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Van der Ven, A., Seshadri, R. and Pilon, L., 2022. Potentiometric entropy and operando
calorimetric measurements reveal fast charging mechanisms in PNb9O25. Journal of
Power Sources, 520, p.230776.

Muna Saber, Anton Van der Ven. Redox mechanisms, structural changes, and electro-
chemistry of the Wadsley-Roth LixTiNb2O7 electrode material. Submitted. Chemistry
of Materials.

Muna Saber, Colleen Reynolds, Jonathan Li, Anton Van der Ven. Chemical and struc-
tural factors affecting the stability of Wadsley-Roth block phases. Submitted. Inorganic
Chemistry.

vii



Abstract

Ab initio property predictions of Wadsley-Roth phase chemistries as high power density

lithium-ion electrode materials

by

Muna Saber

High-throughput density functional theory calculations can provide a method for pre-

dicting material properties in alkali-ion electrode and electrolyte chemistries. Through

these calculations, paired with cluster expansion models and uncertainty quantification

methods, we have tools to understand the fundamental thermodynamic origins of crystal-

lographic deformation and alkali-ion phase stabilities in these materials. In this analysis,

we use these methods to understand phase stability and lithiation mechanisms in a fam-

ily of high power density electrode chemistries called the Wadsley-Roth crystallographic

shear phases. Due to the complexity and large cell sizes of Wadsley-Roth phase ma-

terials, this combination of methods is useful for tapping the origin of the high charge

rates and power densities in these unique structures. The study begins with an exami-

nation of stability of compounds in the Ti-Nb-O ternary where we examine the effect of

electrostatics and distortions on phase stability of the Wadsley-Roth phases. We then

examine the effect of chemical strain in the lithium site-filling mechanism in the highly

reversible Wadsley-Roth material, PNb9O25. We extend our analysis to the high-power

density, commercialized Wadsley-Roth phase, TiNb2O7, where we examine the effect of

metal-metal electronic interactions and pair distances on the complex lithium site filling

mechanism present in this compound. We then do an in depth analysis of the effect

of lithiation on octahedral distortions to acquire a complete understanding of structural

changes upon lithiation. These analyses are paired with experimental results to exhibit
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the validity of these calculations.
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Chapter 1

Introduction

1.1 An overview of high power density battery ma-

terials

Electrification of vehicles and aircraft requires batteries that can deliver the power

densities needed for acceleration while allowing for fast charge times in a variety of

environmental conditions. The appeal of electric vehicles lies within the lower total

carbon footprint of this energy source and the mitigation of direct human exposure to

small particulates as well as NOx , SOx , CO2, and CO molecules that damage human

health when emitted in the local environment of people [1].

Rechargeable alkali-ion batteries are electrochemical energy storage devices that can

deliver power through the mobility of ions within an electrolyte solution from one elec-

trode to the other [2]. During the charging process, ions flow from the cathode to the

anode through an externally applied potential. During discharge, when the battery is in

use, ions flow from the anode to the cathode due to the gradient in the chemical poten-

tials between the cathode and the anode [3]. In most modern-day rechargeable batteries,
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Introduction Chapter 1

lithium-ions are the alkali-ions that are shuttled between the electrodes [4]. For emerging

technologies, sodium and potassium ions are also being studied. There are also batteries

that use other species than alkali-ions as the vehicle for storing and transporting charge,

such as the alkaline-ion magnesium [5].

To ensure high power and energy densities, the selection of anode and cathode ma-

terials is of utmost importance. The first rechargeable intercalation battery system,

constructed by Stanley Whittingham, used LixTiS2 as the cathode [6]. Due to its low

voltage (2.5V vs Li+), alternative cathode chemistries were examined. Specifically, oxide

chemistries were examined due to the theoretical voltage increase from this class of ma-

terials compared to sulfides. From this, Goodenough discovered that LixCoO2 displayed

higher voltages (4.0V vs Li+) [7, 8]. For long after this discovery, LixCoO2 was the stan-

dard cathode chemistry in industry. Due to its inadequate specific capacity, research was

done on how to increase the specific capacity. The addition of nickel and manganese into

these compounds greatly increased capacity, but further research is still performed to

attain higher voltage profiles and longer capacities in cathode materials [9].

Lithium-ion battery anodes, on the other hand, were less studied. Graphite, the

industry standard was quite cheap and had a reasonable capacity to be paired with

the corresponding cathode materials. As the need for batteries that can deliver a large

amount of power and fast charging times grew with the introduction of electric vehicles,

it became apparent that graphite was not good enough. Despite it’s reasonable capacity,

graphite can not charge at high rates since its specific capacity quickly dies off with higher

charge rates. Additionally, attempting to charge at high rates promotes the formation

of dendrites [10]. Dendrites can pierce the membrane that separates the anode from the

cathode, causing side reactions and then fires and explosions [11, 12].

As a result of these safety concerns and low charge rates, researchers sought to un-

cover an alternative to the graphite anode, and they did in the commercialized material

2



Introduction Chapter 1

spinel-type Li4Ti5O12 (LTO). Unfortunately, this material suffers from a low theoretical

capacity, low electronic conductivity, and a charge rate that is still too low for electric

vehicle applications [13, 14].

A new chemistry, initially chemically inserted with lithium in 1983 [15] and cycled in

2011 [16], showed significantly high reversible cycling. This material is called TiNb2O7.

Onward from these studies, researchers began high charge rate studies and found that

this material can reversibly cycle at rates of 20C, which corresponds to a 3 minute charge

rate, or even higher rates [17, 18]. Studies of TiNb2O7 nanoparticles were able to achieve

capacities as high as 341 mAh g−1 [19]. The discovery of this application for TiNb2O7,

brought upon a new set of studies on other phases with similar crystal structure types

that were also able to achieve high charge rates. These materials belong to a family of

chemistries called Wadsley-Roth crystallographic shear phases.

Wadsley-Roth crystallographic shear phases are derived from the ReO3 structure

which is constructed from corner-sharing transition metal octahedra [15, 20, 21, 22]. The

Wadsley-Roth phases differ from ReO3 in that the blocks of corner-sharing octahedra

are offset and share edges to other blocks of interconnected corner-sharing octahedra.

These areas of octahedral edge-sharing at the periphery of the blocks of corner-sharing

octahedra are called crystallographic shear planes. The construction of these structures

types is chemically feasible due to the lower oxygen to metal ratio of Wadsley-Roth phase

structures compared to ReO3. The blocks of corner-sharing octahedra can be n ×m in

size, where n and m are the block dimensions, the number of corner-sharing octahedra

in two dimensions. The limits on the block dimensions are based on the oxidation states

available in the transition metal sublattice of the Wadsley-Roth phase. Phases with many

transition metal ions with lower maximum oxidation states (like titanium or zirconium)

form smaller blocks. On the other hand, phases that have transition metal ions with larger

maximum oxidation states are able to host a larger number of oxygens and therefore form

3



Introduction Chapter 1

structures with larger blocks. There is diversity in this family of chemistries in that phases

with differing cation species, anion species, degrees of cation disorder, block sizes, and

block shift types have been experimentally formed.

Computational methods can be used to understand phase stability in these struc-

tures. Atomistic simulations allow one to understand the electronic and crystallographic

structure properties of a periodic phase. Density functional theory (DFT) in particular

has been a useful tool in examining the atomic-scale properties of battery materials, as

well as other periodic crystal structures. DFT is a method for modeling quantum me-

chanics in materials. At its theoretical core are the findings of Hohenberg and Kohn [23].

The ground state of a system can be uniquely determined through the electron density.

Despite its simplicity, there is complexity in the details. The predominant challenge is

that there is no known way to get the exact electron density functional. This is be-

cause the exact contribution from electron-electron interactions are unknown [24]. This

contribution is often contained in a separate exchange-correlation functional [25, 26].

When paired with density functional theory, statistical mechanics methods can be

a strong tool to aid in material design. Through models of the potential energy of

lithium-vacancy orderings in a system, called cluster expansions, we can predict ground

state orderings in these complex phases that can have eligible lithium-vacancy orderings

on the order of 109. Moreover by constructing effective Hamiltonians parameterized

by the cluster expansion models, we can attain finite temperature thermodynamic and

electrochemical properties.

1.2 Overview

The following dissertation examines high power density battery material property

predictions in the Wadsley-Roth phases. In Chapter 2, We begin with an overview

4



Introduction Chapter 1

of the theoretical background behind ab initio calculations as well as methodological

derivations of cluster expansions and displacement order parameters used to examine the

first principles predictions. In Chapter 3, we examine phase stability in the titanium

niobium oxygen ternary with a focus on Wadsley-Roth phase niobates and titanium

niobates. In Chapter 4, we examine lithiation mechanisms in the 3 × 3 Wadsley-Roth

phase structure PNb9O25. We use crytallographic strain calculations to understand the

interplay between crystallographic strain and lithium site stability. We also examine the

electronic structure evolution of the Wadsley-Roth phases to understand the electronic

effects of these crystallographic changes. In chapter 5, we explore the effect of transition

metal disorder on performance in the 3× 3 Wadsley-Roth phase TiNb2O7. In particular,

we examine the interplay between metal-metal bonding, strain, and octahedral distortions

as the system undergoes lithiation. We use uncertainty quantification for a rigorous

examination of electrochemical properties at zero-temperature and finite temperatures.

1.3 Permissions and Attributions

1. The contents of chapter 4 has previously appeared in Reference [27]: Saber, Muna,

Molleigh B. Preefer, Sanjeev K. Kolli, William Zhang, Geneva Laurita, Bruce Dunn,

Ram Seshadri, and Anton Van der Ven. ”Role of Electronic Structure in Li Or-

dering and Chemical Strain in the Fast Charging Wadsley–Roth Phase PNb9O25.”

Chemistry of Materials 33, no. 19 (2021): 7755-7766.

2. The contents of chapter 4 has also previously appeared in Reference [28]: Preefer,

Molleigh B., Muna Saber, Qiulong Wei, Nicholas H. Bashian, Joshua D. Bocarsly,

William Zhang, Glenn Lee et al. ”Multielectron redox and insulator-to-metal tran-

sition upon lithium insertion in the fast-charging, Wadsley-Roth phase PNb9O25.”

Chemistry of Materials 32, no. 11 (2020): 4553-4563..
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Chapter 2

Computational Methods and

Theoretical Background

2.1 Density functional theory overview

2.1.1 An introduction to the many-body problem

In order to begin our discussion on density functional theory, it is beneficial to have

an understanding of the behavior of electrons in the many-body system. This can be

done by first introducing the Hamiltonian that would need to be used to describe such a

system, and the challenges that comes from solving the many-body Schrodinger equation.

This is followed by simple mathematical approaches to approximating the solution to the

many-body wavefunction through the Born-Oppenheimer, the Hartree, and the Hartree-

Fock approximations. The former approximation relies on the size difference between

electrons and neutrons to approximate a solution to the many-body system. Both of

the latter methods use an approach where the many-body wavefunction is approximated

through a product of single particle states. The main difference between these approxi-
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mations is in their treatment in the Fermionic nature of electrons. Where these solutions

are approximations by nature, another method for describing this problem comes from

density functional theory, where it makes use of the principle that the total energy can

be uniquely determined by a functional of the electron density [29].

2.1.2 The many-body Hamiltonian

The material properties of a system with multiple electrons and ions interacting

through electrostatic forces can be described with the many-body wavefunction. The

Hamiltonian for this system has the general form:

Ĥ = −
P∑

I=1

ℏ
2MI

∇2
I −

N∑
i=1

ℏ
2mi

∇2
i +

e2

2

P∑
I=1

P∑
J ̸=I

ZIZJ

|RI −RJ |

+
e2

2

N∑
i=1

N∑
j ̸=i

1

|ri − rj|
− e2

P∑
I=1

N∑
i=1

ZI

|RI − ri|

where I indexes over the set of nuclear coordinates, i indexes over the set of electronic

coordinates, ZI are the nuclear charges, and MI are the nuclear masses [30]. R are the

nuclear coordinates while r are the electronic coordinates. The first two terms correspond

to kinetic energy terms for the nuclei and electrons in the system. The next two terms

correspond to coulombic interactions between nuclei and electrons separately. The last

term describes the interactions between electrons and nuclei.

The eigenstates can be solved for with the Schrodinger equation

ĤΨi(R, r) = EiΨi(R, r) (2.1)

where Ψi are the wavefunctions for each particle. In performing this calculation, the full

set of equations can not be decoupled into sets of independent equations. This leads to

7
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sets of equations with 3P +3N coupled degrees of freedom. In all but the most simple of

systems, this problem becomes analytically impossible to solve. In order to reasonably

solve these equations for larger systems, approximations must be introduced.

2.1.3 The Born-Oppenheimer approximation

The Born-Oppenheimer approximation uses the large mass differences between elec-

trons and ions to approximate a description for multi-electron systems [31, 32]. The

theorem begins with the realization that the timescale associated with the motion of

electrons and nuclei vary due to their large variation in mass. Therefore the electrons

may be described as instantaneously following the motion of the nuclei. The stationary

state would therefore vary in time, but as the nuclei follows its motion, the electrons

will instantaneously adjust their wavefunction to the nuclear wavefunction. One may

use this to separate out the time dependence of the wavefunction for only the nuclear

wavefunction component, leading to the following factorization of the total wavefunction:

Ψ(R; r) = Φ(R)ΨR(r) (2.2)

where Φ(R) is the nuclear wavefunction and contains the ionic degrees of freedom. ΨR(r)

is the electronic wavefunction and depends on all the electronic degrees of freedom for

a particular ionic configuration [30]. These wavefunctions can be solved for separately.

The electronic wavefunction can be normalized for every R so that it does not explicitly

depend on the electronic coordinates. The electronic wavefunction can be solved for

through the Schrodinger equation

Ĥele
R ΨR(r) = Eele

R ΨR(r) (2.3)

8
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where Hele
R and Eele are the corresponding Hamiltonian and energy. A similar expression

can be applied to solve for the total wavefunction [33]

Ĥ tot(R; r)Ψ(R; r) = EtotΨ(R; r) (2.4)

The separated electronic and nuclear wavefunctions can be used directly in the Schrodinger

equation for the total wavefunction, and the conjugate of ΨR(r) can be multiplied to the

equations and integrated

⟨ΨR(r)|H tot|ΨR(r)⟩Φ(R) = EtotΦ(R) (2.5)

The notation above is written in bra-ket notation and is a commonly used notation in

Quantum-mechanics. The right most side of the equation is called the ”ket” and can be

represented by |v⟩ where v is an element of a complex vector space. It’s adjoint is called

the ”bra” and is denoted generally by ⟨f | where f in this case is a vector in a different

complex vector space.

More specifically, where the vector v is in the vector space V , both the ket, |v⟩, and

the label, v, are vectors. The ”bra” object works differently in that it belongs to the V ∗

vector space which is a linear map from V to a complex vector space. This ⟨f | therefore

is a linear function that belongs to V ∗ instead. Even though ⟨f | is a linear function, the

label inside of it, f , is merely another vector. If we were to apply the bra, ⟨f |, to the ket,

|v⟩, it would be similar to an inner product where the bra can be viewed as row vectors

9
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where the elements are conjugate to its original elements and ket are column vectors:

⟨f |v⟩ =
(
f ∗
1 f ∗

2 f ∗
3 f ∗

4 ... f ∗
N

)
·



v1

v2

v3

v4
...

vN


(2.6)

for a vector with N elements, where ′∗′ indicates the conjugate of that element. Perform-

ing the multiplication gives the following:

⟨f |v⟩ = f ∗
1 v1 + f ∗

2 v2 + f ∗
3 v3 + f ∗

4 v4 + ...+ f ∗
NvN (2.7)

where the above derivation is for discrete values. If we extend the derivation to a an

uncountably large number of vectors in Hilbert space, this summation can be seen as an

integration.

If we know the wavefunction of a particle (Ψ(x)), we can describe that wavefunction

through bra-ket notation with reference to its position dependence (x) by:

Ψ(x) ≡ ⟨x|Ψ(x)⟩ (2.8)

If two states were to overlap, it can be computed as

⟨Ψ1(x)|Ψ2(x)⟩ =
∫

Ψ∗
1(x)Ψ2(x)dx (2.9)

where again this would integrated since we are looking at an infinite number of values

10
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for x possible.

If we return to our derivation, the potential and kinetic energy operators of the

ions need to be determined, but these can be determined individually. Due to the nor-

malization of the electronic wavefunction, the wavefunction does not depend on ionic

coordinates. Thus, the potential energy for the ions can be determined from

⟨ΨR(r)|
e2

2

P∑
I=1

P∑
J ̸=I

ZIZJ

|RI −RJ |
|ΨR(r)⟩ =

e2

2

P∑
I=1

P∑
J ̸=I

ZIZJ

|RI −RJ |
(2.10)

In order to determine the kinetic energy operator, one can apply the momentum

operator to the total wavefunction

−iℏ∇RI
Ψ(R; r) = −iℏ(∇RI

Φ(R))ΨR(r)− iℏΦ(R)(∇RI
ΨR(r)) (2.11)

Again the conjugate of the electronic wavefunction can be multiplied to the left side of

each equation, leaving a relation between the total wavefunction and the ionic wavefunc-

tion

⟨ΨR|(−iℏ∇RI
)Ψ(R; r)⟩ = −iℏ(∇RI

Φ(R))− iℏ⟨ΨR|∇RI
|ΨR⟩Φ(R) (2.12)

When the bra ⟨ΨR| is applied to the equation as well as the ket |ΨR⟩, the result is merely

unity due to the normalization applied to the wavefunctions.

Now that we have an expression for the momentum operator, we can use this equation

directly into the definition of the kinetic energy. From this equation and the general

definition of the kinetic energy operator, the kinetic energy expression for the motion of

the ions can be written as

KEion =
∑
I

(−iℏ(∇RI
Φ(R))− iℏ⟨ΨR|∇RI

|ΨR⟩Φ(R))2

2MI

(2.13)
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where KEion is the kinetic energy of the ions. Specifically, the kinetic energy operator

can be thought as the summation of all of the contributions to the kinetic energy from

each ion. Using the original ionic wavefunction equation, the Schrodinger equation for

the ionic wavefunction can be written as

(KEion + V ion + Eele)Φ(R) = EtotΦ(R) (2.14)

where V ion indicates the potential energy operator of the ion, and Eele is the energy

corresponding to the electronic wavefunction determined previously. Therefore one may

write the equation as

(
∑
I

−iℏ((∇RI
Φ(R)) + ⟨ΨR|∇RI

ΨR⟩Φ(R))2

2MI

+
e2

2

P∑
I=1

P∑
J ̸=I

ZIZJ

|RI −RJ |
+ Eele)Φ(R) = EtotΦ(R)

which can be used to find the total energy of the system [34].

2.1.4 The Hartree and Hartree-Fock approximations

The Hartree and Hartree-Fock approximations use single-particle wavefunctions as

the basis to approximate the many-body wavefunction. From this wavefunction, one can

determine the expectation value of the Hamiltonian which corresponds to the energy.

The single particle state that forms the basis of the wavefunction can be varied such that

the energy is minimized through these variations until a tolerance is reached.

The Hartree approximation effectively treats electrons as independent particles and

disregards the Pauli exclusion principle and the fermionic nature of electrons that leads

to this principle in the construction of each wavefunction. In other words, it does not
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necessitate the asymmetry of the chosen wavefunctions. With this established, the total

wavefunction can be approximated as

ΦH(r) = ϕ1(r1)ϕ2(r2)..ϕN(rN) (2.15)

where ΦH(r) is the total many-body wavefunction under the Hartree approximation,

ϕi(ri) are the single particle wavefunctions, and N indicates the number of particles. A

set of the single particle states is chosen and is used to construct the total number density

for the system which is itself used to determine the effective single-particle potential that

describes the repulsive electrostatic interactions between a single electron and all other

electrons. The Schrodinger equation can then be solved using this effective potential,

allowing one to solve for a new set of single particle wavefunctions [35]. In other words

one would be solving:

[
−ℏ
2me

∇2
r + V eff

i (r, n(in)(r)

]
ϕout
i = ϵiϕ

out
i (2.16)

where V eff is the effective single particle potential, n(in) is the number density calculated

from the original wavefunctions chosen as the starting point of the calculation, and ϕout
i is

the new wavefunction that is being solved for. The original single particle wavefunctions,

ϕin
i , can be compared to the new single particle wavefunctions, ϕout

i . If the number

densities that they construct are different within a tolerance, the values are set to the

new single particle wavefunctions and the cycle is repeated. If the number densities for

the two sets of wavefunctions are equal to each other within a tolerance window, then

the cycle stops, and the energy and other properties can be described with the last set

of wavefunctions.

The Hartree-Fock approximation takes into account the Fermionic nature of electrons,
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and therefore requires the chosen wavefunction to be properly antisymmetrized. This can

be done by describing the total wavefunction through the following determinant, which

is called the Slater determinant [36, 37]

ΦHF (r) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

ϕ1(r1) ϕ1(r2) ... ϕN(rN)

ϕ2(r1) ϕ2(r2) ... ϕN(rN)

...
...

. . .
...

ϕN(r1) ϕN(r2) ... ϕN(rN)

∣∣∣∣∣∣∣∣∣∣∣∣∣
(2.17)

where ΦHF (r) is the total wavefunctions as determined through the Hartree-Fock approx-

imation method, and ϕi(ri) are the single particle wave functions of different electrons,

and N is the total number of electrons. Interchanging the positions of two electrons

effectively changes their sign, which is what allows this to uphold the asymmetry of the

wavefunctions.

The addition of the representation of the Fermionic nature of the electrons adds

an electron-exchange interaction potential [38]. This exchange potential is described

through a non-local integral operator dependent on both the position of the electron (r)

and each other electron (r′) [39, 40]. This term is analytically complex and therefore

computationally expensive.

2.1.5 Formulation of DFT and the Kohn-Sham equations

Providing an approximate solution to the many-body wavefunction can be performed

using another key aspect of the system, the electronic number density. Where the Hartree

and Hartree-Fock approximations attempted to describe the behavior of the entire system

from the start, one can alternatively describe the single particle equation exactly and

then add additional approximations as needed. Seminal work from Hohenberg, Kohn
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and Sham had derived that one can determine the ground state energy from a functional

where the variable is the electron density, n(r) [41].

The derivation of the electronic density begins with the assumption of a system com-

prised of a number of electrons with an applied potential. We can use the definition of

the density operator to find an explicit expression for this. The electronic number density

can be accessed from the expectation value of the density operator. N(r), where

N(r) =
N∑
i=1

δ(r − ri) (2.18)

and is dependent on the positions of the particles, ri. Upon taking the expectation value

of this operator, one finds that

n(r) = ⟨Ψ|N(r)|Ψ⟩ (2.19)

By putting this in integral form, we have a clearer definition of the electronic density.

The electronic density for the ground state at a particular point, r, can thus be described

as

n(r) =
∑
i

∫
Ψ∗(r1...rN)δ(r − ri)Ψ(r1...rN)dr1...drN (2.20)

where n(r) is the electronic number density. In this case N is the number of electrons

and i indexes over each electron in the system. Ψ is dependent on all of the positions of

each electron as the density is dependent on all other electrons in the system. We can

place the summation in the integral and apply it to the dirac-delta function directly to

get N terms. This simplifies the equation to

n(r) = N

∫
Ψ∗(r, r2, ...rN)Ψ(r, r2, ...rN)dr2...drN (2.21)
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so that n(r) is directly related to the form of a wavefunction dependent on all other

electrons in the system.

Furthermore the electronic density can be described as a functional with respect to

an external potential (v(r)). One can prove that this potential v(r) must be a unique

functional of n(r) by introducing another external potential, denoted by v′(r). We assume

that this v′(r) and the corresponding ground state of Ψ′ cause the same electronic density,

n(r), but Ψ′ and Ψ can not be the same since they must be solved for by different forms

of the Schrodinger equation, leading to a separate Hamiltonian and ground state energy.

The variational principle, which states that the ground state energy is always higher than

the expectation value of the Hamiltonian for a separate wavefunction, dictates that the

expectation value of H with respect to Ψ′ gives a bound for the energy where

E < ⟨Φ′|H|Φ′⟩ (2.22)

This relation can be written in terms of the expectation value of H ′. If the expectation

value ofH is greater than E then the expectation value ofH ′ combined with the difference

between H ′ and H must also be greater than the energy calculated from H

E < ⟨Φ′|H ′|Φ′⟩+ ⟨Φ′|H −H ′|Φ′⟩ (2.23)

Likewise, E ′ can be calculated from the first relation and the second equation can be

written in terms of the external potentials. This is because H can be written in terms of

the potential, making the relation

E < E ′ + ⟨Φ′|(v(r)− v(r)′)|Φ′⟩ (2.24)
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Using the definition for the electronic density above, one attains the equation

E < E ′ +

∫
[v(r)− v′(r)]n(r)dr (2.25)

Through the same derivation of E ′, one would also find that

E ′ < E +

∫
[v′(r)− v(r)]n(r)dr (2.26)

If one adds the two former equations for E and E ′ together (2.25 and 2.26) they find

that the integral cancels. All that is left is the equality

E + E ′ < E ′ + E (2.27)

This is an inconsistency. This inconsistency arises when multiple functions v(r) can be

attributed to an electronic number density, n(r). Therefore, v(r) must be unique for a

specific n(r). Since the Hamiltonian is dependent on the potential, the full ground state

must be a unique functional of n(r) as well [23]. This finding is the foundation for density

functional theory.

Using this consideration, we know that the total energy of the system must directly

be a functional of the electronic density [42, 43]. In general terms, this can be written as

E[n(r)] = F [n(r)] +

∫
V (r)n(r)dr (2.28)

where F [n(r)] is a universal functional of the density, and V (r) is the potential.

While Hohenberg and Kohn proved the existence of the electronic functional, the

theorem does not give the exact form of the functional. The form of F [n(r)] in equation

2.28 must be approximated. The contributions of this equation can broken into the
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following terms:

F [n(r)] = Ts[n(r)] +
1

2

∫
n(r)n(r′)

|r − r′|
drdr′ + Exc[n(r)] (2.29)

where the first term (Ts[n(r)]) corresponds to the kinetic energy contributions of the

non-interacting particles with a density of n(r), and the second term is merely a classical

Coulombic interaction term. The final term (Exc[n(r)]) takes into account the energy

from exchange correlation interactions.

Along with the total wavefunction, the single particle wavefunctions must give the

proper minimum energy for a certain electronic density for the system ground state.

Therefore, we can begin examining this for the single particle case. The kinetic energy

term for the single particle states can be written as,

Ts[n(r)] =
∑
i

⟨ϕi|
−ℏ2

2me

|ϕi⟩ (2.30)

where ϕi are the single particle states. Ts itself is an approximation, where it accounts

for the contribution of kinetic energy by a set of ficticious, non-interacting particles.

The exchange correlation term corresponds to the electrostatic interaction of the elec-

trons at each position with the density of the exchange-correlation hole that surrounds

them [44]. It is intrinsically connected to Ts as Exc provides a correction to that approx-

imation. Combining the terms together, one can get the exact form of the energy in the

form of the total energy functional, often referred to as the Kohn-Sham functional:

E[n(r)] = Ts[n(r)] +
1

2

∫
n(r)n(r′)

|r − r′|
drdr′ + Exc[n(r)] +

∫
V (r)n(r)dr (2.31)

The exchange correlation term is approximated by different methods and is the source

of differences between computationally determined groundstates and reality. Indeed one
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would be able to determine the exact ground state energy and therefore properties, if the

exact form of the exchange correlation energy functional were known. When performing

density functional theory (DFT) calculations one may use different functionals that each

treat the exchange correlation term in varying ways. This will be further discussed in

section 2.1.9.

The Kohn-Sham functional can be minimized with respect to variations in the elec-

tronic density, which allows us to arrive at the Kohn-Sham equations

[− ℏ2

2me

∇2
r + V (r) +

∫
n(r′)

|r − r′|
dr′ +

∂Exc[n(r)]

∂n(r)
]ϕi(r) = ϵiϕi(r) (2.32)

These equations allow for one to solve for the single particle orbitals that can in turn be

used to solve for the electronic density.

2.1.6 The planewave expansion and the projector-augmented

wave (PAW) formalism

For the Vienna ab initio software package (VASP), the basis set used for the expansion

of electronic orbitals and charge densities is a plane wave-expansion. More specifically,

VASP makes use of the projector-augmented-wave method which is used to describe the

electron-ion interactions. In this method, one can determine the one-electron wavefunc-

tion from pseudo-orbitals which are functions calculated through a plane wave expansion,

ϕnk =
1

Ω
1
2

∑
G

CnGke
i(G+k)r (2.33)

Where k indexes through all the k-points in the specified mesh, n indexes through the

bands, Ω is the volume of the Wigner-Seitz cell, and G is the reciprocal lattice vector. The

summation in the exponential requires a cutoff, which is dependent on G. This cutoff
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is determined by including all planewaves that fall below a kinetic energy threshold.

This kinetic energy threshold can be connected to the reciprocal lattice vectors by the

definition of the kinetic energy

Ecutoff =
ℏ2

2m
Gcutoff (2.34)

where Ecutoff is the cutoff energy of the planewave expansion basis set. Likewise Gcutoff

is the lattice vector cutoff. This can further be related to the planewave expansion by

only including reciprocal lattice vectors where

|G+ k| < Gcutoff (2.35)

This may be a significant source of error if the energy cutoff is not chosen carefully.

The error can be determined by performing static calculations with a particular energy

cutoff off value and finding the difference between the energy for this calculation and a

high cutoff energy calculation.

2.1.7 Pseudopotentials

The use of a plane wave expansion also introduces the need for an approximation

of the ion-electron interactions, given in the form of pseudopotentials. This presents

another form of error. In order to accurately, but efficiently describe the interaction

between the core electrons and the valence electrons, approximations must be introduced.

Pseudopotentials replace the contributions of the core electrons with an effective potential

that acts on each the valence electrons. The exact error introduced by this method will

be determined by the quality of the atomic pseudopotentials used in the calculation [45].

Pseudopotentials can be grouped into groups of ’soft’ and ’hard’ pseudopotentials
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where the method for establishing the contributions of the core electrons differ signif-

icantly. For soft pseudopotentials, the all-electron wavefunction that would otherwise

be used to describe the electrons in the system are replaced with a nodeless pseudo-

wavefunction inside a core radius [46]. Generally, the main constraint is that the norm

of the all electron wavefunction matches the norm of the pseudo-wavefunction. Hard

pseudopotenials use atomic calculations to determine their wavefunctions and generally

have a strongly repulsive core potential. Multiple studies have been used to quantify

the error in these varying types of psuedopotentials. Work by Hamann et al.[47] deter-

mined that both hard and soft pseudopotenials agreed well when compared with both

an empirical, non-local pseudopotential and an all-electron potential for semiconductors.

When comparing the band energies at varying symmetry points of silicon for all four

methods, the error between the potentials generally fell less than 10%, with the hard

pseudopotentials showing a closer average energy to the all-electron potential than the

soft pseudopotentials.

2.1.8 Sampling the Brillouin zone

Bloch vectors, also known as k-points, indicate points along which one is sampling the

Brillouin zone. The Brillouin zone is a region that is enclosed by discrete sets of Bragg

planes, the zone corresponding to the closest Bragg planes to the origin being the first

Brillouin zone. Bragg planes will be discussed further in the next section. In calculations

like charge density or density of states we require an integration over the Brillouin zone

with respect to the wavevector. In doing these calculations, these integrals are replaced

by a summation of discrete k-points to make these calculations faster. More specifically,
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the integration is replaced with a weighted summation:

1

Ω

∫
Ω

→
∑
k

wk (2.36)

As a result of this, the accuracy of the calculation will be determined by the accuracy

of the selection of the k-points, or more specifically, the ability of the chosen k-points to

accurately be able to sample the cell. In order to sample the cell effectively, the VASP

algorithm creates an equally spaced grid of k-points called a mesh. As proposed by

Monkhorst and Pack, the method is used to find a set of ”special k-points” that can be

used to generate a periodic expansion in reciprocal space [48, 49].

Moreover, the type of material that is being simulated can also be a determination

of the accuracy of the k-points chosen. For example, an insulating or semi-conducting

material can be described by a step function, allowing the weighted summation above

to be approximated by a dirac-delta function as the electrons are localized in space. On

the other hand, metals have partially occupied bands and therefore any integrations that

involve these states will need to account for these partially occupancies. This is done by

replacing the delta function with a smoother function, that would require more k-points

to correctly interpolate the function between each of the special points.

In determining the error associated with performing DFT calculations with a partic-

ular set of k-points, one can perform calculations at a discrete set of mesh point densities

for an individual system; the energy of each set of calculated values can be compared to

a calculation using a high mesh density.

2.1.9 Functionals

In application to computational DFT algorithms, multiple different functionals have

been developed to take into account the unknown form of the exchange-correlation func-
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tional. These methods can be grouped into two types of methods: empirical and semi-

empirical. Empirical methods, like the generalized gradient approximation (GGA) pro-

posed by Perdew, Burke, and Ernzerhof (PBE) [44, 50], satisfy exact constraints in their

calculations and in the boundaries of the calculations [51]. Semi-empirical methods fit

unknown coefficients to empirical reference values [52]. Inaccuracies between experi-

ment and computation are therefore dependent on which functional is used, and more

specifically, on the unknown nature of the exchange-correlation energy. Improvements

on accuracy is dependent on providing a reasonable functional for the described sys-

tem and accessing methods with additional considerations in the functional form of the

exchange-correlation energy.

Hierarchies of functional forms are described in Jacob’s ladder [53] as described by

John Perdew and shown in Figure 2.1. The ”base” of the ladder begins at the local den-

sity approximation (LDA) [54, 55] where the exchange-correlation functional is obtained

through the electron charge density and the exchange-correlation of a homogeneous elec-

tron gas. The next rung up the ladder and in chemical accuracy is GGA. Here, the

electron charge density of the homogeneous electron gas is both dependent on the elec-

tron density and a gradient of the electron density. In meta-GGA functionals, like the

Strongly constrained and appropriately normed semi-local density functional (SCAN)

[56] functional, the kinetic energy density of the electrons are also considered in the

exchange-correlation function of the homogeneous electron gas. This adds a significant

computational cost, but is made up in the accuracy of the calculation [57].

The hybrid Meta-GGA functional found on the next rung provides a mixture of

density functional theory and Hartree-Fock theory. [58] The Hartree-Fock computation

allows one to get an exact exchange energy functional. This functional can then be

expressed as a function of the Kohn-Sham orbitals [59]. Different functionals, such as HSE

and PBE0, differ in how the exchange functionals from Hartree-Fock and the the exchange
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functionals from PBE and GGA are treated to form a hybrid exchange functional.

The class of methods with the highest degree of accuracy in use are those that provide

a fully non-local solutions exchange correlation-functional. For example, in the random

phase approximation (RPA) [60, 61], the correlation functional is dependent on the re-

sponse function that can be determined from the kernels established from time-dependent

density functional theory [62]. While providing accuracy in Van der Waal interactions

and molecular disassociation energies at a far higher accuracy then the previous methods,

non-local functional methods are highly computationally expensive [63].

Figure 2.1: Jacob’s ladder of DFT functionals where lower rungs correspond to lower
accuracy yet computationally faster DFT functionals and higher rungs correspond to
more computationally expensive methods.

There have been several assessments to quantify the error propagated by functional

usage. For example, a study comparing PBE and LDA through a Bayesian approach

found that when compared to an experimental database, LDA showed a mean atomization

and cohesive energy error of 1.35 eV for periodic solids, while PBE showed an error of
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0.16 eV [64].

In addition to determining error against experiment, the self-interaction error for vary-

ing functionals can also be compared theoretically. The method for determining the self-

interaction error is dependent on comparing the electron density distribution garnered

from these functionals with reference densities. When examining higher steps on Ja-

cob’s ladder, the functional PW91PW91, which contains both local and non-local terms,

performed well compared to SVWN5, a local spin density approximation (LSDA) func-

tional which is effectively an extension of LDA. When examining the Hydrogen molecule,

PW91PW91 produced a self-interaction error of -0.13 eV while SVWN5 produced a self-

interaction error of 1.26eV [65].

2.2 Cluster expansion formalism

The cluster expansion method is a linear expansion used to approximate the configu-

rational energy of crystals from short range interactions [66, 67, 68] though the method

could be extended to more general degrees of freedom [69]. We begin by assigning oc-

cupation variables σn to each site n of a crystal. When a site can be occupied by either

a Li or a vacancy, the value of σn is 1 or -1, respectively. The collection of occupation

variables can be assembled into a vector −→σ =(σ0,...,σn,...,σN), where N is the maximum

number of sites in consideration.

The configurational energy of a binary solid can be written as an expansion in terms of

crystal basis functions Φα(σ⃗) multiplied by expansion coefficients, referred to as effective

cluster interactions, Vα, according to [66]

E(σ⃗) = V0 +
∑
α

VαΦα(σ⃗) (2.37)
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For a binary system, the crystal basis functions are simply products of occupation vari-

ables belonging to sites of different clusters, labeled α, according to [66]

Φα(σ⃗) =
∏
n∈α

σn (2.38)

The index α extends over all possible clusters of sites within the crystal.

The symmetry of the crystal can be used as a means to reduce the number of inde-

pendent expansion coefficients. Specifically, the effective cluster interaction coefficients

corresponding to clusters that map onto one another through application of a space group

operation are equivalent. All clusters of a particular type that are equivalent by symme-

try can be collected in an orbit labeled Ωα, where α represents a prototype cluster. All

effective cluster interaction coefficients within the same orbit have the same value. When

symmetry is taken into account, the cluster expansion can be rewritten as

E(σ⃗) = V0 +
∑
Ωα

Vα(
∑
β∈Ωα

Φβ(σ⃗)) (2.39)

where the outer sum extends over orbits of distinct cluster types and β of the inner sum

indexes all clusters within a particular orbit, Ωα. The energy can next be normalized by

dividing by the number of unit cells, Nunit, yielding

e(σ⃗) =
E(σ⃗)

Nunit

=
V0

Nunit

+
∑
Ωα

mαVα

∑
β∈Ωα

Φβ(σ⃗)

mαNunit

(2.40)

wheremα is the multiplicity of symmetrically equivalent clusters per unit cell. By defining

correlation functions ξα(σ⃗) as the average over all crystal basis functions belonging to
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the same orbit according to

ξα(σ⃗) =
1

Nunitmα

∑
β∈Ωα

Φβ(σ⃗) (2.41)

Equation 2.40 can be rewritten as

e(σ⃗) =
E(σ⃗)

Nunit

=
V0

Nunit

+
∑
Ωα

mαVαξα(σ⃗) (2.42)

In this form, the expansion coefficients of a truncated cluster expansion can be determined

with conventional regression techniques given first-principles energies of Norderings ordered

configurations.

2.3 Electrochemical derivations

The Gibbs free energy of a battery can be derived from the free energy of the phases

in components of a battery through the relation [2]

Gtotal = Ge(N e
Li+) +Ga(Na

Li+ , N
a
e−) +Gc(N c

Li+ , N
c
e−) (2.43)

where the Gibbs free energies of the cathode, Gc(N c
Li+ , N

c
e−), anode, G

a(Na
Li+ , N

a
e−) and

electrolyte, Ge(N e
Li+) are dependent on the concentration of charged species, lithium ions

and electrons. The Gibbs free energy of the electrodes involve both electrons and lithium

ions since effective electrodes require both movement of ions and electrons. The Gibbs

free energy of the electrolyte can be approximated to be dependent on only lithium since

effective electrolytes will conduct only lithium ions and note electrons.

The electrochemical potential describes the dependence of the Gibbs free energy on

the change in composition of the lithium ions and electrons. The electrochemical potential
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of lithium in the cathode, for example, can be calculated through

ηcLi+ =
∂Gc

∂N c
Li+

(2.44)

while the electrochemical potential of the electron in the cathode can be calculated

through

ηce− =
∂Gc

∂N c
e−

(2.45)

Likewise the electrochemical potential with respect to lithium and electrons in the

anode can be determined through the same set of equations.

ηaLi+ =
∂Ga

∂Na
Li+

(2.46)

ηae− =
∂Ga

∂Na
e−

(2.47)

For the electrolyte, we only need to calculate the chemical potential with respect to

lithium through

ηeLi+ =
∂Ge

∂N e
Li+

(2.48)

The open circuit voltage, the potential between the cathode and anode, when all cell

components are at equilibrium. The voltage can be described with the above relations

through the Nernst equation

V =
ηae− − ηce−

e
= −

ηce− − ηae−

e
(2.49)

where e is the charge of one electron.

We can relate the chemical potential of lithium in the electrodes to the electrochemical

potential of the individual lithium-ions and electrons involved in the redox process. The

28



Computational Methods and Theoretical Background Chapter 2

chemical potential of a neutral ion in a phase β can also be determined by taking the

derivative of the Gibbs free energy.

µβ
Li =

∂Gβ

∂Nβ
Li

(2.50)

where µβ
Li denotes the change in the Gibbs free energy of phase β with a change of neutral

Li atoms in that electrode, Nβ
Li. This relationship can be expanded through the chain

rule as

µβ
Li =

∂Gβ

∂Nβ
Li+

∂Nβ
Li+

∂Nβ
Li

+
∂Gβ

∂Nβ
e−

∂Nβ
e−

∂Nβ
Li

(2.51)

Since neutral Li atoms are produced by the reduction of one lithium-ion by one electron,

this can be written as

µβ
Li = ηβLi+ + ηβe− (2.52)

since the change of the number of lithium ions is equivalent to the change in the number

of lithium atoms. The change in the number of electrons would also be equivalent to the

change in the number of lithium atoms.

This definition of the chemical potential can be used in the Nernst equation to define

the relationship between the voltage and chemical potential. We begin with the definition

of the voltage in an electrochemical cell [70]

V = −
ηce− − ηae−

e
= −

µc
Li − ηcLi+ − µa

Li +−ηaLi+

e
(2.53)

At equilibrium, the electrochemical potential of lithium ions in the anode, cathode, and

electrolyte are equivalent, which gives us the Nernst relation

V = −µc
Li − µa

Li

e
(2.54)
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Through this equation it can be inferred that the voltage at equilibrium can be calculated

through the chemical potentials in the cathode and anode.

2.4 Entropy derivations

2.4.1 Relating voltage to entropy: an overview

The open-circuit voltage that is measured for an electrochemical system carries with

it information of the chemical potential. They are related through the Nernst equation.

In general terms, for a battery, the Nernst equation can be written as

V = −
ηcate− − ηane−

e
(2.55)

where ηcate− and ηane− are the electrochemical potentials or electrons in the cathode and

anode, respectively. At equilibrium conditions this voltage can instead be related to

chemical potentials in the anode and the cathode through

V eq = −µcat
Li − µan

Li

e
(2.56)

Where µcat
Li and µan

Li are the chemical potentials of lithium ions in the cathode and anode

[70].

Information on the entropy of a system undergoing an intercalation reaction can be

acquired by it’s connection to the chemical potential. The Gibbs free energy is a thermo-

dynamic potential that determines the maximum amount of reversible work that can be

be accessed at constant temperature and pressure conditions [71]. The differential form

of this function has temperature (T ), pressure (P ), and number of atoms or molecules
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(N) as the independent variables

dG = −SdT + V dP +
∑
i

µidNi (2.57)

where V is the volume and µi is the chemical potential of each particular atom or

molecule. For an intercalation compound where the intercalant is lithium, this can be

simplified to

dG = −SdT + V dP + µLidNLi + µMAdNMA (2.58)

where µMA refers to the chemical potential of the host material and dNMA refers to the

change in the number of atoms of the host material.

In an intercalation compound, the number of host atoms should not change, therefore

the equation can be further simplified to

dG = −SdT + V dP + µLidNLi (2.59)

When two thermodynamic variables can be equated through a second derivative of a

thermodynamic potential, these variables can be related through a Maxwell relation [72].

Starting with the Gibbs free energy as the thermodynamic potential, one can show that

∂2G

∂N∂T
=

∂

∂N

[(
∂G

∂T

)
N,P

]
T,P

=
∂

∂T

[(
∂G

∂N

)
T,P

]
N,P

(2.60)

where G, N , T , P are the Gibbs free energy, number of atoms, temperature, and pressure

for the system in question.

From the Gibbs free energy equation (Equation 2.59), we can determine the terms
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inside the bracket. One may notice the equivalence of the first term to entropy

(
∂G

∂T

)
N,P

= −S (2.61)

and of the equivalence of the second term to the chemical potential of lithium-ions in the

electrodes. This can thus be written as

(
∂G

∂N

)
T,P

= µLi (2.62)

The molar entropy (SLi) can therefore be related to the chemical potential of lithium-

ions in the electrodes through

−SLi = −
[
∂S

∂N

]
P,T

=

[
∂µLi

∂T

]
P,N

(2.63)

where the final term shows that the change in chemical potential with lithium with

changing temperature gives information on the molar entropy of lithium in the system.

Therefore thermodynamic information about the system is accessible through potentio-

static measurements, as long as a change in temperature can be induced in the system

while holding pressure and number of ions fixed.

Our collaborators use this relation to provide accurate measurements of the entropy

in the electrodes. In their experiments, a coin cell is placed on to a cold plate where the

temperature can be varied. The chemical potential between the ends of the coin cells

are then measured through the use of a potentiostat. By changing the temperature and

measuring the change in voltage at constant compositions, our collaborators are able to

acquire the difference in the partial molar entropy between the cathode and the anode.

This is because, as shown previously, the voltage can be calculated from the chemical

potentials in the electrodes.
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2.4.2 Entropy measurements in battery materials

One can begin a full derivation for attaining entropic information for a battery through

its voltage by beginning at the cathode

−SLi = −
[
∂Scat

∂N

]
P,T

=

[
∂µcat

Li

∂T

]
P,N

(2.64)

where Scat and µcat
Li is specifically the entropy and chemical potential of lithium at the

cathode.

The chemical potential can be written as a function of the open circuit voltage and

the chemical potential at the anode as

µcat
Li = −(V eqe− µan

Li ) (2.65)

where µan
Li is the chemical potential of lithium at the anode. This equality can be added

to Equation 2.64 to attain

−SLi = −
[
∂Scat

∂N

]
P,T

=

[
∂(−V eqe− µan

Li )

∂T

]
P,N

(2.66)

One can put this in fractional coordinates by dividing by the total number of lithium.

We attain

−
[
∂Scat

M∂x

]
P,T

=

[
∂(−V eqe− µan

Li )

∂T

]
P,x

(2.67)

where M is the total number of lithium-ions.

If one is using a pure lithium counter-anode then the chemical potential at the anode

should not change conceivably with temperature and we can simplify to

−
[
∂Scat

M∂x

]
P,T

=

[
−e

∂(V eq)

∂T

]
P,x

− ∂µan
Li

∂T
(2.68)
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The last term in Equation 2.68 can be recognized as the entropy at the anode, there-

fore equation can be further simplified to

−
[
∂Scat

M∂x

]
P,T

=

[
−e

∂(V eq)

∂T

]
P,x

+ sanLi (2.69)

where sanLi is the entropy of the anode.

We can integrate to find the total entropy of the lithium in the cathode:

−Scat

M
= −e

∫ x

0

[
∂(V eq)

∂T

]
P,x

dx+

∫ x

0

sanLidx (2.70)

Carrying out the integration gives the following simplified expression

−Scat

M
= −e

∫ x

0

[
∂(V eq)

∂T

]
P,x

dx+ xsanLi (2.71)

where sanLi is a tabulated value acquired through NIST. At standard temperature and

pressure (298.15K and 0.1MPa), the entropy for solid lithium is 29.085 J
molK

[73].

2.5 Symmetry adapted collective displacement modes

2.5.1 Analysis of octahedral deformations

Quantification of polyhedral distortions over different structures allows a cohesive

understanding of which distortions lead to phase stability. Specifically, examining dis-

tortions within octahedra in the Wadsley-Roth phase crystal structures allows for an

assessment of the extent distortions are affected by the topology of the crystal structure

and whether these distortions play a role in determining which Wadsley-Roth structures

are stable. In order to perform this examination, displacement modes specific to the sym-
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metry of an ideal octahedron must be defined. These modes are vectors that describe

collective displacements of the constituent atoms within the octahedron.

The transition metals ions that are components of the Wadsley-Roth phases are gen-

erally in their maximum oxidation state. Transition metal cations, such as W6+ and

Nb5+, have empty d-orbitals that make the cations susceptible to second-order Jahn-

Teller distortions when octahedrally coordinated by oxygen [74, 75, 76, 77, 78]. The

empty d-orbital can cause an energetically favorable interaction between the strong cen-

tral charge of the d0 cation and the surrounding anions that induces a perturbation away

from the centrosymmetric state. This tendency can result in a displacement of the central

cation as well as deformations of the octahedrally coordinated oxygen environments.

An MO6 octahedron constitutes six oxygen ions coordinating a central ion, generally

a transition metal cation, M [79]. The orientation, position, and deformation state of the

octahedron can be described by 7×3 = 21 displacement degrees of freedom. Three degrees

of freedom describe a rigid rotation of the octahedron. An additional three degrees of

freedom describe a rigid translation of the octahedron. These six modes do not give

information for how the octahedron distorts. The remaining 21 − 6 = 15 degrees of

freedom describe the extent of distortions of the octahedron relative to an ideal reference

octahedron.

For complete definitions of distortion modes, distortions are quantified through sym-

metry adapted collective displacements of the atoms of an ideal octahedron. These sym-

metry adapted displacement modes are the decomposition of a distortion into a linear

combination of different group and subgroup symmetry breaking collective distortions

[80], specific to the point group of an octahedrally coordinated cluster of atoms. As

an example, Figure 2.2 shows fifteen displacement modes of an octahedron divided into

six irreducible subspaces according to the octahedral cubic point group. These modes

can be further divided into one one-dimensional, one two-dimensional, and four three-
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dimensional irreducible subspaces.

Before the distortions of a cluster of atoms can be quantified, it is first necessary to

remove the rigid translations and rigid rotations of the distorted cluster relative to an ideal

reference cluster. Any rigid translation can be removed by placing the geometric center

of mass of the distorted and reference cluster at the origin of the Cartesian coordinate

system.

The atomic coordinates of an N -site distorted cluster can be collected into a 3 × N

matrix R = [r⃗1, . . . , r⃗N ]. Each r⃗i is a column vector of the Cartesian coordinates of the

atom at site i. Similarly, the coordinates of the atoms of an ideal, high-symmetry N -site

reference cluster can be described in the 3×N matrix R0 = [r⃗01, . . . , r⃗
0
N ]. Likewise, each

r⃗0i is a column vector in Cartesian space of the atom at site i. The coordinates of the

distorted cluster can be related to those of the reference cluster according to

R = U(R0 +D) (2.72)

where U is a 3 × 3 rotation matrix. The 3 × N matrix D describes the displacement

of the atoms from the reference atomic positions. It can be written as D=[d⃗1, . . . , d⃗N ]

where d⃗i is a column vector that describes the displacement of each atom at each site, i.

Equation 2.72 shows that the distorted cluster is obtained by first displacing each atom

of the reference cluster at position r⃗0i by the vector d⃗i and then rotating the distorted

cluster with the rotation matrix U to generate the coordinate r⃗i. The rotation matrix is

unitary such that U−1 = UT, thus preserving lengths and angles.

The order of the atoms in the distorted cluster relative to the reference cluster de-

scribed in the matrices R and R0 determines the rotation matrix, U, and displacement

matrix, D. The Hungarian algorithm is a method used for optimally assigning atomic

positions of the distorted polyhedron [81] relative to the reference polyhedron. Specif-

36



(a) 1D

(b) 2D

(c) 3D

I (A1g)

I (Eg)

III (T1u)

IV (T2g)

V (T2u)

VI (T1u)

Figure 2.2: Symmetry adapted collective displacements for an octahedron with seven
atoms, one central cation and six coordinating anions. These are grouped into (a) one
one-dimensional irrep corresponding to volumetric distortions of point point group
A1g, (b) one two-dimensional irrep corresponding to tetragonal distortions of point
group Eg, (c) four three-dimensional irreps corresponding to two T1u distortions, one
T2g distortion and one T2u distortion.
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ically, an assignment of atoms from the distorted polyhedron to those of the reference

polyhedron must be chosen to minimize the displacements at each site. The Hungarian

algorithm is applied before the optimal rotation matrix, U, can be calculated.

After the Hungarian algorithm is applied, the rotation matrix, U, is chosen such

that multiplying the matrix onto the distorted cluster minimizes the root mean square

displacements between the distorted and the reference cluster according to

N∑
i=1

|d⃗i|2 =
N∑
i=1

|UTr⃗i − r⃗0i |2 (2.73)

where the d⃗i are the columns of D. |d⃗i| is the length of the vector d⃗i. The Kabsch algo-

rithm [82, 83, 84] can be used to find the rotation matrix U that minimizes Eq. 2.73. The

derivation of the Kabsch algorithm can be found in Subsection 2.5.2. The displacements

matrix, D, as defined by Eq. 2.72, thus describes the deformation state of the distorted

cluster relative to the reference high-symmetry cluster. These displacements can then be

decomposed into a linear combination of symmetry adapted collective displacements.

To decompose the distorted state of a cluster of sites in terms of symmetry adapted

collective displacements, it necessary to unroll the 3×N matrix of displacements D into a

3N vector, D⃗T. The symmetry adapted collective displacements can be described within

the vectors q⃗j with a length of 3N where j indexes over the symmetry adapted collective

displacements. There are a total of 3N − 6 symmetry adapted collective displacements

that describe deformations. These are orthogonal to the three collective displacements

that describe a rigid translation of the cluster and the three collective displacements

that describe infinitesimal rotations of the reference cluster. The displacements of the

distorted cluster’s atomic positions can therefore be expressed as a linear combination of
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the 3N − 6 symmetry adapted collective modes according to

D⃗ =
3N−6∑
j=1

αj q⃗j (2.74)

where the coefficients αj are the amplitudes of each symmetry adapted collective dis-

placement, q⃗j. The symmetry adapted collective modes are constructed from group

theoretical techniques [85]. Those shown in Figure 2.2 were generated algorithmically as

described in Thomas and Van der Ven [86]. In our analysis of the octahedral distortions

in Wadsley-Roth phases, we project the displacements as collected in the 21-dimensional

column vector D⃗ onto the 15 symmetry adapted collective modes, q⃗1, . . . , q⃗15, shown in

Figure 2.2.

The symmetry adapted collective displacements, q⃗j, fall into different irreducible sub-

spaces, but all symmetrically equivalent distortions reside within the same irrep. This

concept is illustrated in Figure 2.3 for the Eg irrep of the octahedron spanned by q⃗2 and

q⃗3. In this figure, the coordinates are the amplitudes αj appearing in Eq. 2.74. The

points and lines having the same color represent symmetrically equivalent distortions of

the octahedron according to the cubic point group of the reference octahedron.

The first irreducible subspace (irrep) for the octahedron (q⃗1), shown in Figure 2.2(a),

spans a one-dimensional subspace of the 15-dimensional space of displacement degrees

of freedom. This mode describes the symmetry preserving volumetric distortions of

an octahedron. The second irrep constructed from the reference octahedron (q⃗2, q⃗3),

(Figure 2.2(b)), spans a two-dimensional subspace. These modes describe tetragonal and

orthorhombic distortions of the cubic reference octahedron. More precisely, these symme-

try adapted collective displacements correspond to the first-order Jahn-Teller distortions

of the octahedron, a distortion induced by a system to relieve orbital degeneracy. There

are an additional four irreps of symmetry adapted collective modes, each of dimension
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q3

q2

Figure 2.3: Representation of the norm of the two dimensional ΓII(Eg) irrep.
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three, which are collected in Figure 2.2(c). These encompass modes q⃗4, . . . , q⃗15.

The collection of amplitudes, αj, of a distortion within a two or three-dimensional

irreducible subspace forms a vector in that space. While the full vector of amplitudes

within any given irrep is necessary to construct the precise symmetry breaking distortion

allowed by that irrep, it is often sufficient to simply track whether a particular irrep is

prominent in a distorted cluster. This can be assessed by calculating the length of the

amplitude vector within each irrep. The Euclidean norm within each irrep takes the form

γi =

√∑
j∈Γi

α2
j (2.75)

where γi is the length of the amplitudes in irrep Γi and where the sum extends over all the

amplitudes αj within the irrep (i.e. j ∈ Γi). Through the calculation of the Euclidean

norm, an accurate summation of all symmetrically equivalent contributions within a

particular irrep on the distortions can be quantified. This magnitude can be compared

between polyhedra in the same structure, to determine which irreps play a stronger role

in distortions due to local chemical connectivity differences. Additionally, this magnitude

can be used to compare the components of distortions in different structures with the

same polyhedra type. As a result, this method allows for accurate quantification of

distortion differences across distinct crystal structures and Wadsley-Roth phases with

differing symmetries.

2.5.2 Kabsch Algorithm Derivation

We begin our determination of the 3×3 rotation matrix U with the defining equation,

Eq. 2.73. The optimal rotation matrix is the one that gives the lowest root mean square

displacement between the rotated cluster of atoms and the reference cluster [82, 84, 83].

To find the matrix U that minimizes Eq. 2.73, Eq. 2.73 can be rewritten according to
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∑N
i=1 U

T r⃗i and
∑N

i=1 r⃗
0
i as a trace of the corresponding 3×N matrix representations, R

and R0. We first define a quantity Q where Q = UT This can be written as

N∑
i=1

|d⃗i|2 = Tr[(QR−R0)
T (QR−R0)] (2.76)

This equation can be further simplified through multiplication of the terms within the

trace

N∑
i=1

|d⃗i|2 = Tr[(RTQTQR)− (R0
TQR)− (RTQTR0) + (R0

TR0)] (2.77)

Since the trace of multiple components is a linear mapping, additivity is allowed. The

trace can be rewritten as

N∑
i=1

|d⃗i|2 = Tr[(RTQTQR)]− Tr[(R0
TQR)]− Tr[(RTQTR0)] + Tr[(R0

TR0)] (2.78)

using the matrix relations Tr[AB] = Tr[BA] and Tr[A] = Tr[AT ], the relation can be

further simplified to

N∑
i=1

|d⃗i|2 = Tr[(RTQTQR)]− Tr[(R0
TQR)]− Tr[(R0

TQR)] + Tr[(R0
TR0)]

= Tr[(RTQTQR)] + Tr[(R0
TR0)]− 2Tr[(R0

TQR)]

where the term Tr[(RTQTQR)] is equivalent to the length of the vectors of the positions

of the rotated cluster of atoms,
∑N

i=1 |Qr⃗i|2. It is important to note that QTQ = I

where I is a 3× 3 identity matrix. Therefore Tr[(RTQTQR)] = Tr[RTR] which in turn

is independent of Q. The term Tr[(R0
TR0)] gives the length of the positions of the
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reference atomic positions,
∑N

i=1 |r⃗0i |2. These terms are not dependent on the rotation

matrix, Q, and therefore are constants with respect to Q. Minimization of the squared

distance of the atomic displacements therefore requires maximization of Tr[(R0
TQR)].

We can decompose this term using singular value decomposition (SVD). To effectively

perform the SVD, we must rearrange the matrices. Using the cyclic property of matrices,

we can rewrite Tr[(R0
TQR)] such that

Tr[(R0
TQR)] = Tr[RR0

TQ] (2.79)

The terms RR0
T can be decomposed into three geometrical transformations: V, S, and

W. Specifically,RR0
T can be decomposed into VSWT . The 3×3 matrix, WT , describes

an initial rotation. S, a 3 × 3 matrix that contains the singular values which scales the

coordinates along these rotated vectors. V is a 3×3 matrix that describes a final rotation

after the vectors have been scaled. The trace of the covariance matrix, RR0
T , can be

written as

Tr[RR0
TQ] = Tr[VSWTQ]

= Tr[SWTQV]

where the columns ofWT andV are orthonormal basis vectors for the subspaces occupied

by the atomic positions of the cluster of atoms and the atomic positions of the reference

cluster of atoms. This can be rewritten as

Tr[SWTQV] = Tr[Sξ] (2.80)

where ξ is an orthonormal matrix equivalent to WTQV. Since ξ is orthonormal it may

have a determinant of -1 or +1 and Tr[Sξ] is maximized when the determinant of ξ is
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+1. Therefore we can set ξ equivalent to identity and we get the relation

WTQV = I (2.81)

Therefore the optimal rotation matrix can then be written as

Q = WVT (2.82)

This is the equation for the optimal rotation matrix of the chirality if the coordinate

system is not to be considered. The last step is to ensure that the coordinate system is

right-handed. To prevent improper rotations to be included as potential optimal rotation

matrices, the determinant of WVT must be greater than 0.
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Chapter 3

Wadsley-Roth phases

The Ti-Nb-O system is filled with a rich set of binary and ternary phases, many demon-

strating promising properties for energy storage applications. In this section, we system-

atically determine the zero-K Ti-Nb-O ternary phase diagram from first principles and

then study the driving forces for their stability. We focus on the Wadsley-Roth crystallo-

graphic shear phases, promising intercalation compounds for high power density battery

electrodes. We find that Wadsley-Roth phases that minimize octahedral edge sharing

are lower in energy. Also of importance is the ability of this structure to accommodate

octahedral distortions. We quantify polyhedral distortion descriptors which show that

while the distortions on TiO6 and NbO6 differ slightly, distortions are largely induced

by the amount of octahedral edge sharing on a particular octahedron. We separate the

effects of electrostatics and octahedral distortions on the phase stability of disordered

orderings in the high power density lithium-ion battery anode material, TiNb2O7. Elec-

trostatics cause TiO6 octahedra to favor sites where they can share more edges; NbO6

octahedra instead favor sites where they can share less edges. Despite this, the lowest

energy ordering in TiNb2O7 is not the one that minimizes octahedral edge sharing on

NbO6 octahedra. Instead it is the ordering stabilized by distortions on the central nio-
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bium induced by the broken symmetry of the neighboring metal cations. The balance

between electrostatics and distortion on phase stability can likely be extended to other

disordered Wadsley-Roth phases.

3.1 Introduction

The electrification of vehicles and high-power electronics requires the development

of battery electrodes that can sustain fast charging rates and high power densities after

many charging cycles. Early transition metal oxides have received much attention as

candidates to replace the graphite anodes of current commercial batteries. The bronze-B

polymorph of TiO2 [87, 88, 89, 90, 91, 92] and spinel LixTi5O12,[93, 94, 95, 96] for example,

can intercalate Li at voltages well above the Li plating potential, making them safer

alternatives to graphite for high power applications. Several niobium oxides have also

shown promising electrochemical properties that make them viable as anode materials

of high power Li-ion batteries.[15, 97, 98] Multiple Nb2O5 polymorphs reversibly cycle

lithium including TT-Nb2O5 [99, 100], T-Nb2O5 [101], monoclinic H-Nb2O5 [102, 103],

and bronze Nb2O5 [104]. At an increased niobium composition, Nb25O62 shows high

lithium intercalation capacity retention at rates of 10C [105]. With further increasing

niobium composition, the monoclinic Nb12O29 structure demonstrates reversible cycling

against lithium [106].

An especially promising class of materials to serve as high power anodes in Li-ion

batteries are the Wadsley-Roth phases [107, 108]. Also referred to as crystallographic

shear structures, the Wadsley-Roth phases are formed by early transition metal oxides

and constitute a large family of open crystal structures that can intercalate Li at high

rates. Their structures can accommodate Li over multiple redox couples and their crys-

tallographic flexibility makes it possible to tune their structure through alloying. While
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there are several Nb-oxides that form Wadsley-Roth phases [107, 108, 109, 110, 111, 112],

many more have been synthesized by combining different early transition metals such as

Nb, Ti, W and Mo [113, 20, 114, 115, 116, 21, 117, 22, 118, 119, 113, 120, 121]. For ex-

ample, TiNb2O7, which has already been commercialized as an anode material, exhibits

reversible capacities [93] up to 341mAh/g and high reversible charge rates [16, 19]. Other

titanium-niobates such as TiNb24O62 [122] and Ti2Nb10O29 [123] also exhibit high rate

capabilities. Recent work by Griffith et al. [97], has demonstrated high rate capabilities

in Wadsley-Roth phases containing different mixtures of Nb and W.

In this contribution, we investigate the structural diversity of Wadsley-Roth phases

and identify chemical and crystallographic factors that determine phase stability among

the many possible structural variants. We develop approaches to systematically enu-

merate Wadsley-Roth phases and extend the naming scheme proposed by Cava [15] to

enable a more precise specification of each Wadsley-Roth crystal structure. We next ex-

plore the factors that make some Wadsley-Roth phases more preferable than others and

find that the relative stability among different Wadsley-Roth crystal structures is to first

order driven by a minimization of the number of edge-sharing octahedra. The varying

flexibility of the metal-oxygen octahedra to undergo structural distortions in different

Wadsley-Roth crystal structures is also found to play an important role in determining

relative stability. To this end, we describe an approach to rigorously decompose oc-

tahedral distortions into a superposition of amplitudes of symmetry adapted collective

displacement modes of an octahedron. This enables a rigorous analysis of the nature of

octahedral distortions in structures with the crystallographic complexity of Wadsley-Roth

phases. We also investigate the role of alloying over the cation sublattice of Wadsley-

Roth phases with a particular focus on Ti and Nb. We find that cations with different

oxidation states will arrange to reduce the fraction of high oxidation state cations that

occupy edge-sharing octahedra. As a consequence, cations having low oxidation states
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segregate to edge-sharing octahedra, while those with high oxidation states segregate to

the corner sharing octahedra. Ordering tendencies among cations are also found to be

affected by structural distortions of the octahedra.

3.2 Methods

3.2.1 First-principles electronic structure calculations

Density Functional Theory (DFT) calculations were performed with the Vienna ab

initio simulation package (VASP) [124, 125, 126, 127]. The projector augmented wave

(PAW) [128, 46] method was used to treat interactions between valence and core elec-

trons. All calculations were performed within the generalized gradient approximation

(GGA) as parameterized by Perdew, Burke, and Ernzerhof (PBE) [44]. Spin-polarized

calculations were performed with a 575 eV plane wave energy cutoff and a Γ-centered

k-point grid with a reciprocal space discretization of 45 K-points per Å
−1

which were de-

termined by performing an energy cutoff and k-point convergence to within 5 meV/atom.

All structures were relaxed with respect to the lattice and atomic coordinates using a

force convergence of 0.02 eV/Å and an energy convergence of 10−5 eV. Enumeration of

symmetrically distinct configurations of titanium and niobium over the cation sites of

different oxide Wadsley-Roth structures was performed using the Clusters Approach to

Statistical Mechanics (CASM) [129, 130, 69, 131, 132] software package.

3.2.2 Analysis of octahedral deformations

The algorithm for obtaining octahedra from structures, octahedral rotations, and

distortion amplitude analysis is given in Chapter 2.
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3.3 Results

3.3.1 Wadsley-Roth Structural motifs

Wadsley-Roth block phases are transition metal oxide structures formed from tran-

sition metal octahedra. These octahedral units have anions, generally oxygen ions, at

its vertices and metallic cations at their center. These octahedra are depicted in Figure

3.1(a). A multitude of differing block structures can be constructed. The most basic

structure is one composed of n×m blocks repeating infinitely along the short axis. The

octahedra at the edges of these blocks share edges with octahedra in its neighboring

blocks such that the octahedra at the block’s outer boundary. This creates an offset

between the blocks that is one-half octahedra in length, in other words, the length be-

tween the central cation and the surrounding anion. This is shown parallel to the x̂− ŷ

plane in Figure 3.1(b). This edge-sharing motif creates areas of crystallographic shear

at the blocks out boundary that leads to consistent edge sharing along the short axis of

the structure. The continuous connection of octahedral edge-sharing along the short axis

(denoted the ẑ-axis) is shown in Figure 3.1(c).

Differences between Wadsley-Roth phases originate from the block sizes and the con-

nectivity of the individual blocks. Figure 3.2(a) shows a Wadsley-Roth phase constructed

from 4 × 4 blocks. To demonstrate a case where n and m differ, Figure 3.2(b) instead

shows a 5 × 3. We can take the 5 × 3 structure and shift it either along the short edge

of the block, in line with the x̂-axis as shown in Figures 3.3(b) and 3.3(c) relative to

the non shifted block (Figure 3.3(a)). The unit of the length from the oxygen on one

side of an octahedron to the oxygen at the opposing side of the octahedron is called ∆d.

Alternatively, the blocks can be shifted relative to the long side of the block, which is in

line with the ŷ-axis (Figures 3.3d-g).

To describe these phases, we extend the nomenclature that originates from Cava et
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Figure 3.1: (a) Schematic of a transition metal octahedra. (b) An example 3 × 3
Wadsely-Roth structure as shown parallel to the x̂− ŷ plane. (c) An example of the
3× 3 Wadsley-Roth phase parallel to the x̂− ẑ plane
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Figure 3.2: Wadsley-Roth phase constructed from 4× 4 blocks (a) and 3× 5 blocks (b).

al.[15] In Cava et al., phases are described by E, T , andM to denote Wadsley-Roth phases

containing octahedral edge sharing alone, Wadsley-Roth phases containing tetrahedral

sites, and extended Wadsley-Roth phases containing mixtures of these motifs.

We begin our expansion of this naming scheme with the type E Wadsley-Roth phases.

The n × m blocks that make up Wadsley-Roth phases can be patterned such that the

n × m block are in line with one another along both the x̂ and the ŷ directions. This

phase (shown in Figure Figure 3.3(a)) is called an E0[3 × 5]. The blocks can be shifted

along either the short direction (along x̂) or the long axis (along ŷ). Phases shifted

along either the x̂ or the ŷ direction can be described by Eix,jy[n × m]. The variable i

is an integer value that dictates the number of octahedral lengths (∆x= i ∗ d) that the

blocks are shifted along the short axis. On the other hand, the j variable dictates the

number of integer octahedral lengths that the blocks are shifted relative to one another

along the long axis (∆y= j ∗ d). Figure 3.3(a) shows an E0[3× 5] Wadsley-Roth phase.
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Figure 3.3: (a) A Wadsley-Roth phase constructed from no shift. Wadsley-Roth
phases shifted along the short axis to shift a length of ∆x=d (b) and ∆x=2d (c)
is shown. Additionally, Wadsley-Roth phases shifted along the long axis lengths of
∆y=d (d), ∆y=2d (e), ∆y=3d (f), and ∆y=4d (g).
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Wadsley-Roth phases shifted along the short axis to produce E1x[3 × 5] (Figure 3.3(b))

and E2x[3×5] (Figure 3.3(c)) is shown. Additionally, Wadsley-Roth phases shifted along

the long axis to produce E1y[3× 5] (Figure 3.3(d)), E2y[3× 5] (Figure 3.3(e)), E3y[3× 5]

(Figure 3.3(f)), and E4y[3× 5] (Figure 3.3(g)) are shown.

For the E phases, only i or j can exhibit integer values, never both. If both vari-

ables are finite integer values, the phase is either a type T or M phase or it is not an

experimentally known Wadsley-Roth phase. If i=1 and j=-1 (or alternatively if i=-1 and

j=1), a vacancy opens up that can be filled with a tetrahedral site. Experimentally, this

tetrahedral site has been filled with phosphorous, vanadium, tungsten, and a variety of

other metal and non-metal species. This case is shown in Figure 3.4.

Experimentally, Wadsley-Roth phases with multiple shift types, block sizes, and block

connectivities have been synthesized. Figures 3.5(a) and 3.5(b) are type ”E” Wadsley

Roth phases where one of the block lengths is infinite in length. This creates a crys-

tallographic shear plane that is infinite along one axis (the ŷ axis). An example of a

type E[3×∞] structure as shown in Figure 3.5(a) is Nb3O7F.[133] The E[2×∞] struc-

ture is seen in a polymorph of Nb2O5 (R-Nb2O5[117]) and W3V5O20[134]. The E1[3× 3]

structure (Figure 3.5(c)) can be found in the high power density Wadsley-Roth phase,

TiNb2O7[16]. Nb12O29 has a 3 × 4 shift type patterned in a E1[3 × 4] structure (Figure

3.5(d)) while E1[4 × 4] blocks can be found in M-Nb2O5 (Figure 3.5(e)).[106, 135] The

type T phase can be found in many niobium tungsten oxides. The 4 by 4 type T phase

is isostructural to Nb14W3O44, a T[4× 4] phase (Figure 3.5(f)).[136]

There are multitude of phases that also extend in complexity beyond the aforemen-

tioned shift types. Structures denoted M type phases cannot merely be constructed by

shifting blocks in the x or y direction. Instead these are constructed from shifting larger

subsets of these blocks, rather than individual blocks.Many of these structure have tetra-

hedra at their vertices as well as octahedral edge sharing motifs reminiscent of type E1
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phases, where some block are shifted by i=1. Experimentally, the H-Nb2O5 phase has a

3× 5 block of NbO6 octahedra edge sharing with a 3× 4 block of NbO6 octahedra. The

combination of these blocks have tetrahedra at their vertices (Figure 3.5(g)).

In addition to phases with tetrahedral motifs, other structures where shifts occur

relative to two blocks rather than one for structures without connecting tetrahedra. For

example, the phase commonly referred to experimentally as the monoclinic phase M-

Ti2Nb10O29 is a type E1[3 × 4] structure, as shown in Figure 3.6(a). This phase, as

before, is constructed by shifting the 3× 4 blocks by i = 1 relative to one another. Now

if one where instead to take two blocks along y shifted by i = 1 and then shift that unit

two-block unit by another i = 1 then the resulting structure would be the orthorhombic

phase of Ti2Nb10O29 (Figure 3.6(b)). Though these have the same block sizes and the

same compositions with the same shift types present, these two structures differ due to

the extended shift degree present in the orthorhombic phase.[113]

We constructed an equation for the Wadsley-Roth crystallographic shear phases, that

allows one to construct, type E and type T Wadsley-Roth. The matrix equation, MWR,

can be written as

MWR =


nd− d

2
δxd 0

δyd md− d
2

0

d
2

d
2

d

 (3.1)

where n is the first block dimension andm is the second block dimension. Conventionally,

the n < m when the block structure is described, e.g. E[n×m]. As stated previously, d

is the length of one MO6 octahedra from one oxygen to the opposing oxygen. The exact

value of d is thus dependent on the chemical structure of the Wadsley-Roth phase. As

stated earlier in the section, δx corresponds to the shift along the n dimension of the

block. δx is in values of octahedral lengths, d, and can take integer values. δy is the shift

amount along the m dimension of the block For the construction of type M structures,

54



Δx=d

Δy=-d

Figure 3.4: A type T[3× 3] Wadsley-Roth phase.

55



y

xz

(a) (b)

(c) (d)

(e) (f)

(g)

Figure 3.5: A subset of known experimentally synthesized Wadsley-Roth types includ-
ing E[3×∞](a), E[2×∞] (b), E1[3× 3] (c), E1[3× 4] (d), E1[4× 4] (e), and T[4× 4]
(f). The type M phase M[3× 4, 3× 5] is constructed by both subsets of 3× 4 blocks
and 3 × 5 blocks and contains motifs that can be found in both type T and type M
phases.
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Figure 3.6: Two type E Wadsley-Roth phases constructed from blocks of the same
size (3× 4) but with differing repeat units in the primitive unit cell. The experimen-
tally formed type M-Ti2Nb10O29 basic structure is shown (a). The tetragonal phase,
T-Ti2Nb10O29 constructed by not only shifting the blocks but repeat subsets of two
3× 4 blocks are sheared by a differing amount
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a different matrix equation is required, and is still yet to be constructed.

3.3.2 Wadsley-Roth alloys: the TiNb2O7 compound

We next explore ordering preferences among different cations over the metal sites

of Wadsley-Roth phases. Ordering tendencies within alloyed Wadsley-Roth phases are

affected by chemical and structural factors. Electrostatic interactions will play a role

when cations have different oxidation states. The results of the previous section, for

example, have shown that edge-sharing between octahedrally coordinated cations with

high oxidation states is unfavorable. In alloyed Wadsley-Roth phases, the cations with

the higher oxidation states are, therefore, expected to avoid octahedral sites that share

many edges with neighboring cation sites. Some cations of an alloyed Wadsley-Roth

phase may tolerate or even favor octahedral distortions more readily than others, leading

to competing ordering preferences that are dictated by the degree with which different

sites are able to relax. To explore cation ordering tendencies in Wadsley-Roth phases, we

focus on TiNb2O7, an important anode material for Li-ion batteries[137] that adopts the

E1[3 × 3] Wadsley-Roth crystal structure shown in Figure 3.7(a). The cation sites that

can be alloyed with Ti and Nb are numbered as in Dreele et al. [138]. The Ti and Nb

cations of this compound are in their maximum oxidation state (i.e. Nb5+ and Ti4+) and

both elements are susceptible to second order Jahn-Teller distortions in this oxidation

state.

We calculated the energies of all symmetrically distinct Ti-Nb orderings (a total of

44) over the cation sites within the unit cell of the E1[3× 3] Wadsley-Roth structure at

the TiNb2O7 composition. To separate the effects of relaxations from purely chemical

and electrostatic interactions, we compare unrelaxed energies, in which all octahedra of

the Wadsley-Roth phase are perfectly cubic, to fully relaxed energies. The energies are
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Figure 3.7: (a) Symmetrically inequivalent sites in the transition metal sublattice of
TiNb2O7. Sites numbered with a prime are symmetrically equivalent to its correspond-
ing site. (b) Crystallographic structure for the electrostatic ground state ordering in
TiNb2O7 for volume 1 enumerated orderings. (c) Crystallographic structure for the
ground state ordering TiNb2O7 for volume 1 enumerated orderings when structural
optimization is performed.
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Figure 3.8: (a) Energies of TiNb2O7 orderings varied over the transition metal sub-
lattice when atomic positions are held fixed (gold) and energies of TiNb2O7 orderings
varied over the transition metal sublattice for relaxed orderings (blue).(b) Relaxation
energies of all TiNb2O7 orderings.

shown in Figure 3.8(a), plotted as a function of the average number of edges shared by

Nb, ξNb, in each structure. As is clear in Figure 3.8(a), the unrelaxed energies, shown

in yellow, exhibit a strong and almost linear correlation with this metric. The trend

suggests that in the absence of relaxations, the Nb5+ cations seek to occupy sites that

minimize the number of edge-sharing pairs. Figure 3.8(b) shows the Ti and Nb ordering

over the cation sites of E1[3 × 3] with the lowest unrelaxed energy. In this structure,

the Nb occupy sites with the minimal number of edge-sharing pairs, which includes the

central block site.

The correlation between the energy of the crystal and the average number of edge-

sharing pairs per Nb5+ persists for the fully relaxed energies (blue points in Figure 3.8(a)).

However, the spread in energy for a given value of ξNb is increased. Furthermore, the

lowest energy ordering without relaxations is no longer the lowest energy configuration

after full relaxation. Instead, another configuration with a slightly higher value of ξNb

has the lowest fully relaxed energy. This configuration is shown in Figure 3.7(c) and
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differs from the configuration of Figure 3.7(b) in that the occupants of sites 1 and 3 have

been swapped.

While the energy of TiNb2O7 is highly correlated with the average number of edge-

sharing pairs per Nb5+ cation, other factors also play a role. One among them is the

ability of different octahedral sites within the E1[3×3] Wadsley-Roth crystal of TiNb2O7

to distort as both the Ti4+ and Nb5+ cations are susceptible to second-order Jahn-Teller

distortions. Furthermore, metal cations that share edges will relax in order to increase

the length of the edge-sharing pair. Figure 3.8(b), which plots the reduction in energy

during relaxation for each of the 44 different Ti-Nb orderings in TiNb2O7, shows a strong

correlation of this relaxation energy with ξNb, the average number of edge-sharing pairs

of Nb in each structure. The more edge-sharing pairs per Nb, the more the crystal was

able to lower its energy during relaxation.

It is clear from Figure 3.8(b) that all configurations are able to lower their energy

as a result of relaxations more so than the ordering of Figure 3.7(b), the lowest-energy

configuration when relaxations are neglected and the configuration that minimizes the

number of edge-sharing octahedra simultaneously occupied by Nb5+.

Relaxations within a Wadsley-Roth structure result in characteristic deformations of

each metal-oxygen octahedron. The deformations of each MO6 octahedron in the fully

relaxed TiNb2O7 structures was analyzed by decomposing the octahedral displacements

into a linear superposition of the symmetry adapted collective displacements of Figure

2.2 as described in Section 2.5.1. The length of the amplitudes within the different

irreducible subspaces, γi, was calculated for each octahedron in each of the 44 different

configurations of TiNb2O7 and binned into histograms.

Figures 3.9(a) and (b) show the histograms for the length of the amplitude vector

in irrep ΓV for the TiO6 and NbO6 octahedra, respectively. Distortions in irrep ΓV

correspond to a deformation of an equatorial square of oxygen, with opposite pairs of
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(a)

(b)

Figure 3.9: (a) ΓV expression for all TiO6 octahedra in all 44 symmetrically in-equiva-
lent transition metal sublattice orderings of TiNb2O7. (b) ΓV expression for all NbO6

octahedra in all 44 symmetrically in-equivalent transition metal sublattice orderings
in TiNb2O7.
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Figure 3.10: (a) ΓV I expression for all TiO6 octahedra in all 44 symmetrically in-e-
quivalent transition metal sublattice orderings in TiNb2O7. (b) ΓV I expression for
all NbO6 octahedra in all 44 symmetrically in-equivalent transition metal sublattice
orderings in TiNb2O7.
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oxygen moving perpendicular to the equatorial plane as illustrated in the inset in Figure

3.9. As is clear in Figure 3.9, the amplitude of the octahedral distortions corresponding

to this mode is very sensitive to the number of edges that the octahedron shares with

neighboring filled octahedra. The corner sharing octahedra at the center of the 3×3 blocks

of the TiNb2O7 Wadsley-Roth structure, which share zero edges, undergo the smallest

deformations according to the ΓV mode. Somewhat surprisingly, the octahedra that share

only two edges with neighboring filled octahedra undergo more severe deformations than

many octahedra that share 3 or more edges. Overall, the deformations of the TiO6

octahedra are very similar to those of the NbO6 octahedra.

Figure 3.10 shows a similar histogram for the ΓV I irrep. This irrep corresponds to

off-centering displacements of the central metal cation as illustrated in the inset of Figure

3.10. Here again, the degree of distortion is very sensitive to the number of edges that the

octahedron shares with neighboring filled octahedra. The degree with which the cation

displaces from the center of the octahedron increases with the number of edges that the

octahedron shares with neighboring occupied octahedra. A notable difference between

Ti4+ and Nb5+ is that the latter displaces further from the center in the corner sharing

octahedra of the center of the 3 × 3 block. The distortions in the other irreps, ΓI , ΓII ,

ΓIII , ΓIV , are not as pronounced as those of ΓV and ΓV I for both the TiO6 and NbO6

octahedra as shown in Figure 3.11. The individual distortion amplitudes by amount of

edge sharing are shown in Figures 3.12, 3.13, 3.14, and 3.15. An analysis of the distortion

amplitudes as a function of energy are shown in Figure 3.16.

It is insightful to compare the octahedral distortions after relaxation of the configu-

ration of Figure 3.7(b), which minimizes the number of edge-sharing pairs occupied by

Nb5+, to those of the configuration of Figure 3.7(c), which has the lowest energy after

relaxation. Figure 3.17 compares the octahedral distortions for irrep ΓV I for the equiva-

lent octahedral sites in the two configurations. Similar comparisons for the other irreps
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Figure 3.11: Histogram analysis of all symmetrically distinct orderings of TiNb2O7,
where the only transition metal octahedra analysed are transition metal octahedra
that share zero edges in the structure. Each ordering has one octahedra that shares
no edges with neighboring transition metal octahedra, two octahedra that share two
edges with neighboring transition metal octahedra, two octahedra that share three
edges with neighboring transition metal octahedra, and four octahedra that share
four edges with neighboring transition metal octahedra.
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Figure 3.12: Histogram analysis of all symmetrically distinct orderings of TiNb2O7,
where the only transition metal octahedra analysed are transition metal octahedra
that share zero edges in the structure. Each ordering only has one octahedra that
shares no edges with neighboring transition metal octahedra.
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Figure 3.13: Histogram analysis of all symmetrically distinct orderings of TiNb2O7,
where the only transition metal octahedra analysed are transition metal octahedra
that share two edges in the structure. Each ordering only has two octahedra that
share two edges with neighboring transition metal octahedra.
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Figure 3.14: Histogram analysis of all symmetrically distinct orderings of TiNb2O7,
where the only transition metal octahedra analysed are transition metal octahedra
that share three edges in the structure. Each ordering only has two octahedra that
shares three edges with neighboring transition metal octahedra.
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Figure 3.15: Histogram analysis of all symmetrically distinct orderings of TiNb2O7,
where the only transition metal octahedra analysed are transition metal octahedra
that share four edges in the structure. Each ordering has four octahedra that shares
four edges with neighboring transition metal octahedra.
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Figure 3.16: Distortion amplitudes for TiNb2O7 as a function of energy. Each point
is an individual octahedra in the plot with the color dependent on the amount of
octahedral edge sharing.
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Figure 3.17: Distortion amplitudes over each numbered site where the light color data
points are values for each octahedral site in the electrostatic TiNb2O7 ground state
ordering while the dark color data points are values for the corresponding octahedral
sites in the structurally optimized TiNb2O7 ground state ordering.

are shown in Figure 3.18.

While the only difference between the configurations in Figures 3.7(b) and (c) is the

occupancy of sites 1 and 3, Figure 3.17 indicates that the distortions of the octahedra of

sites 1 and 3 are narrowly affected by the swap. Instead, there is a marked difference in

the off-centering of the Nb5+ cation in site 4, the corner sharing octahedron at the center

of the 3×3 block of the E1[3×3] structure. In configuration Figure 3.7(b), the Nb remains

close to the center of the octahedron, while in the lower energy configuration of Figure

3.7(c), the Nb is more off centered. This is enabled by having a lower oxidation state Ti4+

cation as one of its corner sharing neighbors. The lower symmetry of configuration Figure

3.7(c) as compared to that of Figure 3.7(b) gives the central Nb more flexibility to off-

center and thereby more fully express its tendency to undergo a second-order Jahn-Teller

distortion.
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Figure 3.18: Distortion amplitudes on each octahedral site in the lowest energy unre-
laxed ordering (orange) and the lowest energy relaxed ordering (blue).
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Figure 3.19: Zero-K Ti-Nb-O phase diagram calculated with PBE.

3.3.3 Wadsley-Roth phase stability in the Ti-Nb-O ternary

We next explore the thermodynamic stability of Wadsley-Roth phases relative to other

polymorphs in the Ti-Nb-O ternary composition space. To this end, we generated alloyed

Wadsley-Roth phases by decorating the cation sites of stable binary NbpOq Wadsley-Roth

phases with Ti and Nb cations. All symmetrically distinct Ti-Nb orderings within the

unit cell of Nb3O7 in the E1[3 × 3] structure at compositions TiNb8O21 and Ti2Nb7O21

were calculated, as were all configurations over the sites of Nb12O29 in the E1y[3 × 4]

structure having the composition TiNb11O29. We also include the energies of the 44

different Ti-Nb orderings over the cation sites of TiNb2O7 in the E1[3 × 3] structure

in the list of candidate structures, discussed in the previous section. Additionally, all

symmetrically distinct orderings of the type M TiNb24O62 phase were also enumerated

and their energies are calculated.

Figure 3.19 shows the calculated zero-Kelvin phase diagram of the Ti-Nb-O compo-
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Figure 3.20: Titanium oxygen binary phase diagram, calculated in VASP using
PAW PBE potentials.

sition space. The ground states along the binary Ti-O composition axis were taken from

Gunda et al. [139]. While the experimentally assessed Ti-O phase diagrams contain

the corundum Ti2O3 structure as a stable oxide, DFT-PBE predicts instead a vacancy

ordered rocksalt to be stable at that composition [139, 140]. As noted in Section 3.3.1,

this vacancy ordered rocksalt can be viewed as a E1[1 × 2] Wadsley-Roth phase. Also

absent from the calculated phase diagram is the rutile-derived NbO2 oxide along the

Nb-O binary composition axis [141]. These disagreements with experiment are likely due

to the PBE exchange-correlation functional. Nevertheless, the overall agreement with

experiment is very good and the absence of NbO2 and corundum Ti2O3 from the zero-

Kelvin phase diagram can be attributed to errors in the calculated energy of only several

meV per atom. The Nb-O and Ti-O binary formation energy plots are shown in Figures

3.20 and 3.21.

Figure 3.19 shows that a large number of Wadsley-Roth phases are predicted to be
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Figure 3.21: Niobium oxygen binary phase diagram, calculated in VASP using
PAW PBE potentials.

stable in the ternary composition space. The Wadsley-Roth compounds in the Ti-Nb-O

composition space are all predicted as having negative formation energies relative to their

binary counterparts on the Nb-O binary axis and the lowest energy polymorph of TiO2.

Surprisingly, the TiNb2O7 compound, used as an anode in Li-ion batteries, is not a

zero-Kelvin ground state when only considering Ti-Nb orderings in the primitive unit cell.

This suggests that TiNb2O7 is stabilized at elevated temperature through configurational

and/or vibrational entropy. While the list of candidate structures considered here is not

exhaustive, and other Wadsley-Roth phases are also likely stable, these results conclu-

sively show that DFT-PBE predicts Wadsley-Roth phases as being stable compounds in

the Ti-Nb-O ternary. Voskanyan et al. [142], using calorimetry measurements, concluded

that many Wadsley-Roth phases in the Ti-Nb-O ternary composition space have positive

formation enthalpies and attributed their stability to entropic contributions to the free

energy.
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Figure 3.22: Relative energies and lowest energy states for full relaxations of all
symmetrically distinct orderings for stoichiometries and block sizes of TiNb2O7 (a),
Ti2Nb7O21(b), TiNb8O21 (c), and TiNb11O29 (d).
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As shown in the previous section, the Ti and Nb of TiNb2O7 prefer orderings that

minimize the number of edge-sharing octahedra occupied by Nb cations. Similar corre-

lations are predicted for the other alloyed Wadsley-Roth phases considered in this work.

Figure 3.22(b), (c), and (d) shows the variation in the fully relaxed energies of differ-

ent Ti-Nb orderings over the cation sites of E1[3 × 3] at compositions TiNb8O21 and

Ti2Nb7O21 and of E1y[3×4] at composition TiNb11O29 as a function of the average num-

ber of edge-sharing pairs per Nb cation. Again, as with TiNb2O7, the Ti cations, with

their lower oxidation state, prefer to segregate to the crystallographic shear boundaries

and fill the edge sharing octahedra, while the Nb segregate to the block interior and

prefer the central corner-sharing octahedron.

The distortion amplitudes for the Ti-Nb-O ternary show that across the NbO6 and

TiO6 octahedra exhibit similar distortions for each irrep type as shown in Figure 3.23.

The ΓV distortion is expressed to a slightly higher degree for TiO6 octahedra than for

NbO6 octahedra. Conversely the ΓV I distortion is expressed more in the NbO6 octa-

hedra than the TiO6. Distortion amplitudes exclusively for maximum oxidation state

compounds are shown in Figure 3.24. A sensitivity analysis of the distortion amplitudes

for the ternary is shown in Figure 3.25.

3.4 Discussion

The Wadsley-Roth family of crystal structures are adopted by a wide variety of early

transition metal oxides containing Ti, V, Nb, Ta, Cr, Mo and W. Many Wadsley-Roth

phases are promising anode materials for Li-ion batteries due to their ability to intercalate

Li ions at high rates and at low voltages [143, 98, 144, 16, 93, 28, 27, 145, 146, 142, 147,

148, 106, 149, 150, 151, 152, 103, 153, 154, 155, 156]. They are also important for

structural applications as they are formed by many of the early transition metals of
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Figure 3.23: Histograms describing distortion amplitudes over all relevant irreducible
representations for octahedra in all phases in the Ti-Nb-O ternary. The histograms
are seperated between all available TiO6 octahedra in structures within 25meV/atom
of the hull and all available NbO6 octahedra in structures within 25meV/atom above
the hull. The histograms are colored based on the formation energies of the parent
structure of each octahedra sampled. The blue histogram shows the distortion ampli-
tudes for octahedra that are in ground state structures. The purple histogram shows
the distortion amplitudes for octahedra in structures that are between 0meV/atom to
10meV/atom excluding ground states. The red histogram shows the distortion ampli-
tudes for octahedra in the structures that are between 10meV/atom and 25meV/atom
from the convex hull.
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Figure 3.24: Histogram describing distortion amplitudes over all relevant irreducible
representations for octahedra in phases where transition metals are at their maxi-
mum oxidation state in the Ti-Nb-O ternary. The histograms are separated between
all available TiO6 octahedra in structures within 25meV/atom of the hull and all
available NbO6 octahedra in structures within 25meV/atom above the hull. The his-
tograms are colored based on the formation energies of the parent structure of each
octahedra sampled. The blue histogram shows the distortion amplitudes for octahe-
dra that are maximum-oxidation ground state structures. The purple histogram shows
the distortion amplitudes for octahedra in maximum-oxidation state structures that
are between 0meV/atom to 10meV/atom excluding ground states. The red histogram
shows the distortion amplitudes for octahedra in the maximum-oxidation state struc-
tures that are between 10meV/atom and 25meV/atom from the convex hull.
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Figure 3.25: Sensitivity analysis for the distortion amplitudes for transition metal
octahedra in stable structures in the Ti-Nb-O ternary. Data from TiO6 octahedra are
plotted in light blue. The mean distortion amplitudes for TiO6 are shown as a light
grey triangle. Data corresponding to NbO6 octahedra are plotted in dark blue. The
mean distortion amplitudes for NbO6 is shown as a black triangle.
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multi-principle element refractory alloys. Their open crystal structures, however, make

them unsuited as protective oxide scales for corrosive or high temperature structural

applications and strategies are desired to suppress their formation in favor of more dense

and protective oxide scales.

In this work, we have analyzed and classified Wadsley-Roth phases and developed

approaches to systematically enumerate an important subset of their crystal structures.

We have extended Cava’s naming scheme [15] to be more precise and descriptive by

adding specifications for the block size and relative offset of neighboring blocks. By

systematically enumerating the structures of two subclasses of Wadsley-Roth phases we

have been able to identify relationships between important oxide crystal structures that

were not previously evident. These are summarized in Figure 3.3.

A calculation of the energies of systematically enumerated Wadsley-Roth crystal

structures in the Nb-O and Ti-Nb-O composition spaces has highlighted two predom-

inant factors that determine phase stability among Wadsley-Roth structures. The first is

the importance of the number of edge-sharing octahedra, which each contribute an energy

cost due to the electrostatic repulsion between pairs of metal cations in high oxidation

states. First-principles DFT calculations show that the Wadsley-Roth crystal structures

that minimize the number of edge-sharing octahedra at a fixed oxygen to metal ratio are

energetically preferred. Similar interactions involving edge-sharing octahedra also affect

ordering preferences among cations with different oxidation states. Mixtures of Ti4+ and

Nb5+ over the cation sites of Wadsley-Roth phases perfer orderings that minimize the

average number of shared edges per Nb5+. This leads to low energy orderings in which

Ti4+ segregates to the block edges, where the edge-sharing octahedra reside, while Nb5+,

with its higher oxidation state, segregates to the corner sharing octahedra at the center

of the blocks and to octahedra with the lowest number of shared edges.

A second factor affecting phase stability is related to structural features that restrict
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the degree with which edge-sharing cations and individual octahedra can distort. The

flexibility with which the cations and anions of the Wadsley-Roth phase are able to distort

to lower their energy is negatively correlated with the number of shared octahedral edges

that reside within the x̂ − ŷ plane. Wadsley-Roth structures of type E with increasing

relative block shifts accumulate a greater number of shared octahedra that lie within the

x̂− ŷ plane, and as a result have less flexibility to relax and lower their energy.

An analysis of the octahedral distortions of the different Ti-Nb orderings within

TiNb2O7 has shown that two types of octahedral distortions dominate. The first, as

described by the ΓV irrep octahedral distortion mode, involves a warping of equatorial

oxygen as illustrated in the inset of Figure 3.9. This type of distortion is manifested

most strongly by the edge-sharing octahedra and is a distortion that allows for an in-

crease in the distance between edge-sharing transition metals (Figure 3.9). This type of

distortion is especially large in the anatase form of TiO2 as shown in Figure 3.26(a). It

is also an important distortion mode of the edge-sharing octahedra in other polymorphs

of Nb2O5 (Figure 3.26(a)). As is revealed in Figure 3.9 the octahedra of TiNb2O7 con-

taining Ti tend to distort more strongly than those containing Nb, which is consistent

with the trends exhibited in Figure 3.26(a) for other polymorphs of TiO2 and Nb2O5.

All distortion amplitudes for these Nb2O5 and TiO2 phases can be found Figure 3.27.

Early transition metals in their maximum oxidation states, such as Ti4+ and Nb5+,

are susceptible to second order Jahn-Teller distortions when octahedrally coordinated by

anions such as oxygen. The second-order Jahn-Teller distortion leads to an off-centering

of the transition metal cation within the oxygen octahedron, a distortion that is described

by the ΓV I irrep . Both the Nb and the Ti cations exhibit a sizable off-centering when

occupying the corner sharing octahedra at the center of the block, however, Nb exhibits

slightly larger distortions. The off-centering becomes more pronounced in edge-sharing

octahedra as a result of the electrostatic repulsion with neighboring cations.
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(a)

(b)

Nb2O5 TiO2

Figure 3.26: (a) ΓV magnitudes for octahedra in experimentally synthesized Nb-O
[157, 104, 117, 103] and Ti-O compounds [158, 159, 160, 161, 162] where the tran-
sition metal is at a maximum oxidation state. (b) ΓV I magnitudes for octahedra in
experimentally synthesized Nb-O and Ti-O compounds where the transition metal is
at a maximum oxidation state.
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Nb2O5 TiO2 Nb2O5 TiO2 Nb2O5 TiO2

Figure 3.27: Distortion amplitudes for differing experimentally formed Nb-O com-
pounds with Nb in its full oxidation state and Ti-O compounds with Ti in its full
oxidation state.
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3.5 Conclusion

We have presented a systematic way to generate an extensive subset of Wadsley-

Roth block structures and link them to a wide range of experimentally observed and

technologically important oxide crystal structures. This new perspective unifies a diverse

range of structures from rocksalt to bronze TiO2 to the perovskite framework of WO3.

The study of structures with different relative block offsets revealed the two forces

which drive phase stability: (1) minimizing electrostatic repulsion between the highly

oxidized metal cations by reducing edge sharing interactions, and (2) maximizing the

energy-reducing octahedral distortions by limiting the number of in-plane edge sharing

interactions. These competing factors strongly favor the E1 structures across all block ge-

ometries in the Nb-O system, and we predict that this trend would continue for structures

composed of other metal cations.

Through a high throughput study of the Ti-Nb-O phase space, we examine the factors

that affect stability in in the Nb-O and Ti-Nb-O Wadsley-Roth phases. Through these

methods we find that electrostatics are the largest cause of phase stability in the Wadsley-

Roth phases and that octahedral distortions are a secondary cause of phase stability

of specific Wadsley-Roth shift types and orderings on the transition metal sublattice.

Additionally we find that of that the relative energy of Ti-Nb-O Wadsley-Roth phases

follows a linear trend with respect to the fraction of edge sharing on Nb containing

octahedra. Characteristic distortions in Wadsley-Roth phase octahedra are quantified.

These distortions show that Wadsley-Roth phases induce distortions that are linearly

correlated to the amount of octahedral edge sharing. The results is a tendency for the Ti

ions with the lower 4+ oxidation state to occupy edge sharing octahedral sites while the

Nb5+ ions tends to prefer central corner-sharing octahedra. We expect this trend to be

repeated in other alloyedWadsley-Roth structures, where the cations with lower oxidation
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states accumulate in edge sharing sites along the crystallographic shear boundary.

The Nb-O and Ti-Nb-O Wadsley-Roth structures as well as other structures discussed

including the bronze TiO2 phase and PNb9O25 are of great interest for energy storage

applications. The geometry of the Wadsley-Roth crystal structure and the ordering of

the metal cations on their lattice can greatly impact the kinetics and thermodynamics of

lithiation. This improved understanding of the factors which determine cation ordering

in these complex phases will aide in the prediction and tuning of these characteristics for

future energy storage materials.
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Chapter 4

Role of Electronic Structure in Li

Ordering and Chemical Strain in the

Fast Charging Wadsley–Roth Phase

PNb9O25

We continue this thesis with an examination of the thermodynamic and structural prop-

erties of a single Wadsley-Roth phase, PNb9O25. When used as anode material, PNb9O25

has shown high cyclic reversibility at up to 60C charge rates. This section probes what

thermodynamic and structural factors may be changing while the structure is lithiated

and delithiated using ab initio calculations and semi-grand canonical Monte Carlo cal-

culations.
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4.1 Introduction

Secondary lithium-ion batteries have become a standard for portable electronics and

electric vehicles due to their reliability, high cycle lives, and high efficiencies [163]. De-

spite their widespread use, Li-ion batteries continue to face challenges in high-power

applications, where they have a propensity for thermal runaway reactions due to the for-

mation of lithium dendrites on the anode during fast charging [164, 165, 166, 167]. The

Li dendrites can pierce the separator and lead to direct contact between the anode and

the cathode, thereby increasing explosion risks. These safety concerns put constraints

on the charging times of Li-ion batteries, which limits their use in mobile applications,

including electric and hybrid electric vehicles. There is, therefore, a tremendous interest

to identify new anode chemistries that are able to rapidly intercalate large quantities of

Li and at a slightly higher voltage than the voltage window of graphite based anodes.

The Wadsley-Roth crystallographic shear phases have received much attention in

recent years due to their ability to intercalate Li at exceptionally high rates [97] and at

voltages that make them viable anode materials. The early studies of lithium insertion

into 14 different Wadsley-Roth chemistries by Cava et al. [15] demonstrated their ability

to accommodate multielectron reduction and oxidation, thereby enabling higher energy

densities when compared to intercalation compounds that exchange only one electron

per redox center. More recent studies of the electrochemical properties of the Wadsley-

Roth chemistries, including VNb9O25 [148, 28], TiNb2O7 [168, 169, 137, 16], Ti2Nb10O29

[170, 123], Nb12O29 [106, 105], Nb12WO33 [171, 172], Nb14W3O44 [111, 173], Nb16W5O55

[143], H-Nb2O5 [174, 103], and T-Nb2O5 [175, 176, 177], have further confirmed their

high capacities and high rate capabilities.

Despite their favorable electrochemical properties, very little is known about the crys-

tallographic changes, electronic structure, and lithium ordering tendencies of Wadsley-
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Roth phases as a function of Li concentration. Here we report on a combined first-

principles and experimental study of the structural and electrochemical properties of the

PNb9O25 Wadsley-Roth phase. First studied as an electrode material for Li-ion batter-

ies by Patoux et al. [148], recent cycling data has shown that PNb9O25 can reversibly

cycle for over 500 cycles at a rate of 2C, which corresponds to a thirty minute charge

or discharge when tested in a half-cell against lithium [28]. These half-cells were able to

maintain a gravimetric capacity of 190 mAhg−1. PNb9O25 has also been shown to re-

versibly cycle up to rates of 60C, though with lower capacities and Coloumbic efficiencies.

The insertion of Li into PNb9O25 activates not only the Nb5+/4+ redox couple, but also

the Nb4+/3+ couple [28, 148]. A Li:Nb ratio above 1 can, therefore, be achieved, which is

greater than the Li to transition metal ratio of 1 that limits the capacity of most other

transition metal oxide intercalation compounds. The open structure of PNb9O25 allows

for rapid lithium diffusion while operating in a potential window between 2V and 1V and

accommodates approximately 11.5 Li when cycled at a C/20 rate against Li. The higher

operating voltage window of PNb9O25 makes it possible to discharge this electrode chem-

istry at higher current densities than graphite based anodes that operate at an average

potential of 0.1V [178].

Our systematic study of the electrochemical properties of PNb9O25 as a function of

Li concentration reveals a complex site filling sequence that is strongly influenced by

the chemical strain induced by changes in the electronic structure that accompany Li

insertion. PNb9O25 can host Li in three pyramidal sites and two window sites. The

pyramidal sites are filled first, but are then slightly depopulated in favor of window sites.

We identify a favorable Li ordering motif over the vertical window sites that forms a

persistent backbone at intermediate to high Li concentrations, with the remaining sites

accommodating Li through a solid solution. We find that the ordered motif becomes

stable after the host undergoes a tetragonal strain due to the delocalization of donated
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electrons over the d orbitals of edge-sharing Nb cations. Our results show a strong

coupling between changes in electronic structure and variations in structural and chemical

properties as a function of Li concentration.

4.2 Methods

4.2.1 First-principles statistical mechanics calculations

Density Functional Theory (DFT) calculations were performed with the Vienna Ab

initio Simulation package (VASP) [124, 125, 126, 127] and were used to predict the

energies of different lithium-vacancy orderings in LixPNb9O25. The generalized gradient

approximation (GGA) as formulated by Perdew, Burke, and Ernzerhoff (PBE) [44] was

used. The SCAN meta-GGA [56, 179] functional was also used to assess the sensitivity

of the predictions to the exchange-correlation approximation. This analysis can be found

in Figure 4.1. The interactions between the valence and core electrons was treated with

the projector augmented wave (PAW) theory [128, 46] and a plane wave energy cutoff

of 550eV was used. A fully automatic k-point mesh setting corresponding to a 2×2×7

Monkhorst-Pack grid was used for the primitive unit cell. Crystal structures and charge

densities were visualized with VESTA [180]. A charge density isosurface of 0.004 Å
−3

were used for all calculations.

The electrochemical properties associated with Li insertion into PNb9O25 were studied

with a cluster expansion approach in combination with Monte Carlo simulations using

the CASM code [131, 130, 69, 129]. The PNb9O25 unit cell contains 20 stable lithium

sites. Without taking symmetry into account, there are over 1 million different Li-

vacancy orderings over the sites of the primitive unit cell of PNb9O25. This number of

Li-vacancy orderings increases considerably within supercells of PNb9O25. To sample
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Figure 4.1: Voltage curve at 0 Kelvin (blue lines) as calculated with SCAN along with
the experimental voltage curve at room temperature (orange curve). Energies were
calculated for the ground states as determined with DFT-PBE. Vertical lines corre-
spond to stable ground states and horizontal lines correspond to two-phase regions.
SCAN predicted voltages are overall higher than those predicted with PBE.

important Li-vacancy configurations, we used an iterative approach whereby the energies

of an initial sampling of Li-vacancy configurations were used to parameterize a cluster

expansion, which was subsequently used to identify low-energy Li-vacancy configurations.

The cluster expansion fit was iteratively improved with every batch of new low-energy

orderings. Cluster expansion Hamiltonians were used in Monte Carlo simulations to

predict finite temperature thermodynamic properties such as the voltage curve [69, 2,

181, 182, 183, 184, 185, 186, 187, 188, 189, 190].

4.2.2 Experimental Methods

Materials preparation

PNb9O25 was prepared using traditional solid-state methods. Stoichiometric ratios of

(NH4)3PO4 (Sigma Aldrich, 98%) and Nb2O5 (Materion, 99.95%) were ground together
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using an agate mortar and pestle for 20 minutes. The resulting powder mixture was

pressed into a 13 mm pellet under 2.5 tons of force with a total mass of 1.5 g. The pellet

was placed into an alumina crucible on a bed of the powder mixture and annealed at 623

K in air. After 20 hours, the furnace was adjusted to 1523 K, and the pellet annealed

for another 18 hours. The pellet was slow-cooled in the atmosphere of the furnace and

reground in a mortar and pestle for use. Additional descriptions can be found in previous

work [28, 148].

Electrochemical characterization

The material was ball-milled in a 5 mL stainless steel grinding vial with SuperP (TIM-

CAL). A slurry was prepared by speedmixing a polyvinylidene fluoride binder (Kynar,

Arkema) with N-methyl-2-pyrrolidone at 2000 rpm for 10 minutes until dissolved. Then

the active material and SuperP mixture was added to the mixture and speedmixed at

2000 rpm for 10 minutes until a uniform suspension was formed. The resulting viscosity

was equivalent to honey, and the ratio of active material:carbon:binder was 72:18:10 by

weight. The mixture was cast onto Cu foil using a doctor blade set to 150 µm and dried

under vacuum at 90 deg C. 10 mm diameter discs were punched, and a typical mass

loading is 1.5 mg/cm 2. 2032 coin cells were assembled in an Ar-filled glovebox (H2O

< 0.1 ppm, O2 < 0.1 ppm) using a polypropylene separator (Celgard 2500) and flooded

with 1 M LiPF6 in ethylene carbonate/dimethyl carbonate (EC/DMC, Sigma Aldrich).

Polished Li discs were used as a combined counter and reference electrode. Galvanos-

tatic intermittent titration technique (GITT) was performed using a VMP3 potentiostat

(Bio-logic) at a rate of C/40 with a 30-minute current step and 90-minute rest periods

between a voltage window of 1 – 3V. To be consistent with prior work on LixPNb9O25,

[28], we calculate the rate based on 12 Li ions inserted into the formula PNb9O25, such

that C/40 = 12Q/40 = 254 mAh g−1 /40 h = 6.35 mA g−1. We point out, however, that
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Figure 4.2: (a) The crystal structure of PNb9O25 as viewed down the c axis. The
octahedra correspond to the NbO6, the tetrahedra correspond to PO4. (b) The trian-
gular and square polyhedra show one example of each symmetrically distinct lithium
site.

the maximum theoretical capacity based on crystallographically available Li sites is 20

per PNb9O25 formula unit.

Neutron scattering and refinements

In order to produce ex-situ material at differing states of lithiation, PNb9O25 was

electrochemically cycled as loose powder that was mechanically ball milled with SuperP

(TIMCAL) in a 5 mL stainless steel can for 30 minutes (80% active material by weight).

Approximately 200 mg of the mixture was carefully loaded onto a stainless steel plunger

of a swagelok cell with a 1.5 inch diameter. The powder was compacted with two glass

fiber separators (Whatman GF/D) cut to size and compressed with another plunger.

The cells were assembled in an Ar-filled glovebox (H2O < 0.1 ppm, O2 < 0.1 ppm) us-
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ing enriched 7Li as the counter electrode (Sigma Aldrich) and enriched 7LiPF6 (Sigma

Aldrich) made into a 1 M electrolyte solution in 1:1 v/v EC/DMC (Sigma Aldrich). The

cells were cycled at a rate of C/80 to ensure expected lithiation in the bulk, loose powder

format. The first cell was cycled to 1.695 V (OCV = 3.1 V, 1.5 Li inserted), and the

second cell was cycled to 1.635 V (OCV = 3.2 V, 4.3 Li inserted). The Galvanostatic

discharge profiles are provided in Figure 4.3. The cells were deconstructed in the Ar-filled

glovebox, and the cycled materials were scraped off of the stainless steel plunger. The

powders were washed three times in dimethyl carbonate and dried under vacuum. Once

dry, they were loaded into glass capillaries as provided by the mail-in program at NO-

MAD (BL-1B, Spallation Neutron Source, Oak Ridge National Laboratory), where the

time-of-flight data was collected at room temperature (Figure 4.4). Rietveld refinements

on the diffraction data were done using GSAS-II using both banks 4 and 5 [191]. The

non-lithiated structure was refined using the previously-reported structure solution for

PNb9O25 (space group I4/m, 87) [192]. Both atomic positions and atomic displacement

parameters were allowed to refine. The lithiated structures were refined by placing Li

onto the expected Wyckoff positions within the parent structure based on the predicted

structures from the DFT calculations. The structure was first refined against the orig-

inal PNb9O25 structure without Li. Then, Li was systematically placed onto each of

the 5 identified sites, separately. Position (except special positions), isotropic atomic

displacement parameters, and lattice parameters were allowed to refine. All occupancies,

including Li, were fixed to the nominal stoichiometry as derived from the electrochemical

experiments. The unphysical results were separated from the physical results to iden-

tify the plausible experimental structures. For all patterns, backgrounds were initially

fit graphically with a 36-term polynomial to account for the amorphous nature of the

carbon additive and left fixed for the remainder of the refinements. Visualizations of the

crystal structures from the resulting cif files were done using VESTA [180]. Partial pair
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Figure 4.3: Galvanostatic discharge of PNb9O25 in large format, loose powder
Swagelok cells. Each cell contained an average of 200 mg of the electrode mixture
(160 mg of active material). The cells were discharged at a rate of C/80 with a lower
voltage cutoff of (a) 1.695 V and (b) 1.635 in order to capture the structural changes
before and after the main plateau at 1.65 V. The electrochemistry seen here directly
corresponds to the samples used for all of the refinements.

distribution functions can be found in Figure 4.5 and were calculated using the PDFgui

program [193].

4.3 Results

4.3.1 Lithium site preferences and lithium ordering

The PNb9O25 compound is a member of the Wadsley-Roth family of crystallographic

shear phases [22, 194, 171, 195]. The PNb9O25 unit cell, shown in Figure 4.2(a), consists

of 3×3×∞ blocks of corner-sharing NbO6 octahedra that are connected to each other by

edge sharing NbO6 octahedra along each block periphery. The blocks are offset along the

a and b lattice vectors, allowing for a tetrahedral PO4 site at the block corners. There are
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Figure 4.4: Time-of-flight data for PNb9O25, Li1.5PNb9O25, and Li4.3Nb9O25 collected
at the Spallation Neutron Source at Oak Ridge National Lab (NOMAD, wavelength =
1.4 Angstroms) (a) in the full range of data collection for bank 5, and (b) the selected
range used for refinements. The range was chosen to capture a consistent range of
complete, well-defined peaks between all samples.
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Figure 4.5: (a) Neutron pair distribution function data of PNb9O25, Li1.5PNb9O25,
and Li4.3PNb9O25 from 2-5 Å. The arrow points to the shifting of the peak at 3.8 Å
to shorter distances. (b) Calculated atomic distances for all of the atom pairs from
the known crystallographic structure of PNb9O25 (space group I 4/m, 87) showing the
deconvolution of each peak. The peak centered at 3.81 Å corresponds to the Nb-Nb
atomic distance, marked with a grey dashed line. The shift in the peak at 3.8 Å in
Li4.3PNb9O25 to shorter distances supports the result from DFT that Nb-Nb distances
become shorter with lithiation.
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two symmetrically equivalent tetrahedral sites per unit cell, one above the other along the

c axis, that can be occupied by P. In experimentally prepared samples, P fills these sites

with equal probability, leading to a partial occupancy of 0.5. In all our calculations, we

picked one of the two sites, and thereby work with a model that has an increased degree of

order and hence a lower symmetry. Furthermore, the experimentally refined structure of

PNb9O25 has the Nb at the center of the block distributed over two off-centered positions

with partial occupancies of 0.5. These off-centered positions cannot be simultaneously

occupied by two Nb. In all our calculations, the position of the Nb at the center of the

block was initialized at the geometric average of the off-centered positions.

We have identified five symmetrically distinct candidate lithium sites in PNb9O25.

An example of each type of site is shown in Figure 4.2(b). The Pe, Pc and Ps sites

are pyramidally coordinated by oxygen and reside along the block periphery. Each Pe

site shares an edge with a PO4 tetrahedron while each Pc site shares a corner with a

PO4 tetrahedron. The Ps sites are located in the middle of the block periphery and are

coordinated by six NbO6 octahedra. Li can also reside in two symmetrically distinct

window sites: the vertical Wv sites and the horizontal Wh sites. These sites reside in

the interior of the 3 × 3 × ∞ blocks of corner-sharing NbO6 octahedra and are each

coordinated by a planar square of oxygen ions. Each of the five symmetrically distinct

Li sites have a multiplicity of four per unit cell. The stability of pyramidal and window

sites in PNb9O25 is consistent with past neutron diffraction and first-principles studies

by Catti et al. [196, 197, 198] and Morris et al. [143, 98] of other Wadsley-Roth phases.

We first investigated Li site preferences at very dilute Li concentrations. All sym-

metrically distinct arrangements of a single Li within a super cell containing two units

of PNb9O25 stacked along the c-axis were enumerated. This corresponds to a Li concen-

tration of x=0.5 in LixPNb9O25. Figure 4.6(a) shows their energies as calculated with

DFT-PBE. At this very dilute concentration, Li prefers the pyramidal Ps sites. The
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Figure 4.6: (a) Energies per unit cell of different Li-vacancy orderings in LixPNb9O25

at x=0.5. The energies were calculated with DFT-PBE in a super cell containing 2
unit cells stacked along the c-axis. The lowest energy configuration was chosen as
the reference (i.e. the zero of the energy scale). Pe, Ps, and Pc refer to different
pyramidally coordinated Li sites (b) Energies per unit cell of LixPNb9O25 at x=4, in
which all symmetrically equivalent sites of a particular Li site are completely filled.

least favored site is the vertical window site Wv. The Li site preference changes upon

the addition of more Li. This is evident in Figure 4.6(b), which shows the energy at

x=4 in which all four symmetrically equivalent sites of each type of Li site are filled. At

this concentration, the Pc sites are preferred over the Ps sites. Note the large change in

energy scale in Figure 4.6(b) compared to that in Figure 4.6(a).

We further explored Li site preferences and ordering tendencies over the whole com-

position range 0 < x < 20 in LixPNb9O25 by calculating the formation energies of 4298

Li-vacancy orderings over all five candidate Li-sites within differently sized super cells

with DFT-PBE. The calculated formation energies are shown in Figure 4.7. The major-

ity of these orderings were enumerated with CASM [129, 130, 199, 131] using the cluster

expansion in an iterative approach to identify low-energy Li-vacancy orderings within

LixPNb9O25. To highlight changes in site preference as a function of Li concentration,

we have color-coded configurations based on their site occupancies. The three formation
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Figure 4.7: Calculated formation energies of 4298 Li-vacancy orderings within
LixPNb9O25. (a) Configurations in which Li only occupies the Ps and/or Pe sites
are highlighted. (b) Configurations with some degree of Li occupancy of the Pc sites
as well as Wh and/or Wv sites are highlighted. (c) Configurations with all Pc sites
filled by Li and a partial filling of Ps, Wh and/or Wv sites by Li are highlighted.

energy plots and the accompanying schematics show which site types are filled in the

lowest energy orderings in three separate composition intervals.

At low compositions (0 < x < 3), the low energy Li-vacancy orderings have Li

occupying the Ps and/or Pe sites. The energies of these configurations are shown in

pink in Figure 4.7(a). A site preference inversion occurs at x=4 where the lowest energy

Li-vacancy ordering has three Li per unit cell occupying the Pc site and one Li per unit

cell occupying the Pe site. Beyond x=4, the Ps and Pe sites are no longer preferred and

all ground states and low energy orderings have completely filled Pc sites. Furthermore,

both the horizontal and vertical window sites, Wh and Wv, which are not favored at
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dilute Li concentrations, start filling as more Li is added. The energies of orderings with

Pc, Wh and Wv partially or fully filled are shown in purple in Figure 4.7(b). As the Li

concentration increases further, the Ps sites start filling again in the low energy orderings.

The energies of configurations in which all the Pc sites are filled and where the Wh, Wv

and Ps sites are fully or partially occupied are shown in light blue in Figure 4.7(c).

An intriguing feature about the ground states and a large number of low energy

orderings in the interval 7 < x < 14 is that almost all share a common Li-vacancy

ordering over the Wv vertical window sites. This ordering leads to a doubling of the

unit cell along the c-axis and can be described as an interweaved pattern with pairs of

occupied Wv sites alternating their orientation by 90o upon moving along the c-axis as

shown in Figure 4.8. The composition at which this ordering can set in is x=6, with

all four Pc sites and two of the four Wv sites filled per unit cell. Additional Li is then

accommodated by the gradual filling of the horizontal Wh sites followed by the Ps sites.

Schematics of the ground state orderings can be found Figures 4.3.1, 4.3.1, 4.3.1, 4.3.1,

and 4.3.1.

The convex hull connecting the formation energies of the ground state orderings can

be used to calculate the voltage profile of LixPNb9O25 relative to a pure Li anode at

zero kelvin. The slopes along the convex hull are linearly related to the Li chemical

potential µLi, which in turn determines the voltage according to the Nernst equation [2].

Figure 4.14 shows the zero kelvin voltage curve of LixPNb9O25. Each step corresponds

to a stable Li-vacancy ordering over the sites of LixPNb9O25, while the plateaus repre-

sent equilibrium voltages at which one stable Li-vacancy ordering transitions to another

through a two-phase reaction. The plot also summarizes the site preference in the ground

state orderings as a function of Li concentration, clearly showing a dramatic shift in site

preference between x=3 and x ≈ 4 through a two-phase reaction. The interweaved or-

dering of Figure 4.8 sets in around x=7 and is present in most subsequent ground states
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Figure 4.8: The interweaved Li-vacancy ordering over the Wv sites that forms the
backbone of all ground states as predicted with DFT-PBE between x=7 and x=14.
The ordering consists of pairs of occupied Wv sites that alter their orientation by 90o

upon moving along the c axis.

up to x=14.

4.3.2 Electrochemical properties at Finite Temperatures

We next explored the effect of temperature and thermal excitations on the electro-

chemical properties of LixPNb9O25 using statistical mechanics approaches that rely on

the cluster expansion method and Monte Carlo simulations. The inclusion of the effects

of temperature facilitates comparisons to experimentally measured electrochemical prop-

erties. We only considered configurational degrees of freedom associated with the many

possible ways of arranging Li and vacancies over the sites of LixPNb9O25. The cluster

expansion approach was used to extrapolate the DFT-PBE formation energies of Figure

4.7 within Monte Carlo simulations. More details about this approach can be found

elsewhere [69, 2].

Two separate cluster expansions were trained using the formation energies calculated

with DFT-PBE. The first cluster expansion was restricted to the Ps and Pe sites and
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Figure 4.9: Formation energies and schematics of ground state orderings of
LixPNb9O25 at low compositions as determined with DFT-PBE calculations. The
Li ions of the ground states at low compositions exclusively fill Ps sites. Many ground
states are Li-vacancy orderings in super cells of the primitive cell obtained by doubling
(or quadrupling in the case of Li4.25PNb9O25) the primitive cell c axis. Orderings in
each layer are shown side by side.

was used to calculate electrochemical properties at low Li concentrations, where these

sites are preferred. A second cluster expansion was constructed that explicitly treated

Li occupancy on the Wh, Wv and Ps sites while keeping the Pc sites filled. This cluster

expansion was used to predict finite temperature properties between x=4 and x=16,

where as predicted by the DFT formation energies of the previous section, all low energy

configurations (with the exception of the ground state at x=4) have completely filled Pc

sites and varying degrees of Li occupancy over the Wh, Wv and Ps sites. Details about

the cluster expansion fits can be found in Figures 4.15 and 4.16.
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Figure 4.10: Formation Energies and schematics of ground state orderings of
LixPNb9O25 at intermediate compositions as determined with DFT-PBE calculations.
Between compositions of x=4 and x=8, Li no longer fills Ps sites, but instead fills Pc

sites. The interweaved ordering over the Wv sites is stable at compositions greater
than x=7.
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Figure 4.11: Formation energies and schematics of ground state orderings of
LixPNb9O25 at intermediate compositions as determined with DFT-PBE calculations.
Between compositions of x=8.5 and x=12, Li fills Ps sites in addition to the Pc sites
and the window sites. The interweaved ordering over the Wv sites is stable in most
ground states in this composition range.
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Figure 4.12: Formation energies and schematics of ground state orderings of
LixPNb9O25 between x=13 and x=14 as determined with DFT-PBE calculations.
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Figure 4.13: Formation energies and schematics of ground state orderings of
LixPNb9O25 beyond x=15 as determined with DFT-PBE calculations.

Figure 4.14: Calculated voltage curve of LixPNb9O25 at zero kelvin. Each step cor-
responds to a ground state Li-vacancy ordering and each plateau corresponds to the
voltage of a two-phase reaction. Also shown are the occupied sites in the ground states
as a function of Li concentration x.
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Figure 4.15: Comparison of formation energies as calculated with DFT-PBE and the
cluster expansion at low Li concentrations. At low Li concentrations Li preferentially
fills the Pe and Ps sites. The cluster expansion model for low concentrations explicitly
treated the Pe and Ps sites.
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Figure 4.16: Comparison of formation energies as calculated with DFT-PBE and the
cluster expansion at intermediate to high Li concentrations. Between x=4 and x=16
Li fills Ps, Pc, Wh and Wv sites. The cluster expansion model treats configurational
degrees of freedom over the Ps, Wh and Wv sites, with the Pc sites fully filled by Li.

109



Figure 4.17(a) shows the voltage curve (dark blue) of LixPNb9O25 as calculated with

Monte Carlo simulations at 300 K. The Monte Carlo simulations were applied to the

cluster expansions to calculate the concentration dependence of the Li chemical poten-

tial, which was in turn substituted into the Nernst equation [2] to obtain the voltage

curve. A 10×10×20 super cell of the PNb9O25 primitive cell was used. Most of the

steps and plateaus that are present in the zero kelvin voltage curve of Figure 4.14 have

been smoothed out due to contributions from configurational entropy at 300 K. A sloping

voltage profile is generally a sign of a disordered solid solution. Also shown is an experi-

mental voltage curve (purple) of LixPNb9O25 measured with GITT. While the calculated

voltage curve has a similar shape, it is lower than the experimental curve. It is common

that approximations to density functional theory, such as the PBE approximation used

in this work, systematically under predicts voltages [2].

Both the calculated and experimental voltage curves exhibit a plateau signifying a

two-phase reaction between x=2 and x=4. The existence of a two-phase reaction between

x=2 and x=4 was first reported by Patoux et al. [148] and was recently confirmed by

others [28, 200] using in-situ diffraction. The Monte Carlo simulations indicate that the

two-phase reaction arises from a change in site preference. This is evident in Figure

4.17(b), which plots the average concentrations of each type of Li site as calculated with

the Monte Carlo simulations. Below x=2, the Li predominantly occupies the Ps sites

(green), with some occupancy on the Pe sites (blue). Upon crossing the two-phase region

between x=2 and x=4, the site preference switches abruptly, with four Li per unit cell

occupying the Pc sites (light orange) and none occupying Ps and Pe. The abrupt increase

in the number of occupied Pc sites at x=4 is an artefact of our cluster expansion model.

Our zero kelvin DFT-PBE calculations predict that the ground state at x=4 has only

3 Li in Pc and a fourth in Pe and we therefore expect some Pe occupancy at finite

temperature.
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A second plateau is evident in the calculated voltage curve that is not present in

the experimental voltage curve between x=5 and x=7. It is possible that there is more

structural disorder in the experimental samples (e.g. due to partial occupancy of the two

equivalent P sites) such that the predicted two-phase region between x=5 and 7 gives

way to a solid solution. The average site occupancies as calculated with Monte Carlo

simulations in Figure 4.17(b) indicates that passage through the second two-phase region

leads to an abrupt increase in the concentration of occupied vertical window sites Wv.

This is due to the onset of the interweaved Li-vacancy ordering over half the Wv sites

shown in Figure 4.8. The interweaved ordering remains locked in place until x=14, with

additional Li filling the Wh horizontal window sites and then the Ps sites in a continuous

and disordered manner. This is a unique example of an intercalation process where Li

ions adopt a stable ordered arrangement over a subset of sublattices and a solid solution

over the other sublattice sites. While some Li are locked into a well ordered arrangement

over the Pc and Wv sites, their disordered arrangement over the Wh and Ps sites leads

to a smooth and sloping voltage curve. It is likely that this partial ordering tendency

that is restricted to one sublattice will have significant implications for the kinetics of Li

diffusion and reversibility of the compound.

4.3.3 Neutron Diffraction

Our systematic investigation of Li-vacancy orderings in LixPNb9O25 with DFT-PBE

calculations predicts a change in Li site preference between x=2 and x=4. At dilute

concentrations, Li ions prefer the Ps and Pe sites, but they switch their preference to the

Pc sites, albeit with a small fraction of Li still in the Pe sites, when the Li concentration

x is in the vicinity of 4. The calculations also clearly predict the absence of Li in window

sites below x=6. To validate these predictions, we used neutron diffraction to determine

111



0.0

0.5

1.0

1.5

2.0

2.5

V 
vs

 L
i/L

i+
Experimental
Calculated

0 2 4 6 8 10 12 14 16
x in LixPNb9O25

0

1

2

3

4

5

Si
te

 o
cc

up
an

cy
(a)

(b)Pe
Ps
Pc
Wv
Wh
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PNb9O25. (b) Calculated site occupancy as a function of Li concentration.
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site occupancy in Li1.5PNb9O25, a composition before the plateau, and in Li4.3PNb9O25,

a composition immediately after the plateau (Figures 4.18(b-g)).

Extreme care was taken to measure lithiated samples that are representative of the

galvanostatic discharge of cast electrodes. Typical open circuit voltages for PNb9O25 as

cycled in coin cells range between 3.0 – 3.2 V. The cell that resulted in the insertion

of an average of 1.5 Li into PNb9O25 (as determined by the galvanostatic discharge)

started with an OCV of 3.1 V. Similarly, the cell that resulted in the insertion of 4.3

Li into PNb9O25 started with an OCV of 3.2 V. The galvanostatic discharge profile of

both cells cycled at a rate of C/80, with an average of 200 mg of loose powder (160

mg active material) per cell, mirrored that of the GITT experiment (Figure 4.18(a)).

The large mass loadings are necessary to acquire neutron scattering data, and one giant

cell was used to minimize the possibility of combining material across multiple cells that

may have lithiated inhomogeneously. The characteristic initial plateau observed at 2 V,

corresponding to the insertion of roughly 0.4 Li per formula unit, can be clearly seen in

both traces. Therefore, we are confident that the collected Neutron scattering data is

an accurate representation of the structures of previous studies [28, 148] at the selected

states of discharge.

Rietveld refinements were performed on the Li1.5PNb9O25 and Li4.3PNb9O25 samples

by considering each of the five Li sites, Pc, Pe, Ps, Wh, Wv. All structures retained

the symmetry of the parent compound and could be fit to the I4/m space group. For

both Li1.5PNb9O25 and Li4.3PNb9O25, the results from fitting the structure with the

two window sites, Wh and Wv, led to unphysical bond lengths (highly distorted Li–O

polyhedra and in some cases Nb–O polyhedra). Therefore, the window sites are deemed

as unlikely candidates for Li insertion at these compositions from the experimental data.

Among the fits that gave physical results for Li1.5PNb9O25, the refinement for Li in the

Pe site yielded the lowest refined Li thermal parameter and lowest Rwp (weighted profile

113



Figure 4.18: (a) GITT of PNb9O25 between 3 and 1 V (first discharge). Neutron
diffraction from NOMAD at the Spallation Neutron Source at Oak Ridge National Lab
(bank 5 represented) of (b) pristine PNb9O25 mixed with SuperP, (c) Li1.5PNb9O25

lithiated as loose powder mixed with SuperP, and (d) Li4.3PNb9O25 lithiated as a
loose powder mixed with SuperP. The fit and difference curves are a result of Rietveld
refinements, and all structures were fit with the I 4/m space group (87). Represen-
tations of the crystal structures as determined by the shown Rietveld refinements for
(e) the pristine material, (f) Li1.5PNb9O25, and (g) Li4.3PNb9O25. Li1.5PNb9O25 is
best described by the configuration with Li in the Pe site, though Ps is also a candi-
date site. Li4.3PNb9O25 is best described by the configuration with Li in the Pc site,
though Pe and Ps are very statistically similar.
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residual) values for both banks 4 and 5. Li occupancy in Ps is also a candidate structure,

as Li–O bond lengths, thermal parameters, and Rwp values are all reasonable, as well. Li

in the Pc site yields highly distorted Li–O tetrahedra, pointing to an unlikely solution.

Both window sites yielded unphysical values. It is worth noting that while peak position

and peak shape are being fit well in the candidate structures, peak intensities, particularly

at high Q, are not. This points to some disorder that is not being captured adequately

in the structure, together with the already relatively high thermal parameters. This is

not surprising given that the fits only take into account one Li site at a time, which are

already partially occupied. The structure at x=1.5 likely has combined Li occupancy

in the Pe and Ps sites, and possibly in the Pc site. Similarly, the refinements for the

Pc, Ps, and Pe sites yielded reasonable fits for Li4.3PNb9O25, suggesting any of these

sites are candidates at this composition. Among these three, Li in the Pc site gave the

lowest thermal parameters and lowest Rwp values for banks 4 and 5. However, all three

refinements are statistically similar. Likely all three Li environments can be found in the

structure at this composition.

4.3.4 Effect of Lithium Insertion on Strain and Volume

The insertion of Li into an intercalation compound usually results in a change of its

volume and unit cell shape, which can lead to electrode fragmentation and fracture, and

thereby capacity fade [201, 202]. Dimensional changes of an intercalation compound can

be measured with symmetry adapted strain order parameters[86, 69, 203]. A convenient

set of symmetry adapted strain order parameters for a tetragonal crystal such as PNb9O25
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takes the form[86] 

e1

e2

e3

e4

e5

e6


=



(Exx+Eyy+Ezz)√
3

(Exx−Eyy)√
2

(2Ezz−Exx−Eyy)√
6

√
2Eyz

√
2Exz

√
2Exy


(4.1)

where Exx, etc. are conventional strains of the LixPNb9O25 unit cell relative to the

fully relaxed PNb9O25 reference state having tetragonal symmetry with its c axis aligned

parallel to the Cartesian ẑ axis.

The first strain order parameter, e1, measures dimensional changes of the unit cell that

are symmetry invariant. When using Hencky strains, e1 becomes equal to the change

in the volume of LixPNb9O25 relative to that of the PNb9O25 reference volume [86].

Figure 4.19(a), shows the e1 strain order parameter for each of the 4298 fully relaxed

Li-vacancy orderings of LixPNb9O25 considered in this work. Figure 4.19 clearly shows

an overall increase in the volume of the cell upon the insertion of Li. The volume of the

lowest energy configurations (darker points) increase monotonically up to x=4, decrease

slightly between x=4 and 7, but then increase again beyond x=7. The overall increase

in volume is consistent with the in-situ diffraction study of Patoux et al. [148]. For

example, the calculated volume change at x=10.25 is approximately 7%. This value is

in quantitative agreement with the value extracted from in situ XRD [148], where the

volume changed by 7.4% upon the insertion of 10.25 Li. The slight reduction in volume

between x=4 and 7, however, is not observed experimentally, with the study of Patoux

et al. [148] showing instead a slight expansion.

One that varies appreciably with Li concentration is e3, which is also shown in Figure

4.19(b). The e3 strain order parameter filters out tetragonal distortions of the crystal. For
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LixPNb9O25, a positive value of e3 measures an elongation along the c axis, which is par-

allel to the block length, and a uniform contraction perpendicular to the c axis as shown

in Figure 4.20(a). It is a measure of the change in the c/a ratio of a conventional tetrag-

onal unit cell. Figure 4.19(b) shows that e3 remains close to zero up to x ≈ 4, increases

over a narrow concentration interval to a value of approximately 7%, and subsequently

remains relatively unchanged beyond x=7. While there is a large scatter in e3 values

between x=4 and x=7, outside of this interval the e3 values are relatively insensitive to

the Li-vacancy ordering and are instead largely determined by the average concentration.

This implies that the dimensional changes with Li concentration as measured by e3 are

affected by a global property, such as a shift in the Fermi-level, that is more sensitive to

the average concentration than to any particular Li-vacancy ordering. It should be noted

that the abrupt increase of e3 around x=7 for the ground state structures (connected by

the blue line in Figure 4.19(b)) coincides with the onset of the interweaved ordering over

the Wv vertical window sites (Figure 4.8). A similar elongation of the blocks coupled

with an in-plane constriction perpendicular to the blocks was observed by Patoux et al.

[148] for LixPNb9O25 and by Kocer et al. [143, 144] in other Wadsley-Roth phases. The

other strain order parameters are plotted in Figure 4.21.
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Figure 4.19: (a) The volume change of LixPNb9O25 relative to that of fully relaxed
PNb9O25 for each of the 4298 Li-vacancy orderings studied with DFT-PBE. Darker
colors, tending towards purple, correspond to orderings with a lower energy, while
lighter colors signify orderings with a high energy (measured as the distance from
the convex hull). The ground states are connected with a black line. (b) The e3
strain order parameter for the same 4298 Li-vacancy orderings, which measures an
elongation along the c axis (parallel to the block length) and a contraction in the
plane perpendicular to the c axis. (c) Bond distances between niobium ions in the
edge-sharing octahedra at the perifery of the blocks of the ground state structures.
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Figure 4.20: (a) Schematic of the strain measured with the e3 strain order parameter.
An increase in e3 corresponds to an expansion along the c axis and a constriction in
the plane perpendicular to the c axis. (b) Visualization of the edge-sharing niobium
octahedra at a low composition, Li0.5PNb9O25. At low Li compositions, Nb5+ of the
edge-sharing NbO6 octahedra undergo a second-order Jahn-Teller distortion. (c) At
high Li concentrations, the distortions go away and the distance between edge-sharing
Nb decreases.
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upon lithiation as measured with symmetry adapted strain order parameters. The
formulation of the strain order parameters can be found in the text.
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The variation of e3 with Li concentration in the ground states is strongly correlated

with changes in the Nb-Nb pair distances of edge sharing NbO6 octahedra at the periphery

of the blocks. Figure 4.19(c) shows that the average Nb-Nb distances decrease from values

that range between 3.4 and 3.5 Å for x < 4 to values that average around 3.0 Å above

x=7. Below x=4, the edge sharing NbO6 octahedra of the block peripheries are highly

distorted due to the off-centering of the Nb cations that arises from a second-order Jahn-

Teller distortion as shown in Figure 4.20(b). The four coordinating oxygen ions of the

vertical window sites form a highly distorted square for x < 4, with two sets of oxygen

pairs having a larger bond length than the remaining two. The distortions of the edge-

sharing NbO6 octahedra and the vertical window sites are largely absent above x=7 as

shown in Figure 4.20(c). A shortening of the Nb-Nb distance for the edge-sharing NbO6

octahedra leads to an elongation along the block length (i.e. c axis) and a simultaneous

contraction in a plane perpendicular to the block length. These dimensional changes have

their origin in modifications to the electronic structure that occurs upon Li insertion, as

is described in the next section.

4.3.5 Electronic Structure

The Nb cations of PNb9O25 have a formal oxidation state of 5+. The Nb d levels,

when octahedrally coordinated by oxygen, split into three degenerate t2g (dxy, dxz, dyz)

levels with lobes that point between oxygen ions and two eg levels (dz2 and dx2−y2) with

lobes that point towards the oxygen as shown in Figure 4.22. The degeneracy of the t2g

and eg levels are lifted further when the symmetry of the NbO6 octahedra are lowered

by the surrounding crystal and/or distortions of the octahedra themselves. In PNb9O25,

all the t2g and eg levels are empty and the compound is an insulator. The eg levels,

which are anti-bonding states that arise from a hybridization between Nb dz2 and dx2−y2
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Figure 4.22: Illustration of the eg and t2g states on Nb of a NbO6 octahedron.

orbitals and the surrounding oxygen p orbitals, have a higher energy than the t2g levels.

When Li atoms are added to PNb9O25, they will, therefore, donate their electrons to the

t2g levels.

Figure 4.23 shows the charge density of the occupied t2g levels upon the addition of a

very dilute concentration of Li. The calculation was performed on a supercell consisting

of four PNb9O25 unit cells and one Li ion, constituting a Li concentration of x=0.25. As

is evident in Figure 4.23, the electron donated by the Li atom fills a t2g orbital on a Nb

that resides in a corner sharing NbO6 octahedron at the center of the 3×3×∞ block.

The t2g orbitals in these octahedra are non-bonding and, therefore, highly localized, as

is evident in Figure 4.23.

It is only after the non-bonding t2g orbitals at the centers of the blocks are filled that

a further addition of Li leads to a gradual filling of t2g levels on the Nb cations that reside

in the edge-sharing NbO6 octahedra at the periphery of the blocks. This is evident in

Figure 4.24. The charge density of the filled t2g states of Li5PNb9O25 shown in Figure

4.24 reveals not only electron density on all the non-bonding t2g levels at the center of
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Figure 4.23: Charge density of the electron denoted by Li in Li0.25PNb9O25 having
a 1×1×4 super cell of the PNb9O25 primitive cell. The donated electrons localize on
a Nb of a corner sharing octahedron at the center of the 3×3×∞ perovskite block.
(Left panel is a side view of the crystal, with the c axis pointing up while the right
panel is a view down the c axis.)

123



the blocks, but also an appreciable density on the Nb in the edge-sharing octahedra.

An increase of the Li concentration to x=7 results in a further accumulation of charge

on the t2g states of the edge-sharing NbO6 octahedra as is evident in Li7PNb9O25. In

fact the charge density of Li7PNb9O25 in Figure 4.24 suggests the onset of Nb-Nb bond

formation, which is made possible by the overlap of t2g-like orbitals between the metals of

edge-sharing octahedra. The charge density plots also suggest an increase in the degree

of electron delocalization, which is expected to enhance electronic conductivity [28].

A similar progression of orbital filling was predicted by Kocer et al. [143] in their

study of Wadsley-Roth phases containing Nb and W. They pointed out that the electrons

donated by Li first accumulate on localized, non-bonding t2g orbitals at the center of the

blocks before they start filling t2g levels on the edge-sharing transition metals. This order

of orbital filling has also been used to explain the origin of the insulator-metal transition

at low Li concentrations in LixPNb9O25 [28].

Filling of the t2g orbitals of the edge-sharing NbO6 octahedra plays an important

role in effecting the structural changes that occur as the Li concentration of the host

increases, including the shortening of the Nb-Nb bond lengths between edge-sharing

NbO6 octahedra and an increase in the e3 strain order parameter. The Nb of the edge-

sharing blocks are distorted away from the centers of the octahedra in PNb9O25. The

off-centering is likely a result of a combination of factors [143]. The Nb5+ oxidation state

makes the cation susceptible to a second-order Jahn-Teller distortion, which leads to

cation off-centering in octahedral environments. The off-centering may also arise from

an electrostatic repulsion between edge-sharing Nb5+ cations, biasing the off-centering in

directions that increase the Nb-Nb distance. As electrons fill the edge sharing t2g levels,

the effective valence of the Nb is no longer 5+ but progressively becomes closer to 4+ and

then 3+. This should lead to a reduction in electrostatic repulsion between edge-sharing

Nb and eliminate the susceptibility for second order Jahn-Teller distortions. Furthermore,
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Figure 4.24: Charge density along the edge-sharing niobium octahedral sites with
increasing composition. The charge density is viewed perpendicular to the c lattice
vector. At low compositions, electrons localize on the central, corner-sharing niobium
in the middle of the perovskite blocks. As more electrons are added at higher Li con-
centrations, electrons begin filling d orbitals in the edge-sharing NbO6 octahedra and
delocalize. Increasing electron delocalization occurs in conjunction with decreasing
edge-sharing niobium-niobium distances and increasing values of the e3 strain order
parameter.

the t2g orbitals of the edge-sharing NbO6 octahedra appear to form metal-metal bonds

beyond x=7 (Figure 4.24), which should also tend to shorten Nb-Nb distances. The

shortening of the Nb-Nb distances along the block peripheries relieve the distortions

of the NbO6 octahedra. As a consequence, the Wv vertical window sites become less

distorted making them more amenable for Li occupancy. It is likely that these structural

changes in response to electron filling are responsible for the stability of the interweaved

ordering that forms a backbone of the majority of low energy structures between x=7

and x=14. Density of states and charge densities for low energy structures between x=4

and x=7 are shown in Figure 4.25. Metal-metal bonding begins to form after the lithium

ordering inversion.
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Figure 4.25: (a-d) Calculated charge density and density of states at x=4, 5, 6, and 7
in LixPNb9O25. Metal-metal bonding increases as lithiation occurs.

4.4 Discussion

The Wadsley-Roth phases are a promising class of anode materials for high power

Li-ion batteries. They exhibit a rich variety of open crystal structures that can host

Li ions over multiple types of interstitial sites. A common structural feature among all

Wadsley-Roth phases are their blocks of corner sharing octahedra that are held together

by edge-sharing octahedra. While they have impressive electrochemical properties and

can accommodate more than one Li per transition metal, very little is known about the

mechanisms of Li insertion into Wadsley-Roth phases.

The results of our study on LixPNb9O25 show that the electronic and thermodynamic

properties associated with Li insertion into Wadsley-Roth phases is more complex than

those of most other common intercalation compounds [204, 70]. PNb9O25 can host Li in
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five symmetrically distinct sites, three of which have pyramidal coordination by oxygen

(Ps, Pe and Pc) and two that are coordinated by four coplanar oxygen ions (Wv and Wh)

also known as window sites [196, 143]. An important prediction of this work is the occur-

rence of a site preference inversion upon Li insertion into PNb9O25. Using an iterative

approach that relies on the cluster expansion method to extrapolate computationally ex-

pensive DFT calculations, we predict that Li initially fills the Ps and Pe pyramidal sites,

but that these sites fall out of favor at higher Li concentrations where Li first fills the

Pc sites (with some residual occupancy on the Pe sites) and then gradually fills the two

window sites, Wv and Wh. Only at much higher Li concentrations (x ≈ 8) does Li return

to the Ps sites. The site inversion from Ps and Pe at x=2 to predominantly Pc at x=4

is responsible for a plateau in the voltage curve at low Li concentrations. The plateau is

present in both the experimental voltage curve [148, 28] as well as the calculated voltage

curve and appears to be a common feature of many other similar Wadsley-Roth phases.

Our neutron diffraction refinements, while somewhat ambiguous in its assignments of

site occupancy over the pyramidal sites, Ps, Pe and Pc, do not contradict our DFT pre-

dictions. Furthermore, the neutron diffraction refinements unequivocally confirm that Li

does not fill window sites during the early stages of Li insertion (i.e. x < 4.3).

A second important prediction of this study is the stability of the interweaved back-

bone ordering over the Wv vertical window sites that sets in between 7 < x < 14 and is

present in almost all ground states and low energy Li-vacancy orderings in that concen-

tration interval. The interweaved ordering leads to a doubling of the unit cell along the

c-axis. While the ordering on average remains locked in place over a wide concentration

interval, the remaining Wh and Ps sites accommodate Li in a disordered manner. This

leads to a unique intercalation process in which Li orders over one sublattice (i.e. Wv)

but forms a solid solution over other sublattices (Wh and Ps). The result is a sloping

voltage profile that is characteristic of a solid solution, with occasional kinks due to
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secondary ordering tendencies over the Wh and Ps sites. The influence of this partial

ordering on kinetic properties is likely to be significant and will be the focus of future

studies. Our DFT calculations predict that the interweaved backbone ordering can easily

tolerate defects whereby pairs of Li in Wv sites in a given layer rearrange and occupy Wv

sites that form a 90o angle with each other (as opposed to pairs of Wv sites that form

a 180o angle with each other in the interweaved ordering). The preference for window

sites at higher Li concentrations is consistent with neutron diffraction studies of other

Wadsley-Roth phases by Catti et al. [196, 197, 198].

Our calculations have also shown that changes in electronic structure due to the

filling of the t2g levels upon Li insertion results in structural distortions that in turn

affect Li-site preferences. The Nb of the edge-sharing octahedra distort off-center in the

pristine PNb9O25 compound, likely due to a combination of factors that includes a second-

order Jahn-Teller distortion of the Nb5+ cations within their octahedra and electrostatic

interactions between edge-sharing Nb5+ cations [143]. This leads to highly distorted

NbO6 octahedra that then distort the neighboring Wv vertical window sites, making them

unfavorable for Li occupancy. The addition of electrons to the host upon Li insertion

reduces the Nb5+ to lower oxidation states, thereby eliminating the susceptibility for

second-order Jahn-Teller distortions and promoting the formation of metal-metal bonds

between edge-sharing Nb. The combination of these factors results in a shortening of Nb-

Nb distances between edge-sharing octahedra and a reduction in the degree with which

the octahedra are distorted. As a result, the Wv sites become more square planar and

therefore more favorable. Our calculations clearly show that it is only after the structural

distortions of the edge-sharing octahedra are eliminated beyond x=7 that the filling of the

Wv vertical window sites sets in. Similar behavior has been observed in other Wadsley-

Roth phases by Griffith et al. [97, 137] and Kocer et al. [143, 98, 144], who found

an increased stability of the window sites due to the disappearance of the distortions
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of the edge-sharing transition metal-oxygen octahedra at high Li concentrations. The

phenomenon has also been noted in other intercalation compounds such as anatase TiO2,

where the elimination of structural distortions due to the reduction of Ti was shown to

deleteriously affect Li diffusion kinetics [205]. Our results taken together with the earlier

work of Kocer et al. [143, 98, 144] suggests that the coupling between electronic structure

and crystallographic distortions is a common phenomenon of Wadsley-Roth phases.

The ability to predict stable Li-site preferences and ordering tendencies in Wadsley-

Roth phases is made especially challenging by the combinatorial explosion of all the

possible ways of distributing Li ions and vacancies over the many sites of these phases.

The number of Li-vacancy orderings within the primitive cell of PNb9O25, for example,

is already 220 or 1,048,576 due to the fact that the primitive cell contains 20 candidate

Li sites. Often stable orderings form in super cells of the primitive cell. The doubling

of the PNb9O25 unit cell along the c-axis, for instance, increases the number of candi-

date Li-vacancy orderings to 240 or over 1012. Overcoming these combinatorial challenges

requires tools such as the cluster expansion, as they allow for a rapid search over config-

uration space with Monte Carlo techniques to identify low energy Li-vacancy orderings.

It should be noted, however, that while cluster expansions are generally superior to other

approaches that screen candidate orderings based on electrostatic energy, for example,

they are not necessarily exhaustive. The approach is iterative, whereby cluster expan-

sions are trained to an ever increasing database of first-principles energies to increase their

predictive accuracy. As with any method that relies on extrapolation, however, there is

no guarantee that it accurately predicts the true ground state Li-vacancy orderings.

While the calculated and measured voltage curves of Figure 4.17 show reasonable

qualitative agreement, there is a systematic under prediction above x=2. This is not un-

expected as DFT-PBE is known to systematically under predict voltages [2, 206]. Below

x=2, the quantitative agreement is better, however, the shape of the calculated volt-
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age profile differs from the experimental one (Figure 4.17). The experimental voltage

curve exhibits a small plateau followed by a step around x=0.5 that is not present in the

calculated voltage curve. The discrepancy may arise from the neglect of additional de-

grees of freedom in the statistical mechanics calculation of the room temperature voltage

curve. LixPNb9O25 undergoes an insulator to metal transition at low Li concentrations

that may require more accurate electronic structure methods to describe correctly. Our

DFT-PBE calculations already indicate a high degree of electron localization at very

dilute concentrations. It is possible that these localized states may have a high degree of

degeneracy with respect to their placement within the crystal, leading to an additional

source of configurational entropy that was not accounted for in this study. A similar

phenomenon was proposed to explain the role of the metal-insulator transition in caus-

ing a two-phase reaction in LixCoO2 between x=0.93 and x=0.75 [207]. It is suggested

that the electronic properties of LixPNb9O25 at dilute Li concentrations receive further

attention both experimentally and theoretically.

4.5 Conclusion

We have performed a first-principles statistical mechanics study of the electrochemical

properties of PNb9O25 as a function of Li concentration. PNb9O25, which is a Wadsley-

Roth phase made of 3×3×∞ perovskite-like blocks, can host Li in three symmetrically

distinct types of pyramidal sites at the block edges and two types of window sites within

the blocks. Our first-principles DFT-PBE calculations predict that Li initially prefers

pyramidal sites, only filling the window sites at intermediate to high Li concentrations.

Neutron diffraction is consistent with DFT predictions of pyramidal site occupancy at

low Li concentrations. The window sites only become favorable after the host undergoes

a tetragonal distortion due to a chemical strain that accompanies Li insertion. The
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tetragonal distortion of the host is found to correlate with the filling of Nb d orbitals

in the edge-sharing NbO6 octahedra, which relieves second-order Jahn-Teller distortions

and leads to metal-metal bonding. The lowest energy configurations above x=7 are found

to share a common Li-vacancy ordering motif over the vertical window sites, with the

other sites accommodating Li as a solid solution. Our predictions of the sequence of site

filling and the nature of Li-vacancy ordering in PNb9O25 set the stage for studies of Li

diffusion mechanisms within this complex host. Due to the vast structural similarities

among different Wadsley-Roth phases, many of our findings for PNb9O25 should also

apply to other Wadsley-Roth phase chemistries.
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Chapter 5

Redox mechanisms and structural

changes of the Wadsley-Roth phase,

LixTiNb2O7

In this chapter, we seek to understand what factors influence TiNb2O7, a Wadsley-Roth

phase that can be used as a lithium-ion electrode chemistry with one of the highest

reversible power densities, as a material that has a very high rate performance. This

section begins with an overview of the Bayesian probabilistic methods used to accurately

quantify the robustness of our calculations, to ensure the fidelity of our predictions in

this complex system. It then examines the relationship between metal-metal bonding,

octahedral distortions and crystallographic strain upon lithiation. In its pristine state,

TiNb2O7 is predicted to be insulating, a finding that can be corroborated by both ex-

periments and other computational analysis in literature. Upon lithiation, metal-metal

bonds begin to form, beginning with some of the highest edge sharing octahedra. As

more electrons are added to the system at increasing lithium concentrations, NbO6 oc-

tahedra that share fewer edges and TiO6 octahedra begin to metal-metal bond as well.
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This change in metal-metal bonding causes a decrease in the transition metal bond dis-

tance which causes a significant relaxation of octahedral distortions at the compositions

where metal-metal bonding occurs. This occurs in conjunction with a dramatic increase

in the e3 crystallographic strain mode which is a mode that dictates how the length of

the octahedra along the short axis and a decrease parallel with the block plane. Crsytal-

lographic findings and lithiation mechanisms are compared to experiment, and we find

high accuracy with experiment. Through the findings of this analysis, we hypothesize

that if we combine our knowledge of transition metals that tend toward the edges of the

Wadsley-Roth phases (the less electrostatically active transition metal species), and the

sites that tend to undergo transition metal-bonding (the highly edge sharing octahedra),

we can tune which transition metal sites undergo metal-metal bonding. This can have

significant impacts of the crystallographic strain expressed in a disordered Wadsley-Roth

phase.

5.1 Introduction

Lithium-ion batteries continue to dominate the secondary energy storage space. A

large fraction of energy storage demand originates in the automotive sector, where electric

motors show an efficiency of over 90% [208] and enable the elimination of CO2, CO,

NOx , and SOx exhaust emitted by internal combustion engines. Despite their benefits

and widespread usage, current lithium ion battery technologies that rely on graphite

anodes possess lower charge rates, power densities, and operating temperature ranges

than needed for future generations of electric vehicles [209, 210].

Wadsley-Roth phases are a family of complex inorganic chemistries that exhibit high

power densities when used as electrode materials. TiNb2O7 is a commercialized Wadsley-

Roth phase that can reversibly cycle while achieving capacities of 341 mAh g−1 [93, 19].
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This compound is also capable of cycling at rates of 20 C with little gravimetric capacity

losses [211, 17, 212]. The ability of TiNb2O7 to intercalate lithium was first demonstrated

by Cava in 1983 [15] and was first cycled against lithium in 2011 [156]. TiNb2O7 has

since displayed the capability to supply high power densities at high charge rates [213,

214, 215, 216, 217, 218, 219, 220].

Despite an increased interest in Wadsley-Roth phases as anodes in Li-ion batteries

[106, 221, 97, 137, 93, 28], there is still a limited understanding about their thermody-

namic and structural properties as a function of the degree of Li insertion. This section

examines the full lithiation profile of TiNb2O7 using first-principles statistical mechanics

to understand redoc mechanisms and their effect on Li site preference and structural

properties. We use distortion amplitude analysis to examine how octahedra distort as

a function of lithium concentration for octahedra of different degrees of octahedral edge

sharing. We pair this analysis with density of states calculations, transition metal bond

distance analysis, and strain calculations to determine the cause of structural distortions.

We find that upon lithiation, LixTiNb2O7 undergoes metal-metal bonding, decreasing the

distance between transition metals at the edges of the Wadsley-Roth phase. This arises

from hybridization between t2g orbitals for edge-sharing transition metal cations.The fill-

ing of these bond states leads to shortened metal-metal distances which has structural

consequences including a modification of Li-ion site preferences upon lithiation. Since

the metal-metal redox mechanism specifically occurs on edge-sharing transition metal

octahedra, a subset of motifs present in all Wadsley-Roth phases, the findings of this

section are likely relevant to a host of other Wadsley-Roth phases as well.

134



5.2 Methods

5.2.1 First-principles electronic structure calculations

Energies of titanium-niobium orderings are calculated using density functional theory

(DFT) as parameterized by Perdew, Burke, and Ernzerhof (PBE) [44]. DFT calculations

are performed using the Vienna ab initio simulation package (VASP) [126, 127]. Core

electron effects are approximated using the projector augmented wave (PAW) method

[128, 46]. Titanium-niobium orderings are enumerated with the Clusters Approach to

Statistical Mechanics (CASM) [69, 131, 130, 132, 222] simulation package. A plane-wave

energy cutoff of 550 eV is used for PBE-DFT calculation of titanium-niobium orderings

in addition to a reciprocal space discretization of 25 K-points per Å
−1
.

Lithium-vacancy ordering calculations are enumerated with CASM. Due to the large

number of symmetrically distinct orderings possible in this phase, limited volume one,

volume 2, and volume 4 lithium vacancy orderings are enumerated, and of the enumerated

phases those predicted to be low in energy or those used to begin training the cluster

expansion model are calculated using DFT. Lithium-vacancy DFT-PBE calculations are

performed with a 650eV energy cutoff.

A standard deviation of 1 meV/atom on the calculated formation energies was used in

the Gaussian likelihood distribution and a standard deviation of 49 meV was assumed for

the Gaussian prior distribution of each effective cluster interaction (ECI), the coefficients

of the cluster expansion. The mean of the prior distribution of the ECI was chosen to

ensure that the predicted ground states and low energy structures are consistent with

the DFT predictions as described by Ober et al.[223]
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5.3 Results

5.3.1 The TiNb2O7 Wadsley-Roth host structure

Wadsley-Roth phases are a family of chemistries with crystal structures derived from

the ReO3 phase. Their structures consist of infinitely long blocks of corner sharing

transition metal oxygen octahedra. The dimensions of each block is designated n ×m,

where n and m count the number of octahedra along two orthogonal axes that are

both perpendicular to the infinitely long axis of the block. The blocks can tile space in

different patterns, with the octahedra at the peripheries of each block sharing edges with

octahedra of neighboring blocks. Figure 5.1 shows the Wadsley-Roth structure adopted

by TiNb2O7, which consists of 3× 3 blocks that are shifted relative to each other in one

direction by the width of an octahedron as they tile space.

The unit cell of the TiNb2O7 Wadsley-Roth structure of Figure 5.1 has nine transition

metal sites. There are a total of 44 symmetrically distinct ways of arranging Ti and Nb

over the cation sites of the primitive unit cell of TiNb2O7. The arrangement with the

lowest energy as predicted with DFT-PBE is shown in Figure 5.1.[137]

TiNb2O7 is a disordered Wadsley-Roth phase and Ti and Nb can host multiple dif-

ferent arrangements on the transition metal sublattice. These arrangements differ by the

octahedral edge sharing and local octahedral connectivity for each transition metal site.

There are five symmetrically distinct transition metal sites (Figure 5.2). Site M1 and

M2 (and their symmetric equivalents, M1’ and M2’) are located in octahedra that share

four edges with neighboring octahedra. Site M3 (and it’s symmetric equivalent, M3’) is

located in an octahedra that shares three edges. Site M4 is the central transition metal

site and is symmetrically distinct from all other sites in the 3 by 3 block. This is entirely

corner-sharing with neighboring octahedra. Site M5 (and M5’) shares two edges.

The higher oxidation state Nb5+ cations prefer to occupy the corner-sharing octahedra
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Figure 5.1: The idealized Wadsley-Roth crystal structure of TiNb2O7 consisting of
corner-sharing and edge-sharing TiO6 (light blue) and NbO6 (dark blue) octahedra.
The Ti and Nb of this model adopt their lowest energy arrangement over the octahe-
drally coordinated cation sites. The TiO6 and NbO6 octahedra are highly distorted
in the fully relaxed TiNb2O7 structure (not shown). Intercalated Li ions can occupy
pyramidal and window sites.

137



1

1’2

5 4

3

5’

2’3’

Figure 5.2: Symmetrically distinct transition metal sites in the transition metal sub-
lattice of TiNb2O7

at the center of the block, while lower oxidation state cations such as Ti4+ tend to

segregate to the edge-sharing octahedra at the peripheries of each block. Previous neutron

diffraction studies show that the titanium concentration in M2 is the highest at 64.5%

[138]. Similarly, the lowest energy set of TiNb2O7 orderings as predicted through DFT-

PBE are ones where Ti is in the M2 site as shown in Figure 5.3. The next highest

concentration of titanium is in the M1 sites (33.8% titanium concentration), followed by

the M3 sites (26% titanium concentration). Likewise, as predicted through DFT-PBE,

orderings that have M1 sites filled with Ti are the next lowest energy orderings, followed

by orderings with M3 sites filled with Ti.

The TiNb2O7 Wadsley-Roth crystal can host Li ions in four types of interstitial sites

coordinated by oxygen. These are shown in Figure 5.1. Two groups of interstitial sites

are pyramidally coordinated by five oxygen ions. These are referred to as Ps and P ′
s.

They differ by the number of transition metal cations that share edges with the sites; the

Ps sites share six edges with neighboring transition metals while the P′
s sites share seven.

There are six Ps sites and two P ′
s sites within each unit cell of TiNb2O7. The TiNb2O7
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(a) (b) (c) (d) (e)

Figure 5.3: The relative formation energies of TiNb2O7 orderings that have all M5
sites filled (a), all M4 sites filled (b), all M3 sites filled (c), all M1 sites filled(d), and
all M2 sites (e) filled are shown in gold, overlayed over the formation energies of all
points as show in blue.

can also host Li in horizontal and vertical window sites, labeled Wh and Wv, respectively.

Both sites are coordinated by four oxygen ions in a square planar configuration. There are

four Wh and four Wv sites per unit cell of TiNb2O7, residing in the blocks as illustrated

in Figure 5.1.

5.3.2 Li insertion into TiNb2O7 at zero Kelvin

The energies of 937 symmetrically distinct orderings of Li and vacancies over the

interstitial sites of TiNb2O7 (i.e. Ps, P
′
s, Wv and Wh) were calculated with DFT-PBE.

In each of these structures, the TiNb2O7 host is the lowest energy Ti-Nb ordering shown

in Figure 5.1. The different Li-vacancy configurations were enumerated with CASM[132]

and include different orderings within the primitive unit cell and in super cells in which

the b axis along the block lengths are doubled or quadrupled. Figure 5.4(a) shows the

calculated formation energies as a function of Li concentration. Many Li-vacancy ar-
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rangements reside on the convex hull. However, with the exception of three ordered

phases at x = 0.66, x = 2.833, and x = 3.5, most are weakly stable and very close in

energy to other structures that have similar Li-vacancy arrangements and compositions.

At dilute lithium concentrations up to Li0.33TiNb2O7, Ps sites are stable. At Li0.66TiNb2O7

vertical window sites begin to stabilize. By Li2.83TiNb2O7 we see complete filling of all

Ps sites. Additionally at this ordering, all pyramidal sites (Ps and P′
s) that are coordi-

nated by Ti ions are filled. Window sites begin to fill as concentration increases, and

at Li3.5TiNb2O7, half filling of vertical window sites occurs with the vertical window

sites parallel throughout the block. Filling of half of available vertical window sites is

experimentally supported through neutron diffraction studies at intermediate lithium

concentrations [198].

The voltage at zero Kelvin is linearly related to the slope of the convex hull as a

function of lithium concentration.[2] The zero Kelvin voltage profile is shown in Figure

5.4(b). Each ordered phase with an energy on the convex hull appears as a step in the

zero Kelvin voltage curve. Each plateau corresponds to a two-phase reaction from one

ordered phase to another ordered phase. The large steps at x=0.66, x=2.833, and x=3.5

correspond to strong ground state orderings. The voltage curve, which starts at 2 V upon

insertion of a dilute concentration of Li, shows that TiNb2O7 can intercalate more than

5 Li per formula unit while maintaining a positive voltage.

The voltage at zero Kelvin is linearly related to the slope of the convex hull as a

function of lithium concentration.[2] The zero Kelvin voltage profile is shown in Figure

5.4(b). Each ordered phase with an energy on the convex hull appears as a step in the

zero Kelvin voltage curve, while each plateau corresponds to a two-phase coexistence

between a pair of ordered phases.[224, 70, 2] The voltage curve, which starts at 2 V upon

insertion of a dilute concentration of Li, shows that TiNb2O7 can intercalate more than

5 Li per formula unit while maintaining a positive voltage.
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(a)

(b)

Figure 5.4: (a) Convex hull and formation energies as a function of composition for
LixTiNb2O7. (b) 0K Voltage as a function of composition for TiNb2O7.
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Li0.08TiNb2O7 Li0.16TiNb2O7

Figure 5.5: Ground state lithium-vacancy orderings at x=0.008 and x=0.16.

An important property affecting Li diffusion is the Li site preference as a function of

Li concentration.[137, 225, 182, 226] Figure 5.4(c) plots the number of each type of Li

site that is occupied in each ground state ordering. The pyramidal Ps sites fill initially

and have the highest occupancy at all Li concentrations. For the Ti and Nb ordering

shown in Figure 5.1, vertical window sites begin to fill at x = 0.66. Both the vertical

and horizontal window sites, Wv and Wh, fill steadily beyond x = 0.66, but the largest

fraction of Li continue to fill the pyramidal Ps sites until they are close to saturated

at around x = 3.5. Close to half the vertical window sites are filled beyond x = 2.5,

which is consistent with neutron diffraction studies.[198] The pyramidal P′
s sites, which

share seven edges with neighboring transition metal cations, only start to fill gradually

past x = 2. Li-vacancy ground states are shown in Figure 5.5 for dilute limit orderings.

Higher composition Li-vacancy orderings are shown in Figures 5.6, 5.7, 5.8, 5.9, and 5.10.

5.3.3 Redox mechanisms: formation of metal-metal bonds

The pristine TiNb2O7 Wadsley-Roth phase is an insulator. At this composition, the

d0 Ti4+ and Nb5+ cations are in their maximum oxidation states. Figure 5.11(a), shows

that DFT-PBE predicts a large band gap in the electronic density of states (DOS) of
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Li0.33TiNb2O7 Li0.66TiNb2O7 LiTiNb2O7

Figure 5.6: Ground state lithium-vacancy orderings at x=0.33, x=0.66, and x=1.

Li1.33TiNb2O7 Li1.66TiNb2O7 Li2.5TiNb2O7

Figure 5.7: Ground state lithium-vacancy orderings at x=1.33, x=1.66, and x=2.5.

Li2.83TiNb2O7 Li3.33TiNb2O7 Li3.5TiNb2O7

Figure 5.8: Ground state lithium-vacancy orderings at x=2.83, x=3.33, and x=3.5.
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Li3.83TiNb2O7 Li4TiNb2O7 Li4.33TiNb2O7

Figure 5.9: Ground state lithium-vacancy orderings at x=3.83, x=4, and x=4.33.

Li4.66TiNb2O7 Li5TiNb2O7 Li5.16TiNb2O7

Figure 5.10: Ground state lithium-vacancy orderings at x=4.66, x=5, and x=5.16.
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(a)

(b)

(c)

Figure 5.11: The electronic density of states (DOS) of (a) TiNb2O7 and (b) LiTiNb2O7

as calculated with DFT-PBE. The positive (negative) DOS corresponds to spin up
(down) states. (c) The electronic charge density corresponding to the filled state in
the conduction band of LiTiNb2O7.
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(a)

(b)

(c)

Figure 5.12: (a) The electronic charge density corresponding to the peaks labeled d in
the DOS of Li1.66TiNb2O7 shown in (b). (c) The electronic density of states for the
remaining filled states below the Fermi level.
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Figure 5.13: The dxy orbitals of edge-sharing transition metal cations can hybridize to
form bonding and anti-bonding states. The bonding states have a lower energy than
the unhybridized dxy states and can host two electrons of opposite spin.

Figure 5.14: Electronic DOS of Li2.5TiNb2O7 and electronic charge density of states
of the states extending from the bottom of the conduction band up to the Fermi level.
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TiNb2O7. The gap separates the filled valence bands, which primarily have oxygen p

character, and the bottom of the empty conduction bands, which are derived from the

t2g orbitals of the octahedrally coordinated transition metals (i.e. the dxy, dxz and dyz

orbitals in an octahedral environment). This is consistent with past calculations by Catti

et al [198] and Griffith et al [137].

The addition of Li to TiNb2O7 leads to a reduction of the formal oxidation states of

the Ti and Nb cations. At low Li concentrations, DFT-PBE predicts that the electrons

donated to the host by Li tend to delocalize over the different transition metals, with a

slight enhancement in the occupancy of the dxy orbital on the central Nb site.[227, 137]

This is shown in Figure 5.11(b) for LiTiNb2O7. There is some degree of spin polarization,

with the spin up DOS (positive) having more states below the Fermi level than the spin

down DOS (negative). Figure 5.11(b) shows that the donated electrons fill the bottom

of the conduction band without substantially altering the DOS of the conduction bands

of pristine TiNb2O7. Figure 5.11(c) plots the electronic charge density for the states

between the bottom of the conduction band and the Fermi level of LiTiNb2O7. The

electronic charge density concentrates around the transition metal cations and adopt the

characteristic charge density distribution of t2g orbitals (i.e. dxy, dxz and dyz).

The redox mechanism changes qualitatively upon increasing the Li concentration

beyond x = 1. This is evident in Figure 5.12 for Li1.66TiNb2O7. New states emerge

below the Fermi level (labeled d in Figure 5.12(b)) that are disconnected from the more

itinerant bands derived from t2g states. Figure 5.12(a) plots the electronic charge density

due to the break away peaks in the DOS of Li1.66TiNb2O7 (Figure 5.12(b)), clearly

showing that the charge density associated with these states is concentrated between a

pair of edge-sharing Nb cations. An analysis of the local projected density of states of

each of the two Nb atoms of the pair shows that their dxy orbitals have energies that

coincide with the peaks below the Fermi level in Figure 5.12(b). The electronic charge
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density due to the remaining DOS that extends from the top of the break-away peaks up

to the Fermi level is shown in the bottom of Figure 5.12(c). These states have a combined

electronic charge density that is more uniformly distributed throughout the crystal and

more centered around individual transition metal cations than between metal cations.

The enhanced electron charge density between the pair of edge-sharing Nb in Figure

5.12(a) is consistent with a filled bonding state that arises when the dxy orbitals of a pair

of edge-sharing transition metal cations hybridize as schematically illustrated in Figure

5.13.[228, 229, 79] The hybridization between edge-sharing dxy orbitals leads to metal-

metal dimer formation and generates bonding states that have a lower energy than the

unhybridized dxy orbitals.[228] The bonding states are therefore favorable redox centers

to accommodate the electrons donated by Li to the host. It is clear in the DOS of Figure

5.12(b) that a pair of electrons with opposite spin fill the bonding state. The filling of the

bonding state of a hybridized metal-metal bond will lead to a shortening of the distance

between the neighboring transition metal cations.[79] This is indeed predicted to occur,

with the distance between the pair of Nb cations contracting from a value of 3.09 Å at

x = 1 to 2.69 Å at x = 1.66.

Additional metal-metal bonds form between edge-sharing octahedra as electrons are

added to LixTiNb2O7 upon further insertion of Li. At x = 2.5, for example, a complex of

metal-metal bonds become evident in the charge density plot of Figure 5.14. Each edge-

sharing pair of transition metal cations with an enhanced charge density along the bond

axis also has a shortened metal-metal distance, consistent with the filling of the bonding

states that arise from metal-metal dimer formation. Several transition metal cations

even participate in two metal-metal dimers. A transition metal with two edge-sharing

cation neighbors can form a separate dimer with each neighbor with orthogonal onsite

t2g orbitals.[79] Density of states and charge density plots for multiple ground states and

low energy states from x=0.33 to x=3.5 is described in Appendix A.
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While the DOS plot of Figure 5.11 shows that there is some degree of spin polarization

at x = 1, the DOS plots of Figures 5.12 and 5.14, show that the filled bonding states

of the metal-metal dimers are non-spin polarized. Figure 5.15 collects the calculated

magnetic moments of all 937 LixTiNb2O7 structures normalized by the number of Li (i.e.

number of electrons donated to the host) as a function of Li concentration. The magnetic

moments are expressed in units of a Bohr magneton µB and the numerical values plotted

in Figure 5.15 are calculated as the difference in number of up spin and down spin

electrons per Li multiplied by g
√
s(s+ 1), where g = 2 and s = 1/2. The light blue

line connects the magnetic moment per Li of the ground states of LixTiNb2O7. Figure

5.15 shows that at dilute concentrations, the electrons donated to the host adopt a spin-

polarized configuration, resulting in a net magnetic moment of the crystal. However,

above x = 1, the magnetic moment per Li ion decreases to negligible values. It is

above this concentration that the bonding states of the metal-metal dimers are predicted

to accommodate the electrons donated by Li to the host. Figure 5.15 also shows the

magnetic moment per Li (in units of µB) as measured experimentally by Griffith et al.

[137] The qualitative agreement between the calculated and measured magnetic moment

per Li ion is very good. For comparison, Figure 5.15 also shows the calculated magnetic

moment per Li in the ground state configurations as calculated with DFT-SCAN. The

same trend is predicted, and the values are similar to those predicted with DFT-PBE.

5.3.4 Effect of redox mechanism on structure

The pristine TiNb2O7 crystal structure has highly distorted MO6 octahedra (M =

Ti or Nb) due to the oxidation states of Ti and Nb and the large number of edge-

sharing MO6 octahedra. The d0 Ti4+ and Nb5+ cations are susceptible to second-order

Jahn-Teller distortions when octahedrally coordinated by oxygen.[230, 77] This causes a
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Figure 5.15: Magnetic moments normalized by the number of Li ions of 937
LixTiNb2O7 structures as calculated with DFT-PBE. The magnetic moments per
Li of the ground state structures are connected by the blue line. The red points
are the magnetic moments per Li of the ground state structures as calculated with
DFT-SCAN. Orange points are magnetic moments per Li as measured by Griffith et
al.[137]

151



displacement of the cations away from the center of their coordinating octahedra. The

edge-sharing MO6 octahedra of TiNb2O7 also undergo significant distortions due to the

strong electrostatic repulsion between neighboring Ti4+ and Nb5+.[231] This repulsion

increases the distance between edge-sharing cations, causing a further off-centering of

each cation that simultaneously induces collateral distortions of their surrounding oxygen

octahedron.

The donation of electrons to the host upon Li insertion undoes many of the octahedral

distortions that are initially present in TiNb2O7. The reduction of the Ti4+ and Nb5+

cations eliminates their susceptibility to second-order Jahn-Teller distortions. Further-

more, the redox mechanism described in the previous section, which leads to metal-metal

dimer formation, has structural consequences that affect the lattice parameters of the

host. Each edge-sharing pair of transition metal cations that hybridize to form metal-

metal dimers undergo a contraction that pulls the cations back towards the centers of

their octahedra.

Figure 5.16 plots the edge-sharing metal-metal bond lengths as a function of the Li

concentration collected from the 937 fully relaxed LixTiNb2O7 structures. It is insightful

to inspect the edge-sharing Nb-Nb, Nb-Ti, and Ti-Ti pair distances separately, shown

in Figures 5.16(a), (b), and (c), respectively. The nearest neighbor distances of edge-

sharing metal-metal pairs in the ground state configurations are shown in gold. The

figures show a clear trend towards an overall contraction of the edge-sharing metal-metal

bonds with increasing Li concentration. Especially notable is the abrupt contraction in

a subset of the bond lengths that occurs between x = 1 and x = 2. In the lowest energy

ground state structures (gold points), this occurs first between Nb-Nb pairs as is evident

in Figure 5.16(a) with the two gold points at x = 1.33 and x = 1.66, having values

of approximately 2.7 Å. Edge-sharing Nb-Ti pairs (Figure 5.16(c)) also exhibit dimer

formation, with a subset contracting to values close to 2.8 Å, but the contractions only
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(a)

(b)

(c)

Figure 5.16: Bond lengths in LixTiNb2O7 structures with formation energies within
50meV/atom of the convex hull for edge-sharing (a) Nb-Nb pairs, (b) Ti-Ti pairs, and
(c) Ti-Nb pairs. Gold points refer to the pair distances in ground state structures.
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set in appreciably after Nb-Nb pairs have started to contract. The contraction between

edge-sharing Ti-Ti pairs (Figure 5.16(b)) is less pronounced and only begins to occur at

higher Li concentrations.

The onset of metal-metal dimer formation leads to sizable dimensional changes of

the host. Figure 5.17(a) collects the change in volumes of the relaxed ground state

structures of LixTiNb2O7 relative to that of TiNb2O7 and compares them to the experi-

mentally measured [169] changes in volume. The agreement between the volume change

as calculated with DFT-PBE and the measured volume change is very good. Figure

5.17(b) compares the change in the calculated lattice parameter parallel to the 3 × 3

blocks of the LixTiNb2O7 host for the ground state structures to the corresponding ex-

perimental values.[169] Here as well, the agreement is very good. The b-lattice parameter

is predicted to increase abruptly between x = 1 and x = 2.5 and then levels off at higher

Li concentrations. The same trend is observed experimentally.[169]

A useful metric of the dimensional changes of the host is the strain order parameter

e3 = (2Ezz−Exx−Eyy)/
√
6,[86, 27] which measures tetragonal distortions along the 3×3

block axis of LixTiNb2O7. The Cartesian strains, Exx, etc, appearing in the expression of

the strain order parameter, e3, are defined with respect to a Cartesian coordinate system

whose ẑ axis is parallel to the block length of the TiNb2O7 host structure. The Cartesian

strains are calculated as Hencky strains [86] relative to the dimensions of the fully relaxed

TiNb2O7 host structure without any Li. Figure 5.17(c) collects the e3 strain for all the

937 fully relaxed structures of LixTiNb2O7. The e3 strains of the ground state structures

are connected with a light blue line. Similar to the variation in the b-lattice parameter

in Figure 5.16(b), the e3 strain order parameter shows a rapid increase in a narrow Li

composition interval between x = 1 and x = 2.5. A positive value of e3 signifies an

expansion along the block length and a contraction along the block waist. The abrupt

increase in e3 and in the b lattice parameter between x = 1 and x = 2.5 can be attributed
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(c)

Figure 5.17: (a) Comparison of measured and calculated percent changes in volume of
the LixTiNb2O7 unit cell. Points labeled as triangles were measured experimentally
by Guo et al [169]. Circles are for the ground state structures of LixTiNb2O7 as
calculated with DFT-PBE. (b) Comparison of the percent change in the measured
(triangles) and calculated (circles) b lattice parameter. (c) The calculated e3 strain
relative to TiNb2O7 for 937 LixTiNb2O7 structures.
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to the onset of metal-metal dimer formation, which results in a reduction of the distance

between edge-sharing transition metal cations and a straightening of the highly distorted

octahedra of the pristine TiNb2O7 crystal structure.

Large volumetric changes of the host accompanying Li insertion are generally unde-

sirable as they can cause mechanical degradation of the electrode composite [232, 233,

234, 235]. Many intercalation compounds expand as Li fills their empty interstitial sites.

Furthermore, transition metals change their oxidation state upon Li insertion, which

can lead to a change in the metal-oxygen bond lengths and thereby the volume of MO6

octahedra [236, 237, 145, 153, 238, 4, 27]. In some instances, the change in oxidation

state will produce a shape change of the MO6 octahedron [239, 240]. Both Ti and Nb

are susceptible to second order Jahn-Teller distortions when they are in their maximum

oxidation state (i.e. Ti4+ and Nb5+) [143]. As with first order Jahn-Teller distortions,

second order Jahn-Teller distortions produce noncentrosymmetric displacements of the

ions of a molecule or a cluster that lead to distinctive shape changes.

The degree with which the MO6 octahedra of TiNb2O7 distort upon Li insertion

can be analyzed by projecting the ionic displacements of each octahedron on symmetry

adapted collective displacements as described in Section 2.5.1. Figures 5.18(a) and (b),

for example, show the average amplitude of the symmetry preserving breathing mode

of the TiO6 and NbO6 octahedra as a function of Li concentration. Also shown is the

one standard deviation spread around the average. The averages were collected from

the 937 Li-vacancy orderings in LixTiNb2O7 as relaxed with DFT-PBE. Figure 5.18

shows that the average volumes of the NbO6 and TiO6 octahedra increase steadily with

the concentration of Li. Of particular interest in Figure 5.18(b) is the abrupt increase

between x = 1 and x = 2 in the volume of the NbO6 octahedra that share four edges with

neighboring octahedra (purple curve). This concentration interval coincides with the start

of the metal-metal dimer redox mechanism, with the first pairs that form dimers involving
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Figure 5.18: The amplitude of the octahedral breathing mode for (a) the TiO6 octa-
hedra and (b) the NbO6 octahedra as a function of lithium composition.
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Nb cations in octahedra that share four edges with neighboring octahedra. Figure 5.18(b)

also shows that the Nb in the corner-sharing octahedron at the center of the 3× 3 block

(orange curve) expands between x = 0 and x ≈ 1 but then remains more or less constant

until x ≈ 3. This is consistent with the analysis of Morris and Griffith,[143, 137, 144] who

showed that the transition metal cations of the corner-sharing octahedra at the center

of the blocks of Wadsley-Roth phases play an important role in the redox processes at

dilute Li concentrations.

There are a total of 15 symmetry adapted collective displacement modes for a per-

fect MO6 reference octahedron. These naturally divide into six irreducible subspaces as

described in Section 2.5.1. The breathing mode shown in the inset of Figure 5.18 forms

a one-dimensional subspace. Another one is of dimension two and is spanned by the

well-known first-order Jahn-Teller collective displacement modes. There are four addi-

tional irreducible subspaces, each of dimension three (see Section 2.5.1 for more details).

Two of these are useful to analyze the distortion modes of Wadsley-Roth phases such

as LixTiNb2O7 as they measure the extent of second-order Jahn-Teller distortions and

of the octahedral shape changes that accommodate the changes in the distance between

edge-sharing cations.

Figure 5.19(a) shows the three symmetry adapted collective displacement modes that

characterize a second-order Jahn-Teller distortion of a d0 transition metal coordinated by

an octahedron of oxygen ions. The three collective displacement modes of Figure 5.19(a)

each describe an off-centering of the transition metal along one of the Cartesian axes and

form a basis with which to describe an arbitrary off-centering. A measure of the degree

of off-centering is the Euclidean length of the three amplitudes of the collective distortion

modes of Figure 5.19(a) as described in Section 2.5.1. Figures 5.19(b) and (c) shows the

average Euclidean length of the off-centering distortion mode along with a one standard

deviation spread for the TiO6 and NbO6 octahedra as a function of Li concentration.
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Figure 5.19: (a) Symmetry adapted collective displacement modes that characterize
a second-order Jahn-Teller distortion of a d0 transition metal that is octahedrally
coordinated by oxygen. The average amplitude of this type of displacement mode as
a function of Li concentration for (b) TiO6 and (c) NbO6 octahedra. The amplitudes
are calculated as a Euclidean distance within the space spanned by the three collective
displacement modes of (a).
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Figure 5.20: (a) Symmetry adapted collective displacement modes of the oxygen oc-
tahedra that have large amplitudes in TiNb2O7. The average amplitude of this type
of displacement mode as a function of Li concentration for (b) TiO6 and (c) NbO6

octahedra. The amplitudes are calculated as a Euclidean distance within the space
spanned by the three collective displacement modes of (a).
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The averages were again taken over the 937 fully relaxed LixTiNb2O7 structures. The

large values at low Li concentrations indicate that the cations are displaced away from

the center of their coordinating octahedra. The off-centering is more pronounced for the

cations that share more edges with neighboring octahedra. The Nb of the corner-sharing

octahedron at the center of the 3 × 3 block (orange curve in Figure 5.19(c)) exhibits

the smallest degree of off-centering, which decreases abruptly around x ≈ 1. As the

central Nb reduces its oxidation state from its starting value of Nb5+, its susceptibility

to a second-order Jahn-Teller distortion is lowered and the degree to which it is off-

centered decreases. The other transition metal cations, which are more off-centered at

a Li concentration of x = 0 than the central Nb due to the electrostatic repulsion with

neighboring edge-sharing transition metal cations, also become less off-centered with

increasing Li concentration. The decrease in the degree of off-centering occurs at slightly

higher Li concentrations than that of the central Nb and coincides with the composition

at which metal-metal dimers start to form. The formation of bonding states between

neighboring transition metal cations leads to metal-metal dimers, as described above,

and an overall centering of the transition metal cations within their octahedra.

Figure 5.20(a) shows a second set of symmetry adapted collective displacement modes

of MO6 octahedra whose amplitudes in LixTiNb2O7 undergo large changes with Li con-

centration. The three collective displacement modes of Figure 5.20(a) also form a basis to

describe octahedral distortions that reside within a T2u irreducible subspace, with each

collective displacement involving four equatorial oxygen ions that distort perpendicular

to their equatorial plane. These displacement modes measure the collateral distortions

of the oxygen octahedra in response to the large relaxations that lead to an off-centering

of edge-sharing transition metal cations.[231] Figure 5.20(b) and (c) plots the average

Euclidian distance of the amplitudes of the three orthogonal displacement modes for the

TiO6 and NbO6 octahedra as a function of Li concentration. The octahedral distortions
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are large at dilute Li concentrations but decrease substantially over a small concentra-

tion interval between x = 1 and x = 2 upon the formation of metal-metal dimers. Upon

forming metal-metal dimers, the transition metal cations move to the center of their oc-

tahedra, thereby allowing the oxygen ions to adopt positions that are closer to those of

an ideal octahedron.

5.3.5 Finite temperature thermodynamic properties and Li site

occupancy

Room temperature electrochemical properties were calculated by combining cluster

expansions with Monte Carlo simulations. A cluster expansion is a surrogate model that

interpolates the energies of different Li-vacancy orderings as calculated with a compu-

tationally expensive first-principles method. The cluster expansion can then be used in

Monte Carlo simulations to calculate the energies of microstates sampled in large unit

cells according to the probability distribution of statistical mechanics. The cluster ex-

pansions used in this study were trained to the formation energies of 937 Li-vacancy

orderings in LixTiNb2O7 shown in Figure 5.4(a). A Bayesian approach was followed to

enable uncertainty quantification of calculated thermodynamic properties due to numer-

ical noise on the training data and cluster expansion truncation and parameter selection.

Ten different cluster expansions were sampled from a Bayesian posterior probability dis-

tribution as described in Section 5.2.1 and by Ober et al.[223] Each cluster expansion

was used in Monte Carlo simulations to calculate equilibrium voltage curves (related to

the Li chemical potential according to the Nernst equation [2]) and equilibrium Li site

occupancies as a function of the overall Li concentration.

Figure 5.21(a) shows ten voltage curves as a function of Li concentration, each calcu-

lated with a different cluster expansion sampled from a Bayesian posterior distribution.
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(b)

Figure 5.21: (a) Voltage profile at 300K of LixTiNb2O7 as calculated with Monte
Carlo simulations applied to cluster expansions of the formation energy. The Ti-Nb
ordering of TiNb2O7 is that of Figure 5.1. (b) Lithium site occupancy as a function
of lithium concentration as calculated with Monte Carlo simulations applied to 10
different cluster expansions of the formation energy.
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The voltage curves were calculated with grand canonical Monte Carlo simulations, which

generates the average Li concentration at each Li chemical potential and temperature.

The smooth sloping voltage curves reflect a solid solution. The Monte Carlo simulations

predict that the Li ions and vacancies are disordered at room temperature.

Similar to experimentally measured voltage profiles of LixTiNb2O7,[213, 16, 215] the

calculated voltage curve exhibits an initial steep decrease between x = 0 and x ≈ 0.5,

which is followed by a flatter concentration dependence between x ≈ 0.5 and x ≈ 2.

Beyond x ≈ 2, the decrease in voltage with Li concentration is again steeper and exhibits

several weak steps. We note that the middle portion, while having a shallow slope, is not

as flat as that exhibited by experimental curves.[156]

Figure 5.21(b) shows the Li site occupancy as a function of Li concentration. Each Li

site has ten curves, one for each cluster expansion sampled from the posterior distribution.

It is clear in Figure 5.21(b) that differences in predicted site occupancies as calculated

with the different cluster expansions are small. The predicted trends in Figure 5.21(b)

are consistent with those predicted at zero Kelvin. Li primarily fills the pyramidal Ps

sites, which steadily become enriched with Li until they saturate around x=4. The

vertical window sites, Wv, also accommodate Li ions early on, but do not saturate until

approximately x=5. The horizontal window sites, Wh, only start filling around x=2.

The pyramidal P ′
s sites are overall least favored and only saturate at the highest Li

concentration.

It is of interest to analyze the Li site occupancy based on the surrounding Ti con-

centration. This is shown in Figure 5.22. Each Li site is distinguished by the number

of Ti cations that share an edge with the Li site. The darker blue curves and uncer-

tainty bounds track the concentration of Li in sites that are surrounded by more Ti, as

indicated in the insets, while the lighter green curves track the Li concentration in sites

surrounded by more Nb. Overall, Figure 5.22 shows that Li tends to first fill sites that
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are surrounded by more Ti than Nb.

5.4 Discussion

This study examines the importance of Ti-Nb ordering on lithium site filling in

TiNb2O7 and examines structural changes as a function of lithium concentration. For ex-

perimentally synthesized TiNb2O7, disorder is present on the transition metal sublattice.

Orderings with Ti on M1 and M2 sites are found to be lower in energy than orderings

with Ti in M3, M4, and M5 sites, corroborating earlier neutron diffraction work by Dreele

et al [138].

Our first-principles study of the LixTiNb2O7 Wadsley-Roth phase has shed light on

the redox mechanisms accompanying the electrochemical lithiation of TiNb2O7. At least

two redox mechanisms are identified based on an analysis of 937 fully relaxed LixTiNb2O7

structures. At dilute Li concentrations DFT-PBE calculations predict that electrons do-

nated by Li reduce Ti and Nb more or less uniformly. The calculations predict some

degree of spin polarization for x < 1. At higher Li concentrations, DFT-PBE calcula-

tions predict that the redox mechanism changes qualitatively, shifting from the filling

of cation-centric t2g orbitals to the filling of the bonding states that arise when the t2g

orbitals of edge-sharing transition metal cations hybridize to form metal-metal dimers.

The redox then occurs on extended molecular orbital-like states with enhanced charge

density between pairs of edge-sharing transition metal cations. The first metal-metal

dimers to form involve Nb cations that occupy the sites with the highest number of edge-

sharing neighbors. The large electrostatic interactions between highly oxidized edge-

sharing neighbors increases the driving force to undergo redox at those sites in order to

lower their formal oxidation state. Nb-Nb dimer formation is followed by Nb-Ti dimer

formation, with less pronounced activity predicted to occur between Ti-Ti pairs.
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Figure 5.22: The Li concentration of different sites coordinated by varying amounts
of edge-sharing Ti for the (a) Ps, (b) P

′
s, (c) Wv and (d) Wh sites.
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The dimer formation between edge-sharing transition metals has structural conse-

quences. The distance between metal-metal pairs that host the electrons donated by Li

in bonding states undergo a contraction, which in turn, induces a straightening of the

oxygen octahedra surrounding the affected transition metal cations. This leads to an

elongation of the block length of the TiNb2O7 host that has macroscopic ramifications.

The predicted variations in volume and b lattice parameter as a function of Li concentra-

tion are in good agreement with experiment,[169] indicating that DFT-PBE is capable

of accurately describing the redox mechanisms in this material. The structural distor-

tions of the host induced by metal-metal dimer formation not only affect the macroscopic

dimensions of the crystal, but also those of the interstitial Li sites. The window sites,

for example, are highly distorted in the pristine TiNb2O7 structure, and unfavorable for

Li occupancy. Above x ≈ 2, however, when the MO6 octahedral distortions become

less extreme, the window sites become more square planar and more favorable for Li

occupancy.

The predicted variation in the magnetic moment of LixTiNb2O7 as a function of Li

concentration is also in very good agreement with the measurements of Griffith et al

[137]. DFT-PBE predicts some degree of spin polarization that leads to a net magnetic

moment at low Li concentrations. The net magnetization is predicted to drop to neg-

ligible values, however, once the metal-metal dimer redox mechanism commences. The

DFT-PBE calculations predict that the bonding states associated with the metal-metal

dimers are filled by an equal number of spin up and spin down electrons and do not

contribute to a net magnetic moment. Griffith et al [137] suggested that a Hubbard

correction to DFT-PBE is necessary to describe the electronic structure of LixTiNb2O7

at dilute Li concentrations. The analysis of a large number of Li-vacancy orderings at

dilute concentrations in the current study, however, has shown that DFT-PBE without

a Hubbard U correction is already capable of predicting the observed magnetic behavior
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as a function of Li concentration.

We expect that a redox mechanism involving the bonding states of metal-metal dimers

is not restricted to LixTiNb2O7, but is common in other Wadsley-Roth phases as well. In

fact, similar metal-metal bonding has been predicted to occur in LixPNb9O25. However,

since LixPNb9O25 has only one type of transition metal and has a higher degree of cation

ordering than LixTiNb2O7, the metal-metal bonds are more extended and the electronic

states that emerge are more delocalized. Due to the presence of Ti and Nb disorder in

LixTiNb2O7, in contrast, the metal-metal dimer formation is more localized on individual

edge-sharing pairs and therefore more apparent as a mechanism of redox.

The formation of metal-metal dimers to accommodate the charge donated by Li falls

into a class of molecular-orbital like redox mechanisms that is increasingly being explored

as an alternative to cation-centric redox mechanisms of conventional battery intercala-

tion compounds.[241, 242, 243, 244] Other compounds exhibiting molecular-orbital redox

mechanisms include Na2Mn3O7 [241] and LixScMo3O8.[243, 244] In Na2Mn3O7, redox

has been predicted to occur on anti-bonding states distributed over an extended ring of

π-bonded Mn and oxygen orbitals surrounding a cation vacancy.[241] In LixScMo3O8,

charge donated by Li is accommodated on molecular-orbital-like states derived from Mo

metal trimer clusters formed by the hybridization of t2g orbitals.[243, 244]

The redox mechanism described here for LixTiNb2O7 induces a structural changes

due to the contraction in the distance between edge-sharing transition cations to form a

favorable bonding state. This is similar to anion redox enabled by the formation of sulfur-

sulfur S2−
2 dimers.[245, 246, 247, 248, 249, 250, 251] More extreme redox mechanisms

that require a change in the coordination environment include the Mn4+ → Mn7+ or a

Cr3+ → Cr6+ redox couples that are accompanied by a migration from an octahedral

site to an adjacent tetrahedral site.[252, 253, 254] While significant structural changes

due to redox processes are undesirable as they can lead to mechanical damage of the
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electrode material and hysteresis phenomena,[255, 256] the redox mechanism involving

metal dimer formation is less extreme than coordination changing redox mechanisms.

The crystallographic diversity of Wadsley-Roth phases, with widely varying numbers and

distributions of edge-sharing octahedra, opens up opportunities to tailor the sequence of

redox processes and their structural consequences.

When compared to PNb9O25, TiNb2O7 has marked differences with regards to lithium

site stabilities. In PNb9O25, pyramidal sites exclusively fill at low levels of lithiation and

upon crystallographic distortions that come with reliving the second order Jahn-Teller

distortions, window sites become favorable. For the ground state TiNb2O7 ordering this

differs. At low levels of lithiation, pyramidal sites are stable, but window sites quickly

begin to fill even before the second order Jahn-Teller distortion is relieved. By the

lithium concentration that the second order Jahn-Teller distortion is removed, x=2 as

determined by examining ΓIV (T1u), one-fourth of available window sites are already filled

with window sites.

Due to the gradual increase in window site filling the ground state TiNb2O7 order-

ing, there is no two phase region predicted. Experimentally synthesized TiNb2O7 indeed

contains a small two phase region occurring at x=1. It important to note though that

experimentally synthesized is disordered. Furthermore, it is important to note that differ-

ent TiNb2O7 orderings display differing lithium site stabilities, that can make it such that

this two-phase region is induced by portions of the differing transition metal orderings

available in the disordered TiNb2O7 compound.

The predicted voltage profile and site occupancies are reasonably robust as demon-

strated with uncertainty quantification methods. These methods were also useful for

predicting likely ground state candidates to provide training data for the overall model.

For structural changes in the material, we find that the distortion amplitudes for the

octahedra change as a function of their octahedral edge sharing. For almost every dis-
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tortion mode, corner-sharing octahedra had the smallest induced distortions. Octahedra

that share more edges also exhibit the largest distortions. For the distortion associ-

ated with off-centering of the central-ion, corner-sharing octahedra see a small decrease

between compositions of x=0 and x=1. This is likely caused by a relaxation of the

second-order Jahn Teller distortion. On the other hand, if one examines octahedra that

share four edges (Figures 5.20 and 5.19), the ΓIV (T1u) distortion decreases most rapidly

between x=1 and x=2. This is the composition range where metal-metal bonding occurs

for the 4-edge sharing Nb sites, from delocalized electrons at x=1 (Figure 5.11(b)) to the

beginning of metal-metal bonding on the four edge-sharing sites 5.12(b) at x=1.66 (This

metal-metal bond is also seen at x=1.33). After this compositions metal-metal bonding

on the 4 edge-sharing states occur for more lithium vacancy orderings and the Nb-Nb

bond distances quickly decrease by x=2 (Figure 5.19). As further evidence the bond

distances for the M1 Nb sites that initially undergo metal-metal bonding are examined.

For the M1 site the Nb-Nb bond distance is 3.09 Angstrom at x=1, before metal-metal

bonding occurs. This bond distance quickly falls to 2.69 Angstrom at x=1.33, when

metal bonding starts to occur in the ground state structure. The decrease in the lowest

Nb-Nb pair distances for all lithium-vacancy orderings in 5.16(a) suggests that many

other lithium-vacancy orderings also undergo this decrease in Nb-Nb bond distances at

equal to and greater than x=1.33.

Additionally many of the observed crystallographic distortions are consistent with

experiment. Catti. et al. showed through neutron powder diffraction that a volume

increase of 8.4% occurs by a composition of x=3.33, in line with the volume expansion

determined in 5.17(a). Additionally a volume increase of all octahedra was experimentally

observed over this composition regime, in line with 5.18. Moreover, neutron diffraction

showed that the 4 edge sharing sites (M1 and M2) had the largest octahedral volumes.

In 5.18, we see at intermediate compositions that the highest volume octahedra are
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the ones with the largest amounts of edge-sharing [198]. Moreover, with respect to

lithium insertion at intermediate compositions, this study showed a nearly 1 to 1 ratio

of pyramidal sites to window sites as predicted in 5.21(b).

5.5 Conclusion

Our comprehensive study of the TiNb2O7 system presents significant insights into

the lithiation mechanism, crystallographic distortions, and electronic structure of this

material. As we lithiate, the transition metal bond distances quickly decrease at a com-

position of x=1.33, as metal-metal bonds form in the high edge sharing octahedra. As

this occurs the ΓV (T2u) and ΓIV (T1u) distortion modes quickly decrease, with the change

occurring to a greater extent for octahedra that share more edges. The relaxation of

these distortions cause an increase in the e3 strain. Comparisons with experiment shows

that these calculations are accurate at predicting the structural parameters as a function

of lithium concentration.

Inducing these structural and electronic changes through lithiation suggests potential

methods for tuning Wadsley-Roth phases for higher lithium-ion electrode performance.

Structures with lower amounts of octahedral edges can help reduce e3 strain in these struc-

tures. Metal-metal bonds can be induced in particular sites that share higher amounts of

edge sharing. This bonding mechanism can further be turned on or off as you intercalate

or extract lithium. With our combined knowledge of which transition metal sites prefer

to stay to the edges of the blocks (transition metals with lower electrostatic repulsions),

and knowledge of which Wadsley-Roth types are allowed to form, the E1 shift being

the most favorable, we have a general route for predicting the structural properties of

disordered Wadsley-Roth materials upon lithiation.
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Chapter 6

Conclusion

High power density battery materials require specific and accurate theoretical design to

maximize performance. Through this thesis, we perform a high-throughput study of

the Wadsley-Roth crystallographic shear phase anode chemistries. By examining lithium

intercalation mechanisms in these phases, design metrics were ascertained. Wadsley-Roth

phases can be split into five main classes: E0[n×∞], E0[n×m], Ex,y[n×m], T[n×m],

and M[n × m]. These phase types differ by the arrangement and connectivity of the

blocks used to construct these Wadsley-Roth phases.

We focus on phase stability in both non-disordered, pristine Wadsley-Roth phases

and disordered Wadsley-Roth phases. For pristine Wadsley-Roth phase structures, we

find that phase stability is dependent on the interplay between polyhedral edge sharing

and resulting distortions. For example, in the maximum oxidation structure Nb2O5, the

E1[4 × 4] structure is the most stable. The cause of this is two fold. To a first order

approximation, the energy is controlled by electrostatics. The E1[4×4] shift type has less

octahedral edge sharing than E0[4× 4] and E3[4× 4]. The Nb2O5 structures with these

shift types contain octahedra that share five edges, while E1[4× 4] and E2[4× 4] Nb2O5

structures have octahedra that share a maximum of 4 edges. In fact the total amount of
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edge sharing per unit cell for E1[4×4] and E2[4×4] Nb2O5 structures is equivalent. This

begs the question of why E1[4× 4] is more stable than E2[4× 4]. The answer lies in how

these octahedra share these edges. Specifically, the cause is distortions, the secondary

factor for phase stability. The octahedra in E1[4×4] are more flexible and have a greater

ability to induce octahedral distortions favorable to structure as a whole than E2[4× 4]

Nb2O5. Crystallographically, the main difference is a set of octahedra that share 2 edges,

that are connected along the infinite axis (the vertical axis) in E1[4× 4] Nb2O5 while in

E2[4×4] Nb2O5 these octahedra share 2 edges connected along the a and b lattice vectors

in plane with the blocks (the horizontal axis). This difference induces a difference in the

off-centering of the central transition metal ions. For E1[4 × 4] the octahedra are more

flexible, allowing the central ions in the 2 edge-sharing octahedra to off-center a necessary

amount to accommodate distortions in other octahedra in the system. These distortions

are favorable for phase stability of E1[4×4] Nb2O5 over E2[4×4] Nb2O5. This trend holds

throughout the Nb-O Wadsley-Roth phases and even Ti-Nb-O Wadsley-Roth phases. E1

type Wadsley-Roth phases are consistently predicted to be the lowest in energy with

DFT-PBE. For Nb3O7, Nb12O29, and Nb2O5, the E1 shift type is the most stable. Even

for the type M, mixed phases, stable phases are ones that include elements of the E1 shift

type, Nb22O54 and Nb25O62.

For disordered Wadsley-Roth phases, electrostatics and distortions are also important

for determining the most stable ordering on the transition metal sublattice. For the high

power density Wadsley-Roth phase material, TiNb2O7, distortions are what cause the

most stable TiNb2O7 ordering. In TiNb2O7, the lowest energy ordering is not the one

that would be the lowest purely as a result of electrostatics. The Ti-Nb ordering that is

the lowest energy, instead, is the one that minimizes energy when both electrostatics and

distortions on the central ion are considered. To a first order approximation, the energy

of TiNb2O7 orderings is dependent on electrostatics between the central cations (Nb5+
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and Ti4+). The energy of an ordering is linearly dependent on the amount of octahedral

edge-sharing of the Nb ions. Niobium ions are larger and more electropositive, therefore

the position of the ions in the TiNb2O7 orderings strongly impact the relative energy.

The lowest energy orderings are ones where Nb ions share the fewest edges (and Ti ions

share the most). As the amount of octahedral edges shared by NbO6 octahedra increases,

the energy increases.

As we lithiate Wadsley-Roth phase materials, particular structural distortions are

consistent among different Wadsley-Roth phases. At low lithium concentrations, for

most Wadsley-Roth phases, pyramidal sites are predicted to be the most stable sites. It’s

only with increasing lithium concentration that window sites and pyramidal sites both

become stable. This site stability is consistent with regards to differing shift types in that

E0[2 × inf], the ground state TiNb2O7 ordering, and PNb9O25 all follow this lithiation

mechanism. While this lithiation mechanism is stable as a function of shift type, it can

be changed as a function of block size and disorder in the transition metal sublattice.

The most stable sites in E0[4×4] Nb2O5 at the dilute limit are window sites, and lithium

site stability at both the dilute and intermediate composition in TiNb2O7 is dependent

on the ordering in the transition metal sublattice. Particularly, TiNb2O7 orderings that

have Ti ions in the central or two-edge sharing sites show more stability of the window

sites at the dilute limit.

With regards to distortions upon lithiation, for maximum oxidation state Wadsley-

Roth phases both ΓV (T2u) and ΓIV (T1u) distortions significantly decrease as a function of

lithium concentration. Such maximum oxidation state structures include PNb9O25, the

ground state ordering of TiNb2O7, E1[4× 4] Nb2O5, and E0[2×∞] Nb2O5. Particularly

this decrease occurs in line with an increase in the e3 crystallographic strain. This

trend shows two predominant crystallographic mechanisms upon lithiation: (1) that the

Nb (and Ti) ions return to the center as more lithium enters the system and (2) the
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ΓV (T2u) distortion is likely intrinsically liked to the ΓIV (T1u) distortion. The first of

these points is hypothesized to be a result of relaxation of the SOJT as more electrons

are introduced to the system. The link between this mechanism and the increase in e3

crystallographic strain is further proof that the e3 strain is directly caused by the removal

of the SOJT upon lithiation. The second finding, the decrease in ΓV (T2u) with decreasing

ΓIV (T1u) distortion amplitudes is more complex. The ΓV (T2u) distortion is one where

two oxygen’s move perpendicularly to a separate set of two other oxygens in a transition

metal octahedra. This distortion differs from ΓIV (T1u), the distortion corresponding to

off-centering of the central ion, in that the central ion is immobile. This indicates that

as the central ion off-centers, nearby oxygens distort to compensate for the movement of

the central ion, and that this mechanism disappears as the central ion re-centers in the

octahedra.

For many Wadsley-Roth phases, particularly TiNb2O7 and PNb9O25, the structure

is electronically insulating before lithiation. It is only after lithium insertion that the

structure becomes metallic. Electronic conductivity is required for the redox reactions

at the cathode and anode to occur as lithium ions intercalate into the anode/cathode

with charging/discharging, so metallicity is intrinsically linked to battery electrode per-

formance.

Future study recommendations include the usage of disorder to tune electrochemical

performance in Wadsley-Roth phases. In TiNb2O7, lithium site stabilities are ordering

dependent. This means that if disorder can be tuned in this structure, lithium ordering

stability and therefore voltage profiles and performance can be tuned. Unfortunately, for

this structure the temperature stability window for the structure is narrow, and there

is little room for experimentally inducing disorder in TiNb2O7. For other Wadsley-Roth

structures, such as tungsten niobium oxides or chromium niobium oxides, the stability

window may differ. Any experimental or theoretical study of lithiation mechanisms as a
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function of transition metal disorder should take the stability of the Wadsley-Roth phase

as a whole as a factor when performing the study.

Beyond the Wadsley-Roth phases, we recommend using the tools used in this thesis

to study other oxide and sulfide materials. Particularly, the distortion amplitude study

can be applied to other binary and ternary oxide materials to determine if particular

distortion modes change as you change the central cation species or determine the degree

to which differing binary oxide materials undergo second order Jahn-Teller distortions.

Overall this method can be useful in performing high level examinations in phase stability

in other battery electrode chemistries.

We also recommend using the Wadsley-Roth enumeration code to examine Wadsley-

Roth phase stability in other ternaries. Due to the expensive and heavy nature of most

transition metals currently used in Wadsley-Roth phases, experimentalists can benefit

from information of possible phase stability of Wadsley-Roth phase structures that feature

lower cost or lighter transition metals. Furthermore, differing transition metals with

differing oxidation states can be used as a way to tune the block sizes in the Wadsley-

Roth phases as well as a potential route to control metal-metal bonding in these phases.
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Appendix A

Charge Density Evolution in

Lithiated TiNb2O7

A.1 NbO6 octahedra density of states

At low levels of lithiation (up to x=1) charge is delocalized among the Nb sites. As

lithium concentration increases to x=1.33 a dimer begins to form on the M1 Nb site

and M1’ Nb site with the dxy states forming metal-metal bonds and then the dxz state

(Figures A.1, A.3, and A.5). M1 and M1’ sites are specifically four-edge sharing sites.

It is not until higher composition that sites that share more edges begin to bond. Upon

higher compositions (x=2.5 and higher) M2 Nb sites begin to form dimers begin to form

on the four edge sharing and three edge sharing sites (Figures A.2, A.4, and A.6).

A.2 TiO6 octahedra density of states

At low levels of lithiation (up to x=1) charge is delocalized among the Ti sites, in the

same way as the Nb sites. Unlike for the 4 edge sharing Nb site, electrons on Ti remain
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LiTiNb2O7

Li1.33TiNb2O7

Li2.5TiNb2O7

Figure A.1: Projected density of states for the M1 Nb Site for x=1, x=1.33, and
x=2.5 in LixTiNb2O7
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Li2.83TiNb2O7

Li3.33TiNb2O7

Li3.5TiNb2O7

Figure A.2: Projected density of states for the M1 Nb Site for x=2.83, x=3.33, and
x=3.5 in LixTiNb2O7
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Figure A.3: Projected density of states for the M3 Nb Site for x=1, x=1.33, and
x=2.5 in LixTiNb2O7
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Figure A.4: Projected density of states for the M3 Nb Site for x=2.83, x=3.33, and
x=3.5 in LixTiNb2O7
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LiTiNb2O7

Li1.33TiNb2O7

Li2.5TiNb2O7

Figure A.5: Projected density of states for the M5 Nb Site for x=1, x=1.33, and
x=2.5 in LixTiNb2O7
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Li2.83TiNb2O7

Li3.33TiNb2O7

Li3.5TiNb2O7

Figure A.6: Projected density of states for the M5 Nb Site for x=2.83, x=3.33, and
x=3.5 in LixTiNb2O7
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delocalized for the x=1.33 ground states. Delocalization continues until a composition

of approximately x=2.5 (Figures A.7, A.9, and A.11). Specifically, the M2 site begins

to have bonding states filled at the same energy levels as states on M1 and M1’ Nb

sites (Figures A.8, A.10, and A.12). Four-edge sharing Ti sites begin bonding before the

three-edge sharing Ti site (M3).
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Figure A.7: Projected density of states for the M2 Ti Site for x=1, x=1.33, and x=2.5
in LixTiNb2O7
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Figure A.8: Projected density of states for the M2 Ti Site for x=2.83, x=3.33, and
x=3.5 in LixTiNb2O7
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Figure A.9: Projected density of states for the M2’ Ti Site for x=1, x=1.33, and
x=2.5 in LixTiNb2O7
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Figure A.10: Projected density of states for the M2’ Ti Site for x=2.83, x=3.33, and
x=3.5 in LixTiNb2O7
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LiTiNb2O7

Li1.33TiNb2O7

Li2.5TiNb2O7

Figure A.11: Projected density of states for the M3 Ti Site for x=1, x=1.33, and
x=2.5 in LixTiNb2O7
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Li2.83TiNb2O7

Li3.33TiNb2O7

Li3.5TiNb2O7

Figure A.12: Projected density of states for the M3 Ti Site for x=2.83, x=3.33, and
x=3.5 in LixTiNb2O7
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