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Robust Speaker Adaptation by Weighted
Model Averaging Based on the Minimum
Description Length Criterion

Xiaodong Cui, Member, IEEE, and Abeer Alwan, Senior Member, IEEE

Abstract—The maximum likelihood linear regression (MLLR)
technique is widely used in speaker adaptation due to its effec-
tiveness and computational advantages. When the adaptation data
are sparse, MLLR performance degrades because of unreliable pa-
rameter estimation. In this paper, a robust MLLR speaker adap-
tation approach via weighted model averaging is investigated. A
variety of transformation structures is first chosen and a general
form of maximum likelihood (ML) estimation of the structures is
given. The minimum description length (MDL) principle is applied
to account for the compromise between transformation granularity
and descriptive ability regarding the tying patterns of structured
transformations with a regression tree. Weighted model averaging
across the candidate structures is then performed based on the nor-
malized MDL scores. Experimental results show that this kind of
model averaging in combination with regression tree tying gives ro-
bust and consistent performance across various amounts of adap-
tation data.

Index Terms—Maximum likelihood linear regression (MLLR),
minimum description length (MDL), model averaging, speaker
adaptation.

I. INTRODUCTION

PEAKER adaptation is a crucial technique for speech
Srecognition systems which modifies the original acoustic
models towards a specific speaker given the speaker’s acoustic
characteristics. It can yield significant improvements over
“unadapted” recognizers and therefore plays an important role
in real-world applications. In the past two decades, speaker
adaptation has become one of the most active research areas in
the speech recognition field with many important contributions.
Generally speaking, speaker-adaptation techniques fall into two
categories: transformation-based approaches and model-based
approaches. Transformation-based approaches relate the orig-
inal and adapted model parameters by either a linear [1] or
a nonlinear [2] transformation. The model-based approaches
adapt model parameters directly without an assumption of
transformation [3]-[5].
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If a large amount of adaptation data is available, both trans-
formation-based and model-based approaches yield satisfactory
performance. In real-world applications, however, situations
often occur when only a limited amount of data is available for
adaptation. This may be due to difficulty in collecting the data
or a requirement of rapid speaker adaptation. In this situation,
data sparseness will affect performance. To deal with this issue,
a variety of methods has been proposed for both approaches.
For the transformation-based approach, a regression class tree is
adopted in [1] to dynamically tie the transformation parameters,
while dependencies between acoustic units are studied in [6]
and [7] to make effective usage of the data. In the model-based
approach, a structural maximum a posteriori (MAP) adaptation
algorithm is proposed in [4] and [5] utilizing hierarchical priors
resulting in good performance. These techniques can yield
reliable adaptation for observed or unobserved acoustic units
by smoothing the adaptation parameters across the sparse data.

Another interesting way to address the sparse-data problem
is the eigenvoice method investigated in [8], where the acoustic
models are obtained via a linear combination of representative
speaker independent models in the eigenvoice (principal com-
ponents) space. In case of adaptation, only the linear combina-
tion coefficients need to be estimated, which makes it a good
choice for rapid speaker adaptation. The eigenvoice method has
been extensively studied in the past few years and encouraging
performance has been reported (e.g., [9]-[11]).

Among speaker adaptation techniques, the maximum like-
lihood linear regression (MLLR) [1] is one of the most well-
known and widely used approaches due to its effectiveness and
computational advantages. In this paper, we investigate a robust
speaker adaptation scheme using MLLR with a structured trans-
formation matrix. The scheme yields consistent performance
across various amounts of adaptation data-sparse or adequate.
Structured MLLR transformations are clustered through a re-
gression tree [1] and their ML estimation is provided. Given a
certain amount of adaptation data, a variety of transformation
structures is chosen and their tying patterns with the regression
tree are described by the minimum description length (MDL)
[12] to account for the tradeoff between transformation gran-
ularity and descriptive ability. Based on the normalized MDL
scores, the final transformation is obtained by a weighted av-
erage across the candidate structures.

Previous work on applications of the MDL principle in
acoustic model selection involves the use of MDL to auto-
matically determine the regression tree depth, applied to mean
shifting [13] and structural MAP adaptation [14]. In this paper,
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we investigate the use of the MDL principle to determine
the optimal transformation structure from a set of predefined
structures.

The remainder of the paper is organized as follows. In
Section II, the formulation of estimation of structured MLLR
transformations is provided. Structure description via the MDL
principle and weighted model averaging based on normalized
MDL scores are given in Sections III and IV. Section V dis-
cusses the choice of proper structures. Experimental results are
presented in Section VI and are followed by a discussion in
Section VII. A summary is presented in Section VIII.

II. STRUCTURED TRANSFORMATIONS

Asin [1], the MLLR transformation can be written as

fp=A¢ 1)
where € = [1, 11, - - -, un] 7T is the augmented mean vector with
p = [p1,- -, un]T denoting the N-dimensional mean vector

of a Gaussian mixture in speaker-independent acoustic models.
The adapted Gaussian mixture mean fi is computed from the
original augmented mean ¢ via a linear transformation matrix
A withan N x (N + 1) dimension.

When the adaptation data are adequate to perform reliable es-
timation, a full matrix form of A is preferred. However, most
often in practical situations, only limited adaptation data are
available. Under this condition, it is interesting to investigate
different structures of A which may render fewer free parame-
ters to estimate while still providing a good descriptive ability
of the transformation. For a particular structure, only the ele-
ments of interest in the transformation matrix are taken into ac-
count while the rest are set to zeros. For instance, (2) illustrates
a structure of the transformation matrix A with elements of in-
terest located in the first column and along the three principal
diagonals in the remaining sub-matrix

X X X
X X X X

A=|x X X . 2)
: ’ ' X
X X

X1 Nx(N+1).

Before we derive the ML estimate of the structured transfor-
mation, let us first review the derivation of transformation ma-
trix A with no assumption of its structure (see for example [1]).
It will become manifest that the ML estimate of the structured
transformation is an extension of the estimate of a full transfor-
mation matrix in an EM framework.

Suppose there are R adaptation utterances and U" is the
number of frames in the rth utterance. v; (i,k) = p(s] =
i,kT = k|O",)) is the posterior probability of being at state
¢ and Gaussian mixture k at time ¢ given the rth observation
sequence O = {of,---, 0} }. & and X, are the augmented
mean vector of y;; and covariance matrix associated with state
i and Gaussian mixture k. X are the parameters of previous
models in the EM iterations. Transformations are tied into Q)

classes: {wy,---,wq, --,wq}. For a specific class wy, the
transformation matrix A, is shared across all the Gaussian
mixtures N (0} ; pik, Xix) with (i, k) € wy. The ML esitmation
of A, can be obtained from

ur

ZZ Z fYt Z k ELkzlot‘ ik

r=1t=1 (i,k)Ew,

™

U
=33 3 GRS Aadh. 3)

r=1t=1 (i,k)Ew,

Define the terms the same way as in [1]

ur
=) v, kD! 4)
t=1
Dy, = &l (5)
R U

Zq = ZZ Z i (i, k)25 0y €. (©6)

r=1t=1 (i,k)Ew,

Hence

R

1k ® D7k) vec(A ) (7)

VeC
r=1(i,k)e

where vec(+) converts a matrix into a vector in terms of the rows
and ® is the Kronecker product.

When the covariance matrix X;;, is diagonal, A, could be
computed row by row from the following linear relationship:

Zqu =Ggm - aqu ®)

where 2, and ag, are the mth row of 7, and A,, and

Gam =D D VlmmDi ©

where v e(mm) is the mth element on the diagonal of matrix V}} .

In this paper, we are interested in the structure of A and ways
of exploiting the structure in robust speaker adaptation. For a
structured transformation, suppose the mth row of A, has
P, elements of interest, namely

agm = [0,-+,0,aqm1,,0,-+,0,agm1, ,0,---,0]. (10)
Define
Agm = [aqm,ll »Agm,lyy aqul’m]
and
Zgm = [qu,ll 1 Zqmylyy 7quJPm]
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as being the subvectors consisting of only those elements of in-
terest. Then, 4., can be solved using the following relationship:

Zrn = Ggm-al, (11)
where
g gl g
(am)  (qm) (am)
Gym = i1, glz'lz 912{pn1 (12)
(@m) _(qm) (gm)
glg:lll glzz glg::lle

In other words, the matrix (N}qm is generated by eliminating the
rows and columns of G, which correspond to the zero ele-
ments in the structure, and keeping those of interest. The ML
estimation of the structured transformation obtained in (11) is a
general form for all possible structures.

III. DESCRIPTION OF STRUCTURED TRANSFORMATION
BASED ON MDL

Since it was first proposed in 1978 [12], the MDL has
been extensively studied and applied in model selection prob-
lems. There are many excellent papers reviewing MDL, e.g.,
[15]-[17], etc. In speech recognition, the MDL was also used
as a means to cluster acoustic units or optimize acoustic models
[18], [19]. Rooted in information theory, the MDL principle
renders a view to model selection from a coding perspective.
It treats a statistical model S with parameter # as a coding
algorithm to compress data X for the estimation. The total
length (L(S)) to describe the coding of the data via the model
includes the length of the compressed data (—logp(X|6)) plus
the length describing the model itself (L(6))

L(S) = —logp(X|0) + L(8) (13)
In (13), the first term on the right-hand side accounts for how
well the model fits the data and the second term describes the
complexity of the model. It is desirable to describe complicated
phenomena by a simple model just as the famous Occam’s razor
states—“One should not increase, beyond what is necessary, the
number of entities required to explain anything.” Thus, given
M competing models, the one with the shortest code length is
favored which results in a simple model (or short L(6)) with a
good fit of the data (or short —logp(X#)). In this paper, the
MDL is employed to describe the structured MLLR adaptation
using a regression tree.

Given an amount of adaptation data and a transformation
structure, a regression class tree [1] is a good choice to obtain
robust performance by dynamically tying Gaussian mixtures in
the acoustic HMMs in terms of spatial similarity. The regression
tree is created based on the centroid splitting algorithm using the
Euclidean distance between the Gaussian mixture means as de-
scribed in [20]. During adaptation, the Gaussian mixtures are

3-diagonal

1-diagonal

Fig. 1. Comparison of the transformation tying patterns with a regression tree
of six base classes using 1-diagonal (gray node), and 3-diagonal (black node)
structures.

pooled within their base class leaves or their parent nodes until
the occupation counts are satisfactory for reliable estimation.

While different transformation structures have different num-
bers of parameters, they provide different transformation de-
scriptive ability and require different amounts of data to conduct
reliable estimation. For illustration purposes, Fig. 1 compares
the tying patterns of a 1-diagonal and 3-diagonal transforma-
tions with a six-class regression tree. The six base classes are
denoted as the leaves at the bottom of the tree. In the figure,
the tying of 1-diagonal structure is represented by grey nodes
with solid arrows and 3-diagonal structure by black nodes with
dashed arrows. For instance, in the 1-diagonal structure case,
Gaussian mixtures from base class 1 share the transformation
estimated from their own class while Gaussian mixtures from
base class 2 are applied with the transformation estimated from
both base classes 1 and 2. On the other hand, base classes 1,
2, 3, and 4 share the same transformation estimated from those
classes in the 3-diagonal structure case. There are totally four
transformations for the 1-diagonal structure and two transfor-
mations for the 3-diagonal structure.

From the figure, since the 1-diagonal structure has fewer pa-
rameters than the 3-diagonal case, transformations have been
tied at a lower level in the tree which indicates a better gran-
ularity. On the other hand, the 3-diagonal structure has more
parameters to describe the transformation; this indicates a better
descriptive ability. Therefore, a tradeoff has to be made between
transformation granularity and descriptive ability.

Suppose there are M competing structures {S7,---, S}
which result in different regression-tree tying schemes. Typi-
cally, complicated structures have transformations tied across
more Gaussian mixtures (higher level in the tree toward the
root node) and simple structures across less Gaussian mixtures
(lower level in the tree toward the leaves). To explore the com-
promise between transformation granularity and descriptive
ability for each transformation structure, the MDL principle is
a good criterion.

In particular, suppose the Gaussian mixtures of the original
acoustic hidden Markov models (HMMs) are clustered into L
base classes with D;(l = 1,---, L) mixtures in the [th class.
For the dynamical tying of the structure S,,(m = 1,---, M)
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resulting in @, transformations with a regression tree over R
adaptation utterances {01, O?, - .. O}, the description length
is composed of three parts

L(Sm) = L1(5m> + L2<Sm> + L3<Sm) (14)
where
Ll(sm) = - logp (017 027 T OR|A17 e 7AQW;X)
(15)
Qm Sm|
Lo(Sm) =Y log g (16)
q=1
L
L3(Sp) = ZDlIml. (17)
=1

In (14), L1(S,n) is the code length of the compressed data
{0, 0%,... OF} using Q,, distinct transformations with
structure Sy, La(Sy,) is the code length of the Q,,, transforma-
tions, and L3(S,,) is the code length identifying one of the Q,,
transformations for each Gaussian mixture. The three terms
influence the compromise between transformation granularity
and descriptive ability in different ways. L;(S,,) and Lo(S,,)
balance the likelihood and the number of transformation param-
eters by choosing transformation structures that have a higher
likelihood with less parameters. In addition, L3(.S,,) introduces
penalty for tying patterns with more transformations since they
have to employ a longer code to describe the application of the
transformations to Gaussian mixtures. In the following, we will
provide details on calculation of the three lengths.

Suppose the introduction of the transformation does not alter
(a) the initial state probabilities, (b) the state transition proba-
bilities, and (c) the frame/state alignment. Then, the first term
in (14) L1(Sm) could be computed based on the forward-back-
ward procedure [21] using transformed Gaussian mixtures by

the transformations {A1,---, Ag,, }
logp(ol*, 027 ) OR|A17 Ty AQWI;X)
R
=log [[ p(O"|A1, -+, Aq,.; N)
r=1

R
Z 0gp(O7|Ar, -+, Ag,; V)

(o)

The forward variable «j (i) and backward variable [} (i)
are computed using the transformed Gaussian mixture
N(OL qflk E7k)

In the second term, L2 (Sy, ), |Sm| is the number of free pa-
rameters in the transformation with the structure S,,,. I';,,4 is the
occupation counts of transformation A, with structure Sy, and
can be computed as

M:m

(18)

r

R U
=>> Vi (i k

r=1 =1 (i,k)€w,

given S, 19)

which denotes the adaptation data’s total contribution to the
transformation A, with structure S,,.

The third item, L3(S,,), is the length of the code to locate
a particular transformation in the tree. Each of the (), trans-
formations with structure S, is labeled by an integer from
{1,---,Q.,} for identification. To specify a transformation
with structure S,,, for each Gaussian mixture from base class
[, the labelling integer j(mn,[) of the transformations, which is
a function of structure S,,, and base class [, is identified and
coded. In light of the coding literature such as [22] and [23],
the approximate universal code length for a nonzero integer
jm,l)is

L = log2 - (24 logF [j(m, 1)] + 2log3 log |i(m. 1))

(20)

where log3™ | -| is the positive part of the logarithm function. Sub-
stituting (20) into (17), we can compute the total bits needed to
identify the transformations for all the Gaussian mixtures in the
acoustic models. Note that L; (S, ) and Lo(.S,, ) are computed in
nats while L3(.S,,, ) inbits; therefore, scaling factorlog 2 is needed
to change the different logarithm bases in the summation.

Together, the three coding lengths, L1(Snm), L2(Sm), and
L3(Sy), give the description length of a transformation with
structure S,,,.

IV. WEIGHTED MODEL AVERAGING

Given the MDL scores for all the competing transformation
structures with a regression tree, the structure with the shortest
coding length is preferred and may be considered as the best
candidate among all the competing structures. However, prob-
lems may occur if only the “best” structure is adopted. First, the
MDL is asymptotically accurate when applied to a large amount
of data. In case of limited data, the MDL choice may vary from
one data set to another and give unsatisfactory results. More-
over, when the MDL scores are close, there is no one structure
that is clearly superior to the others. In this situation, weighted
model averaging could provide a more stable and robust perfor-
mance than a single structure.

Suppose the MDL scores for the M competing structures
{Sl*, ) S]\/I} are {Ch ) CZ\/[} with <min and Cmax being the
minimum and maximum scores, respectively. A normalized
score of the mth candidate structure S,,, is defined as

Cm - Cmin
- Cmin

where 7 is empirically determined, and the weight for the struc-
ture S,,, is computed as

Am =1 1)

Cmax

(22)

Assume the transformation applied to base class [
(I =1,---, L) with structure S, is A, 1), the final transfor-
mation for this base class is calculated as

(23)

M
A= Z 71-77’#4(1(171,[)
m=1
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Adaptation Data

ML Structure Estimation

=2

—
Structure 1 w

Structure M

MDL Scoring

!

Weight
Computation

) _—
Test Data Recognizer Original Acoustic|
Models
Text Outputs

Fig. 2. Flowchart of implementation of weighted model averaging with struc-
tured MLLR transformations. The structures are appropriately tied with a re-
gression tree.

Equation (23) represents a final transformation by the
weighted average of different structured transformations.

V. CHOICE OF STRUCTURE FORM

Ideally, for the given amount of adaptation data, all possible
transformation structures should be considered and their corre-
sponding MDL scores be calculated. Suppose the transforma-
tion matrix A is N x (N + 1) in dimension, then there are
2NV X (N+1) possible structures to investigate, which is compu-
tationally prohibitive in practical situations. However, earlier
research could shed light on the appropriate choice of trans-
formation structures. For instance, [24]-[26] show that vocal
tract length normalization (VTLN) in the linear spectral domain
can translate into a linear transformation in the cepstral domain,
which could be considered as a special case of linear regression.
The transformation obtained this way has a special structure:
dominant components are located along the several principal
diagonals of the matrix. Fig. 3 visualizes two transformation
matrices associated with two scaling factors using the approach
investigated in [26] for the mel-frequency cepstral coefficients
(MFCC) feature. Similar structures could also be found in [24].

The aforementioned VTLN results provide an interesting
acoustic motivation on the choice for the transformation struc-
ture. Taking into account a reasonable coverage of structures
and computational considerations, we choose four structures
for our experiments: 3-diagonal (3D), 7-diagonal (7D), 3-block

TABLE I
NUMBER OF PARAMETERS OF MLLR TRANSFORMATION
WITH DIFFERENT STRUCTURES

matrix structure 3-diag | 7-diag | 3-block | full

number of parameters | 154 300 546 1560

(3B), and full matrix (full).! The 3-block structure with sub-
full-matrix for the static, first- and second-order derivatives of
the transformation is widely used in MLLR speaker adaptation
[20]. Table I shows the number of free parameters for the four
structured transformation matrices.

VI. EXPERIMENTAL RESULTS

Fig. 2 elaborates the implementation of the proposed
weighted model averaging approach with structured transfor-
mations. Experiments are performed on the TIDIGITS and
resource management (RM) databases. TIDIGITS consists of
connected digit string composed of one to seven digits and
RM is a continuous speech corpus where the sentences pertain
to a naval resource management task. The speech data are
sampled at 16 kHz. MFCC features are computed with a 25-ms
frame length and a 10-ms frame shift. The feature is 39 in
dimension consisting of 13 static MFCCs (including CO) and
their first and second order derivatives. TIDIGITS experiments
use phoneme-specific HMMs adopting a left-to-right topology
with three to five states for each phoneme. A three-state silence
model and one-state short pause model are also used. There
are six mixtures in each state. All the Gaussian mixtures have
diagonal covariance matrices. RM experiments use triphone
HMMs with three states for each triphone and six Gaussian
mixtures in each state.

Four sets of experiments are designed for TIDIGITS testing:
male-trained-female-tested, female-trained-male-tested, adult-
trained-adult-tested, and adult-trained-child-tested. The male
speaker independent acoustic models are trained with 55 males
and the female models with 55 females. The adult models are
trained by pooling together the 55 males and 55 females. In the
testing set, there are ten males, ten females and ten children.
In both training and testing sets, each speaker provides 77
utterances. Before recognition, data from each speaker are
extracted to adapt the speaker-independent models by MLLR.
The adaptation is performed with 2, 5, 10, 15, 20, 25, 30, and 35
digits. For the RM database, speaker-independent models are
trained by 72 speakers with 40 utterances from each speaker.
The test set contains ten speakers with 300 utterances from
each speaker. The adaptation is performed with 1, 3, 10, 50,
and 100 utterances.

An MLLR regression tree with 128 base classes is created
for the TIDIGITS task and 512 base classes from the RM task.
To ensure matrix invertiblity during the transformation tree-
tying, a minimum number of Gaussian mixtures is required at
the tying nodes which is 3, 7, 13, and 39 for 3D, 7D, 3B, and
full matrix, respectively. Furthermore, for reliable estimation,

IThe structures discussed here refer to the submatrix after the first column in
A in (1). For simplicity, we refer to them as the structure of A.
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2 4 6 8 10 12

2 4 6 8 10 12

Fig. 3. Transformation matrices generated based on vocal tract length normalization with scaling factor equal to 1.2 (left) and 0.8 (right). The darker the color,

the more significant the element is.

TABLE II
WORD ERROR RATE (%) OF MLLR WITH DIFFERENT STRUCTURED
TRANSFORMATIONS ON TIDIGITS DATABASE. ACOUSTIC MODELS ARE
TRAINED WITH MALE SPEECH AND TESTED ON FEMALE SPEECH. THE
PERFORMANCE IS THE AVERAGE OVER THE TEN FEMALE SPEAKERS IN THE
TEST SET. 3D, 7D, 3B, AND FULL DENOTE 3-DIAGONAL, 7-DIAGONAL,
3-BLOCK, AND FULL TRANSFORMATION MATRICES, RESPECTIVELY

Number of adaptation digits

2 5 10 15 1 20 | 25 | 30 | 35

No adaptation || 13.0 | 13.0 | 13.0 | 13.0 | 13.0 | 13.0 | 13.0 | 13.0
3D 2711413 |11 |08 | 08| 08| 0.6

7D 70| 17|13 |09 07| 07| 06| 06

3B - 29 [ 12|07 ] 07|06 |06 |05

full - - 48 | 1.8 | 08 | 0.6 | 0.6 | 0.5
MDL 30|17 |12 |08 |06 | 07| 06| 06
MDL-Ave 21113109 |07 06|06 ]| 06|05

a threshold has to be set for each transformation structure de-
pending on its number of free parameters. In this paper, we
choose the threshold to be approximately equal to the number
of parameters for each structure. That is, 150, 300, 550, and
1500 are the occupation counts for a valid transformation es-
timation with 3D, 7D, 3B, and full matrix, respectively. The
scaling factor n in (21) is set to 2.0. 7 is tuned to give reasonable
weights for the structures. Values around 2.0 will give the best
performance according to our experiments and they are consis-
tent across recognition tasks.

Tables II-V show the TIDIGITS experimental results with
four transformation structures using different amounts of adap-
tation data. Baseline results are without adaptation. Adaptation
results using the “single” best structure based on MDL, and
using the averaged transformation across all four structures
weighted using the MDL scores are denoted as “MDL” and

TABLE III
WORD ERROR RATE (%) OF MLLR WITH DIFFERENT STRUCTURED
TRANSFORMATIONS ON TIDIGITS DATABASE. ACOUSTIC MODELS ARE
TRAINED WITH FEMALE SPEECH AND TESTED ON MALE SPEECH. THE
PERFORMANCE IS THE AVERAGE OVER THE TEN MALE SPEAKERS IN THE TEST
SET. 3D, 7D, 3B, AND FULL DENOTE 3-DIAGONAL, 7-DIAGONAL, 3-BLOCK,
AND FULL TRANSFORMATION MATRICES, RESPECTIVELY

Number of adaptation digits

2 5 10| 15|20 ] 25 | 30 | 35

No adaptation || 4.4 | 4.4 | 44|44 |44 |44 |44]|44

3D 1.7109(09(09(06 (06|06 0.6
7D 36(119)12]10|08]0.7]06|0.6
3B - |56[11{08(08|08]0.7]|0.6
full - - 140(15[/09]|108]|08]06
MDL 1.7113(12(09(07(0.7|0.7]0.6

MDL-Ave 1.0({1.0]|08|08]06)|06]|06]0.6

“MDL-Ave,” respectively. The 3-block and full matrix struc-
ture results with very limited data (e.g., two digits for 3-block
matrix structure and two and five digits for full matrix struc-
ture) are not shown in the tables since even the global tying
for the transformation cannot meet the occupation threshold
requirement, and the results are thus not meaningful. Table VI
shows the experimental results for the RM database.

From the tables, structures with less parameters (3D or 7D)
tend to give better performance than those with more parame-
ters (3B or full) when the amount of adaptation data is small.
When the amount of data increases, however, the situation is re-
versed. This is mainly due to the tradeoff between transforma-
tion granularity and descriptive ability. By choosing the single
“best” model with the minimum score, MDL gives a better bal-
anced performance with respect to the amount of adaptation
data. Very often, MDL is able to obtain the best performance
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TABLE IV
WORD ERROR RATE (%) OF MLLR WITH DIFFERENT STRUCTURED
TRANSFORMATIONS ON TIDIGITS DATABASE. ACOUSTIC MODELS ARE
TRAINED AND TESTED ON ADULT SPEECH (BOTH MALE AND FEMALE). THE
PERFORMANCE IS THE AVERAGE OVER THE 20 ADULT SPEAKERS IN THE TEST
SET. 3D, 7D, 3B, AND FULL DENOTE 3-DIAGONAL, 7-DIAGONAL, 3-BLOCK,
AND FULL TRANSFORMATION MATRICES, RESPECTIVELY

Number of adaptation digits

2 5 10| 15 |20 | 25 | 30 | 35

No adaptation || 0.9 10.9]09[09]0.9|090.9]0.9

3D 1.1(07]09(08]0.7(06]0.7]|0.7
7D 20(08(09(08]08]|0.7]|0.7]0.7
3B - 124108070807 |08]|0.6
full - - 126]10]0707]0.7]0.7
MDL 1.1 /08 (08 (08|0.7]0.7]0.7]0.7

MDL-Ave 1.0(07(07|07|0.7]06]0.7]0.6

TABLE V
WORD ERROR RATE (%) OF MLLR WITH DIFFERENT STRUCTURED
TRANSFORMATIONS ON TIDIGITS DATABASE. ACOUSTIC MODELS ARE
TRAINED ON ADULTS AND CHILDREN. THE PERFORMANCE IS THE AVERAGE
OVER THE TEN KID SPEAKERS IN THE TEST SET. 3D, 7D, 3B, AND FULL
DENOTE 3-DIAGONAL, 7-DIAGONAL, 3-BLOCK, AND FULL TRANSFORMATION
MATRICES, RESPECTIVELY

Number of adaptation digits

2 5 10| 15|20 | 25 | 30 | 35

No adaptation | 2.9 129]29(29(29|29]29]29

3D 24114121312 |11]11]1.0
7D 50(116(12(09|10|11]1.0]08
3B - 193(13(09]|08]1.0]09]08
full - - |82 (30|13 11|11|10
MDL 24114112109 (09(1.0]09]0.8

MDL-Ave 19114(11(09]09[09|09]0.6

among the four candidate structures given a certain amount of
data. Weighted model averaging across all structures based on
the normalized MDL scores gives more consistent and robust
performance than MDL alone.

Although MDL-Ave yields the best WER in the TIDIGITS
experiments, the statistical significance level of MDL-Ave com-
pared to certain structures (e.g., 3-diag) using the matched-pair
test [27] is not high (around 0.2-0.3). This is primary because
the test set is not very large and the adaptation baseline for
the structures is high. In the experiments on the RM database,
MDL-Ave shows a statistically significant difference compared

TABLE VI
WORD ERROR RATE (%) OF MLLR WITH DIFFERENT STRUCTURED
TRANSFORMATIONS ON RM DATABASE

Number of adaptation utterances

1 3 10 50 100

No adaptation | 7.5 | 7.5 7.5 7.5 7.5

3D 59 | 5.7 5.4 5.0 4.8
7D 58 | 5.5 5.1 4.7 4.5
3B 6.7 | 5.5 4.9 4.5 4.2
full 75 | 7.0 5.2 4.4 4.1
MDL 58 | 6.2 5.2 4.4 4.1

MDL-Ave 59 | 55 4.9 4.2 3.9

the best-performed structure (full structure) at a significant level
of 0.024.

VII. DISCUSSION

The tying of the MLLR transformation with competing struc-
tures in a regression tree, introduced in this paper, is different
from the model selection problems in nested linear regression
coefficient selection [15] or the optimal tree cut approaches
[18], [19]. This is because the tied transformations can utilize
data from overlapped Gaussian mixture sets, which are neither
nested nor a partition of the Gaussian mixture space. This
makes it a more interesting problem. Furthermore, to locate
the transformations, the regression tree has to be traversed
to get to certain nodes. In this situation, MDL seems to be a
superior choice to Akaike information criterion (AIC) [28] or
Bayesian information criterion (BIC)[29] because MDL could
be interpreted from the coding point of view, and the traverse of
the tree to locate the transformations can be taken into account
as a part of the model itself. This cannot be easily dealt with by
AIC or BIC.

The coding of the model parameters in MDL is related to the
Fisher information matrix which could be directly employed
to calculate the MDL score as in [19]. However, the asymp-
totic form used in this paper may be a good approximation even
without a large amount of data under certain Bayesian assump-
tions [15] and this form also has its computational advantages.
As we know, in speech recognition, the connection between a
good fit of model based on the ML criterion and good perfor-
mance in the Viterbi decoding is not strong. Moreover, most of
the model selection criteria including MDL, AIC, and BIC are
obtained based on large sample theory. Therefore, they may not
select the best model in some cases especially when only a lim-
ited amount of data is given.

Compared with MDL alone, the weighted model averaging
strategy renders more robust performance in most cases. This
is because although MDL cannot always choose the best struc-
ture, it does give a good “guess” on the goodness-of-fit of the
structures. Therefore, a reasonable weight of the structure can
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produce better results. The tying pattern of the transformation
with the regression tree is decided by (a) the structure and (b)
the threshold of reliable estimation for the structure; both can
be handled by the MDL weighted model averaging. Different
structures other than those investigated in this paper are also
possible and the weighted model averaging algorithm can be
carried out accordingly. The major computational complexity
of the algorithm comes from calculation of individual transfor-
mations and computation of MDL scores afterwards. This com-
putational complexity grows linearly with the number of com-
peting structures.

Structural MAP and eigenvoice approaches are both effective
techniques which have obtained excellent results. The MDL and
MDL-Ave algorithms discussed in this paper basically address
the sparse data problem within the MLLR framework. In the
structural MAP approach, it is difficult to choose the optimal
tree structure for adaptation. The eigenvoice approach adapts
acoustic models from prior models in the eigen-space which is
similar to the MDL-Ave in terms of linear combination. How-
ever, eigenvoice is most effective when a limited amount of data
is available. When the adaptation data increase, its performance
saturates quickly [8]. MDL-Ave does not have this problem.
It gives robust performance across various amounts of adapta-
tion data. Despite the difference among the MDL-Ave, struc-
tural MAP and eigenvoice, they have similarities from the pa-
rameter smoothing perspective. MDL-Ave performs parameter
smoothing on predefined structures, structural MAP on prior
distributions and eigenvoice on prior eigen-models.

VIII. SUMMARY

In this paper, we investigate a robust maximum likelihood
linear regression speaker adaptation approach with weighted
model averaging across a variety of transformation structures. A
general form of the maximum likelihood estimation of the struc-
tured transformation is given. The MDL is adopted to describe
the balance between transformation granularity and descriptive
ability of the structured transformations tied using a regression
tree. Based on the normalized MDL scores, transformations are
averaged across all structures. Experimental results show that
the proposed approach obtains robust performance with respect
to the amount of adaptation data.

ACKNOWLEDGMENT

Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not
necessarily reflect the views of the NSF. The authors would like
to thank Prof. Y. Wu and Prof. M. Hansen for discussions on
model selection.

REFERENCES

[1] C.Leggetter and P. Woodland, “Maximum likelihood linear regression
for speaker adaptation of continuous density hidden Markov models,”
Comput. Speech Lang., vol. 9, pp. 171-185, 1995.

[2] M. Padmanabhan and S. Dharanipragada, “Maximum-likelihood
nonlinear transformation for acoustic adaptation,” IEEE Trans. Speech
Audio Process., vol. 12, no. 6, pp. 572-578, Nov. 2004.

[3] J.-L. Gauvain and C.-H. Lee, “Maximum a posteriori estimation for
multivariate Gaussian mixture observations of Markov chains,” IEEE
Trans. Speech Audio Process., vol. 2, no. 2, pp. 291-298, Mar. 1994.

[4]

[5

[ty

[6]

[7]

[8

—

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

K. Shinoda and C. Lee, “Structural MAP speaker adaptation using hier-
archical priors,” in Proc. IEEE-SP Workshop Automatic Speech Recog-
nition and Understanding, 1997, pp. 381-388.

K. Shinoda and C.-H. Lee, “A structural Bayes approach to speaker
adaptation,” IEEE Trans. Speech Audio Process., vol. 9, no. 3, pp.
276-287, May 2001.

V. Digalakis et al., “Rapid speech recognizer adaptation to new
speakers,” in Proc. IEEE Int. Conf. Acoustics, Speech, Signal Pro-
cessing, 1999, pp. 765-768.

E. Bocchieri et al., “Correlation modeling of MLLR transform
biases for rapid HMM adaptation to new speakers,” in Proc.
IEEE Int. Conf. Acoustics, Speech Signal Processing, 1999, pp.
773-776.

R. Kuhn, J. Junqua, P. Nguyen, and N. Niedzielski, “Rapid speaker
adaptaion in cigenvoice space,” IEEE Trans. Speech Audio Process.,
vol. 8, no. 6, pp. 695-707, Nov. 2000.

S. D. Peters, “Hypothesis-driven adaptation (HYDRA: a flexible eigen-
voice architecture),” in Proc. IEEE Int. Conf. Acoustics, Speech, Signal
Processing, 2001, pp. 349-352.

Y. Tsao et al., “Segmental eigenvoice for rapid speaker adaptation,”
in Proc. Eur. Conf. Speech Communication and Technology, 2001, pp.
1269-1272.

B. Mak et al., “A study of various composite kernels for kernel eigen-
voice speaker adaptation,” in Proc. IEEE Int. Conf. Acoustics, Speech,
Signal Processing, 2004, pp. 325-328.

J. Rissanen, “Modeling by shortest data description,” Automatica, vol.
14, pp. 465471, 1978.

K. Shinoda and T. Watanabe, “Speaker adaptation with autonomous
model complexity control by MDL principle,” in Proc. IEEE
Int. Conf. Acoustics, Speech, Signal Processing, 1996, pp.
717-720.

I. Illina, “Tree-structured maximum a posteriori adaptation for a
segment-based speech recognition system,” in Proc. Int. Conf. Spoken
Language Process., 2002.

M. Hansen and B. Yu, “Model selectin and the principle of minimum
description length,” J. Amer. Statist. Assoc., vol. 96, no. 454, pp.
746774, 2001.

A. Barron, J. Rissanen, and B. Yu, “The minimum description length
principle in coding and modeling,” IEEE Trans. Inf. Theory, vol. 44,
no. 6, pp. 2743-2760, Oct. 1998.

R. Stine, Model Selection Using Information Theory and the MDL
Principle [Online]. Available: http://www-stat.wharton.upenn.edu/
~stine

K. Shinoda and T. Watanabe, “Acoustic modeling based on the MDL
principle for speech recognition,” in Proc. Eur. Conf. Speech Commu-
nication and Technology, 1997, pp. 99-102.

S. Wang and Y. Zhao, “Online Bayesian tree-structured transformation
of HMMs with optimal model selection for speaker adaptation,”
IEEE Trans. Speech Audio Process., vol. 9, no. 6, pp. 663-677,
Nov. 2001.

S. Young et al., The HTK Book (Version 3.1).
bridge Univ. Eng. Dept., 2001.

L. Rabiner and B.-H. Juang, Fundamentals of Speech Recognition.
Englewood Cliffs, NJ: Prentice Hall, 1993.

P. Elias, “Universal codeword sets and representation of the intergers,”
IEEE Trans. Inf. Theory, vol. IT-21, no. 2, pp. 194-203, Mar.
1975.

J. Rissanen, “A universal prior for integers and estimation by minimum
description length,” Ann. Statist., vol. 11, pp. 416-431, 1983.

M. Pitz and H. Ney, “Vocal tract normalization as linear transforma-
tion of MFCC,” in Proc. Eur. Conf. Speech Communication and Tech-
nology, 2003, pp. 1445-1448.

G. Ding, Y. Zhu, C. Li, and B. Xu, “Implementing vocal tract length
normalization in the MLLR framework,” in Proc. Int. Conf. Spoken
Language Processing, 2002, pp. 1389-1392.

X. Cui and A. Alwan, “Adaptation of children’s speech with limited
data based on formant-like peak alignment,” Comput. Speech Lan-
guage, to be published.

L. Gillick and S. Cox, “Some statistical issues in the comparison of
speech recognition algorithms,” in Proc. IEEE Int. Conf. Acoustics,
Speech, Signal Processing, 1989, pp. 532-535.

H. Akaike, “A new look at the statistical model identification,”
IEEE Trans. Autom. Control, vol. 19, no. 6, pp. 716-723, Dec.
1974.

G. Schwartz, “Estimating the dimension of a model,” Ann. Statist., vol.
6, pp. 461-464, 1978.

Cambridge, U.K.: Cam-



660 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 15, NO. 2, FEBRUARY 2007

Xiaodong Cui (M’05) received the B.S. degree
from Shanghai Jiao Tong University (with the
highest honor), Shanghai, China, in 1996, the M.S.
degree from Tsinghua University, Beijing, China,
in 1999 and the Ph.D degree from the University
of California, Los Angeles, in 2005, all in electrical
engineering.

From 2005 to 2006, he was a Research Staff
Member with the DSP Solutions R&D Center, Texas
Instruments, Dallas, TX. Since 2006, he has been a
Research Staff Member with the IBM T. J. Watson
Research Center, Yorktown Heights, NY. His research interests include speech
recognition, speech processing, statistical signal processing, machine learning,
and pattern recognition.

Abeer Alwan (SM’00) received the Ph.D. degree in electrical engineering and
computer science from the Massachusetts Institute of Technology (MIT), Cam-
bridge, in 1992.

Since then, she has been with the Electrical Engineering Department at
the University of California, Los Angeles (UCLA), as an Assistant Professor
(1992-1996), Associate Professor (1996-2000), Professor (2000-present),
and Vice Chair of Graduate Affairs (2003-present). She established and
directs the Speech Processing and Auditory Perception Laboratory at UCLA
(http://www.icsl.ucla.edu/~spapl). Her research interests include modeling
human speech production and perception mechanisms and applying these
models to improve speech processing applications such as noise-robust auto-
matic speech recognition, compression, and synthesis.

Prof. Alwan was the recipient of the NSF Research Initiation Award
(1993), the NIH FIRST Career Development Award (1994), the UCLA-TRW
Excellence in Teaching Award (1994), the NSF Career Development Award
(1995), and the Okawa Foundation Award in Telecommunications (1997). She
is an elected member of Eta Kappa Nu, Sigma Xi, Tau Beta Pi, and the New
York Academy of Sciences. She served, as an elected member, on the Acous-
tical Society of America Technical Committee on Speech Communication
(1993-1999), on the IEEE Signal Processing Technical Committees on Audio
and Electroacoustics (1996-2000) and on Speech Processing (1996-2001,
2005-present). She is a member of the Editorial Board of Speech Communica-
tion and was an Editor-in-Chief of that journal (2000-2003.) She is a Fellow
of the Acoustical Society of America.





