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ABSTRACT 29 

Latitudinal gradients in species interactions are widely cited as potential causes or 30 

consequences of global patterns of biodiversity. However, mechanistic studies documenting 31 

changes in interactions across broad geographic ranges are limited. We surveyed predation 32 

intensity on common prey (live amphipods and gastropods) in communities of eelgrass (Zostera 33 

marina) at 48 sites across its Northern Hemisphere range, encompassing over 370 of latitude and 34 

four continental coastlines. Predation on amphipods declined with latitude on all coasts but 35 

declined more strongly along western ocean margins where temperature gradients are steeper. 36 

Whereas in situ water temperature at the time of the experiments was uncorrelated with 37 

predation, mean annual temperature strongly positively predicted predation, suggesting a more 38 

complex mechanism than simple increased metabolic activity at the time of predation. This 39 

large-scale biogeographic pattern was modified by local habitat characteristics; predation 40 

declined with higher shoot density both among and within sites. Predation rates on gastropods, 41 

by contrast, were uniformly low and varied little among sites. The high replication and 42 

geographic extent of our study not only provides additional evidence to support biogeographic 43 

variation in intensity, but also insight into the mechanisms that relate temperature and 44 

biogeographic gradients in species interactions.  45 

Key words: biogeography, latitude, Zostera, seagrass, species interactions, predation, 46 
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temperature, mesograzer 47 

INTRODUCTION 48 

Predation pressure is greater at lower than higher latitudes for many taxa, from fishes to 49 

marine invertebrates, ants, and birds (Vermeij 1987; Schemske et al. 2009; Freestone and Osman 50 

2011). Declines in the strength of predation and other interactions with latitude have been 51 

implicated as either a cause or consequence of latitudinal gradients in biodiversity (Dobzhansky 52 

1950). However, despite a long history of investigation, the extent to which these gradients 53 

represent a monotonic decline with latitude versus a simple difference between higher and lower 54 

latitudes remains unresolved because most studies rely on extreme differences between tropical 55 

and extra-tropical or temperate regions (Novotny et al. 2006; Pennings et al. 2009; Freestone et 56 

al. 2011). Many factors co-vary between high and low latitudes, and most studies offer relatively 57 

sparse geographic coverage of intermediate latitudes (but see Harper and Peck 2016; Roslin et al. 58 

2017). Thus, it can be difficult to infer the underlying causes of ecological variation correlated 59 

with latitude and whether they result from discrete differences between environments versus 60 

factors that change continuously with latitude.  61 

While numerous processes may drive latitudinal gradients in species interactions, perhaps 62 

the most fundamental is temperature, which generally declines with latitude and affects 63 

metabolic rates, demography, and ecological and evolutionary processes (Sanford 2002; 64 

O’Connor et al. 2011; Dell et al. 2014; Schluter 2016; Edwards et al. 2010; Manyak-Davis et al. 65 

2013). While a wealth of data is available on biogeographic patterns in population abundance, 66 

traits, and diversity, standardized comparisons of communities and species interactions are much 67 

rarer. Geographic variation in predation strength may be an important driver of community 68 

assembly and evolutionary adaptation, but testing this requires rigorous quantification of species 69 
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interactions across wide latitudinal gradients (Moles et. al 2016). Thus, understanding the drivers 70 

of predation risk at multiple scales remains an important challenge for understanding variability 71 

in the strength of biotic interactions. 72 

Eelgrass (Zostera marina) is a key foundation species in estuaries and coastal seas across 73 

the northern hemisphere (30° to 67° latitude), and thus provides a unique opportunity to test 74 

latitudinal gradients in ecological processes within communities of a single habitat-forming 75 

species, minimizing potential confounding factors in prior biogeographic studies. Like other 76 

seagrasses, eelgrass provides many important functions and services in coastal ecosystems, 77 

forming complex, productive habitats for abundant and diverse organisms (Duffy et al. 2014; 78 

Cullen-Unsworth et al. 2014) as well as model systems for testing community interactions across 79 

spatial scales (Nelson 1980; Virnstein et al. 1984; Orth et al. 1984; Heck and Wilson 1987; Heck 80 

and Crowder 1991). Small invertebrate mesograzers are key trophic links in these communities, 81 

and often act as mutualists, facilitating seagrasses via selective grazing of their algal competitors 82 

(Valentine and Duffy 2006; Duffy et al. 2015). Thus, understanding and predicting global drivers 83 

of top-down pressure on these epifauna may have strong implications for seagrass ecosystems.  84 

To quantify and mechanistically explore variation in predation pressure on seagrass 85 

epifauna with latitude, we used a comparative-experimental approach of standardized field 86 

surveys and predation assays in 48 eelgrass communities across the species’ range. We measured 87 

predation pressure on the two major types of common seagrass-associated mesograzers 88 

(amphipods and gastropods) across latitudinal gradients, and explored the potential role of local 89 

and global environmental factors on predation. These taxa represent two distinct functional 90 

groups (amphipods are generally more mobile and less defended than their shelled gastropod 91 

counterparts), and may respond differently to predation, with consequences for the strength of 92 
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top-down control (Östman et al. 2016). 93 

METHODS 94 

To assess biogeographic patterns in predation in Zostera marina habitats, in the summer 95 

of 2014 we conducted a series of surveys and assays of epifaunal predation within 48 eelgrass 96 

beds across the Northern Hemisphere (see Appendix S1). All eelgrass beds were in shallow 97 

water (0 – 3 m water depth at low tide), and were typically monospecific Zostera marina. We 98 

measured the intensity of predation on two live, locally abundant mesograzers species (1 species 99 

in the Order Amphipoda, 1 shelled species in the Class Gastropoda) by tethering one individual 100 

of each locally abundant species within each of twenty 1 m2 plots per site and recording presence 101 

or absence of these prey after 24 hours. We also quantified habitat structure (plant biomass, 102 

shoot density, morphology), and characteristics of the epifaunal community (abundance, species 103 

richness, body sizes) within each plot using standardized methods, described below. Most sites 104 

were surveyed in mid-summer; exact sampling times were based on local site logistics and 105 

known system dynamics to target peak productivity.  106 

Predation assays: Locally collected live prey were tethered and deployed within each 107 

experimental plot for 24 hours to quantify predation intensity. We glued individual prey to a 10 108 

cm piece of monofilament (Fireline™; dia. 0.13 mm) tied to a stake (Fig. S1). One prey stake per 109 

individual prey (a replicate) was deployed adjacent to a live Zostera marina shoot within field 110 

plots. While the species tethered at each location varied (Table S1), individuals within and across 111 

sites were similar in size (mean = 10.7+4.6 S.D. mm for 773 amphipods and 6.5+3.40 S.D. mm 112 

for 711 gastropods measured from field deployments), were commonly found in surveys, and are 113 

known to be eaten by local mesopredators. All stakes were retrieved after 24 hours and prey 114 

were scored as present or absent. Partially consumed prey were considered eaten; molted prey 115 
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were removed from the analysis. To test whether missing prey might result from failure of the 116 

glue binding the prey to the tether, we held a subset of 5-10 prey per site in a flow-through 117 

mesocosm, bucket of seawater, or predator exclusion field cage for 24 hours. Water flow did not 118 

vary appreciably among sites (see Duffy et al. 2015) and no prey detached from tethers in the 119 

control trials; thus all missing prey were assumed to be due to predation. Missing stakes were 120 

rare and were not included in the analysis. 121 

 Environmental surveys: In conjunction with the predation assays, we also surveyed 122 

characteristics of the eelgrass community and recorded in situ temperature and salinity 123 

measurements. We quantified seagrass shoot density within each plot by counting all shoots per 124 

1 m2 plot for sites with low seagrass density (less than 50 shoots/plot), or all shoots within a 125 

haphazardly placed smaller quadrat (314 cm2) for sites with higher seagrass density. We assessed 126 

seagrass biomass from two cores (20 cm diameter, 20 cm deep) per plot. Cores were cleaned of 127 

sediment, separated into below-ground (root, rhizome) and above-ground (shoot, leaf) tissues, 128 

and dried in an oven at 60°C until there was no change in mass. We collected a 3-cm length from 129 

one healthy inner leaf from each of five randomly distributed Zostera marina shoots per plot and 130 

processed these samples for tissue nitrogen as a proxy for site-level nutrient status 131 

(Burkholder et al. 2007) using a CHN analyzer (Thermo Fisher Scientific Inc., Waltham, MA). 132 

We also removed and sorted to species all macroalgae from each plot, and dried these to constant 133 

weight. We collected epifauna from Zostera marina shoots in the center of each plot by placing a 134 

fine mesh bag over the seagrass and cutting it at the sediment surface (see Reynolds et al. 2014). 135 

Epifauna were preserved (in 70% ethanol or frozen), identified to species or lowest taxonomic 136 

resolution, and counted. We determined size class (a proxy for body size) for all specimens using 137 

a series of stacking sieves (Edgar 1990). To sample potential predators of seagrass-associated 138 
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epifauna, we deployed Gee-style minnow traps for 24 hours at 13 of our study sites and 139 

determined catch-per-unit-effort (CPUE, Appendix Table S1). In addition to water temperature 140 

measured during field work at each site, we retrieved estimates of annual mean sea surface 141 

temperature (SST) from the surrounding region provided by NASA and made available in the 142 

Bio-ORACLE dataset (Tyberghein et al. 2012, 9.6 km2 resolution, 2002-2009). We used the 143 

raster package in R to extract the annual mean temperature and temperature range from all cells 144 

within 10 km of each site, and averaged these estimates to generate site-level predictors. 145 

 Analyses: We tested the influence of latitude and environmental drivers on predation 146 

intensity on amphipods using two sets of generalized linear models at (1) the broad site scale and 147 

(2) local scale (up to 20 plots per site) in R (R Core Team 2016). Due to the consistently low 148 

predation rates on gastropods (see Results), we constructed models only to predict predation on 149 

amphipods, which were sufficiently abundant to tether at 42 of our sites. 150 

We first modeled amphipod predation at a given site (N = 42 sites) as a matrix of total 151 

successes (prey missing) and failures (prey remaining) with a quasibinomial error distribution 152 

and logit link using the lme4 package. This allowed us to weight by sample size per site and to 153 

address overdispersion of the data. The following models were constructed a priori (Table 1) 154 

using site-level means of environmental variables and compared to predict predation pressure on 155 

tethered prey: biogeography (latitude, ocean and ocean margin; models 1-5), abiotic environment 156 

(in situ temperature, salinity, and leaf percent nitrogen as a proxy for site-level eutrophication; 157 

model 6), temperature regime (regional mean annual water temperature and temperature range; 158 

models 7-9), animal community (mobile crustacean density and median body size; model 10), 159 

biodiversity (richness of total or crustacean mobile epifauna; models 11-12), and habitat 160 

complexity (seagrass aboveground biomass, density and canopy height, and biomass of 161 
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macroalgae; model 13). Based on findings from the hypothesis-driven model set, we then 162 

constructed two composite models with shoot density and either the interaction of latitude and 163 

ocean margin (model 14), or mean annual water temperature (model 15). Salinity and seagrass 164 

biomass correlated strongly with latitude and moderately with mean annual temperature, and 165 

were thus removed from the composite model set. We compared models using quasi Akaike 166 

information criteria (qAICc) values, calculated using the bbmle package in R. A second, plot-167 

level analysis used each individual plot (N = 960) as a replicate in a hierarchical mixed model on 168 

the plot-level binomial data with site as a random factor to compare the role of local community 169 

and habitat characteristics on predation intensity. Data were transformed as necessary to meet 170 

model assumptions. The limited predator trap sampling (Table S1) precluded the formal 171 

inclusion of secondary consumers in our broader statistical analyses and correlations between 172 

predation and CPUEs were evaluated separately. 173 

 174 

RESULTS 175 

We found a strong biogeographic signal in predation intensity on amphipods across 42 176 

seagrass beds in the Northern Hemisphere, with predation declining monotonically with latitude 177 

from 100% consumption at the southernmost sites to ~20% in the north (Fig. 1A). Few 178 

gastropods were consumed at most sites (average of 14 + 16% S.D. loss) relative to amphipods 179 

(average of 68 + 35% S.D. loss; Fig. 1B). Predation on amphipods did not correlate with 180 

predation on gastropods (hierarchical binomial mixed model with plot nested within site, p = 181 

0.232) due largely to a lack of variation in predation in gastropods among sites. Although 182 

predation on amphipods declined with latitude along all four coasts, it declined more sharply 183 

along western ocean basin margins (Fig. 1C), potentially reflecting steeper thermal gradients 184 
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along those coasts. Indeed, mean annual water temperature best predicted predation intensity on 185 

amphipods (Table 1; Fig 1D). Characteristics of the mobile epifaunal community did not predict 186 

predation on amphipods, nor did ambient water temperature at the time the assays were 187 

conducted (Table 1). Predation on amphipods decreased with increasing seagrass shoot density 188 

(Fig. 1E), and the model that best described our data included both shoot density and mean 189 

annual temperature (model 15). The across-site results were consistent with those at the plot-190 

scale where shoot density also correlated with reduced odds of predation (Table 2). Unlike many 191 

of the other variables, shoot density was uncorrelated with latitude (F1,40 = 2.616, p = 0.1136, R2 192 

= 0.61). While total secondary consumer species richness was generally low, the CPUE of fishes 193 

(Pearson’s r = 0.42), but not invertebrates (Pearson’s r < 0.01), positively correlated with 194 

predation intensity on amphipods (Table S1). 195 

 196 

DISCUSSION 197 

Using a comparative-experimental approach within the habitat formed by a single species 198 

of seagrass (Zostera marina) across its range, we found a strong latitudinal signal in the intensity 199 

of predation on epifaunal amphipods (Fig. 1, Table 1). Latitudinal gradients in species’ 200 

abundances and diversity are a general and consistent pattern across many communities (e.g., 201 

Dobzhansky 1950; Pianka 1966; Hillebrand 2004). Limited data suggest that species interactions 202 

increase in intensity at low compared to high latitudes, but whether this trend is a contributor to 203 

the diversity gradient, a consequence of it, or simply driven by the same environmental variables 204 

is poorly understood (Schemske et al. 2009). Here, we found a latitudinal signal in predation 205 

intensity on a vulnerable prey type (amphipods) compared to an armored prey (gastropods) that 206 

was likely driven by biogeographic variation in temperature regime and habitat structure.  207 
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Predation on amphipods followed a strong latitudinal cline with high predation at low 208 

latitudes on both coasts, but a sharper decline with latitude on western compared to eastern ocean 209 

margins (Fig. 1C). This correlated with annual mean temperature, whereby thermal gradients are 210 

generally steeper on western than eastern ocean margins due to western boundary currents, 211 

which move warm tropical waters offshore as they flow poleward and deliver it to the higher 212 

latitudes of eastern margins. The importance of ocean circulation and latitude-driven effects of 213 

temperature is supported by our modeling results, where the strongest model predicting the 214 

strength of predation included mean annual water temperature (Table 1, Fig. 1D). Although a 215 

difference in the slope of the predation effect with latitude varied across continental coastlines, 216 

statistical confidence in the interaction between latitude and ocean margin was marginal (P < 217 

0.10), possibly due to non-linear relationships between latitude and temperature regime and/or 218 

our comparatively more limited geographic sampling on western margins.  219 

Our results suggest that temperature, or factors related to temperature, may drive 220 

increased predation on seagrass epifauna. The failure of ambient water temperature at the time of 221 

sampling to explain this variation suggests that the relationship is not simply a direct metabolic 222 

correlate, but instead may be related to variation in plant (habitat), epifauna, or consumer 223 

assemblage characteristics influenced by the long-term temperature regime. In addition to the 224 

influence of regional temperature, we found that increasing shoot density decreased predation on 225 

amphipods both across and within sites (Table 1, 2; Fig. 1E), likely because increasing shoot 226 

density can reduce detection and capture of mobile prey by active fish and crab predators 227 

(Lannin and Hovel 2011; Carroll et al. 2015; Hovel et al. 2016; but see Mattila et al. 2008). 228 

Shoot density was independent of both latitude and mean annual water temperature, and thus 229 

may be a useful predictor of predation intensity on amphipods at both broad (site) and fine (plot) 230 
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scales. In contrast, plant biomass negatively correlated with latitude, suggesting that its greater 231 

potential to serve as prey refuge in low-latitude sites was not strong enough to overcome a 232 

latitudinal signal of predation pressure. Thus, a clear prediction of predation intensity at a 233 

particular site requires understanding the combined influence of multiple biogeographic (latitude, 234 

temperature) and local (shoot density) drivers.  235 

Whereas rates of predation on amphipods were generally high and varied with latitude, 236 

temperature and shoot density, predation on similarly sized gastropods was consistently very low 237 

(Fig. 1B). Similarly, a meta-analysis of experiments in North Atlantic seagrass and seaweed 238 

systems concluded that crustacean populations respond more strongly to predation than 239 

gastropods and that cascading top-down effects are primarily mediated through crustacean 240 

grazers (Östman et al. 2016). The higher predation we observed on amphipods vs. gastropods 241 

may arise, in part, due to a preponderance of browsing fishes and fewer crushing crustacean 242 

predators in temperate to boreal grass beds. Indeed, surveys of secondary consumer abundance at 243 

13 of our sites found over 6.5 times more fish than invertebrate consumers. Additionally, 244 

reduced prey value of gastropods versus amphipods, or more rapid consumption by vertebrate 245 

than invertebrate predators, may mean that our standardized 24 hour deployment interval was 246 

insufficient to capture variability in lower predation rates on gastropods. As a corollary, 247 

temperate seagrass beds may provide sufficient refuge to gastropods as to obscure a more general 248 

effect of latitudinal variation in predation found in our and other studies. However, the greater 249 

abundance of crushing fish predators in the tropics may restore a latitudinal gradient in predation 250 

on gastropods across a broader range of habitats (Palmer 1979).  251 

In summary, we find consistent latitudinal declines in predation on a common type of 252 

crustacean across four coasts and two oceans, with variation in predation closely linked to annual 253 
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mean temperature. These strong global gradients in predation pressure can nevertheless be 254 

modified by local habitat factors (e.g., shoot density), demonstrating that large sample sizes 255 

across continuous environmental and biological variation are needed to adequately capture 256 

drivers of latitudinal gradients in ecological patterns and processes. Although we avoided 257 

working in degraded seagrass beds, anthropogenic stressors in these habitats (including 258 

overfishing, eutrophication, and habitat destruction) are known to strongly influence ecological 259 

linkages and should be accounted for when making biogeographic comparisons that inform 260 

conservation and management. Because our sites are within temperate communities based on the 261 

same foundation species (Zostera marina) and with similar food web structure (eelgrass and 262 

microalgae, invertebrate mesograzers, fish and invertebrate predators), our results are less 263 

influenced by the biological differences in comparisons between temperate and tropical systems. 264 

Thus we suggest that the latitudinal gradient in predation is likely robust, and determined more 265 

by thermally-associated community differences than metabolically influenced direct effects of 266 

temperature. Whether this mechanistic connection is robust awaits intensive studies like ours, 267 

conducted in a range of other systems. 268 
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Table 1. Comparisons of candidate quasibinomial (logit link) models estimating components of site-level variation in predation intensity on 370 

amphipods across the Northern Hemisphere. Bold italicized numbers are regression coefficients for significant (black, P < 0.05; grey 0.10 > P > 371 

0.05) effects of predictor variables. Coefficients are standardized for continuous variables. Based on comparing quasi Akaike information criteria 372 

(qAICc) values, the composite II (Model 15) best describes the data. 373 
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Table 2. Hierarchical mixed binomial model of local (plot-scale) variation in predation intensity 374 

on amphipods with site as a random term. (Marginal R2 = 0.112, conditional R2 = 0.403.) N = 42 375 

sites and 809 plots. 376 

Predictors Coefficient Pr (>|z|) CI (2.5, 97.5%) 
Log crustacean epifaunal density 0.203 0.271 -0.167, 0.569 
Log aboveground seagrass biomass 0.284 0.072 -0.031, 0.598 
Log macroalgae biomass 0.087 0.667 -0.315,  0.508 
Log shoot density -0.737 < 0.001 -1.118, -0.371 
Log canopy height -0.054 0.807 -0.487,  0.393 
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Figure 1. (A) Map of field sites and predation intensity on amphipods from distributed experimental field assays at 42 sites across the 377 

Northern Hemisphere with mean annual sea surface water temperature (SST). Adjacent circles represent sites in close geographic 378 

proximity. Warmer colors (closer to red) indicate greater predation intensity. (B) Mean predation intensity across sites was greater on 379 

amphipod compared to gastropod prey. (C) Predation on amphipods declines more steeply with latitude along western (unfilled 380 

symbols) than eastern (filled symbols) ocean margins and (D) increases with annual mean water temperature. Regressions (solid lines) 381 

and 95% confidence intervals (dashed line) are fit from model 15, Table 1. (E) Predation on amphipods was negatively correlated with 382 

seagrass shoot density after accounting for effects of mean annual temperature. 383 
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Figure 1. (A) Map of field sites and predation intensity on amphipods from distributed experimental field 
assays at 42 sites across the Northern Hemisphere with mean annual sea surface water temperature (SST). 
Adjacent circles represent sites in close geographic proximity. Warmer colors (closer to red) indicate greater 

predation intensity. (B) Mean predation intensity across sites was greater on amphipod compared to 
gastropod prey. (C) Predation on amphipods declines more steeply with latitude along western (unfilled 

symbols) than eastern (filled symbols) ocean margins and (D) increases with annual mean water 
temperature. Regressions (solid lines) and 95% confidence intervals (dashed line) are fit from model 15, 

Table 1. (E) Predation on amphipods was negatively correlated with seagrass shoot density after accounting 
for effects of mean annual temperature.  
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