below. 

Substituting in Equation 4 to Equation 6 we get, 

. 

 

Which substituting from Equation 2 simplifies into Equation 1, 

. 
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◼  

Steady state, equilibrium and detailed balance 

In steady state, when the probabilities of each state stop changing in time,             

, 

the master equation becomes, 

; (7) 

Where, π​, is the column vector of steady state (stationary) probabilities. The 0 here              

is the column vector of 0s. The generator W is singular, therefore, a non-trivial              

solution to Equation 7, ​π ​≠ ​0 , always exists. If the graph is strongly connected, every                 

node is reachable by every other node by some path, ​π is uniquely defined ​[155]​.               

Therefore, ​p​(t)→​π ​for t → ∞ ​[156]​. Equation 7 shows that ​π is the basis vector,                

whose sum is one, of the kernel of W. Alternatively, ​π may be calculated using the                

Matrix-Tree theorem ​[154,155]​. 

A process is in ‘detailed balance’ if and only if, , for all i,j,          p (t) w p (t)wji i =  ij j     

and t; the flux of probability mass between each node is the same. Detailed balance               

implies steady state, . This is intuitively understood: if the rate of            

probability flow between all nodes is equally balanced, detailed balance, then there            

can be no change in probability in any node in time, steady state. The reverse is not                 

true. Detailed balance is analogous to the concept of equilibrium in biochemistry.  
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In detailed balance, there is no way to determine the direction of time, for              

there is no net flux of probability mass between any two nodes. Both forward and               

backward direction of any sequence of events are stochastically indistinguishable. A           

process in detailed balance is therefore called 'reversible'; a process that violates            

detailed balance is called 'irreversible' ​[156]​. 

Whether a process in steady state is also in detailed balance may be inferred              

from the generator of the process ​[156]​; A stationary process on a directed graph is               

in detailed balance, if and only if, for any closed loop of transitions, multiplication of               

the rate constants (generator elements, edge labels) going around the loop yields the             

same product regardless of direction (clockwise and counterclockwise). This is called           

Kolmogorov's criterion or ‘cycle condition’ for detailed balance ​[154,156]​. We note           

that stationary processes on graphs without closed loops are necessarily in detailed            

balance; for the absence of loops trivially ensures that Kolmogorov's criterion is            

fulfilled. 

Transcriptional Specificity 

To model activator specificity, we consider two genes that are identical, except that             

one copy bears the binding site for a specific activator whereas the other does not.               

We define 'regulatory specificity' or 'activator fidelity', , as a measure of the       f       

activator's ability to distinguish between target and non-target promoters, where  
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where is the average steady-state rate of transcription for target promoter v t            

binding and for non-target promoter binding. The fidelity is defined by the ratio of  v n              

transcriptional output from target and non-target promoters. Thus, when the activator           

promotes transcription indiscriminately, or transcription is activator-independent,       

.1f =   

We infer and from promoters modeled as continuous time  v t   v n        

homogeneous Markov processes. First we define which promoter states are          

transcriptionally active, ON states. We assume the rate of transcript initiation is            

linearly dependent on the probability of being in an ON state, . In steady state,               

, is simply the sum of every element which corresponds to an on state, .              ∑
ON

 
πi  

Thus, the specificity, , is simply the ratio of for the target sequence over the   f              

non-target sequence, .  

 

 

If activator fidelity was being calculated we assumed that the only difference in rate              

between target and non-target binding was the off-rate, k​off​. Thus, to calculate            

activator fidelity with changing activator off-rate, k​off was substituted for k​t and k​n ​to              

calculate and . 
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Autocorrelation of Active Periods 

Let be a continuous time homogeneous Markov process with          

countable state space, , transition graph, G, and generator, W. Let G   {1, .., }S =  . n          

be strongly connected. We define a function, , where.f : Y t → X t  

 

 

Similar to the definition of the on state for specificity we define a set of nodes where                 

the promoter is transcriptionally active, present the value 1. While the set of inactive              

states present the value 0. We assume only one state as the active state and          k ∈ S      

all other states are inactive. A similar result can be determined for multiple states, k,               

and even for a process which models transcription explicitly. 

We will now show that the ​acf ​of is:X t  

 

 

 

Where are the eigenvalues of W and are n X n matrices that are obtained from λi       Ai           

the eigenvectors of W, described below. 

Because G is strongly connected, a uniquely determined stationary         

distribution ​π ​exists, we will label the vector ​π ​elements as . For a stationary           pi     

process the expectation of X​t​: 
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The autocovariance is: 

 

 

 

Given the Markov assumption and the definition of the process: 

  

Thus by definition of the joint probability distribution and expected value, 

 

 

Thus follows, 

.  

From the ​acv ​we compute the variance of  X​t​, is .cv(0) p (1 )a =  k − pk  

Thus, the ​acf ​defined as the is,acv(t)
acv(0)  

. 

(8) 
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The transition function, , including , and stationary probability, ,   P t   (t)pkk     pt  

may be obtained as follows. If W is diagonalizable (​i.e​., if W has n linearly               

independent eigenvectors corresponding to n eigenvalues),  may be written as,P t  

. 

 

Where, are the eigenvalues of W and are n X n matrices that are obtained λi       Ai          

from the eigenvectors of W as follows, for proof see ​[157]​ appendix. 

 Let B be the matrix whose i​th column vector, is the eigenvector with         bi      

corresponding eigenvalue of . Let be the inverse of . The inverse always   λi   B−1      B     

exists because column vectors (and row vectors) are linearly independent.  sB′          

Matrix is obtained by multiplication of the i​th column vector of with the i’th row Ai            B      

vector of :B−1  

. 

 

The transition function, , is the k​th diagonal element of . Thus, with   (t)pkk        P t    (k, )Ai k  

the  k​th​ diagonal element of , we obtain,Ai  

. 
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The generator always has the eigenvalue 0. This is a consequence of the             

conservation of probability mass. Let this eigenvalue be . Thus,λ1 = 0  

. 

 

For all , for . As time goes to infinity, the likelihood of ending   i ∈ S  (t)pki → pk  t → ∞           

up in state k is simply . It follows that . Because all exponential terms      pk     (k, )pk = A1 k      

go to 0 as . With substitution into Equation 8,t → ∞  

. 

 

◼  

Two-state promoter model 

The generator for the Two-state promoter model was: 

 

 

The probability of the transcriptionally active state was: 

 

 

The activator fidelity was: 
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The ​acf​ was .e−(a+b)t  

  

Proofreading model 

The generator for the Proofreading promoter model was: 

 

 

 

The specificity was determined for the proofreading model by assuming that the            

activators presence and the removal of the nucleosome was required for           

transcription. Thus only state 3 is transcriptionally active. If activation does not            

require the activator but instead only requires the removal of the nucleosome, like in              

model 3 in chapter 1, then both state 2 and state 3 are active states.  
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