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Probabilistic solar power forecasting: an economic
and technical evaluation of an optimal market

bidding strategy
Lennard Visser, Tarek AlSkaif, Adil Khurram, Jan Kleissl, and Wilfried van Sark

Abstract—Solar power forecasting models are typically devel-
oped and evaluated based on technical error metrics, disregard-
ing their economic value. However, achieving higher technical
accuracy in these models does not necessarily translate into
increased economic value, as the latter depends on energy trading
value and market penalties. This paper addresses this interaction
as well as the economic value of probabilistic forecasting models.
It introduces a multistage stochastic bidding algorithm that
optimizes the participation of a photovoltaic (PV) power plant in
the day-ahead and intraday markets, while considering penalties
incurred in the balancing market. The proposed approach
relies on input scenarios generated from probabilistic forecasting
models. A comparison is made between this approach and
a reference method that relies on single-value forecasts. The
bidding approaches are evaluated in terms of their technical
accuracy and economic value. The results demonstrate the
effectiveness of the proposed bidding approach as it outperforms
the reference market bidding strategy. Additionally, the study
examines the relationship between the accuracy and value of
solar PV forecasting models, revealing a non-linear correlation.

Index Terms—Photovoltaic power; probabilistic forecasting;
stochastic optimization; electricity markets

I. INTRODUCTION

Supporting policies and rapidly decreasing costs triggered
the exponential growth of solar photovoltaic (PV) systems
since the turn of the century. By the end of 2022, over
1.1 TWp of PV capacity was installed [1], thus forming a
substantial contribution to the power supply system in many
countries across the globe. The increasing share of solar PV
generation, and its variable and intermittent nature, affects the
operation of the electricity system posing various technical
challenges. These include power quality issues, such as voltage
and frequency fluctuations, as well as challenges related to the
balancing of supply and demand [2]. As the proliferation of
PV is expected to continue in the coming decades, reaching
up to 70 TWp by 2050 [3], these technical issues are foreseen
to form a major hurdle for its successful integration. Hence,
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(additional) measures are needed to allow for cost-effective
integration of vast amounts of solar PV in the electricity
grid [4]. Reliable solar power forecasting models are widely
identified as a key element to support the effective integration
of large amounts of solar PV systems in the electricity grid [5].
Accurate forecasts can assist in the timely scheduling of the
dispatch of alternative generators and batteries, and therewith
ensuring grid stability, while reducing the need for balancing
reserves. Amongst others, this would result in a reduced need
for balancing capacity, thus limiting the cost of PV integration.

The interest in solar forecasting models increased signif-
icantly over the last decades [6]. In recent years attention
shifted towards probabilistic models, which are preferred over
single-value models as they provide information regarding
the uncertainty of the forecast. The performance of solar
forecasting models is mostly captured with technical error
metrics, e.g. mean absolute error and root mean square error in
case of single-value models or the brier score and continuous
rank probability score (CRPS) for probabilistic models [7]. As
a result, the economic value of solar forecasting is commonly
ignored. A couple of exemptions are found in literature,
which explored the economic value of solar forecasting for
standalone PV-systems in various ways [8]–[11]. These studies
assessed the value of one or multiple solar forecasting models
in the day-ahead market (DAM) in five regions in the United
States [8], California [9], Spain [10] and the Netherlands [11],
respectively. In addition, these studies explicitly compared
the relation between technical and economic metrics. Yet,
these studies only consider single-value forecasting models
and ignore probabilistic models. Bracalae et al. [12] evaluates
the economic value of two Bayesian-based probabilistic fore-
casting models, using cost-based indices. The metric therefore
allows to express the economic performance of (probabilistic)
forecasting models by normalizing the economic value over
the maximum value per time interval, much similar to e.g.
the weighted mean absolute error. However, since this study
neglects the uncertainty in the defined bidding strategy, it
ignores the potential of utilizing the additional value that is
captured in probabilistic forecasts.

Besides, these studies [8]–[12] exclude the intraday market
(IM), which can be used to correct for prediction errors that
originate in DAM trading. As a result, studies that exclude
the IM overestimate the imbalance caused by trading elec-
tricity from PV systems and underestimate the value of solar
forecasting [13]–[15]. Silva et al. [14] identified the need
for adequate strategies that can deal with a multi-settlement
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framework (i.e. DAM and IM), while considering uncertainties
to facilitate the successful integration of variable renewable
energy sources in electricity markets and power systems.
Various studies propose a wide variety of bidding strategies
for wind power or wind and storage; an extensive overview
is included in [16]. In contrast, only few studies consider
the development of market bidding strategies for PV systems.
While a variety of deterministic and stochastic market bidding
strategies that consider a PV-battery system are proposed and
applied to the DAM [17]–[19] or DAM and IM [20], [21],
none of these studies considers a solar forecasting model. Few
other studies include a solar forecasting algorithm in their
proposed bidding strategy. For example, a bidding strategy
for the DAM that considers stochastic optimisation using
an analog ensemble model to predict the PV generation is
proposed in [22]. The study compares the results for a PV-
battery system to a standalone PV system. Similarly, David et
al. [23] compare several single-value solar forecasting models
when used to optimize the DAM trading of a PV-battery
system in Australia. Silva et al. [14] proposed a multistage
stochastic optimization model for the optimal bidding of a
virtual power plant composed of a wind plant, solar PV plant,
and battery. The model considers the DAM and IM and relies
on an artificial neural network to generate a set of scenarios.

Overall, the current literature lacks studies that propose and
evaluate stochastic bidding strategies for electricity markets
that consider standalone PV systems and rely on solar fore-
casting models. Additionally, these studies do not address the
value of integrating IM trading alongside DAM trading, nor
do they utilize state-of-the-art probabilistic solar forecasting
models. This paper aims to address these gaps by intro-
ducing a novel multistage stochastic optimization approach
that generates a bid for market participants operating a PV
system. The economic value of two probabilistic solar power
forecasting models is evaluated, along with an examination
of the relationship between the economic value and tech-
nical accuracy. The bidding strategy employs a multistage
scenario-based stochastic optimization method, comprising a
day-ahead (DA) and intraday (ID) unit, while considering
the economic consequences of potential forecast errors. The
latter is reflected by the imbalance penalty that is raised in
the balancing market, where various imbalance scenarios are
tested and compared. Uncertainty in the stochastic model is
described through scenario creation using a statistical method
that transforms time-independent probabilistic solar forecasts
into interdependent scenarios. The proposed bidding strategy is
compared to a reference bidding strategy that relies on various
single-value and benchmark forecasting models. Hence, this
paper quantifies the added value of probabilistic solar power
forecasting over single-value forecasting, considering the IM
in addition to DAM and demonstrates the effectiveness of
handling different imbalance scenarios. Although the approach
is demonstrated in a case study focused on market participation
with a solar PV plant, it can be easily adapted for optimizing
market participation with other assets such as wind plants,
storage, and demand.

The remainder of this paper is organized as follows. Sec-
tion II discusses the methods and error metrics. Section III

describes the data. Section IV presents the results. The findings
in this study are concluded in Section VI.

II. METHODS

A. Stochastic bidding approach

This study presents a novel multistage stochastic bidding
approach designed to optimize bidding strategies in electricity
spot markets for a PV system, considering its inherent uncer-
tainty of power generation. The bidding approach first aims
to maximize the expected value of participating in the DAM
by placing an optimized bid (ṗDA) for K forecast horizons,
considering a set of Ω scenarios. The bid is generated by
solving problem (1), as:

maximize
ṗDA

Ω∑
ω=1

K∑
t=1

(
λtṗDA,t + btλ

+(pω,t − ṗDA,t)

− (1− bt)λ
−(ṗDA,t − pω,t)

) (1a)

subject to 0 ≤ ṗDA ≤ pmax, (1b)

where λ+/− present the imbalance price as defined in Sec-
tion II-E and bt is a binary variable expressed as:

bt =

{
0, if ṗDA,t > pω,t

1, otherwise.
(2)

The bid considers a set of scenarios, as well as the potential
economic consequences of a foreseen excess (ṗDA,t < pω,t)
or shortage (ṗDA,t > pω,t) of power delivered to the grid in
real-time. In addition, electricity can only be exported and the
market bid is restricted by the grid capacity that is assumed
to be equal to the nominal installed PV capacity (pmax). Note
that problem (1) results in a market bid expressed in power,
whereas volume (energy) bids are placed in the market. Hence,
the power bid is converted considering the temporal resolution
(∆t), this also holds for the following problems.

Next, corrections to the initial DAM bid can be made in the
IM, relying on updated PV power forecasts. The objective of
this optimization problem is to maximize the expected value
by bidding in the IM (ṗID) considering the updated forecasts as
well as the initial bid to the DAM. Again, the consequences of
deviations in real-time are considered by the imbalance prices
for up- and down-regulation. An optimal ID bid is retrieved
by solving problem (3), as:

maximize
ṗID

Ω∑
ω=1

K∑
t=1

(
λID,tṗID,t + btλ

+(pω,t − ṗbid,t)

− (1− bt)λ
−(ṗbid,t − pω,t)

) (3a)

subject to ṗbid = ṗDA + ṗID, (3b)
0 ≤ ṗbid ≤ pmax. (3c)

B. Reference bidding approach

In the reference bidding approach market bids are based
on single-value solar power forecasts. Since these single-
value forecasts do not provide any information regarding the
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uncertainty of the prediction, the potential monetary impact of
an imbalance is not considered. Therefore, the DA reference
bidding approach can be viewed as a simplified version of
( 1a), where the bid is generated by solving problem (4), as:

maximize
ṗDA

K∑
t=1

(
λDA,tṗDA,t

)
(4a)

subject to ṗDA,t = p̂t − pcurt,t, (4b)
0 ≤ ṗDA,t ≤ p̂t, (4c)

where pcurt is the curtailed power. In contrast to (1), this
variable is made explicit in condition (4b) to prevent for bids
that exceed the forecasted value while allowing for ṗt = 0. In
practice, the reference bidding approach generates a bid that is
equal to the single-value forecast except when negative market
price occur. In the latter case, the market bid is set to 0.

Similarly, IM bids are generated by solving problem (5), as:

maximize
ṗID

K∑
t=1

(
λID,tṗID,t

)
(5a)

subject to ṗID,t = p̂t − ṗDA,t − pcurt,t, (5b)
ṗbid = ṗDA + ṗID, (5c)
0 ≤ ṗbid,t ≤ p̂t. (5d)

C. Solar forecasting models

In this study, both single-point and probabilistic models are
employed to forecast the PV power generation. The single-
point forecasting models include a multi-variate linear regres-
sion (MLR), random forest regression (RF), PV and a smart
(clear sky) persistence (SP) model. The probabilistic models
considered are quantile regression (QR), quantile regression
forest (QF) and clear sky persistence ensemble (CSPE). All
forecasting models were previously introduced in [24] and are
therefore not further discussed here.

Although the aforementioned models are used for both
DA and ID forecasting, the input information they consider
varies. The DA forecasting models consider the same pre-
dictor variables as discussed in [24]. These include various
irradiance components, wind speed, temperature, cloud cover
and pressure. In addition to these variables, the ID models
also consider lagged PV generation values observed over the
previous 3 hours.

In addition to being either single-value and probabilistic
models, these models can be classified according to the input
information they consider. The SP, MLR, RF, QR and QF
receive new information at each forecast issue time. The CSPE
model is only updated at midnight, whereas the PV model is
updated following the issue of numerical weather predictions
(NWPs) at midnight and noon.

D. Scenario generation

The interdependence structure of forecast errors on se-
quential time horizons is essential to support time-dependent
decision making, like multi-market participation with a PV-
battery system. Yet, probabilistic forecasts neglect this inter-
dependence structure. Pinson et al. [25] proposed a statistical

method that can successfully transform probabilistic forecasts
to scenarios that consider the interdependence structure of the
prediction errors. The method was originally developed for
the purpose of wind power forecasting and was later also
successfully adopted for net load forecasting, i.e. demand
subtracted with solar generation [26]. In this study, the method
is adopted for the purpose of building scenarios from proba-
bilistic PV power forecasts. As a first step a random variable
Yk is generated from the probabilistic forecasts (F̂t+k|t), using
the probability integral transform (PIT):

yk,t = F̂t+k|t(pt+k), ∀t (6)

where F̂t+k|t denotes the cumulative distribution function
(CDF) of the probabilistic forecasts f̂t+k|k and k is the forecast
horizon. Given that the generated probabilistic forecasts are
in a discrete form, it is necessary to convert them into a
continuous CDF to facilitate the PIT. To achieve this, a smooth
curve is fitted to the set of predicted quantiles.

A key assumption of the scenario generation method is for
the probabilistic forecasts to be reliable, which implies that a
sample from the predictive CDF should be statistically similar
to the observations. This is true if Yk is uniformly distributed
on the unit interval, i.e. Yk ∼ U[0, 1].

Next, the probit function (Φ−1) i.e. inverse of the Gaussian
CDF can be applied to transform Yk to a normally distributed
random variable Xk with zero mean and unit standard devia-
tion, i.e. Xk ∼ N(0, 1):

xk,t = Φ−1(yk,t), ∀t. (7)

Considering the transformed random variable Xk for each
horizon k (k = t0, ...,K − 1), a random vector X =
(X1, ..., XK−1)

⊺ can be constructed. The assumption is made
that X follows a multivariate Gaussian distribution, denoted as
X ∼ N(µ0,Σ), where µ0 is a vector of zeros and Σ represents
the covariance matrix capturing the temporal dependency
between the forecast horizons of interest, k = t0, ...,K − 1.
An unbiased estimation of the matrix Σ can be obtained by:

Σt =
1

t− 1

t∑
j=1

XjX
⊺
j . (8)

The temporal dependence captured in the covariance matrix is
anticipated to change over time, and particularly in different
seasons characterized by distinct prevailing weather patterns.
The covariance matrix Σ that considers a subset of historical
samples is therefore updated for each time-step. In an iterative
process, the size of the subset was empirically set to 30 days.

By employing a multivariate Gaussian random number
generator with parameters µ0 and Σ, a set of Ω scenarios
is generated. These scenarios represent Ω realizations of the
random vector X. Subsequently, Ω realizations of Yk can be
constructed using the CDF (Φ):

yω,k = Φ(xω,k) ∀ω, k. (9)

As a last step, the forecast scenarios are generated with:

p̂ω,t+k|t = F̂−1
t+k|t(yω,k), ∀ω, k. (10)

Fig. 1 presents an example of the results for the presented
scenario generation algorithm for a DA (Fig. 1a and b) and ID
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(a) DA probabilistic forecast
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(b) DA scenarios
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(c) ID probabilistic forecast, issued at 7:00
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(d) ID scenarios, issued at 7:00
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Fig. 1: Example of the DA (a,b) and ID (c,d) probabilistic forecasts and subsequent 100 scenarios of the expected PV power
output for April 24, 2020. The blue vertical line in Fig. 1c and d presents the forecast issue time, i.e. 7:00.

forecast (Fig. 1c and d). Fig. 1a and c present the predictive
distributions of the PV power output. The updated forecasts
in Fig. 1c result in a sharper predictive distribution. This is
especially observed in the first hours following the forecast
issue time, which is exemplary for shorter forecast horizons.
Note the different time resolution used in the models, where
the maximum expected PV power output increases in case of
the ID forecast as a result of reduced temporal smoothing.

E. Imbalance scenarios

Two different scenarios for imbalance penalization are con-
sidered. The first strategy assumes a static imbalance penalty:

λ+ = c1 (11)

λ− = c2, (12)

where c1 and c2 present constants, which are varied as part
of a sensitivity analysis to obtain the optimal value (See
Section IV-E). In the second strategy the imbalance penalty
depends on the electricity price and therefore varies over time.
This dynamic imbalance penalty scenario is expressed as:

λ+ = λDA,t + c1 (13)

λ− = λDA,t + c2. (14)

F. Operational aspects of bidding approach

The operational aspects of the bidding approach are defined
by the market constraints and set the requirements to the solar
forecasting models. Table I present a summary of the DAM
and IM characteristics in the Netherlands, which define the
lead-time, time horizon, temporal resolution and update rate.

TABLE I: Day-ahead and intraday spot market (DAM and IM)
characteristics in the Netherlands.

DAM IM
Gate Closure Time 12:00 at D Continuous
Lead-time 12 hr 5 min
Horizon 12− 36 hrs 5 min to end of D + 1
Resolution Hourly 15 min
Update rate Daily Continuous
Type Market clearing price Pay-as-bid

G. Tools for evaluation

1) Solar forecasting models: The technical performance of
the forecasting models are in this study primarily evaluated
considering the continuous ranked probability score (CRPS).
The CRPS is a numerical error metric that captures both the
reliability and sharpness of probabilistic models. The CRPS
can also be applied to assess the performance of single-point
models, where the value is comparable to the mean absolute
error [27]. The CRPS rewards a high concentration of the
forecasted probability around the target value. The CRPS is
expressed as:

CRPS =
1

T

T∑
t=1

∫ ∞

−∞
(Ft(x)− F̂t(x))

2dx, (15)

where Ft(x) and F̂t(x) are the CDFs of the observations
and forecasts at time-step t in T . In (15) Ft(x) presents a
cumulative-probability step function as it describes a single-
value that jumps from 0 to 1 at the observed PV power
generation [7]. Similarly, in case of a single-point forecast
Ft(x) presents a step function.

2) Solar scenarios: The PV power generation scenarios are
evaluated in two steps. First, the calibration of the proba-
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bilistic forecasting models and the assumption of a uniform
distribution are assessed using a PIT histogram. A uniform
distribution indicates that the forecast probabilities are well
calibrated with the actual observations. The histograms are
evaluated separately for each forecast horizon, considering
consistency bars that present a lower and upper bound to
account for randomness as suggested in [28].

Second, the scenarios are evaluated using two prerank func-
tions: the average rank and band depth rank histogram (ARH
and BDH), as set forth in [26] and originally proposed in [29].
These prerank functions provide insights in the calibration of
scenarios and their interdependence structure. In particular,
the ARH provides insights in the distribution of multivariate
scenarios similarly to the PIT histogram does for univariate
ensemble members, whereas the BDH assesses the correlation.
The objective of a prerank function is to rank the trajectories
of the generated scenarios and observation vector. The results
can be visualized in a rank histogram, which quantifies the
frequency of observations that fall between two ensemble
members. The rank histogram is evaluated similar as a PIT
histogram, where a uniform distribution of the rank histogram
indicates well calibrated multivariate scenarios. To this end,
the scenarios (pω) and observation vector (p) are collected
in a matrix B with dimensions K × J , where J = S + 1.
The rank histograms are then calculated following three main
steps. First, univariate preranks are assigned to the ensemble
members and observations with:

ck(pω) =

J∑
j=1

1{pj,k ≤ pω,k}, k = 1, . . . ,K. (16)

where 1 denotes an indicator function and ck presents the
prerank for each k-ensemble member or observation. As a
second step, the multivariate preranks can be calculated and
assigned to the scenarios and observation vector using the
prerank functions πARH

B and πBDH
B , respectively:

πARH
B (pω) =

1

K

K∑
k=1

ck(pω), (17)

πBDH
B (pω) =

1

K

K∑
k=1

(J − ck(pω))(ck(pω)− 1). (18)

As a third step, the rank histogram bin (b) of the observation
vector is found per prerank function within the collection of
preranks presented in B with:

b = 1 +

S∑
s=1

1{π(ps) < π(p)}. (19)

The reader is referred to [29] for a complete discussion on the
interpretation of the rank histograms.

3) Market participation: The economic performance of
the forecasting models is measured considering the economic
revenue (ER), which is calculated as:

ER = λṗbid +

{
λ+(p− ṗbid) if y > ṗbid
λ−(p− ṗbid) if y ≤ ṗbid

(20)

where p is the PV power generation and ṗ is the optimized bid
to the electricity spot market. The value of λ+ and λ− are set
by the transmission system operator (TSO) and depend on the

state of the electricity system at time t. In practice surpluses
are most often compensated, whereas deficits are penalized,
but exemptions occur. Since for most of the time λ exceeds λ+,
trading energy in the spot markets is most profitable. Similarly,
as λ− is typically higher than λ, the costs of shortages exceed
the initial profits made in the electricity spot markets.

III. DATA COLLECTION

A. PV power generation

The PV power generation data is acquired by simulating
the power output of a 1 MWp PV system, using a PV model
from pvlib [30]. The steps required to simulate the PV power
output are discussed in Section 2.2.1 of [24]. The model
requires the input of the measured global horizontal irradiance
(GHI), ambient and dew point temperature, wind speed and
surface pressure, which are collected from the weather station
in Cabauw, the Netherlands (51◦97'N, 4◦926'E) [31]. The
measurements feature a 10 min resolution; 15 min and hourly
values are obtained through resampling. In this study, data
from 2018 to 2020 is considered.

B. Weather forecasts

Weather forecasts are for the same period obtained from
the European Centre for Medium-Range Weather Forecasts
(ECMWF) [32]. The weather forecasts are acquired from the
0:00 and 12:00 UTC model runs generated by the high resolu-
tion forecast configuration (HRES) of the Integrated Forecast
System (IFS), which is a NWP system. As the forecasts feature
a spatial resolution of approximately 9 km, specific values
are obtained using spatial interpolation [32]. The collected
variables include the ambient and dew point temperature,
GHI, total cloud cover, zonal and meridonal wind speed and
total precipitation. Additional predictor variables are created
following the three post-processing steps discussed in [24].
As the forecasts are published with an hourly resolution, 15
min values are obtained by means of linear interpolation for
all variables except GHI. The 15 min GHI values are found
through linear interpolation of the clear sky index.

C. Electricity prices

Electricity spot market prices are collected from the
ENTSO-E transparency platform [33]. As only DAM prices
are publicly available, IM prices are assumed to be identical.
This assumption is substantiated as average IM prices are very
similar to and strongly correlate with DAM prices [34]. Yet,
actual IM prices can still differ from DAM prices, possibly
altering the results. This impact is however expected to be
negligible as it will likely have a similar effect on all models.
Furthermore, imbalance prices are acquired from TenneT, the
TSO in the Netherlands [35].

IV. RESULTS

A. Scenario generation

The scenario generation approach followed in this study
(see Section II-D) assumes the probabilistic forecasts to be
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TABLE II: Summary statistics of the transformed random
variables Xk. The statistics present the mean (µ), standard
deviation (σ), skewness (γ) and excess kurtosis (κ), expressed
by the mean and standard deviation over all forecast horizons.

Model µ̄X ± σ(µX) σ̄X ± σ(σX) γ̄X ± σ(γX) κ̄X ± σ(κX)
QR −0.016± 0.03 0.96± 0.02 −0.035± 0.05 −0.21± 0.14
QF 0.020± 0.02 0.94± 0.01 −0.044± 0.04 −0.22± 0.01

uniformly distributed U [0, 1] in order to transform the predic-
tions to a normal distribution N(0, 1). Fig. 2 shows the validity
of the assumption by presenting the PIT diagrams of the QR
model. Although some outliers are found in the columns on
the left, overall the results show that the assumption holds
as most bars remain within the margins of the consistency
bars presented by the dotted blue lines. The PIT diagrams in
Fig. 2b, c and d indicate a general trend where the quantiles
around the median are slightly under-represented, such that
the surrounding quantiles are over-represented. This trend was
also observed for forecast horizons that exceed 1 hr. Similar
results were found for the QF model.

The right column in Fig. 2 presents the histogram of the
random variable Xk for the same forecast horizons. Addition-
ally, similar to Table 1 in [25] and Table 2 in [26], Table II
summarizes the statistical characteristics of the distribution of
X for both the QR and QF model, for all forecast horizons.
The table shows the mean (̄.) and standard deviation (σ(.)) of
the mean (µ), standard deviation (µ), skewness (γ) and excess
kurtosis (κ). The results obtained for the first four moments
are similar to the results found in [25], [26]. Remarkable,
however, is that in contrast to these studies, the results show
a negative excess kurtosis implying that the distribution of X
is flatter featuring slightly shorter tails compared to a standard
normal distribution N(0, 1), i.e. less outliers are observed.
Although the excess kurtosis values are low, this indicates that
the predicted distributions could be sharper, which is in line
with the results observed in the PIT-diagram visualized on the
left side in Fig. 2. Overall, considering the first four moments,
the distribution of X over all K is on average approximately
similar to a standard normal distribution of N(0, 1).

Fig. 3 shows the ARH and BDH results for a single forecast
issue time at noon for the next day (DA forecast) of the QR
model. As the histograms show a flat distribution, the obtained
results are considered satisfactory. Similar results are found for
the other forecast issue times as well as the QF model.

B. DA and ID forecasts

The numerical technical results of the PV power forecasting
models are summarized in Table III. The values present
average values over all forecast horizons K. For the ID and
DA forecasts these concern 0-24 hr and 12-36 hr ahead,
respectively. Note that the DA and ID forecast models cannot
be compared directly, as the DA models consider an hourly
resolution, where the ID models feature a quarterly resolution.
In addition, for the probabilistic models, Table III presents the
obtained CRPS values considering the probabilistic forecasts
as well as the scenarios. In the latter, the CRPS is calculated
by considering the scenarios as an equally spaced probabilistic

TABLE III: The CRPS per DA and ID PV power forecast
model over all realizations of K forecast horizons.

Model DA ID
original scenario original scenario

SP 11.1 11.0
PV 9.3 8.6
MLR 8.3 7.3
RF 6.8 7.1
CSPE 7.9 7.9
QR 6.0 6.0 5.2 5.2
QF 4.6 4.7 4.8 4.8

forecast, i.e. considering Ω is 100 scenarios each scenario is
assumed to present a 1% quantile. A few general conclusions
can be drawn considering the DA and ID forecasts. First,
Table III clearly shows that the probabilistic forecasting mod-
els outperform the single-value models. Second, the results
demonstrate the dominance of the tree-based models, where
the RF and QF models outperform all other DA and ID single-
value and probabilistic models, respectively. Yet, these differ-
ences in the CRPS are much more significant for DA forecasts
compared to ID forecasts. Furthermore, the accuracy obtained
for the generated scenarios are similar to the probabilistic
models from which they originate.

Fig. 4 shows the CRPS of the ID forecasting models per
forecast horizon. As expected the accuracy of the models
is highly affected by the forecast horizon. In general, the
results in Fig. 4 indicate that the CRPS deteriorates with an
increasing horizon, especially within the first hour. In short,
this is explained by the temporal correlation of the PV power
output. The lagged generation values form the most important
predictor variables for predictions that feature a forecast hori-
zon of up to 1 hr ahead. Model simulations show that as the
forecast horizon increases, the NWP variables gain importance
and these predictor variables surpass the importance of the
lagged values from forecast horizons that exceed 1 hr ahead.
This observation is exemplified by the disconnection of the
CRPS trajectory of the SP model compared to the other single-
value models MLR and RF. The performance of the SP model
deteriorates more rapidly and significantly compared to the
MLR and RF models, as it only considers the PV power output
that is available at the forecast issue time and excludes the
NWP variables. Since the NWP variables are only updated
twice per day, the accuracy of the ID forecasting models
stabilizes from the point that these variables predominate. The
latter also explains the more or less constant performance of
the PV model. In case more NWP runs would be available,
improved model accuracy’s are expected especially for shorter
forecast horizons.

Furthermore, Fig. 4 shows that tree-based models (RF
and QF) dominate by outperforming other single-value and
probabilistic models, respectively, for all forecast horizons.

C. Market trading

The technical and economic results of participation in spot
markets are, for various forecast horizons, summarized in
Table IV and depicted in Fig. 5. Since the results for k > 3
hrs ahead are very similar to k = 3, these are excluded
from Table IV. Note that in case of IM trading, the DAM
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(b) Forecast horizon: 3 hrs
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(c) Forecast horizon: 6 hrs
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(d) Forecast horizon: 9 hrs

Fig. 2: The probability integral transform (Yk) on the left and observed transformed random variable (Xk) on the right for four
distinct forecast horizons of the QR model. The red line presents a perfectly calibrated forecast for U[0,1], the blue dotted
lines indicate the consistency bars. The orange line presents the probability density function of a normal distribution N(0,1).
Similar results are found for the QF model.

(a) ARH

(b) BDH
Fig. 3: Average rank histogram (ARH) and band depth his-
togram (BDH) for a single forecast issue time, i.e. 12:00 at
D. Similar results are found for other forecast issue times.

trades are followed by IM trades considering the specified
horizon. The results are compared to market participation in
case of perfect solar forecasting, i.e. considering PV power
measurements (red horizontal bar). The results in Table IV
show an improved performance of market participation, in
terms of the imbalance caused and revenues generated, when
DAM trades are combined with IM trades. In general, the
results show a trend in improved performance as the forecast
horizon reduces with higher marginal gains related to IM
trading. Hence, most value lays within the final moments prior
to delivery and therefore last minute trading is preferred from
a perspective of the PV plant operator. This observation holds
for all models that receive updated information at each forecast
issue (SP, MLR, RF, QR and QF). Furthermore, considering
the best performing model per forecast horizon, revenues
increase with 21.1% from 22.3 kC/MWp to 27.1 kC/MWp
per year when DAM trades are updated with IM trades. As a
result, the economic revenues are almost equal to the revenues
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Fig. 4: The average CRPS of the ID single-value and proba-
bilistic forecasting models per forecast horizon.

in case of perfect forecasting. Similarly, the imbalance caused
almost halves (−46.3%).

Overall, the probabilistic models exhibit superior perfor-
mance compared to the other models across the majority of
time horizons in terms of generating the highest revenues and
minimizing imbalances (see Table IV). Only SP demonstrates
competitive results for k = 1 and k = 4. Among the
considered horizons, QF produces the lowest imbalance, while
QR achieves the highest revenues for most instances.

D. Trading revenues to forecast accuracy

Although from Table IV it appears that improved model
accuracy’s (lower imbalances) lead to higher revenues, closer
inspection of the results show that the imbalance and revenues
are not linearly related. Exemplary for this is the relative high
imbalance caused by SP for k = 4, while it earns the highest
revenues. This relation is further explored in Fig. 5, which
explicitly plots the revenues to the CRPS. First focusing on
Fig. 5b, it can observed that improved model accuracy does not
lead to higher revenues. For example, the RF model obtains a
significantly lower CRPS compared to MLR and SP, but yields
lower market trading revenues. In short, this is explained by
the state of the electricity system being either short or long at
the time an imbalance occurs.

Yet, focusing on a specific model, e.g. MLR, it can be
noticed that the generated revenues increase with improved
accuracy, resulting from reduced forecast lead-times. This
observation is supported by Fig. 5a, which indicates an ap-
proximate linear relation between the accuracy and economic
revenue per forecast model; this trend is observed for MLR,
RF, QR, QF or SP.

E. Imbalance penalty sensitivity analysis

Both a static and dynamic strategy are considered for
setting the imbalance penalty as part of the stochastic bidding
approach, see problem (1) and (3). Fig. 6 presents the results
for these two strategies for k = 1, while considering the QR
model. Very similar results are found for the other forecast
horizons as well as the QF model. Fig. 6 clearly shows that

TABLE IV: Numerical results of market participation per
forecast model for several forecast horizons (k). The results
for ID trading combine DA trades with one-off ID trades at
the specified time horizon. The results of k = 6 and k = 9
are similar to k = 3. The technical column presents the
quantitative results of trading energy. The economic column
shows the net monetary results of market participation. DA
presents the results for all energy traded in the DAM, whereas
ID is the absolute sum of trades in the IM. IMB presents the
total imbalance caused, i.e. absolute sum of the surplus (S)
and deficit (D).

Technical [MWh/MWp] Economic [C/MWp]
Model DA ID S D IMB DA ID S D Total

Perfect forecasting (PF)
PF 1051 27080 27080

Forecast horizon: 15 min
SP 1024 571 96 -116 212 28236 -306 2177 -3197 26910
PV 978 201 209 -151 360 26645 -1096 3531 -5946 23134
MLR 1008 341 105 -102 207 27676 -501 2087 -3245 26018
RF 1014 324 101 -99 200 27677 -362 1753 -3141 25926
CSPE 1080 236 250 -273 523 30109 -1454 3227 -13562 18321
QR 871 438 99 -99 198 23623 3803 2409 -2768 27068
QF 950 344 100 -97 197 25423 2019 2184 -2841 26785

Forecast horizon: 1 hr
SP 1024 577 148 -203 352 28236 949 3133 -6557 25760
PV 978 191 209 -157 366 26645 -906 3421 -6299 22861
MLR 1008 285 148 -149 297 27676 -687 2533 -5460 24063
RF 1014 265 141 -137 277 27677 -410 2098 -5461 23903
CSPE 1080 236 250 -273 523 30109 -1454 3227 -13562 18321
QR 871 390 148 -135 283 23623 3165 3071 -4727 25133
QF 950 302 140 -129 267 25423 1542 2645 -4679 24930

Forecast horizon: 2 hrs
SP 1024 572 182 -268 450 28236 2142 2946 -9954 23370
PV 978 185 207 -163 370 26645 -671 3277 -6641 22610
MLR 1008 267 160 -150 310 27676 -820 2396 -6292 22961
RF 1014 242 154 -146 300 27677 -589 1981 -6262 22807
CSPE 1080 236 250 -273 523 30109 -1454 3227 -13562 18321
QR 871 373 162 -144 306 23623 2929 2909 -5632 23829
QF 950 280 151 -135 286 25423 1203 2504 -5302 23827

Forecast horizon: 3 hrs
SP 1024 542 206 -311 520 28236 2963 2928 -12436 21691
PV 978 182 206 -166 372 26645 -547 3208 -6813 22493
MLR 1008 259 163 -153 316 27676 -833 2292 -6562 22574
RF 1014 236 159 -149 308 27677 -688 1986 -6519 22457
CSPE 1080 236 250 -273 523 30109 -1454 3227 -13562 18321
QR 871 367 165 -147 312 23623 2889 2860 -5831 23541
QF 950 274 158 -138 296 25423 1057 2571 -5694 23357

Forecast horizon: 12-36 hrs
SP 1024 296 -278 574 28236 2097 -13250 17083
PV 978 232 -169 401 26645 1526 -7224 20946
MLR 1008 217 -193 410 27676 1109 -8213 20572
RF 1014 203 -185 388 27677 876 -8065 20487
CSPE 1080 276 -314 590 30109 2401 -14140 18370
QR 871 277 -133 410 23623 4258 -5591 22291
QF 950 216 -151 367 25423 3380 -6455 22348

adopting the dynamic strategy results in higher economic
revenues. For this scenario, a higher economic revenue is
obtained when |λ+| ≈ |λ−| i.e. the imbalance penalty in case
of a surplus or deficit is in balance, which is the case when
|c1| is approximately equal to |c2|. The single most optimal
value i.e. highest economic value is indicated by the red dot.
This is also the imbalance scenario considered in the results
presented in Sections IV-C and IV-D. The optimal value for
the dynamic strategy is found for low values of |c1| and |c2|,
where the imbalance price is approximately equal to the spot
market price.

When relying on the static imbalance scenario, the economic
revenues are maximized when λ+ is positive and λ− exceeds
a value of approximately 30 C/MWh.

V. DISCUSSION

Very few studies examined the value of solar power fore-
casting, which can be effectively assessed by considering the
economic error metrics proposed in this study. In an earlier
study [36], the authors suggest a monotome mapping of the
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Fig. 5: The economic revenue as a function of the CRPS. The red line indicates the revenues in case of perfect forecasting.
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Fig. 6: Sensitivity analysis on the c1 and c2 value for the
static and dynamic imbalance scenarios at k = 1. The color
bar presents the obtained revenues in C/MWp, where the red
dot indicates the optimal value.

quality and value, implying that a higher forecast quality
corresponds to higher economic value. This is contradicted by
the results presented in this study. Section IV-D shows that the
economic value and accuracy are not linearly correlated. This
is due to the dependence on the (real-time) market conditions,
which was also discussed in [10]. Technical error metrics
are therefore not sufficient to address the economic value of
forecasts and this study identifies an added value of adopting
economic metrics.

Firstly, economic metrics offer market participants that oper-
ate a PV plant valuable information on the most advantageous
forecast model. The economic metric proposed in this study
is capable of mapping the economic value of solar power
forecasting modes by considering the market bidding process
as well as the imbalance costs.

Secondly, the value of such economic metrics goes beyond
market participants as the metrics provide insights into the ease
of an electricity system to adequately manage the imbalance
in real-time. The imbalance price is typically equal to the
balancing energy price, which is set by the highest activated
frequency restoration reserve bid on the merit order list. A
higher imbalance price therefore corresponds to times where
expensive assets are deployed to restore the system’s balance
and thus indicate periods where the system’s imbalance is large
and/or available balancing capacity is limited. On the other
hand, low imbalance prices typically indicate periods where
there is an abundance of electricity, available balancing ca-
pacity and/or the system’s imbalance is limited. In this regard,
evaluating a solar power forecasting model on its economic
value and in particular considering the imbalance costs, gives
an (indirect) indication of its effect on the electricity system.

Therefore, it is recommended to utilize metrics that assess
the economic value of solar power forecasting models. This
economic evaluation not only provides insights into the ex-
pected economic revenues but also offers an indication of an
electricity system’s capability to manage imbalances.
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VI. CONCLUSION

This study proposes a novel multistage stochastic opti-
mization model for market participants that operate a PV
system. The method utilizes a statistical scenario generation
method, which transforms probabilistic PV power forecasts
into time-dependent scenarios. The results of this study show
the effectiveness of the stochastic bidding approach. The
method outperforms the reference method, as it obtains higher
revenues and causes less imbalance. This study also shows
the value of extending market participation from the DAM to
IM, which is found to increase the revenues by 21%, while
halving the total imbalance. Furthermore, the study explores
the relation between the accuracy of solar power forecasting
models and their value and demonstrates that these are not
linearly related.
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