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Abstract

Wonderful Loop Group Embeddings and Applications to the Moduli of G-bundles on curves

by

Pablo Solis

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Constantin Teleman, Chair

Moduli problems have become a central area of interest in a wide range of mathematical fields
such as representation theory and topology but particularly in the geometries (differential,
complex, symplectic, algebraic). In addition, studying moduli problems often requires utiliz-
ing tools from other mathematical fields and creates unexpected bridges within mathematics
and between mathematics and other fields.

A notable example came in 1991 when the mathematical physicists Edward Witten made
a conjecture [Wit91] connecting the partition function for quantum gravity in two dimensions
with numbers associated to the cohomology of the moduli space of stable curves Mg,n, a
space that was already of independent interest to algebraic geometers.

We study a related moduli problem MG of principal G-bundle on stable curves for G a
simple algebraic group. A defect of MG over singular curves is that it is not compact and
thus more difficult to study. We focus specifically on nodal singularities and examine how
to compactify MG over nodal curves.

The approach we present relies on two main mathematical objects: the loop group and
the wonderful compactification of a semisimple adjoint group. For an algebraic group G the
loop group LG is the group of maps D× → G where D× is a punctured formal disk, see
2.2 for a precise definition. The connection between LG and MG is that G-bundles can be
described by transition functions and roughly speaking any such transition function comes
from an element of LG.

The wonderful compactification is a particularly nice way of comapactifying a semi simple
group. Then in a sentence, the aim this dissertation is to (1) extend the construction of the
wonderful compactification for semi simple group to LG and (2) use this compactification
to compactify MG over nodal curves.

We give a brief introduction in Chapter 1. Chapter 2 addresses (1) and Chapter 3
addresses (2).

We begin in Chapter 2 with a discussion of the classical wonderful compactification of an
adjoint group given by De Concini and Procesi in [DCP83]. Because the group LG is infinite
dimensional many of the elements in De Concini and Procesi’s construction do not immedi-
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ately extend or have more than one possible generalization. The technical heart of the paper
is developing the appropriate analogs of all the elements needed to make the construction
possible for LG. Also building on work of Brion and Kumar we give an enhancement of the
compactificaiton from schemes to stacks that we utilize in Chapter 3.

Chapter 3 returns to the problem of compactifying MG over nodal curves. We begin
by carefully studying the points in the boundary of the compactification of LG and relating
them to moduli problems over nodal curves. The moduli problems that appear in this way
are closely related to flag varieties for the loop group and can be identified as moduli of
torsors for a particular group scheme determined by parabolic subgroups of the loop group.

We go on to show that the moduli problem of torsors on nodal curves is isomorphic to a
moduli problem of G-bundles on twisted nodal curve; these are orbifolds that are isomorphic
to the original nodal curve on the smooth locus. Finally, building on related work of Kausz
[Kau00, Kau05a] and Thaddeus and Martens [MTa] and the results of Chapter 2 we introduce
a larger moduli problem XG of G bundles on twisted curves which compactifies MG.
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Chapter 1

Introduction

The wonderful compactification of a complex semi simple adjoint group G was constructed
and named by De Concini and Procesi in [DCP83]. The compactification is a smooth projec-
tive variety containing G as a dense open sub variety and the boundary is a normal crossing
divisor whose structure is determined by the root datum of G. The wonderful compactifica-
tion has seen a wide range of applications particularly in spherical geometry.

Here we construct an analogue of the wonderful compactification for the loop group of
G. The loop group LG is the group of maps from a punctured formal disc to the group G;
in algebraic geometry it’s C points are G(C((z))) where C((z)) is the field of formal Laurent
series. The precise meaning of “analogue of the wonderful compactification for loop groups”
requires further comment and is clarified in the subsection below on loop groups.

The main application of our construction concerns the moduli stack of G bundles on
a family of nodal curves. This moduli stack is not compact and we use the wonderful
compactification of LG to compactify this stack 1

In fact, one of the earliest attempted applications of De Concini and Procesi’s compact-
ification was precisely to compactify the aforementioned moduli problem. For the special
case of G = GLn(C) see the work of Kausz [Kau05b] and Seshadri[Ses00]. However, for
general semi simple G, no satisfactory construction that worked for families of curves and
for general semi simple G has been obtained.

Our second main result demonstrates that the wonderful compactification of the loop
group always carries enough information to compactify the moduli stack of G bundles on a
family of nodal curves. This application makes use of parabolic subgroups of LG which for
general Dynkin type have no counterpart for G itself. In other words, for general Dynkin
type, passing to the loop group is necessary.

The approach here is quite general; it works for simple, simply connected G of arbitrary
Dynkin type and for curves of arbitrary genus. This is a significant improvement from other
approaches which only dealt with either low genus or only certain Dynkin types: [MTa](any

1 We only show one can obtain a complete moduli stack; to get something separated a stability condition
must be imposed.
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reductive G, genus 0), [RF] (G simple simply connected, genus 1), [Pan96, Fal96] (GLn,
SOn, SP2n, any genus).

There are two obvious questions not addressed here. The first is if all the construction
presented here can be made to work for a general reductive group. The second concerns
finding a good stability condition on the modular compactification of the stack of G bundles.
The stability condition is necessary to obtain a coarse moduli space.

Further, we expect the modular compactification given here can find applications in
gauged Gromov-Witten theory. For more in this direction see [TFT]. We aim to pursue
these directions in future work.

The loop group and the moduli of G bundles have themselves found many applications
in geometry and representation theory and we believe the wonderful compactification of LG
given here has potential for further application in these areas as well.

Loop groups

For any ring R we form the ring R((z)) of formal Laurent series with coefficients in R.
Elements of R((z)) are formal sums

∑∞
i=i0

riz
i with ri ∈ R and where the start of the sum

i0 can be any integer.
If G is an algebraic group over C then the loop group is a functor from C-algebras to

groups which assigns to a C-algebra R the group G(R((z))) of R((z)) valued points of G.
For concreteness we consider G = SL2(C) and R = C. Then the group LSL2(C) consists

of 2× 2 matrices γ =

(
a b
c d

)
where the entires are in C((z)) and ad− bc = 1. These can

be equivalently represented as formal sums

γ(z) =
∞∑
i=i0

(
ai bi
ci di

)
zi ai, bi, ci, di ∈ C.

The determinant condition translates into a sequence of polynomial conditions on the coef-
ficients ai, bi, ci, di.

Some geometric intuition can be gained by considering the smooth loop group which is
defined for any Lie group G: LsmG = C∞(S1, G). The approximate parallel between LG
and LsmG is seen by setting z = exp(iθ) ( θ a coordinate on S1) and imposing a convergence
condition on the above sum.

The loop group is studied through its representations. The remarkable fact is that LG
admits a class of projective representations which behave in many ways like the finite di-
mensional representations of a semi simple group. These projective representations V , called
positive energy representations, are honest representations of a central extension L̃G of LG
by C×. The representations V are infinite dimensional but have a finiteness property. Specif-
ically introduce a conjugation action of u ∈ C× on γ(z) ∈ LG(C) by uγ(z)u−1 := γ(uz).
Then one can form the semi-direct product C×nLG(C) and this lifts to the central extension
C×nL̃G(C). The finiteness property of V is that C× acts on V in such a way that V becomes
a representation of C× n L̃G(C) and all the weight spaces of C× are finite dimensional.
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So it is actually the slightly more complicated group Gaff (C) := C× n L̃G(C) whose
representation theory mimics that of a finite dimensional semi simple group. The group
Gaff (C) is called a Kac-Moody group and it is associated to an affine Dynkin diagram in
the same way a semi simple group is associated to a Dynkin diagram.

We can now say more precisely what we mean by a loop group analogue of the wonder-
ful compactification. Take G to be simple and simply connected group. For any group H
let Z(H) denote it’s center. Then De Concini and Procesi’s construction produces a com-
pactification of the adjoint group G/Z(G). The construction we give here gives a partial
compactification of Gaff (C)/Z(Gaff (C)) = C×nLG(C)/Z(G). Further the boundary of the
partial compactification is a normal crossing divisor whose structure is determined by root
datum of LG(C) in a manner analogous to the wonderful compactifcation of G/Z(G).

Example 1. The wonderful compactification of SL3(C)/Z(SL3(C)) = PGL3(C) has a bound-
ary with 2 components D1, D2. For i = 1, 2 there is a fibration πi : Di → SL3(C)/P−i ×
SL3(C)/Pi with Pi, P

−
i opposite maximal parabolic subgroups. The fiber of πi is the wonder-

ful compactification of PGL2(C). The intersectionB = P1∩P2 is the subgroup of upper trian-
gular matrices, B− is the transpose of B and D1∩D2 is the product SL3(C)/B−×SL3(C)/B.

Example 2. The analogue of the wonderful compactification of C× n LSL2(C)/Z(SL2(C))
also has two boundary component D1, D2. There are fibrations πi : Di → LG/P−i × LG/Pi
for Pi,P−i opposite parabolic ( or parahoric) subgroups of LG. The fiber of πi is again the
wonderful compactification of PGL2(C). In this case D1 ∩ D2 = LG/B− × LG/B where
B = P1 ∩ P2 and with B− defined similarly.

In both examples the appearance of PGL2(C) reflects the fact that the Dynkin diagram
for C× n L̃SL2(C) and SL3(C) both contain the Dynkin diagram of PGL2(C) as a sub
diagram.

Moduli Problems

Here we provide some background for the main application of the loop group wonderful
compactification.

Moduli problems concern the geometry of spaces whose points themselves correspond to
geometric objects. A basic but important example is complex projective space Pn(C). By
definition, each x ∈ Pn(C) corresponds to a line l ⊂ Cn+1.

The particular moduli problem this work deals with is the moduli of principal G bundles
on a compact Riemann surface, or more precisely on a projective algebraic curve C. Here
G is a simple algebraic group; the classic examples are G = SLr(C), SOr(C), SP2r(C).
Geometrically, one can study either the moduli stack MG(C) or the coarse moduli space
MG(C) which requires a stability condition. We work with MG(C) and specifically when
the curve C has a nodal singularity. It is known in this case that MG(C) is not compact
which makes it harder to work with. We provide a way to compactify MG(C).

The study of MG(C) for a general reductive G began with the study of MGLr(C)2. In
2For GLr, one must also fix the degree of the bundles to get a connected moduli space.



CHAPTER 1. INTRODUCTION 4

turn, the latter arose in Mumford’s geometric invariant theory (GIT) [MFK94] and naturally
generalizes the Jacobian of C. The stack MG(C) appeared in the work of Atiyah and Bott
[AB83] in gauge theory, although they worked in an analytic framework. The algebraic
version ofMG(C), which we study here, attracted more attention with the work of Beauville,
Laszlo [BL94a] and Faltings [Fal94] where it was used to connect MG(C) to conformal field
theory in physics.

In fact by that time MG(C) had already been studied from the perspective of number
theory by Harder and Narasimhan [HN75] and also in the context of symplectic geometry
by Hitchin [Hit87] and shortly after also from the perspective of representation theory by,
for example, Kumar [Kum97] and Teleman [Tel98].

The results above, with the exception of [Fal94], apply only to a fixed smooth curve C.
However, it is natural to considerMG(Cb) for a curve Cb varying with a parameter b. Let B
be the set of all possible values of b, then we use the shorthand CB and say CB is a family
of curves over B. It is of interest to study MG(CB) when, for some special values b0 ∈ B,
the curve Cb0 becomes singular. This is known as degeneration and is a standard technique
in algebraic geometry.

In Chapter 3 we describe a degeneration of MG(C) with good compactness properties
which until now had only been provided for MGLr(CB) by Kausz [Kau05b].

Example 3. Here we consider G = C× and the curve

C = {[x : y : z] ∈ P2(C)|zy2 − x3 + xz2 = 0}.

Then MG(C) is a group and its connected component is a well studied space called the
Jacobian Jac(C) of C. In this specific example C ∼= Jac(C). The isomorphism occurs by
identifying principal C× bundles with line bundles and in turn identifying these with rank
1 locally free sheaves. Then the isomorphism C ∼= Jac(C) identifies p ∈ C with the ideal
sheaf OC(−p). If p 6= [0 : 1 : 0] then this can be made more transparent on the affine curve
C ′ = C − [0 : 1 : 0] = {y2 − x3 + x = 0} ⊂ C2. In this case OC(−p) can be identified with
the maximal ideal mp ⊂ C[x, y]/(y2 − x3 + x) of elements that vanish at p.

Introduce a parameter t and form Ct = {[x : y : z] ∈ P2(C)|zy2 − x(x− z)(x+ tz) = 0}.
For any nonzero value t ∈ C× the curve Ct is smooth and projective. The limit of as t→ 0
yields the singular curve C0 = {[x : y : z] ∈ P2(C)|zy2 − x3 + x2z = 0}. This is depicted
in figure 1.1. In contrast to C, we have Jac(C0) ∼= C0 − [0 : 0 : 1]. This is an illustration
that MG(C0) is not compact when C0 is nodal. In this specific example Jac(C0) seems to
be missing the point [0 : 0 : 1]. However there is no way to associate in any natural way
a line bundle on C0 to the point [0 : 0 : 1]. Indeed any line bundle (up to degree shift) is
already naturally assigned to the points of C0 − [0 : 0 : 1]. What is missing is evidently the
object corresponding to the maximal ideal (x, y) ⊂ C[x, y]/(y2 − x3 + x2).

The ideal (x, y) is not locally free but it is torsion free. Geometrically it determines a
line bundle on C0 − [0 : 0 : 1] but the fiber over [0 : 0 : 1] is two dimensional. The process of
enlarging the moduli problem from line bundles on C0 to torsion free sheaves is a prototypical
example of compactification.
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Figure 1.1: Degeneration of a smooth curve into a nodal curve.

As has already been indicated, throughout we will use the language of algebraic geometry.
This means among other things that we will speak of sheaves, schemes, morphisms of schemes
and their properties and eventually stacks. However we hope the example provides some
appreciation of the problem to an audience with at least a familiarity with manifolds and
vector bundles.

As for the rest of the work, much of Chapter 2 is approachable with familiarity with
representation theory. Chapter 3 is the most technically demanding using advanced algebraic
geometry, including algebraic stacks and criteria for representability.

1.1 Bird’s Eye View

Section 2.1 describes the classical construction of the wonderful compactification of the
semisimple group G of adjoint type given by De Concini and Procesi in [DCP83]. Briefly
one takes a regular dominant weight λ and considers the associated irreducible representation
V = V (λ). The wonderful compactification is the G×G orbit closure of [id] ∈ PEnd(V ):

G = G×G.[id] ⊂ PEnd(V ) = P
(
V ⊗ V ∗

)
. (1.1)

The simplest example is G = PGL2(C) and V = C2. Then G is embedded in PEnd(C2) = P3

as {[a : b : c : d]|ad− bc 6= 0}; the closure is G = P3.
Section 2.2 defines the loop group and defines its root datum which is analogous to the

root datum of a semisimple group. In particular we discuss how to view the loop group as
an infinite dimensional ind-scheme: an increasing union of infinite dimensional schemes.

Section 2.3 begins to develop the necessary generalizations to make sense of (1.1) for LG.
First the representation V is taken to be a positive energy or highest weight representation.
Then V is countable dimensional and admits only a projective action of LG. Neither of
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these differences pose a problem, however the appearance of V ∗ in (1.1) does pose a technical
challenge.

The challenge arises because in algebraic geometry we need definitions that make sense
for any C-algebra R. For example LG(C) will act on the projectivzation of V ∗ but LG(R)
will not act on the projectivization of V ∗ ⊗C R. We give a definition of PV ∗ that behaves
well under base change and study embeddings of flag varieties of LG in PV and PV ∗.

Section 2.4 deals with similar technicalities this time to give a good definition of PEnd(V ).
In this setting End(V ) is much bigger than V ⊗V ∗; for example id 6∈ V ⊗V ∗. Using properties
of the action of LG on PV , we identify an ind-scheme PEndind(V ) ⊂ PEnd(V ). Further, for
Z(G) the center of G we show that the recipe of (1.1) defines an embedding of LG/Z(G), or
rather the semidirect product C× n LG/Z(G) ⊂ PEndind(V ). The closure gives the partial
compactfication which we denote Xaff . The remainer of the section proves that Xaff has
analogous properties to the wonderful compactification (the main theorem is 2.4.3). In
particular, Xaff is formally smooth and the boundary is a normal crossing divisor.

Section 2.5 has two subsections one on the LG×LG orbits in Xaff and a second demon-
strating that the boundary divisor and another naturally defined divsor are actually Cartier.
These results are needed to prove the final statement of the main theorem (2.4.3(d)) which
states that the Picard group Xaff is free of finite rank in analogy with the classical won-
derful compactification. We also prove that the boundary of Xaff is stratified by fibrations
over flag varieties for LG (corollary 2.5.3), providing another analogy with Xaff and the
wonderful compactification of a semisimple adjoint group.

Section 2.6 describes a partial compactification for the polynomial loop group LpolyG(C) =
G(C[z±]). All that is needed to modify slightly the definitions of PV ∗ and PEnd(V ).

Section 2.7 briefly returns to studying compactification of G itself. The technical issue
that arises in the above constructions is that the embeddings always take place in some
PEnd(V ) and the center Z(G) always acts trivially. This is a defect that must be remedied to
study G as opposed G/Z(G) or LG as opposed to LG/Z(G). This section uses a construction
of Brion and Kumar [BK05b, 6.2.4] blended together with the theory of stacks to provide a
wonderful smooth stacky compactification of G. Then blends this with the construction of
Section 2.4 to give a different, stacky enhancement of the boundary divisor of Xaff .

In Chapter 3 the focus returns to studying the moduli of G -bundles on a curve.
Sections 3.1 - 3.3 contain some history of the development of this problem and previous

results as well as a survey on the connection between LG and the moduli MG(C) of G
bundles on a curve C.

Section 3.4 gives a modular interpretation to each of the orbits in the boundary Xaff .
One can interpret the boundary as a moduli space for more general objects known as torsors
F on a curve C. In turn these torsors can be identified with ordinary G-bundles but one
must replace C with an orbifold or twisted curve.

Section 3.5 enlarges the moduli problemMG(C) of G bundles on C to include the objects
of 3.4. We show the enlarged moduli problem XG(C) is an algebraic stack and further XG(C)
compactifies MG(C). More precisely we show MG(C) ⊂ XG(C)is open and dense and that
XG(C) satisfies the valuative criterion for completeness.
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Chapter 2

The wonderful embedding of the loop
group

In 1983 De Concini and Procesi studied the symmetric space G/H where G is a complex Lie
group and H is the fixed point set of an involution σ of G; see [DCP83]. They constructed
a “wonderful” compactification G/H of G/H; see definition 2.1.1. After De Concini and
Procesi’s result the properties of their compactification were axiomatized and such varieties
were called wonderful. A paticular case is G = G × G/∆(G); when G is of adjoint type
this gives a wonderful compactification of G. De Concini and Procesi’s original construction
utilized a regular dominant weight λ of G:

G = G×G.[id] ⊂ PEnd(V (λ)) (2.1)

where [id] is the class of the identity endomorphism.
In fact smooth compactifications G for all reductive groups G exist [BK05a, 6.2.4] but in

general lack certain combinatorial properties required to be wonderful. Additionally, there is
a so called canonical embedding of a semi simple group but this compactification is generally
not smooth unless Z(G) = 1. The only exceptions occur when G = Sp2n(C) 1.

The canonical embedding for semi simple G has finite quotient singularities and the
singularities can be resolved by working with Deligne-Mumford stacks. In [MTa], Martens
and Thaddeus carry this out explicitly by constructing certain moduli problems about G-
bundles on chains of P1s that represent the compactification. In this chapter, we give a
different approach using representation theory. Namely for a regular dominant weight λ
there is a quasiprojective variety Y with an action of a torus T such that the global quotient
X = [Y/T ] contains G as a dense open subvariety. Additionally, X contains a dense open
substack X0 which is the closure of the open cell U−TU of G and

1Several places in the literature mistakenly state that the only exception is G = Sp2(C) = SL2(C). I
thank Johan Martens for preventing another mistake here.
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Theorem 2.7.3. Let G be a semi simple, connected, simply connected group. Then
there is a stacky compactification X of G such that:

(a) X is smooth and proper.

(b) X − X0 is of pure codimension 1 and we have an exact sequence

0→ Zr → Pic(X )→ hom(Z(β),C×)→ 0

where Z(β) if a finite group and Zr is generated by the irreducible components of X−X0.

(c) The boundary X − G consists of r divisors D1, . . . , Dr with simple normal crossings
and the closure of the G × G-orbits are in bijective correspondence with subsets I ⊂
{1, . . . , r} in such a way that to I we associate ∩i∈IDi.

Though this result is not new the fact that is can be proved using only representation
theory will be important when we turn to the study of loop groups.

Loop groups

The algebraic loop group is LG = G((z)) = G(SpecC((z))). In fact these are just the C
points; see section 2.2 for the full definition.

In fact, the group of interest is a semi-direct product C× n LG; this means for u ∈ C×
we have uγ(z)u−1 = γ(uz). The object Xaff is an ind-scheme constructed using a regular
dominant weight λ of LG.

Theorem 2.4.3. Let G be a simple, connected and simply connected group over C and set
r = rk(G). The ind-scheme Xaff contains LnG/Z(G) as a dense open sub-ind scheme and
further

(a) Xaff is formally smooth and independent of the choice of regular dominant weight
(0, λ, l).

(b) The boundary Xaff−LnG/Z(G) is a Cartier divisor with r+1 components D0, . . . , Dr.
The LnG× LnG orbits closures are in bijection with subsets I ⊂ {0, . . . , r} in such a
way that to I we associate ∩i∈IDi.

(c) Each Di is formally smooth and ∪ri=0Di is locally a product S × Z where S is an
ind-scheme and Z is the union of hyperplanes in Ar+1.

(d) Xaff − Xaff
0 is a Cartier divisor and with r + 1 components which freely generate

Pic(Xaff ).
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We use the word embedding because Xaff is not compact. However we do have a com-
pleteness result for the polynomial loop group G(C[z±]); see theorem 2.7.5.

The strategy for proving 2.4.3 is to use the representation theory of Gaff . More precisely,
take a highest weight representation V (λ) of Gaff . V (λ) is an infinite dimensional vector
space which is a direct sum of weight spaces Vµ for a maximal torus C× × T of C× n LG.

Now we consider
Xaff = Gaff ×Gaff .[id] ⊂ PEnd(V (λ))

Where, because V (λ) is infinite dimensional, PEnd(V (λ)) must be appropriately defined.
This is carried out in section 2.4.

Compactifications to moduli spaces

In this subsection we indicate with a small example for G = PGL2(C) how to pass from
group compactifications to completions of moduli spaces of bundles on curves. The more
elaborate procedure of using Xaff to complete moduli spaces will be carried out in the next
chapter.

The wonderful compactfication of G is P3(C). If a, b, c, d are homogeneous coordinate in
P3(C) then G is identified with the open sub variety where ad− bc 6= 0.

We give G a modular interpretation as follows. Fix a smooth connected curve C̃ and
two points p, q. Let C be the nodal curve obtained by identifying p and q. Fix a principal
G-bundle E on C̃ and framings fp : E|p ∼= G, fp : E|q ∼= G. Then every g ∈ G now defines

an isomorphism φg : E|p
fp−→ G

x 7→gx−−−→ G
f−1
q−−→ E|q which allows us to descend E to a principal

G bundle E(φg) on C. Thus we have a family of G-bundles on C parametrized by G.
We make use of an alternative description of E(φg). Namely by identifying G ∼= G ×

G/∆(G) we can equivalently identify E(φg) with the bundle E on C̃ together with a reduction
of the G×G bundle Ep × Eq over p× q to the subgroup ∆(G).

Now any morphism SpecC[t±] = C× → G gives a family of G-bundles on C parametrized

by t ∈ C×. If the morphism does not extend to SpecC[t] → G (such as C× t7→diag(t,1/t)−−−−−−−→
SL2 → G where diag(t, 1/t) is a diagonal 2 × 2 matrix and SL2(C) → G is the natural
quotient) the we can ask if there is a limit as t tends to 0.

A limit exists in P3(C) and so we can provide an answer by giving a modular interoper-
ation to points of P3(C)\G = {ad − bc = 0} ∼= P1(C) × P1(C) = G/B × G/B where B is
the subgroup of upper triangular matrices in G. Consequently each (sp, sq) ∈ G/B × G/B
can be considered (through the use of the framings fp, fq) as sections of E|p/B and E|q/B
respectively; that is, a reduction of Ep×Eq to B×B. Thus P3(C) provides a compactification
of the moduli problem of bundles on C̃ with ∆(G) reductions at p, q by allowing principal
G bundles on C̃ together with B ×B-reductions at p, q.

The same logic applies to Xaff . Namely, we start by understanding the boundary Xaff−
C× n LG. Then we endow the boundary with a modular interpretation and create a larger
moduli problem where principal G-bundles on a nodal curve are allowed to limit to objects
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parametrized by the boundary Xaff−C×nLG. The full details of this procedure is described
in the next chapter.

Summary

In section 2.1, we recall the construction of the wonderful compactification of an adjoint
group. In section 2.2 we give a quick introduction to loop groups. The subsequent sections
2.3,2.4 discuss the representation theory of loop groups and deal with technicalities of infinite
dimensional projective spaces in algebraic geometry. Also the main theorem of the wonderful
embedding of LG is stated and proved (2.4.3). Section 2.5 studies the orbits of LG × LG
in the embedding and finishes a technical detail needed for 2.4.3. Section 2.6 describes a
partial compactification for the polynomial loop group LpolyG(C) = G(C[z±]). Section 2.7
is where the first theorem cited (theorem 2.7.3) is proved and an analogous result for loop
groups is also established.

2.1 Wonderful Compactification of an Adjoint Group

This section largely follows chapter 6 of [BK05a].

Definitions

Let G be a semisimple group. It has associated subgroups: a maximal torus T , opposite
Borels B,B−, their unipotent radicals U,U−. The character lattice we denote as ΛT , the
co-character lattice we denote as VT and if µ ∈ ΛT , η ∈ VT then the integer µ ◦ η we denote
as 〈µ, η〉, 〈µ, η〉, or µ(η). Let r = rk(G) and let α1, . . . , αr be the positive simple roots. Let
ω1, . . . , ωr be the fundamental weights.

For dominant weight λ let V (λ) denote the highest weight representation (HWR) of
highest weight (HW) λ. By V (λ)µ we denote the weight space of V (λ) with weight µ. When
no confusion is likely to arise write simply Vµ. We can decompose

End(V (λ)) =
⊕

µ,χ∈ΛT

Vµ ⊗ V ∗χ .

Let PEnd(V (λ))0 ⊂ PEnd(V (λ)) be the open subset consisting of points whose projection
to Vλ ⊗ V ∗λ is not zero. Define for a regular dominant weight λ

X := G×G.[id] ∈ PEnd(V (λ)) = P
[
V (λ)⊗ V (λ)∗

]
X0 := X ∩ PEnd(V (λ))0

(2.2)

Let Z(G) denote the center of G. It is routine to see that Stab([id]) is Z(G)× Z(G) ·∆(G)
and consequently X contains Gad := G/Z(G) = G×G

Z(G)×Z(G)∆(G)
as a dense open subset. X is



CHAPTER 2. THE WONDERFUL EMBEDDING OF THE LOOP GROUP 11

the wonderful compactification of Gad and X0 is the open cell of X. A maximal torus for
Gad is Tad = T/Z(G). By Tad we mean the closure of Tad in X and Tad,0 := X0 ∩ Tad.

Lastly, let H be a reductive group and Y a normal H-variety

Definition 2.1.1. Y is wonderful of rank r if Y is smooth, proper and has r normal corssing
divisors D1, . . . , Dr such that the H-orbit closures are give by intersections ∩i∈IDi for any
subset I ⊂ {1, . . . , r}.

The notation of X,X0, Tad, Tad,0 does not reflect the dependence on λ; this is justified by
theorem 2.1.2.

Theorem 2.1.2. Let X = Gad be as in (2.2). Then

(a) X is independent of λ.

(b) X is smooth.

(c) X −X0 is of pure codimension 1; it consists of divisors that freely generate the Picard
group.

(d) The boundary X−Gad consists of r normal crossing divisors D1, . . . , Dr and the closure
of the G×G-orbits are in bijective correspondence with subsets I ⊂ [1, r] in such a way
that to I we associate ∩i∈IDi.

(e) Any G equivariant X ′ → X determines and is determined by a fan supported in the
negative Weyl chamber.

Proof. [BK05a, 6.1.8]

The proof cited for theorem 2.1.2 exploits the representation theory of G and follows
from propositions 2.1.3 below.

Let t−α represent the regular function on T given by the character −α.

Proposition 2.1.3. (a) T 0
∼= SpecC[t−α1 , . . . , t−αr ] ∼= Ar

(b) The action morphism U− × U × T → X sending (u1, u2, t) 7→ u1tu
−1
2 ∈ X maps

isomorphically onto X0.

(c) X = ∪g∈G×GgX0.

(d) T = ∪w∈WwT 0w
−1.

Proof. See [BK05a, 6.1.6,6.1.7]

Theorem 2.4.3 is an analogue of theorem 2.1.2 for the loop group LG and we will be able
to prove theorem 2.4.3 once we prove the loop group analogue of propositions 2.1.3.
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2.2 Preliminaries on Loop Groups

Let G be a simple algebraic group over C with π1(G) = π0(G) = 1. In general we say
H ⊂ G is a subgroup to mean that H is an algebraic group over C and there is an closed
embedding H → G such that for every C-algebra R the set map H(R) → G(R) is a group
homomorphism.

The loop group LG is the functor from C-algebras to groups given by

R 7→ LG(R) := G(R((z))) := G(SpecR((z)))

We call elements of LG(R) loops. The functor LG has an ind-scheme structure. For G = SLn
this is shown in [BL94b, 1.2]; in this case loops can be represented by matrices and the ind-
scheme structure LSLn = ∪k(LSLn)k is defined so that (LSLn)k(R) consists of loops γ such
that both γ, γ−1 have entries in R((z)) with poles of order ≤ k; that is each entry is of the
form

∑∞
i=−k aiz

i where each ai ∈ R.
For general G one gets an ind scheme structure on LG via an embedding G→ SLn. The

ind-scheme structure does not depend on the choice of representation [Sor00, 3.7].
To study other aspects of LG, such as it’s representation theory it is helpful to introduce

two closely related groups. First is LnG(R) := Gm(R) n LG(R) which, for u ∈ Gm(R), γ ∈
LG(R) is defined by uγ(z)u−1 = γ(uz). In fact LnG will be the group we are primarily
concerned with.

Finally the representations of LnG we consider will only be projective representations;
or in other words they are representations of a central extension Gaff :

1→ Gm → Gaff → LnG→ 1

As we are working over C we’ll write C× for Gm. As (ind-)schemes, Gaff = C× × LG× C×c
where the subscript c indicates the factor is central.

The maximal torus of Gaff is T aff := C× × T × C×c and characters are denoted as
(n, µ, l) ∈ Z ⊕ ΛT ⊕ Z; sometimes we abbreviate Tn := C× × T ⊂ LnG. As in the case of
semi simple groups, we can use the maximal torus to decompose the Lie algebra. The Lie
algebra is identified with the C[ε]/ε2 points that extend the identity C-point. We denote
Lie(LG(C)) = Lg(C), Lie(LnG(C)) = Lng(C) and Lie(Gaff ) = gaff (C).

We have Lg(C) = g ⊗C C((z)), Lng(C) = Cd ⊕ g ⊗ C((z)) where g ⊗ C((z)) inherits a
Lie algebra structure from g and [d, − ] acts by z d

dz
. Then we have

gaff (C) = Cd⊕ t
⊕
k 6=0

zkt
⊕
(k,α)

zkXα.

The weights appearing here are the roots of LnG; the weight of zkt shows for LnG not all
roots spaces are 1-dimensional. If α1, . . . , αr are the simple roots of G then the simple affine
roots of Gaff are (0, α1, 0), . . . , (0, αr, 0), α0 = (1,−θ, 0) where θ is the longest root of G. By
abuse of notation we denote (0, αi, 0) simply by αi so the simple roots of Gaff are α0, . . . , αr.
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The positive roots of LnG are those of the form (k, α) with k > 0 or with k = 0 and α
positive.

We now define loop group analogues of the Weyl group, Weyl chamber and parabolic
subgroups of a semi simple group. The affine Weyl group is W aff := N(Tn/Tn). W aff is
isomorphic to W n hom(C×, T ); we can define the Weyl chamber as for semi simple groups
however it is standard practice to introduce instead Weyl alcoves. Namely, the roots are
linear forms on Q⊕ tQ and we can identify them with affine linear forms on tQ by identifying
the Lie algebra with 1⊕ tQ.

For α 6= 0 we can define affine hyperplane in tQ via

Hk,α = {ζ ∈ tQ|α(ζ) = −k}

The complement of all the Hk,α is known as the Weyl alcove decomposition of tQ. W aff acts
freely on tQ and permutes the alcoves in the decomposition. A fundamental domain is given
by the positive Weyl alcove

Al0 := {ζ ∈ tQ|αi(ζ) ≥ 0, i = 0, . . . , r}

The vertices ηi of Al0 are defined by αj(ηi) = δi,j.
Next we introduce the analogue of parabolic subgroups P ⊂ G for LG. Let p1 : Tn =

C× × T → C× be the projection. For any co-character η : C× → Tn wesay η is positive if
p1 ◦ η > 0 and negative if p1 ◦ η < 0 and nonzero if it is either positive or negative. For a
nonzero η set

Pn
η = {γ ∈ LnG| lim

s→0
η(s)γη(s)−1 exists }.

We can define Pη even for η ∈ hom(C×, Tn)⊗Z Q; this is because the limit in the definition
of Pη doesn’t depend on any integrality properties; in particular Pη is defined for η ∈ Al0.

A parahoric subgroup of LnG is any subgroup Pn ⊂ LnG that is conjugate in LnG to
some Pn

η .

Pn
η = {γ ∈ LnG| lim

s→0
η(s)γη(s)−1 exists }

We set Pη = Pn
η /C× = Pn

η ∩ LG and P ⊂ LG is a parahoric subgroup if it is conjugate to
some Pη.

The groups Pn
η come with a natural Levi decomposition

Lη = {γ ∈ Pn
η | lim

s→0
η(s)γη(s)−1 = γ}

Uη = {γ ∈ Pn
η | lim

s→0
η(s)γη(s)−1 = id}

(2.3)

and these project to give Levi decompositions of Pη.
If η is positive then Pη is an infinite dimensional group scheme. If η is negative then Pη is

an ind-group which is a union of finite dimensional varieties. In either case, the Levi factor
Lη is always a finite dimensional algebraic group.
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Example 4. The vertex η0 of Al0 defines C× η0−→ Tn by η0(s) = (s, id). Then for γ ∈ G(R((z)))
we have η(s)γ(z)η(s)−1 = γ(sz) and the limit s → 0 exists if and only if γ ∈ G(R[[z]]).
Therefore Pη0(R) = G(R[[z]]). We also use the notation L+G(R) = G(R[[z]]). In this case
the Levi factor is G and if we replaced η0 with it’s inverse −η0 (we use additive notation)
we would get P−η0(R) = G(R[z−1]) which we denote L−G(R).

We also have the parahorics Pηi associated to the other vertices; these are maximal
parahoric subgroups of LG.

More generally to any subset I ⊂ {0, . . . , r} we can associate a parahoric PI and PI = Pη
for some η ∈ Al0 but η is not unique. In fact the set Al0 = C ∩ 1 ⊕ tQ where C =
⊕ri=0Q≥0ηi and C is the union of its sub cones CI = ⊕i∈I⊂{0,...,r}Q≥0ηi which have interior
Cint
I = ⊕i∈I⊂{0,...,r}Q>0ηi. For I ⊂ {0, . . . , r} the cone Al0,I of Al0 is CI ∩ Al0 and it’s

interior is Alint0,I = Al0 ∩ Cint
I . Then Al0 is stratified by Alint0,I and Pη = Pη′ whenever

η, η′ ∈ Alint0,I . Therefore we can set PI = Pη for any η ∈ Alint0,I , we can take for example
ηI = 1

|I|
∑

i∈I ηi ∈ Alint0,I . Similarly, we define P−I = P−η for η ∈ Alint0,I . In both cases the Levi

decomposition P±I = LIU
±
I (2.3) is independent of the choice of η.

The group P{0,...,r} can be described as follows. Let B ⊂ G be a Borel subgroup. Define
a subgroup scheme B ⊂ LG by B(R) = {γ(z) ∈ L+G(R)|γ(0) ∈ B(R)}. If η is a point in
the interior of Al0, such as 1

r+1

∑
i ηi then Pη = B. Similarly, we have B−(R) = {γ(z−1) ∈

L−G(R)|γ(0) ∈ B−(R)} where B− is the opposite Borel. The groups U and U− are the
respective subgroup which specialize at 0 to the unipotent subgroups U,U− of B,B−.

The Bruhat decomposition G = ∪w∈WU−wB generalizes to the Birkhoff factorization
[Kum02, pg.142] for Gaff

Gaff =
⊔

w∈Waff

U−wC× n B × C×c (2.4)

Of course this restrict to give a similar decomposition for LG and LnG. Also we have an
analogous group Gaff

poly where LG is replaced by LpolyG := G(C[z±]).

2.3 Representation Theory and Flag Varieties

Here we discuss a class projective representations of LnG that have similar properties to
highest weight representations of a semi simple group. These representations come from
honest representations of Gaff and are labeled by weights (n, λ,m) of the maximal torus
Tn × C×c ⊂ Gaff .

If ω1, . . . , ωr are the fundamental weights of G then the fundamental weights of Gaff

are ω0 = (0, 0, 1), (0, ω1, 1) . . . , (0, ωr, 1). A dominant weight is any weight of the form
n0ω0 +

∑r
i=1 ni(0, ωi, 1) with ni ≥ 0. A dominant weight is regular if all ni > 0.

Associated to any dominant weight (0, λ, l) is a representation V (0, λ, l) of the group
Gaff (C). The representation V (0, λ, n) is infinite dimensional but decomposes under Tn×C×c
into a direct sum of 1-dimensional weight spaces V (0, λ, l) =

⊕
n,µ V(n,µ,l). Any vector in

v(0,λ,l) is called a highest weight.
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The level of the representation is the integer l. We define an ind-variety structure on
V (0, λ, l) as follows. Set Vk = ⊕µ∈hom(T,C×)V(k,µ,l) then only finitely many ⊕µV(k,µ,l) are non
zero and V≤k = ⊕n≤kVn is a finite dimensional vector space and V = ∪kV≤k.

The representation V (0, λ, n) has the following properties. Recall the ηi are the vertices
of Al0.

Proposition 2.3.1. Set (0, λ, l) = n0(0, 0, 1) +
∑r

i=1 ni(0, ωi, 1) and η =
∑r

i=0 niηi. Let
P = P (η) and V = V (0, λ, l). Let Z(Gaff ) denote the center of Gaff . Then

(a) If (n, µ, l) is any other wight of L then λ− µ is a sum of positive roots.

(b) If (0, λ, l) is regular then (0, λ, l)− αi is a weight of V for all i.

(c) The stabilizer of the weight space V(0,λ,l) in PV is P .

(d) If (0, λ, l) is regular then P = B.

(e) The morphism LG
/
P → P(V ) given by γP 7→ γVλ is injective and gives LG

/
P the

structure of a projective ind variety; in particular LG
/
P is closed in P(V ).

(f) The action of Gaff on P(V ) factors through a faithful action of Gaff
/
Z(Gaff ) =

LnG/Z(G).

(g) For any V ′ ⊂ V with dimV ′ < ∞ and any Pηi there is a finite dimensional Pηi-
representation W ⊃ V ′ and a normal subgroup N ⊂ Pηi such that Pηi/N is a finite
dimensional algebraic group, N acts trivially on W and the induced action P/N×W →
W is a morphism of schemes.

(h) The induced representation U− × V → V is a morphism of ind-schemes.

Proof. All of these results are proven in [Kum02]. For (a)-(b) see [Kum02, 2.2.1]; for (c) -
(e) see [Kum02, 7.1.2]; for (f) see [Kum02, 13.2.8]; for (g) see [Kum02, 4.4.22,6.2.3].

We now recall some algebraic properties of action of LG on PV for V = V (0, λ, l) from
[BL94b]. For any field k let Aff/k denote the site of k-algebras equipped with the fppf -
topology. In [BL94b], a k-space is defined as a sheaf of sets on Aff/C and a k-group is
defined as a sheaf of groups. A morphism between k-spaces F → G is a map of sheaves.
The category of schemes over k forms a full subcategory of the category of k-spaces.

If G is defined over k then LG is a k-group. If V is a vector space over k then we
can consider V as a k-space via V (R) := V ⊗k R. Another k-space is End(V )(R) :=
EndR(V ⊗k R) the latter being the set of R-module endormorphisms of V (R). The k-
space End(V ) has a monoid structure and the taking the group of units gives a k-group
GL(V ). The k-group PGL(V ) is the quotient GL(V )/Gm by the scaling action. Ind-schemes
Y = ∪iYi are another source of k-spaces with Y (R) = ∪iYi(R). If the vector space V has
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the structure of an ind-scheme V = ∪iVi with each Vi a vector space then we can form the
ind-scheme PV = ∪iPVi.

One more example that appears in the proof of proposition 2.3.2 comes from Lie alge-
bra. If H is a k-group and R is a k-algebra then we can can define k-space Lie(H)(R) =
ker(H(R[ε]/ε2)→ H(R)).

We now return to working over C although it is enough to be over an algebraically
closed field of characteristic 0. In [BL94b, appendix 7] it is shown that the representations
V = V (0, λ, l) of Gaff are algebraic representations in the sense that there is a morphism of
C-groups LG→ PGL(V ). The action map PGL(V )×PV → PV is a morphism of C-spaces
hence gives a morphism of LG×PV → PV . For each k ≥ 0 this restrict to a morphism of C-
spaces (LG)k×PV≤k → PV and because if S is a scheme then hom(S,∪iXi) = ∪i hom(S,Xi),
it follows that LG× PV → PV is a morphism of ind-schemes.

We now discuss a dual representation. For V as above define a C-space PV ∗ as follows.
If R is a C-algebra then

PV ∗(R) = {V ⊗C R
φ−→ L → 0|L is a projective R module}/ ∼ (2.5)

and the equivalence relation ∼ is such that two quotients L,L′ are equivalent if they are
isomorphic. Then PV ∗ is a scheme, in fact setting SV = ∪kSym∗(V≤k) then PV ∗ is isomorphic
to Proj SV .

If R is a C-algebra and g ∈ PGL(V )(R) then g determines an equivalence class of
elements in GL(V )(R). More precisely there is a faithfully flat extension R → R′ and an
element g′ ∈ GL(V )(R′) such that for R′′ = R′⊗R R′ the two different pull backs of g′′1 , g

′′
2 ∈

GL(V )(R′′) differ by an element of Gm(R′′). If (L, φ) ∈ PV ∗(R) let (L⊗R R′, φ′) ∈ PV ∗(R′)
denote the pullback then from the diagram

V ⊗C R
′ (g′)−1−−−→ V ⊗C R

′ φ′−→ L⊗R R′

we obtain the an element (L ⊗R R′, φ′ ◦ (g′)−1) ∈ PV ∗(R′). The two different pull backs
(L⊗RR′′, φ′′◦(g′′i )−1) represent the same element in PV ∗(R′′) and thus determine an element
denoted (L, φ ◦ g−1) of PV ∗(R).

Thus we have a morphism of C-spaces PGL(V ) × PV ∗ → PV ∗ which determines a
morphism of ind-schemes LG × PV ∗ → PV ∗ where PV ∗ is given the trivial ind-scheme
structure.

Remark that one could define a dual of V as
∏

k V
∗
k and worked with the C-space R 7→∏

k Vk ⊗C R and considered the projectivization as the C-space R 7→ the set of rank 1
projective R-modules of

∏
k Vk ⊗C R such that the quotient is projective. This gives a

different C-space than PV ∗ and the group GL(V ) does not act on it; this is a consequence
of the fact that tensor products do not commute with inverse limits. Nevertheless PV ∗(C)
is the set of lines in

∏
k V
∗
k .

In the case of the representation V , the orbit of the highest determines a morphism of
ind-schemes LG/P → PV which is a closed embedding. To study the boundary of the
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embedding of LnG/Z(G) we need to establish a similar result for the orbit of the lowest
weight in PV ∗. Recall the definition of ηi in example 4.

The precise statement is

Proposition 2.3.2. Let (0, λ, l) = n0ω0 +
∑r

i=1 ni(0, ωi, 1) be a dominant weight. Set η =∑r
i=0 ηi and P− = P−η and V = V (0, λ, l) and [v∗] the class of a lowest weight vector in

PV ∗(C). The restriction of LG×PV ∗ → PV ∗ to LG× v∗ factors through LG/P− and gives
a closed embedding of LG/P− in PV ∗.

Proof. We must show 1) the stabilizer of [v∗] in LG(C) is P−, 2) the induced map LG/P− →
PV ∗ is injective on tangent spaces and 3) LG/P− is closed in PV ∗.

The Lie algebra Lie(Stab([v∗])) is the completion of the sub algebra s which is contained
in g ⊗ C[z±]. Under the involution of g ⊗ C[z±] that sends a root space to it’s negative, s
corresponds to the Lie algebra of a parahoric subgroup of LpolyG determined by a subset
I ⊂ {0, . . . , r} [Kum02, 6.1.10]. Under the aforementioned involution Pη 7→ P−η. Further
PI = Pη and if follows that Stab([v∗]) = P−η.

For 2) we observe LG acts transitively on LG/P− so it is enough to check the condition at
the identity. The tangent space of LG/P− is readily identified with Lie(Uη) where Pη = LηUη
is the Levi factorization and the injectivity of this map follow because each root subgroup
of Uη acts non trivially on [v∗].

For 3) we need to study the C((t)) points LG/P− and show any points which extends to
C[[t]] point in PV ∗ actually lands in LG/P−. The proof utilizes a decomposition theorem
(WP is a subset of W aff determined by P , see the paragraph before proposition 2.3.3):

LG(C((t))) =
⊔

w∈W ′P

P−(C((t)))wU(C((t))),

which we prove in proposition 2.3.3. We first observe that LG → LG/P− is Zariski locally
trivial P−-bundle and so any C((t)) point γt of LG/P− can be lifted to LG. Then by the
factorization we can assume γt = wU(C((t))).

The C((t)) points [v∗] of PV ∗ is represented by projection onto the highest weight space

V(0,λ,l), that is by the class of the projection V ⊗C C((t))
v∗−→ V(0,λ,L)⊗C C((t)) ∼= C((t)). The

vector [v∗w] corresponds to the composition V ⊗CC((t))
w−→ V ⊗CC((t))

v∗−→. By the previous
paragraph we are reduced to studying the U(C((t)) orbit of [v∗w].

Assume first γt = exp f(t)Xα with f(t) ∈ C((t))[[z]]. Then γt is an infinite product
of exp fn(t)znXα where fn(t) ∈ C((t)) and n ≥ 0.The action exp fn(t)znXα is determined
by the Lie algebra action of fn(t)znXα on [v∗w]. We note znXα, z

−nX−α generate a Lie

algebra sn,α isomorphic to sl2 in the central extension L̃g = Lg ⊕ Cc of Lg where all the
Lie algebras in question are being considered as C-spaces. The Cartan is spanned by the
element [znXα, z

−nX−α] = Hα + nc which we identify with a co-character (0, α∨, n) of T aff ;

see [Kum02, pg.483,eq.(2)] for Lie algebra structure on the L̃g.
The T aff weight space [v∗w] has a weight of the form (m,−λ + β,−l) with m ≥ 0

and β a sum of positive roots of g. Then the vector v∗wz−nX−α has a weight of the form
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(m− n, λ+ β − α,−l). Thus for sufficiently large n the action must be trivial and v∗w will
generate an irreducible representation of sn,α of lowest weight 〈(m,λ + β,−l), (0, α∨, n)〉 =
λ(α∨) + β(α∨) − ln =: λn,α,w which we denote V (λn,α,w). From sl2 representation theory if
vn,α,w is a highest weight vector in V (λn,α,w) then v∗w(exp fznXα)vn,α,w = f i where i is the
highest power such that (znXα)i 6= 0 on V (λn,α,w). The value i increases linearly in n.

Now a C((t)) point of PV ∗ is linear map V ⊗C C((t))
φ−→ C((t)) and it extends to C[[t]]

exactly when there is u ∈ C((t)) − 0 such that the restriction of φ ◦ u to V ⊗C C[[t]] lies in
C[[t]] where u denotes the automorphism of V ⊗C C((t)) that scales by u; it is enough to
consider units of the form u = tj.

Recall γt = exp f(t)Xα with f(t) =
∑

i fi(t)z
i, suppose for infinitely many i that fi(t) ∈

C((t))−C[[t]]. Then for any fixed j there is a sufficiently large n such that v∗wγtvn,α,w = (fn)i

with i > j. It follows that in order for γt to extend to a C[[t]] point only finitely many fi(t)
can be in C((t)) − C[[t]]. This is also sufficient because then γt can be factored into a
product γt = γt,1γt,2 with γt,1 mapping into the projective ind-variety LG/(P−∩LpolyG) and
γt,2 ∈ U(C[[t]]). Indeed γt,1 extends to a C[[t]] so by translating on the left by an element of
P−(C((t))) we get that γt,1 becomes a C[[t]] valued loop and conclude the same for γt. In
particular the extension to the C[[t]] point lies in LG/P− as desired.

For general γt the same argument applies because for any fixed n an arbitrary element
of U(C((t))) can be written as γ1γ2 where γ1is generated by elements exp ziXα with i < n
and γ2 is generated by elements of the form exp zjXα with j ≥ n.

Now we prove a decomposition theorem for LG(C((t))):

Proposition 2.3.3. Set K = C((t)). Let I ⊂ {0, . . . , r} and P−I , PI ⊂ LG be the parahoric
subgroup defined in example 4 with Levi factorization PI = LIUI , P

−
I = LIU

−
I (2.3). Then

LG(K) =
⋃

w∈Waff

U−(K)wPI(K) =
⊔

w∈Waff

P−I (K)wU(K) (2.6)

In particular, for I = {0, . . . , r} we have

LG(K) =
⋃

w∈Waff

U−(K)wT (K)U(K)

Remark 1. When K = C a stronger result [Kum02, 6.2.8] is proved using the axioms of a
refined Tits system [Kum02, 5.2] and the representations V = V (0, λ, l) of LG(C). Namely,
letting Ic = {0, . . . , r}\I one can identify a subset W ′

Ic ⊂ W aff (see [Kum02, 1.3.17]) such
that the union of the first equality in (2.6) becomes disjoint when ranging over W ′

Ic .
In the case K = C((t)) the axioms of [Kum02, 5.2] can be verified using lemma 2.3.4

together with the fact that for any field k the group LG(k) is generated by exp rXα where
r ∈ k((z)) and α is a root of g and using the fact that the representations V are algebraic.
However, for our purposes we don’t need the union to be disjoint or to identify the subset
W ′
Ic so we present a more direct argument that allows us to easily deduce the second equality

in (2.6).
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The next lemma is used repeatedly in proving proposition 2.3.3. Recall that B = TU ⊂ G
is a Borel subgroup and U is the unipotent radical and B− = TU− is the opposite Borel
with opposite unipotent radical. The element ziXα generates a root space of Lg and for
w ∈ W aff let ziwXwα denote the root space corresponding to the W aff action on the roots.

Lemma 2.3.4. Let R be a C-algebra. For any fixed g ∈ U(R[z]) there is n ≥ 0 such that
g 6∈ ker(U(R[z])→ U(R[z]/zn)) and U(R[z]/zn)) embeds into a finite dimensional unipotent
group over R. Moreover U(R) is generated by exp rXα for α a root of g and consequently
U(R[z]/zn) is generated by exp rziXα for r ∈ R, i ≤ n.

For each fixed exp rziXα ∈ U(R[z]) and w ∈ W aff the element w exp rziXαw
−1 is either

in U(R[z]) or in U−(R[z]). Moreover, w exp rziXαw
−1 = exp rziwXwα and for sufficiently

large n the same holds over R[z]/zn. In particular, for each simple reflection s0, . . . , sr ∈
W aff we have si(αi) = −αi and all other positive roots of Lg are permuted by si.

Proof. The first statement is obvious. The second statement, as well as the statement
about being generated by exp rziXα follows because we can always choose a faithful finite
dimensional representation G ⊂ SL(V ) such that U maps into the group of upper triangular
matrices together with the fact that exp(R[z]/zn)Xα as a group over R is isomorphic to
(expRXα)n.

The final statement also follows from using an embedding G ⊂ SL(V ) and expanding
the exponential and using that ziXα and ziwXwα are nilpotent operators on V .

We remark that Xα0 = zX−θ where θ is the longest root of g.

proof of 2.3.3. Let γ ∈ LG(K). Choose an isomorphism ÔP1
K,0
∼= K[[z]]. Then we can use γ

as gluing data on the trivial bundle over SpecK[[z]] t SpecK[z−1]; as this is an fpqc cover
the element γ determines a G-bundle Eγ on P1

K . Moreover Eγ is trivial at the K-rational
point 0 ∈ P1. By [MS02, thm 4.3] we conclude that Eγ reduces to a T bundle. Further,
T (K[z±]) = T (C[z±])T (K) andT (C[z±]) = hom(C×, T ) hence

LG(K) =
⊔

µ∈hom(C×,T )

L−G(K)µ(z)L+G(K). (2.7)

Remark that hom(C×, T ) = W aff/W and P{0} = L+G and so the case I = {0} of the
proposition can readily be deduced from (2.7).

For any γ ∈ LG(K) let [γ] denote the double coset B−(K)γB(K). To obtain the case
I = {0, . . . , r} it suffices to show for any γ ∈ LG(K) there exists w ∈ W aff such that
[γ] = [w].

As L+G(K) = G(K)U(K) and similarly for L−G(K), by (2.7) we can assume [γ] =
[g1µ(z)g2] where gi ∈ G(K). Use the Bruhat decomposition for G(K) in the form G(K) =
tw∈WU−(K)wB−(K) and G(K) = tw∈WU−(K)wB(K) to write [g1µ(z)g2] = [w1u1µ(z)u2w2]
with wi ∈ W and ui ∈ U−(K).

By conjugation by µ(z), w1, lemma 2.3.4 and left multiplication by U−(K) we obtain
[w1u1µ(z)u2w2] = [uw1µ(z)w2] with u ∈ U(K) and moreover u is a finite product of elements
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of the form exp rziXα with α positive and i ≥ 0. The case I = {0, . . . , r} of the proposition
follows from lemma 2.3.5.

Now B ⊂ PI and B− ⊂ P−I for every I ⊂ {0, . . . , r} so the proposition follows in general
from the case I = {0, . . . , r}.

Lemma 2.3.5. Set uα(r) = exp rXα and u−α (r) = exp rX−α where α is a root of Lg and
r ∈ K. If w ∈ W aff and u is a finite product of uαi(r) for i = 0, . . . , r then [uw] = [w′] for
some w′ ∈ W aff .

Proof. We proceed by induction on the number factors in u. For the base case u = uαi(r)
observe that if w−1uw ∈ U(K) then evidently [uw] = [w] so we can assume w−1uw ∈ U−(K).
By appealing to lemma 2.3.4 we infer w admits a factorization w1sjw2 such that w−1

1 uw1 =
uαj(r) and w−1

2 u−αj(r)w2 ∈ U−(K). Then from r 6= 0 and the explicit factorization(
1 r
0 1

)(
0 −1
1 0

)
=

(
r −1
1 0

)
=

(
1 0

1/r 1

)(
r 0
0 1/r

)(
1 −1/r
0 1

)
we can factor uαj(r)sj = u−αj(1/r)tuαj(−1/r) where t ∈ T (K). Thus we obtain

[uw1sjw2] = [w1uαj
(r)sjw2] = [w1u

−
αj

(1/r)tuαj
(−1/r)w2]

= [u−
αi

(r)w1tuαj
(−1/r)w2] = [w1tuαj

(−1/r)w2]

= [w1tw2 ·w−1
2 uαj

(−1/r)w2] = [w1tw2] = [w1w2].

We note also that this base case also proves the result if u = uα(r) for α not necessarily a
simple root.

For the inductive step write u = uα(r)u′ where by the induction hypothesis we assume
[u′w] = [w′] with w′ ∈ W aff . In particular u′w = u1w

′b1 where u1 ∈ U−(K) and b1 ∈ B(K).
Then [uw] = [ui(r)u1w

′]. Further, the element ui(r)u1 lies in the minimal parabolic P−I de-
fined in example 4 with I the complement of {i} in {0, . . . , r}. We can express ui(r)u1 = u′1g
according to the Levi factorization P−I = U−I LI ; note also that U−I ⊂ U−. Then [ui(r)u1w

′] =
[u′1gw

′] = [gw′]. The group LI reductive with its adjoint being a rank 1 semi simple group.
By the Bruhat decomposition we can write g = u′′w′′v′′t′′ ∈ U−(K)W affU(K)T (K) such that
w′′v′′(w′′)−1 ∈ U(K). Then [gw′] = [u′′w′′v′′t′′w′] = [w′′v′′w′] = [w′′v′′(w′′)−1 · (w′′w′)] = [w′′′]
for some w′′′ ∈ W aff where the last equality follows from the base case.

Let V = V (0, λ, l) be a highest weight representation and let V = ∪kV≤k be it’s ind-
variety structure. Define the ind-varieties Endfin(V ) = ∪kEnd(V≤k) and PEndfin(V ) =
∪kPEnd(V≤k). It is straightforward to see that LpolyG×LpolyG acts on PEndfin(V ). A final
lemma we utilize in proposition 2.4.4 is

Lemma 2.3.6. If Z ⊂ PEndfin(V ) is closed and LpolyG× LpolyG stable then [v ⊗ v∗] ∈ Z.
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Proof. Choose any point p ∈ Z(C) then p is a finite sum of weight vectors v′⊗w∗. By applying
various root subgroups Ga for positive and negative roots α we can eventually specialize from

v⊗w∗ to v⊗v∗. That is by taking limits of the form limt→0

(
1 1/t
0 1

)
[v′⊗w∗]

(
1 0

1/t 1

)
we eventually get [v ⊗ v∗].

2.4 The Embedding of LnG/Z(G)

Following the construction outlined in 2.1 of the wonderful compactification of Gad we must
now construct an analogue of PEnd(V ) for a representation V = V (0, λ, l) of Gaff .

After the proof of 2.3.1 we defined the notion of C-space and defined in particular C-
spaces End(V ), GL(V ), PGL(V ). For a C-algebra R the set End(V )(R) = EndR(VR) has
the structure of an R-module. The assignment

R 7→ {L ⊂ End(V )(R)|L is projective of rank 1 and the module End(V )(R)/L is projective}

defines a C space PEnd(V ).
There is an action of GL(V ) × GL(V ) on PEnd(V ) given by a morphism of C-spaces

GL(V )×GL(V )×PEnd(V )→ PEnd(V ) defined by left and right multiplication. Moreover
the restriction to the scalar action Gm × Gm ⊂ GL(V ) × GL(V ) is the trivial action hence
induces an action PGL(V ) × PGL(V ) × PEnd(V ) → PEnd(V ). By [BL94b, appendix 7],
for every representation V = V (0, λ, l) we have a morphism of C-space LG→ PGL(V ) and
hence an action LG× LG× PEnd(V )

a−→ PEnd(V ).
Let [id] ∈ PEnd(V )(C) be the class of id : V → V . Then the orbit of [id] yields a

morphism of C-spaces LG× LG a(−,−,[id])−−−−−−→ PEnd(V ). We show that LG× LG→ PEnd(V )
factors as LG× LG→ PEndind(V )→ PEnd(V ) where PEndind(V ) = ∪iPEndind(V )i is an
ind-scheme.

The action map LG× PV → PV is a morphism of ind-schemes and hence for any k ≥ 0
there is an integer n(k) such that (LG)k × PV≤k → PV≤n(k) is a morphism of schemes. Fix
k ≥ 0 then for i ≥ 0 we have a morphism of schemes

V≤k × (LG)i ⊂ V≤k+i × (Gaff )k+i → Vn(k+i). (2.8)

Observe also that for a C-algebra R and L ⊂ PEnd(V )(R) every φ ∈ L defines a homo-

morphism VR
φ−→ VR. With these observations in mind we define a sub C-space PEndind(V )i

by

PEndind(V )i(R) = {L ∈ PEnd(V )(R)|φ(V≤k,R) ⊂ V≤n(k+i),R∀k ≥ 0, φ ∈ L} (2.9)

The C-space PEndind(V )i is a scheme. In fact set Hi,j = hom(Vj, Vn(i+j)) and SE(V ),i =
∪j≥0Sym

∗(H∗i,j) where ∪j≥0 denotes the co-product of rings. Then one can verify that
PEndind(V )i = Proj SE(V ),i. We thus obtain an ind-scheme PEndind(V ) = ∪iPEndind(V )i ⊂
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PEnd(V ). By (2.8) the morphism a(−,−, [id]) : LG × LG → PEnd(V ) factors through
PEndind(V ).

We now identify the image of a(−,−, [id]) with LG/Z(G) where Z(G) is the center of
G. For this we make a few definitions. Let v be a highest weight vector in V and v∗

the dual vector in V ∗. Then the classes [v] ∈ PV, [v∗] ∈ PV ∗ and [v ⊗ v∗] ∈ PEndind(V )
define a section of a line bundle and the nonvanishing of this section define open affine sub
(ind)-scheme P[v]V ⊂ PV , P[v∗]V

∗, P[v⊗v∗]End
ind(V ).

There is a morphism πv : P[v⊗v∗]End
ind(V ) → P[v]V given by φ 7→ φ(v). Similarly there

is a morphism πv∗ : P[v⊗v∗]End
ind(V )→ P[v∗]V

∗ given by φ 7→ v∗ ◦ φ.

Lemma 2.4.1. Suppose V = V (0, λ, l) with (0, λ, l) a dominant weight. The restriction of
a(−,−, [id]) to U ×U maps to a closed sub ind-scheme of P[v⊗v∗]End

ind(V ) isomorphic to U
where the latter is given the trivial ind-scheme structure. The restriction of a(−,−, [id]) to
U− × U− maps to a closed sub ind-scheme of P[v⊗v∗]End

ind(V ) isomorphic to U−.

Proof. Assume first (0, λ, l) is a regular dominant weight. Let Ga ⊂ U be a root subgroup
corresponding to a positive root α. Then Ga acts nilpotently and nontrivially on v∗ and
consequently gives a closed embedding Ga ⊂ P[v∗]V

∗. As U is generated by these root
subgroups it follows that we obtain a closed embedding U ⊂ P[v∗]V

∗. By the same argument
applied to any other weight vector v ∈ V ∗ we conclude that U × U maps onto a closed sub

ind scheme ZU of P[v⊗v∗]End
ind(V ). We claim U a(−,id,[id])−−−−−−→ ZU is an isomorphism; indeed the

map πv∗ defined before the lemma gives an inverse. The same argument works for U− with
πv playing the role of πv∗ .

For general dominant (0, λ, l) the same argument gives a closed sub ind scheme ZU ⊂
P[v⊗v∗]End

ind(V ) but there may be finitely many root subgroups Ga ⊂ U that act trivially on
[v∗] so πv∗ may not give an inverse. The problem comes from Ga corresponding to α for which
〈(0, λ, l), α〉 = 0; but by general properties of the weight spaces of V (0, λ, l), see e.g. [Seg81,
9.3.7,9.3.8], for such α there is some nonzero weight µ of V ∗(0, λ, l) such that 〈µ, α〉 < 0 (
see also the end of the proof of 2.3.2). Therefore there is a finite number of weight vectors
v∗0 = v∗, v∗1, . . . , v

∗
m and analogous morphisms πv∗i : P[v⊗v∗]End

ind(V )→ P[v∗i ]V
∗ such that for

Ga ⊂ U act nil potently and nontrivially on some v∗i and
∏m

i=0 πv∗i : ZU →
∏m

i=0 P[v∗i ]V
∗ maps

isomorphically onto U . The same argument applies to U .

Assume V is as in the lemma then by the ind-scheme structure on V defined be-
fore proposition 2.3.1, we have that V0 is highest weight representation of G for a reg-

ular dominant weight λ and T × T
a(−,−,[idV0

])
−−−−−−−→ Pv⊗v∗End(V0) has locally closed image

Tad = T/Z(G) so the same holds for T × T a(−,−,[id])−−−−−−→ Pv⊗v∗Endind(V ). Further U−TU ⊂
LG is an open sub ind scheme and consequently U− × TadU

a(−,−,[id])−−−−−−→ P[v⊗v∗]End
ind(V )

maps isomorphically onto a locally closed sub ind-scheme Ω ⊂ P[v⊗v∗]End
ind(V ). Now as

LG/Z(G) = ∪g∈LG/Z(G)gU−TadU we obtain an isomorphism of ind-scheme LG/Z(G) onto



CHAPTER 2. THE WONDERFUL EMBEDDING OF THE LOOP GROUP 23

∪g∈LG/Z(G)gΩ ⊂ PEndind(V ). Clearly the map LG×LG a(−,−,[id])−−−−−−→ ∪g∈LG/Z(G)gΩ is onto and
so we have proved

Lemma 2.4.2. Let (0, λ, l) be a regular dominant weight of LG and V = V (0, λ, l). The
morphism a(−,−, [id]) maps LG× LG onto a locally closed sub ind-scheme of PEndind(V )
isomorphic to LG/Z(G). Moreover the morphism a(−,−, [id]) extends to LnG×LnG map-
ping onto a locally closed sub ind-scheme of PEndind(V ) isomorphic to LnG/Z(G).

Proof. We only need to check the second statement. This follows because the projective
representation V of LG comes from an actual representation of Gaff which is a central
extension 1→ Gm → Gaff → LnG→ 1. Therefore we also have a projective representation
of LnG.

The naive guess of using the ind-scheme structure V = ∪kV≤k to define the ind-scheme
∪kEnd(V≤k) is problematic because id 6∈ End(V≤k) ∀k.

Construction of Xaff

Mimicking a the construction in (2.2) we now construct an ind-scheme Xaff that contains
LnG/Z(G) as a dense open sub ind-scheme. Let Z(Gaff ) denote the center of Gaff ; the
quotient LnG/Z(G) is also Gaff

ad = Gaff/Z(Gaff ). To emphasize the parallel with the

wonderful compactification of Gad we use Gaff
ad over LnG/Z(G).

The construction depends on a regular dominant weight (0, λ, l) but we will prove that
Xaff is independent of (0, λ, l).

Construction 1. Let (0, λ, l) be a regular dominant weight of LnG and let V = V (0, λ, l).
Lemma 2.4.2 gives an embedding of ind-schemes Gaff

ad = LnG/Z(G) ⊂ PEndind(V ). In

particular for every k ≥ 0 we have a locally closed embedding (Gaff
ad )k = C× × (LG)k ⊂

PEndind(V )n(k). Define

Xaff
k = (Gaff

ad )k ⊂ PEndind(V )n(k)

Xaff = ∪kXaff
k

(2.10)

Recall the definition of the affine ind-scheme P[v⊗v∗]End(V ) before lemma 2.4.1. Define

Xaff
0,k = Xaff

k ∩ P[v⊗v∗]End
ind(V )n(k)

Xaff
0 = ∪kXaff

0,k

(2.11)

The main theorem we prove is theorem 2.4.3. First let us mention a few technicalities.
In the statement we mention Cartier divisors; we remark that for infinite dimensional object
the notion of codimension is potentially problematic and the same goes for Weil divisors.
However line bundles and Cartier divisors still make sense. Finally, the ind-scheme LG is
not the union of smooth schemes [FGT08, 5.4]. However LG is formally smooth: if R is a C
algebra and I is a nilpotent ideal then any R/I point of LG lifts to an R point. As such we
can at most ask for embeddings of that are formally smooth.
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In out development we work with the group LnG and it’s quotient LnG/Z(G) which
is the group that actually embeds. However we note that Gaff

ad = LnG/Z(G) and one can

replace LnG and LnG/Z(G) with Gaff and Gaff
ad which makes the analogy between the

wonderful compactification of Gad slightly stronger.

Theorem 2.4.3. Let G be a simple, connected and simply connected group over C and set
r = rk(G). The ind-scheme Xaff contains Gaff

ad as a dense open sub-ind scheme and further

(a) Xaff is formally smooth and independent of the choice of regular dominant weight
(0, λ, l).

(b) The boundary Xaff−LnG/Z(G) is a Cartier divisor with r+1 components D0, . . . , Dr.
The LnG× LnG orbits closures are in bijection with subsets I ⊂ {0, . . . , r} in such a
way that to I we associate ∩i∈IDi.

(c) Each Di is formally smooth and ∪ri=0Di is locally a product S × Z where S is an
ind-scheme and Z is the union of hyperplanes in Ar+1.

(d) Xaff − Xaff
0 is a Cartier divisor and with r + 1 components which freely generate

Pic(Xaff ).

Remark for that Chevellay’s theorem for constructible sets allows one to readily identify
homogeneous spaces G/H as subschemes of PW . The lack of a similar theorem that would
apply to LG and is one technical hurdle to circumvent. But with this in mind the proofs
of (a) - (c) follow closely the approach used for the wonderful compactificaiton of Gad. The
proof of (d) however is a bit more involved and we need to develop a series of intermediate
results before we can prove it.

Proposition 2.4.4. Xaff is an ind scheme containing Gaff
ad as a dense open sub ind-scheme.

Proof. That Gaff
ad is dense is clear. Observe that [v ⊗ v∗] ∈ LnG × LnG.[v ⊗ v∗] ∩ Xaff

0

and ∪γ1,γ2∈LnGγ1X
aff
0 γ2 is LnG × LnG stable and open. Therefore the complement Z of

∪γ1,γ2∈LnGγ1X
aff
0 γ2 is LnG × LnG stable and closed and [v ⊗ v∗] 6∈ Z(C). If p ∈ Z(C)

than for a generic 1-psg ρ : C× → Tn we have that limt→0 ρ(t)p ∈ Z(C) ∩ PEndfin(V ) but
then lemma 2.3.6 would imply that [v ⊗ v∗] ∈ Z(C), a contradiction. Therefore Xaff =
∪γ1,γ2∈LnGγ1X

aff
0 γ2. Thus to prove the proposition it suffices to show that Gaff

ad ∩ X
aff
0 is

open in Xaff
0 . This follows from proposition 2.4.6.

Let t−αi be the regular function on Tn
ad given by the character −αi. Let Tn

ad ⊂ Xaff be

the closure and Tn
ad,0 = Tn

ad ∩X
aff
0 .

Proposition 2.4.5. Tn
ad,0
∼= C[t−α0 , . . . , t−αr ] ∼= Ar+1. In particular Tn

ad,0 is smooth and

its fan is given by the negative Weyl alcove −Al0; the fan Tn
ad is given by the Weyl aclove

decomposition of tnR = Lie(Tn
ad)R.
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Proof. Let S be the set of nonzero weight spaces of V = V (0, λ, l). The image of Tn/Z(G)
in Xaff

0 is
∏

µ∈S t
µ−(0,λ,l). By proposition 2.3.1(b) we see that t−αi appear in this product

and more over by 2.3.1(a) all other terms in the product are monomials in t−αi . The first
statement follows.

The second statement follows because

Tn
ad = ∪w∈WaffwTn

ad,0w
−1

and −Al0 is a fundamental domain for the action of W aff on tnR.

The proof of proposition 2.4.6 is adapted from [BK05a, 6.1.7]

Proposition 2.4.6. There is an U × U− equivariant isomorphism

U− × U × Tn
ad,0

a−→Xaff
0

(l, u, t) 7→ l · t · u

Proof. First note that the restriction to U−×U×Tn
ad is just the multiplication map and this is

known to be open by the Birkhoff decomposition; consequently the morphism is birational.

By lemma 2.4.1, we have a morphism Xaff
0

(πv ,πv∗ )−−−−→ U− × U which is moreover U− × U
equivariant.

The composition U− × U × Tn
ad,0 → Xaff

0 → U− × U is given by (l, t, u) 7→ (l, u).

To finish we show U− × U− × (πv, πv∗)
−1(1, 1)

a−→ Xaff
0 is bijective and b−1(1, 1) = Tn

ad,0.

For injectivity note that as (πv, πv∗)
−1(1, 1) is a subset of Xaff

0 it suffices to show that if
p ∈ (πv, πv∗)

−1(1, 1) and lpu = l′pu′ then u = u′, l = l′. This follows

(l, u) = (πv, πv∗)lpu = (πv, πv∗)l
′pu′ = (l′, u′).

Now surjectivity. Let p ∈ Xaff
0 and (l, u) = (πv, πv∗)(p). Then t := (l−1, u−1).p ∈ b−1(1, 1),

hence (l, t, u) does the job.

It remains to show b−1(1, 1) = Tn
ad,0. Clearly we have ⊃ as (πv, πv∗)

−1 is closed and
contains Tn

ad and as a is birartional it follows that they have the same dimension. Now
π0(LG) = π1(G) = 1. Further, the map G → G/Z(G) =: Gad induces a map LG → LGad;
the image is the connected component of the identity, in particular it is irreducible. It follows
that Xaff and Xaff

0 are irreducible hence so is Xaff
0 /U ×U− ∼= b−1(1, 1). Thus it must equal

Tn
ad,0

We can now prove (a)-(c) of theorem 2.4.3.

proof of theorem 2.4.3(a) - (c). Let (0, λ, l), (0, µ, l′) be two regular dominant weights and
denote Xaff

λ , Xaff
µ the respective embeddings associated to (0, λ, l), (0, µ, l′). Let Xaff

∆ be

the closure of ∆(LnG/Z(G)) in Xaff
λ ×Xaff

µ . The projection pλ : Xaff
∆ → Xaff

λ is equivariant

and proposition 2.4.6 implies Xaff
∆,0 := p−1

λ (Xaff
λ,0 ) ∼= U− · Tn

ad,0 · U ; that is, the restriction of
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pλ to Xaff
∆,0 is an isomorphism and therefore induces a LnG×LnG equivariant isomorphism

on ⋃
g∈LnG×LnG

g.Xaff
∆,0 = Xaff

∆ → Xaff
λ =

⋃
g∈LnG×LnG

g.Xaff
λ,0 .

This showsXaff is independent of the choice of regular dominant weight. Further U−, Tn
ad,0,U

are all formally smooth hence (a).
As the boundary Xaff − LnG/Z(G) is LnG(C) × LnG(C) stable it is enough to verify

(b) on Xaff
0 . Indeed once it holds over Xaff

0 we can establish it for Xaff by translating by
elements in LnG(C)× LnG(C). We have by proposition 2.4.6

Xaff − LnG/Z(G) ∩Xaff
0 = U− ×Hy × U

where Hydenotes the union of the hyperplanes in Tn
ad,0
∼= Ar+1. In fact this proves both (b)

and (c).

2.5 The proof of 2.4.3(d)

Orbit stratification

The final statement of the main theorem 2.4.3(d) is proved in proposition 2.5.10. Unfortu-
nately the proof is long and technical requiring many intermediate results. Here we begin
with two 2.5.1, 2.5.2 related to the orbits in Xaff . We also present corollary 2.5.3 which
provides another strong analogy between Xaff and the classical wonderful compactification
of an adjoint group. Further 2.5.3 will play an important role when the moduli of G-bundles
is discussed.

Fix a subset I ⊂ {0, . . . , r}. Let PI = LIUI and P−I = LIU
−
I be the parahoric subgroups

with Levi decomposition described in example 4. Let Z(LI) ⊂ LI denote the center and
LI,ad = LI/Z(LI) the adjoint group.

For any An let ei ∈ An(C) be the n-tuple with a 1 in the ith position and 0 elsewhere.

Let eI =
∑

i∈I ei ∈ T
n
ad,0
∼= Ar+1.

Lemma 2.5.1. Let R be a C-algebra and identify eI ∈ Xaff (C) with it’s image in Xaff (R).
Let TI(R) = Z(LI)(R)×Z(LI)(R) and SI(R) = ∆(LI)(R)nUI(R)×U−I (R). Let StabR(eI)
denote the stabilizer of eI in LnG(R)×LnG(R). Then TI(R)SI(R) is a group and TI(R)SI(R) =
StabR(eI)

Proof. Let πI : PI = LI n UI → LI → LI,ad be the projection and define π−I : P−I → LI,ad
similarly. The first statement follows because we can identify TI(R)SI(R) = {(g1, g2) ∈
PI × P−I |π

−
I (g1) = πI(g2)} which defines a subgroup of P−I × PI .

We first show TI(R)SI(R) ⊂ StabR(eI). That T (J) is in the stabilizer follows from the

description of Tn
ad,0 given in the proof proposition 2.4.5 and the fact that Z(LJ) = ∩k 6∈J kerαk.

So let us focus on the group S(J).
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The group LnG×LnG and in particular the standard parabolic subgroups are generated
by the root subgroups U(α) ∼= Ga which it contains. So to check S(J) is in the stabilzer it
suffices to check it for the root subgroups it contains. These break up into two cases. Roots
subgroups of the form (U(α), 1) or (1, U(α)) and those of the form ∆(U(α)). We treat the
first case; the second case follows similarly

In the first case α is not a root of Lie(LJ) and we have that α = αi + α′ for some i 6∈ J .
It suffices to check that Xα.eJ = 0. Recall eJ is an idempotent of End(V (λ)) and we can
express eJ =

∑
j ej⊗e∗j where j ranges over some subset of the weights of the representation.

Therefore to show Xα.eJ = 0 it suffices to show Xα.ej = 0 ∀j. Assume that Xα.ej 6= 0 for
some j. The weight j has the property that λ−j ∈

∑
i∈J niαi with ni ≥ 0. But if eµ := Xα.ej

is not zero then it is a weight vector of weight µ = α + j. But then λ− µ fails to be a sum
of positive roots, contradiction.

To conclude that TI(R)SI(R) ⊂ StabR(eI) we first establish an intermediate result:
StabR(eI) ⊂ PI × P−I .

The action of LI(R) on v(0,λ,l) ⊂ VR = V (0, λ, l)R generates a finite dimensional LI(R)-
rep which we denote VI,R and moreover eI = id ∈ End(VI,C). Let m = dimVI,C). Set
V ′C = ∧mVC; this gives an in general reducible representation ofGaff (C) and ∧mVI,C generates
an irreducible representation V ′I,C. Consequently we have a well defined morphism

LnG× LnG
a(−,−,eI)−−−−−→ PEndind(V )

∧m−−→ PEndind(V ′) (2.12)

Further ∧meI = w⊗w∗ where w is a highest weight vector for V ′I and further that action of
X−αi acts trivially on w for i 6∈ I and nontrivially for i ∈ I and hence the stabilizer of w is
the parabolic PI . It follows that the stabilizer of ∧meI is PI ×P−I . It follows that the image
of a(−,−, eI) maps to PI\LnG× LnG/P−I and thus Stab(eI) ⊂ PI × P−I .

We have LnG×LnG/TI(R)SI(R)→ LnG×LnG/StabR(eI)→ PI\LnG×LnG/P−I and
these map both realize the first two terms as LI,ad-fibrations over PI\LnG×LnG/P−I hence
we must have TI(R)SI(R) = StabR(eI).

Lemma 2.5.2. The orbit of eI defines a sub ind-scheme Orb(I) ⊂ Xaff

Proof. In the proof of lemma 2.5.1 we identified a finite dimensional irreducible LI repre-
sentation VI such that eI = id ∈ End(VI). It readily follows that the LI × LI orbits of
[eI ] ∈ PEnd(VI) is isomorphic to LI,ad.

Let WI ⊂ PEndind(V ) be the open subset on which projection to PEnd(VI) is defined.
The inverse image of LI × LI .[eI ] in WI defines a subscheme we also OrbLI (eI). Set TLI =
T ∩ LI and let BLI = TLI n ULI ⊂ LI be a Borel subgroup. And ΩLI,ad = U−LITLI/Z(LI)ULI
the open cell in LI,ad.

As UI ⊂ U and U−I ⊂ U−, lemma 2.4.1 implies we U−I × UI :
a(−,−,[id])−−−−−−→ maps onto a

closed subscheme of WI and lemma 2.5.1 implies U−I ΩLI,adUI is a locally closed subscheme
of WI .

Moreover for every C-algebra R, the R points of U−I ΩLI,adUI is the inverse image in
LnG × LnG/TISI of the R points of the open sub ind-scheme U−I × UI ⊂ PI\LnG ×



CHAPTER 2. THE WONDERFUL EMBEDDING OF THE LOOP GROUP 28

LnG/P−I . Hence LnG × LnG/TISI acquires an ind scheme structure by realizing it as

the union ∪g1,g2∈LnGg1U
−
I ΩLI,adUIg2. It follows that the image of LnG×LnG

a(−,−,eI)−−−−−→ WI ⊂
PEndind(V ) is a sub ind-scheme isomorphic to LnG× LnG/TISI .

Corollary 2.5.3. Let Orb(I) ⊂ Xaff be the sub ind-scheme which is the orbit of eI defined
before lemma 2.5.1. Then Xaff =

⊔
I⊂{0,...,r}Orb(I). Moreover Orb(I) =

⊔
J⊃I Orb(J) and

if LI,ad is the wonderful compactification of LI,ad then Orb(I)
πI−→ PI\LnG× LnG/P−I is an

LI,ad fibration over PI\LnG× LnG/P−I .

Proof. From the equality Xaff = ∪γ1,γ2∈LnGγ1X
aff
0 γ−1

2 it follows that every LnG × LnG

orbit intersects Xaff
0 . Further from proposition 2.4.6 it follows that every LnG × LnG in

fact intersects Tn
ad,0. Hence LnG× LnG orbits form a subset of the Tn × Tn orbits in Tn

ad,0.
Representatives for the latter are the eI .

The parahorics PI , PJ ⊂ LnG are not conjugate for I 6= J hence eI , eJ lie in distinct
LnG × LnG orbits. Moreover eJ ⊂ Tn × Tn.eI exactly when J ⊃ I hence the claim about
Orb(I).

Further, for J ⊃ I we have PJ ⊂ PI and hence Stab(eJ) ⊂ PI × P−I and hence the

morphism Orb(I)→ PI\LnG×LnG/P−I extends to Orb(I). To conclude that the fibers are
the wonderful compactification one can note eI is the identity in End(V (λI)) for a regular
dominant weight λI of LI .

We end with a more refined description of the orbits. In addition to being used in the
proof of 2.4.3(d) we think the result is interesting in its own right.

Proposition 2.5.4. Let R = C or C((t)) and J ⊂ {0, . . . , r} and eJ ⊂ Xaff (R) as in lemma
2.5.1. Let WJ denote the Weyl group of the Levi factor LJ ⊂ PJ . Then

Orb(J)(R) =
⊔

(w1,w2)∈Waff/WJ×WJ\Waff

⊔
w3∈WJ

B−(R)w1.eJ .w3w2B(R)

Note when J = ∅ we get P±J = LJ = LnG and WJ = W aff and the disjoint union
becomes the usual Birkhoff decomposition. When J = {0, . . . , r} then PJ = B and P−J = B−
and WJ = 1 and the disjoint union becomes the stratification by Shubert cells of LnG/B ×
B−\LnG.

Proof. The given expression is stable under the action of B−(R)× B(R) and disjointness of
the expression is implied by the fact that B−(R)×B(R)∩W aff = 1. For p ∈ Orb(J)(R) let
[p] denote the B−(R)× B(R) class of p. To prove the result it suffices to show that for any
g1, g2 ∈ LnG(R) that [g1.eJ .g2] = [w1w3.eJ .w1] where wi are as in the statement.

By proposition 2.3.3, we can write gi = viwiliui ∈ U−J (R)W affLJ(R)UJ(R). This to-
gether with lemma 2.5.1 implies [g1.eJ .g2] = [w1l3.eJ .w2] for some l3 ∈ LJ(R) and moreover
we can substitute and w′1 ∈ w1WJ and w′2 ∈ WJw2 for wi. Let BLJ ⊂ LJ be a Borel subgroup,
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ULJ its unipotent radical and U−LJ the opposite radical. Applying the Bruhat decomposition
LJ = U−LJWJBLJ to l3 we get [w1l3.eJ .w2] = [w1v3.eJ .w3u3.w2] with v3w3u3 ∈ U−LJWJULJ .

We claim we can arrange for w−1
1 v3w1 ∈ U− and w−1

2 u3w2 ∈ U which implies [w1v3.eJ .w3u3.w2]
= [w1.eJ .w3w2].

The claim follows from the claim’: if w ∈ W aff and −αi is a negative root then w(−αi) is
a positive root↔ there exists an reduced expression w = si1 · · · si. To see that claim’ implies
the claim note that v3 can be expressed a finite product of root subgroups expX−αi

∼= Ga

with αi ∈ Lie(LJ) and the claim holds for v3 if it holds for each of these Ga. But by replacing
w1 with w′1 as described above we ensure there is not a reduced expression for w1 ending in
si and similarly for w2.

To prove claim’ note the ⇐ direction follows from [BK05a, pg.61]. By abuse of notation
let w denote a reduced word for w. If w′′ = wsi is not reduced then by the exchange property
for reflection groups we can find a reduced expression for w ending in si hence we must show
w′′ is not reduced. If it is reduced then w′′(−αi) is a positive root by the ⇐ direction. But
w′′(−αi) = w(αi) = −w(−αi) and w(−αi) was assumed to be positive, a contradiction.

Cartier Results

The next step towards proving theorem 2.4.3(d) requires developing some results about
divisors in LG and in Xaff .

Proposition 2.5.5. Both Xaff − LnG/Z(G) and Xaff −Xaff
0 consists of Cartier divisors

Proof. Let Di ⊂ Xaff − LnG/Z(G) be a component. It’s is evidently LnG × LnG stable
hence the Cartier condition is uniquely determined by Di|Xaff

0
as the LnG×LnG translates

cover Xaff . Recall t−αi is the ith coordinate function on Tn
ad,0 = Ar+1; let also t−αi denote

the pullback function to Xaff
0 then Di|Xaff

0
= {t−αi = 0}.

Let Fi denote the components of Xaff − Xaff
0 . Using proposition 2.5.4 (and other) we

conclude that Fi = U−siC× n B and hence the Fi are B− ×B stable. For w1, w2 ∈ W aff we
show Fi is Cartier on w1X

aff
0 w−1

2 and by 2.5.4 we be able to show that B−×B translates of
all of the w1X

aff
0 w−1

2 cover Xaff .
We have

w1X
aff
0 w−1

2 = w1U−w−1
1 w1T

n
ad,0w

−1
2 w2Uw−1

2

Further by [Kum02, pg.169(7),pg.227(1)] we have the decompositions as (ind)-schemes

w1U−w−1
1 =

(
w1U−w−1

1

⋂
U−
)
·
(
w1U−w−1

1

⋂
U
)

And moreover
(
w1U−w−1

1

⋂
U
) ∼= An1 is a finite dimensional unipotent group. A similar

statement holds for w2Uw−1
2 . And because Fi is preserved by B− × B it is enough to show

Fi|An1w1T
n
ad,0w

−1
2 An2

is Cartier which holds because this is a smooth finite dimensional variety.
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Finally, to see that the W be the union of all B−×B translates of all w1X
aff
0 w−1

2 . It is an
open sub ind-scheme of Xaff which by proposition 2.5.4 contains all the closed points. We
have Z = Xaff −W is closed, intersects some g1X

aff
0 g−1

2 and has no closed points. But the
latter is an affine ind-scheme hence so is Z ∩ g1X

aff
0 g−1

2 and any affine scheme has a closed
point hence Z = ∅.

Let si for i = 0, . . . , r denote the simple reflections in W aff . The product U−siB defines
a sub ind-scheme of LG and more over the closure Ei of U−siB in LG is given by

⊔
v≥si U

−vB
where ≥ is the Bruhat order on W aff , see [Kum02, 1.3.15].

In fact Ei is a Cartier divisor on LG. To see this let Pi be the maximal parahoric subgroup
defined in example 4. There is a highest weight representation V (i) with highest weight line
[v] ⊂ PV (i) such that Pi = Stab([v]). Let v∗ be the dual vector to v and then γ 7→ v∗(γv) is
a section of a line bundle on LG whose vanishing set is exactly Ei. By abuse of notation we
let Ei denote the Cartier divisors on LnG obtained by pullback.

Let Ei denote the closure of Ei in Xaff .

Lemma 2.5.6. For i = 0, . . . , r the Ei are B− × B stable and Xaff −Xaff
0 = ∪ri=0Ei.

Proof. From Ei =
⊔
v≥si U

−vB it follows that Ei is B−×B stable hence so is Ei. This together

with proposition 2.5.4 allows us to reduce p ∈ Xaff − Xaff
0 of the form p = w1.eJ .w2 for

eJ as in lemma 2.5.1 and wi ∈ W aff with w1w2 6= 1. There is a co-character η : C× → Tn

such that p = limt→0w1η(t)w2. Then p(t) = w1w2(w−1
2 η(t)w2) ∈ U−w1w2B ⊂ Ei for some i.

Hence p ∈ Ei for some i.

Proposition 2.5.7. For i = 0, . . . , r the sub ind-schemes Ei are Cartier divisors on Xaff .

Proof. We begin by showing Ei is Cartier on w1X
aff
0 w−1

2 for wi ∈ W aff . For any w ∈ W aff

lemma 2.3.4 implies that

wUw−1 =

(
wUw−1 ∩ U−

)
·
(
wUw−1 ∩ U

)
=: Nw ·N ′w (2.13)

wU−w−1 =

(
wU−w−1 ∩ U−

)
·
(
wU−w−1 ∩ U

)
=: Mw ·M ′

w. (2.14)

Note we also have U = M ′
wN

′
w and U− = MwNw and Nw,M

′
w are finite dimensional normal

schemes. As Ei is B− ×B stable it is in particular Mw ×N ′w stable. Using proposition 2.4.6
and the above decompositions we get

w1X
aff
0 w−1

2
∼= Mw1M

′
w1
w1T

n
ad,0w2Nw2N

′
w2

w1X
aff
0 w−1

2 ∩ Ei = w1X
aff
0 w−1

2 ∩ w1X
aff
0 w−1

2 ∩ Ei
Ei =

⊔
v≥si

Mw1Nw1vT
n
adM

′
w2
N ′w2
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Altogether we conclude that there is a projection w1X
aff
0 w−1

2
π−→ M ′

w1
w1T

n
ad,0w2Nw2 and

w1X
aff
0 w−1

2 ∩ Ei agrees with the pullback along π of M ′
w1
w1T

n
ad,0w2Nw2 ∩ Ei. The latter is

the closure of a Cartier divisor in a finite dimensional normal variety hence also Cartier.
This shows that Ei is Cartier on all the open sub ind-scheme of all B− × B translates of

all the w1X
aff
0 w−1

2 . We claim this is all of Xaff . If not then the complement Z is a closed
subscheme which by proposition 2.5.4 contains no closed point. However Z must intersect
some γ1X

aff
0 γ−1

2 for γi ∈ LnG(C). But this intersection defined a closed sub ind-scheme of
an affine ind-scheme which necessarily contains a closed point hence Z must be empty.

Remark using the map V → ∧mV in (2.12) one can easily obtain that some multiple of
Di is Cartier; however to show Di itself is Cartier we don’t know of a simpler argument.

The following result is crucial for proving theorem 2.4.3(d); the argument given below
was conveyed to me by Sharwan Kumar

Proposition 2.5.8. Pic(U−) = 0.

Proof. For any w ∈ W aff we have a Schubert variety BwB/B ⊂ LG/B; set U−w = U− ∩
BwB/B. In fact U− ⊂ LG/B and we get an ind-structure on U− =

⋃
n U−n where U−n =⋃

l(w)≤n U−w . We show Pic(Uw) = 0 for all w.

Fix w and abbreviate Y = U−w . For any k ∈ N we have a short exact sequence Z/k →
O∗Y

f 7→fk−−−→ O∗Y ; using that H1
et(Y,O∗Y ) ∼= Pic(Y ) and looking at the long exact sequence in

étale cohomology we get

· · · → H1
et(Y,Z/k)→ Pic(Y )→ Pic(Y )→ H2

et(Y,Z/k)→ · · ·

By the proof of [Kum02, 7.4.17], Y is contractible and becauseH∗et(−,Z/k) = H∗singular(−,Z/k)

it follows that the outer terms vanish and Pic(Y )
L7→L⊗k−−−−→ Pic(Y ) is an isomorphism for any

k. We now show Pic(Y ) is finitely generated and together with the previous statement it
will follow that Pic(Y ) = 0.

Y is a normal variety with dimY = l(w) so by [Ful98, 2.1.1] Pic(Y ) embeds in the
Chow group Pic(Y ) ⊂ Al(w)−1(Y ). So reduce to showing Al(w)−1(Y ) is finitely generated.
By [Ful98, 1.8] there is a surjection Al(w)−1(BwB/B) → Al(w)−1(Y ). By [Ful98, 19.1.11b]
Al(w)−1(Y ) = H2(l(w)−1)(BwB/B,Z) and finally the Bruhat decomposition implies the latter
group is finitely generated.

Corollary 2.5.9. Pic(U) = Pic(Pic(Tn
ad,0U) = Pic(Xaff

0 ) = 0

Proof. The group U is a pro-unipotent pro group [Kum02, 4.4]. In particular there is a family

F or normal subgroups N ⊂ U such that for N ∈ F the quotient U πN−→ U/N is a morphism
and U/N is a finite dimensional unipotent group. Moreover, the open sets π−1

N (W ) ⊂ U for
W ⊂ U/N open form a base for the topology of U .

Write U/N = SpecAN . If N,N ′ ∈ F then N ′′ = N∩N ′ ∈ F . Therefore we have injective
ring homomorphisms AN → AN ′′ and AN ′ → AN ′′ . In this way

⋃
N∈F AN inherits a ring

structure. We can present U = Spec
⋃
N∈F AN .
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Let L be a line bundle on U . We can trivialize L on finitely many affine open subschemes
and so L is determined by finitely many transition functions tij. Making the open sets
smaller we can tij to be defined on some π−1

N (W ). Let N ′ be the intersections of all N that
appear in this way. Then L is pulled back from a line bundle on SpecAN ′ and as AN is
polynomial ring we have Pic(SpecAN ′) = 0 hence Pic(U) = 0.

This immediately implies that Pic(Tn
ad,0U) = 0 as Tn

ad,0
∼= Ar+1.

By the previous proposition we Pic(U−n ) = 0. Writing U−n = SpecBn and replacing AN
with Bn ⊗ AN in the argument above allows us to conclude that Pic(U−n Tn

ad,0U) = 0 for all

n from which it follows that Pic(Xaff
0 ) = 0.

Proposition 2.5.10. Theorem 2.4.3(d) holds: Xaff − Xaff
0 is a Cartier divisor and with

r + 1 components which freely generate Pic(Xaff ).

Proof. Since for each n the components of Xaff
n − Xaff

0,n are Cartier and Pic(Xaff
0,n ) =

Pic(U−n Tn
ad,0U) = 0. We get that the components of Xaff

n −Xaff
0,n generate Pic(Xaff

n ).

A relation among these generators is a principal divisor (f) which is invertible on Xaff
0 .

As the boundary is B− ×B stable the function the values of f on Xaff
0 is determined by its

restriction to Tn
ad,0. It follows that f must be constant c and f − c is zero on a dense open

set hence there are no relations.

2.6 Polynomial Loop Group

We can establish a result analogous to theorem 2.4.3 for the polynomial loop group. In this
setting everything is easier. Fix a highest representation V = V (0, λ, l) = ⊕kVk. Define the
restricted dual V ∗res := ⊕V ∗k .

Recall for an integer k we use n(k) to indicate that (LG)k maps PV≤k into PV≤n(k)

Let R be a C-algebra. Define a C space V ∗ by the assignment R 7→ homR(VR, R) =: V ∗R.
Then every φ ∈ End(V )(R) defines a dual map φ∗ : V ∗R → V ∗R. Define aC-space Endres(V )
by

Endres(V )(R) = {φ ∈ End(V )(R)|φ∗(V ∗res,R) ⊂ V ∗res,R}

For each i define a sub C space Endpoly(V )i by

Endpoly(V )i(R) = {φ ∈ Endres(V )(R)|φ(V≤k,R) ⊂ V≤n(k+i),R and φ∗(V ∗≤k,R) ⊂ V ∗≤n(k+i),R}.
(2.15)

Then the R values points of these End spaces have R-module structures and we can form their
projectivizations by looking at rank 1 projective submodules that have projective quotients.
Moreover Endpoly(V )i is a scheme and id ∈ Endpoly(V )i for every i. Let PEndpoly(V ) be
the ind-scheme ∪iPEndpoly(V )iEnd

poly(V )i. Then the Ln
polyG × Ln

polyG orbits of [id] gives

an embedding of Ln
polyG/Z(G) in PEndpoly(V ). The ind-scheme structure on LpolyG comes

from choosing an embedding G→ SL(V ) and writing elements as finite sums
∑m

i=n aiz
i with

ai ∈ End(V ). Then (LpolyG)k is the scheme where the sums range from n = −k to m = k.
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Construction 2. Let (0, λ, l) be a regular dominant weight of LpolyG and let V = V (0, λ, l).
For every k ≥ 0 we have a locally closed embedding (Ln

polyG/Z(G))k = C× × (LpolyG)k ⊂
PEndpoly(V )n(k). Define

Xaff,poly
k = (Ln

polyG/Z(G))k ⊂ PEndpoly(V )n(k)

Xaff,poly = ∪kXaff,poly
k

(2.16)

Recall the definition of the affine ind-scheme P[v⊗v∗]End(V ) before lemma 2.4.1. Define

Xaff,poly
0,k = Xaff,poly

k ∩ P[v⊗v∗]End
ind(V )n(k)

Xaff,poly
0 = ∪kXaff,poly

0,k

(2.17)

Corollary 2.6.1. theorem 2.4.3 holds for G[z±] Let G be a simple, connected and simply
connected group over C and set r = rk(G). The ind-scheme Xaff contains Gaff

ad as a dense
open sub-ind scheme and further

(a) Xaff,poly is formally smooth and independent of the choice of regular dominant weight
(0, λ, l).

(b) The boundary Xaff,poly − Ln
polyG/Z(G) is a Cartier divisor with r + 1 components

D0, . . . , Dr. The Ln
polyG × Ln

polyG orbits closures are in bijection with subsets I ⊂
{0, . . . , r} in such a way that to I we associate ∩i∈IDi.

(c) Each Di is formally smooth and ∪ri=0Di is locally a product S × Z where S is an
ind-scheme and Z is the union of hyperplanes in Ar+1.

(d) Xaff,poly−Xaff,poly
0 is a Cartier divisor and with r+1 components which freely generate

Pic(Xaff ).

(e) Let Orb(I) ⊂ Xaff,poly be the sub ind-scheme which is the orbit of eI defined before
lemma 2.5.1. Then Xaff,poly =

⊔
I⊂{0,...,r}Orb(I). Moreover Orb(I) =

⊔
J⊃I Orb(J)

and if LI,ad is the wonderful compactification of LI,ad then Orb(I)
πI−→ PI\LnG ×

LnG/P−I is an LI,ad fibration over PI\Ln
polyG× Ln

polyG/P
−
I .

Proof. As LpolyG ⊂ LG and all the C-utilized above are sub C-spaces utilized to embed LnG
the proof of thm 2.4.3 and corollary 2.5.3 applies to Ln

polyG.

2.7 Stacky Modification

We would like to use the boundary ∂Xaff,poly = Xaff − LnG/Z(G) to study the moduli of
G-bundles on nodal curves. However to be able to establish results about about G-bundles
as opposed to Gad-bundles we need to make a technical modification.
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Here we work exclusively with the polynomial loop group and the polynomial embedding
Xaff,poly. By abuse of notation we use the same notation H ⊂ LG for a subgroup to denote
H ∩ LpolyG.

To be more precise from 2.6.1(e) we have that ∂Xaff,poly has r+ 1 components. And the
ith component Di fibers over Pi\LpolyG×LpolyG/P−i with fiber the wonderful compactifica-
tion Li,ad of a Levi factor Li of Pi.

In this section we construct and ind-stack ∂X aff
poly with r + 1 components such that the

ith component Di fibers over Pi\LpolyG×LpolyG/P−i with the fiber being a stacky compact-
ification of Li.

Remark 2. Even when G = Gad, as happens for G = E8 this construction is still needed
because there are maximal parahorics Pi ⊂ LpolyE8 that have Levi factors Li 6= Li,ad; specif-
ically A8, D8 appear among the Li.

Remark 3. For any semi simple G has a so called canonical embedding which is an equivariant
compactification of G. In general the canonical embedding is not smooth but it is smooth
for G = Sp2n. Thus for G = Sp2n we can take ∂X aff

poly to be and ind-scheme.

Brion and Kumar’s Toroidal compactification

This first step is to construct stacky compactification of semi simple groups. We do this by
modifying a construction of Brion and Kumar [BK05b, 6.2.4].

Remark 4. The construction here gives an alternative construction of stacky wonderful com-
pactifications of G of Johan and Martens [MTa]. Moreover we calculate the Picard group of
this compactification 2.7.3(b) which seems to be a new result.

Construction 3. Let σ be a cone with suppose in the negative Weyl chamber. To σ we
associate a quasi-projective G × G-equivariant embedding Y (σ) of G with an equivariant
map Y (σ)→ Gad = X.

The construction depends on a choice µ1, . . . , µm of generators for the dual cone ΛT ∩σ∨
and a choice of a regular dominant weight λ such that µi + λ are also regular dominant
weights. Consider the closure

G×G.[idλ ⊕i idλ+µi ] ⊂ P
(
End(V (λ))

⊕
i

End(V (λ+ µi))

)

and the rationalG×G-equivariant map pσ : P
(
End(V (λ))

⊕
iEnd(V (λ+µi))

)
99K P(End(V (λ))).

Let W be the maximal open subscheme on which pσ is defined. We set Y (σ, µi, λ) =
G×G.[idλ ⊕i idλ+µi ] ∩ p−1

σ (X); it is closed subscheme of W hence quasi-projective. Set
pσ,µi,λ : Y (σ, µi, λ)→ X be the restriction of pσ to Y (σ, µi, λ).

In the appendix to this section we show in lemma 2.7.4 that Y (σ, µi, λ) is does not depend
on the choice of µi, λ and we simply denote it as Y (σ) and similarly we write map to X

simply as Y (σ)
pσ−→ X.
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Construction 4. Let τ ⊂ σ be cones with support in the negative Weyl chamber. Then
σ∨ ⊂ τ∨. Let µ1, . . . , µm be generators for σ∨ ∩ ΛT and complete this set to a set of
generators µ1, . . . , µm, ν1, . . . , νn for τ∨ ∩ΛT . Choose a regular dominant weight λ according
to construction 3. The projection

P
(
End(V (λ))

⊕
i

End(V (λ+µi)
⊕
j

End(V (λ+νj))

)
99K P

(
End(V (λ))

⊕
i

End(V (λ+µi)
⊕
j

)

)
gives a map iτ,σ : Y (τ)→ Y (σ). This map is an open immersion: from proposition 2.1.3(d), it
suffices to check this on p−1

τ (X0) = U−T τU and here the morphism is determined by T τ → T σ
which is the open immersion determined by the morphism of toric varieties corresponding
to the inclusion of cones τ ⊂ σ.

Let σ1, σ2, σ3 be cones with support in the negative Weyl chamber such that τi,j :=
σi∩σj 6= ∅. Then the Y (σi) can be glued along Y (τi,j); that is, the maps φi,j = iτi,j ,σj ◦ i−1

τi,j ,σi

satisfy the co-cycle condition φ2,3 ◦ φ1,2 = φ1,3 where the domain of these functions is the
image of Y (σ1 ∩ σ2 ∩ σ3)→ Y (σ1). The same steps as in the previous paragraph reduce the
assertion to showing T σi can be glued together along T τi,j which follows from the general
theory of toric varieties.

Finally, for any fan Σ with support in the negative Weyl chamber we can glue together
all the embeddings Y (σ) for σ ⊂ Σ a cone and form an embedding Y (Σ) = ∪σ⊂ΣY (σ).

Let G be a connected reductive group. In [BK05a, 6.2], Brion and Kumar define a G-
embedding Y to be a normal G × G variety containing G = (G × G)/diag(G) as an open
orbit. They call X toroidal if the quotient map G → G/Z(G) = Gad extends to a map
Y → Gad =: X= the wonderful compactification of Gad. In fact, toroidal has a more general
definition in the theory of spherical varieties but we will not need this level of generality.

The embeddings Y (Σ) give examples of toroidal embeddings; in fact these are all of them:

Proposition 2.7.1. Let Y be a toroidal G-embedding and T ⊂ Y the associated toric variety.
Then the fan of T is of the form ∪w∈Ww ·Σ where W is the Weyl group and Σ is a fan with
support in the negative Weyl chamber and Y is G×G equivariantly isomorphic to Y (Σ).

Further, for each cone σ ⊂ Σ we have a morphism pσ : Y (σ) → X and a U− × U
equivariant isomorphism p−1

σ (X0) ∼= U− × U × T σ.

Proof. See [BK05a, 6.2.4]. For the last statement see lemma 2.7.4(a).

By a stack we mean a stack in the fpqc topology. We could work with the étale topology
in this section but the fpqc topology is needed to discuss moduli of bundles so for uniformity
we stick with the fpqc.

Using proposition 2.7.1 we construct a stack Y with an action of G×G containing G as a
dense open subscheme. In analogy with 2.7.1 the construction of Y will be determined by the
closure S = T in Y . In turn there is an open affine sub stack S0 such that S = ∪w∈WwSw−1.
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In fact S0 will be an affine toric stack as described in [GSa]. We use some notation
from [GSa] but we don’t need the full machinery of toric stacks to describe S0. Indeed
S0
∼= [Ar/Z(β)] where Z(β) is a finite group.
Let G be semi simple, T ⊂ G and fix an ordering α1, . . . , αr of the simple roots. The toric

stack S0 is a stacky resolution of the affine toric variety associated to the Weyl chamber C =
{v ∈ hom(C×, T )⊗Q|αi(v) ≥ 0}. Let u1, . . . , ur be generators of the rays of C∩hom(C×, T ).
Let ei ∈ Zr be the vector with 1 in the ith entry and 0 elsewhere. We get a morphism of
lattices

β : Zr ei 7→ui−−−→ hom(C×, T ). (2.18)

Noting that T ∼= hom(hom(T,C×),C×) we see β induces a morphism β : T ′ → T where

T ′ := hom(hom(Zr,Z),C×). Let Z(β) = ker(T ′
β−→ T ). Let Ar

b denote the affine toric variety
corresponding to the cone in hom(C×, T ′)⊗Q generated by ei. The map T ′ → T is surjective
and as dimT ′ = dimT it follows that Z(β) is finite.

Proposition 2.7.2. Let G be semi simple and T ⊂ G a maximal torus and C the Weyl
chamber. The affine toric variety corresponding to C is isomorphic to the GIT quotient
Ar
b//Z(β). When G = E8, Sp2n the toric variety Ar

b//Z(β) is smooth. Let (C×)r act on T×Ar
b

via (t, v)
u−→ (β(u)t, uv). Then there is an isomorphism of toric varieties (T ×Ar

b)//(C×)r ∼=
Ar
b//Z(β)

Proof. The first statement follows from the Cox construction of toric varieties [Cox95]. When
G = E8 the group Z(β) = 1 because E8 is an adjoint group. For G = Sp2n see [Hur, pg. 14].

For the final statement we construct an isomorphism from the associated coordinate rings.
The invariants in the coordinate ring C[Ar

b] are generated by monomial invariants. Let m be
such an invariant. Let ν be the weight by which T acts on m. Then ν−1 ⊗m is a monomial
invariant in C[T × Ar

b] for the action of (C×)r. This defines the required isomorphism.

Construction 5. Let G be a semi simple, connected, and simply connected group of rank r
and T a maximal torus. Set T ′ = (C×)r and let ei ∈ hom(C×, T ′) and β : hom(C×, T ′) →
hom(C×, T ) be as in (2.18) and β∗ : hom(T,C×) → hom(C×, T ′) the dual map. Set H =
T ′ ×G.

Let N ⊂ hom(C×, T ′) be the cone generated by the ei. So that the toric variety associated
to N is Ar

b with coordinate functions a1, . . . , ar ∈ hom(T ′,C×). Let C∆ ⊂ hom(C×, T ′) ⊗
Q⊕ hom(C×, T )⊗Q be the cone generated by all (v, β(v)) for v ∈ N . The dual cone is then
generated by (ai, 0) and (β∗(ω), ω) for ω ∈ hom(T,C×) and the toric variety T ′ × TC∆

∼=
Ar
b × T .

According to proposition 2.7.1 there is toroidal embedding Y (C∆) of T ′ ×G. Under the
left and right action of T ′ the diagonal ∆(T ) acts trivially so we identify T ′ with T ′×T ′/∆(T ′)
and we define an embedding of G as the global quotient

X = G = [Y (C∆)/T ′] (2.19)
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As the morphism Y (C∆)
pC∆−−→ X is T ′ × T ′ equivariant this morphism descends to X → X

which we abusively also denote by pC∆
. We denote by X0 the pre image of X0 under this

map.

Theorem 2.7.3. Let G be a semi simple, connected, simply conneted group and X as
in definition (2.19). Then:

(a) X is smooth and proper.

(b) X − X0 is of pure codimension 1 and we have an exact sequence

0→ Zr → Pic(X )→ hom(Z(β),C×)→ 0

where the subgroup Zr is generated by the irreducible components of X − X0.

(c) The boundary X − G consists of r divisors D1, . . . , Dr with simple normal crossings
and the closure of the G × G-orbits are in bijective correspondence with subsets I ⊂
{1, . . . , r} in such a way that to I we associate ∩i∈IDi.

Proof. By proposition 2.7.1 for pC∆
: Y (C∆) → X we have p−1

C∆
(X0) ∼= U− × Ar

b × T × U .
Thus we have

X0 :=[(U− × Ar
b × T × U)/T ′]

∼=U− × [(Ar
b × T )/T ′]× U

∼=U− × [Ar
b/Z(β)]× U.

As [Ar
b/Z(β)] is the quotient of a smooth scheme by a smooth group it is smooth and thus

X0 is smooth and its translates cover X
Further the map X0 → X0 is given by U− × [Ar

b/Z(β)]× U (id,f,id)−−−−→ U− × Tad,0 × U . The

map f is the composition [Ar
b/Z(β)] → T c

f ′−→ Tad,0 where T c is the course moduli space of
[Ar/Z(β)]. We will show f is affine and finite hence proper; this reduces to showing f ′ is
affine and finite; the first property is clear; finiteness follows because the roots of G are finite
index in the weights of G. We conclude that X is finite over the projective scheme X hence
(a).

Let Xc denote the coarse moduli space for X ; it comes with a surjection Xc
pc−→ X. To

prove (b) we use that Pic(X ) = Cl(Xc) where the latter denotes the Weil divisor class group;
this is shown in remark 3.4 of [GSb]. Let Xc,0 denote the coarse moduli space of X0. Then
Xc,0 = U− × Tc × U is affine and the complement is pure codimension 1 and we have an
exact sequence

Zr i−→ Cl(Xc)→ Cl(Xc,0) ∼= Cl(Tc). (2.20)

After tensoring (2.20) with Q we get a surjection Qr iQ−→ Pic(Xc)Q as Q is flat over Z. In
fact iQ must be an isomorphism and consequently i must be injective.
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Now Cl(Tc) = Pic([Ar/Z(β)]) and the latter is equal to the group of Z(β)-equivariant
line bundles on Ar. Any line bundle on Ar is trivial and an equivariant structure is uniquely
determined by an element of hom(Z(β),C×). Altogether this gives (b).

As the map X → X is G × G equivariant the statement about orbits follows from the
corresponding statement for X. That the boundary divisor has simple normal crossings is a
local question that can be checked on X0. Here it reduces to the boundary in [Ar

b/Z(β)] and
here the claim follows because it holds for the atlas Ar

b.

Appendix

Lemma 2.7.4. Let Y (σ, µi, λ)
pσ−→ X be as in construction 3. Let T σ be the toric variety

associated to the cone σ.

(a) T σ ⊂ Y (σ, µi, λ) and the action map U− × U × T σ → Y (σ, µi, λ) sending (u1, u2, t)→
u1tu

−1
2 maps isomorphically onto p−1

σ,µi,λ
(X0).

(b) If λ′ is another regular dominant weight such that λ′ + µi are all regular dominant
weights then there exists a G×G-equivariant isomorphism Y (σ, µi, λ)→ Y (σ, µi, λ

′).

(c) If ν1, . . . , νlΛT ∩σ∨ are generators and λ′′ is a regular dominant weight such that λ′′+νi
are regular dominant weights then there is a G×G equivariant isomorphism is another
choice of generators for ΛT ∩ σ∨ and λ′′ is Y (σ, µi, λ)→ Y (σ, νi, λ

′′).

Proof. The proof of (a) appears in the proof of [BK05a, 6.2.4]. For (b) define set Y∆ =
∆(G) ⊂ Y (σ, µi, λ)× Y (σ, µi, λ

′). Let pλ : Y∆ → Y (σ, µi, λ) be the projection and define pλ′
similarly. Then pλ, pλ′ are G×G equivariant.

Consider the product morphism Y (σ, µi, λ) × Y (σ, µi, λ
′)

f :=(pσ,µi,λ,pσ,µi,λ′
)

−−−−−−−−−−−→ X × X. We
have Y∆ ⊂ f−1(X) because the latter is closed and contains ∆(G) ⊂ Y (σ, µi, λ)×Y (σ, µi, λ

′).
We also have a commutative diagram

Y∆

pλ
��

f :=(pσ,µi,λ,pσ,µi,λ′
)
// ∆(X)

p1

��
Y (σ, µi, λ)

pσ,µi,λ // X

therefore p−1
λ (p−1

σ,µi,λ
(X0)) = f−1(p−1

1 (X0)) = f−1(∆(X0)). By (a) we can conclude p−1
λ (p−1

σ,µi,λ
(X0)) ⊂

∆(U−)× (T σ × T σ)×∆(U) but the only in the latter space that can belong to Y∆ are those
inside ∆(U−T σU).

Therefore pλ defines an isomorphism from p−1
λ (p−1

σ,µi,λ
(X0)) onto p−1

σ,µi,λ
(X0). Using equiv-

ariance and proposition 2.1.3(c) we conclude that pλ is a G × G equivariant isomorphism;
the same argument applies to pλ′ and together this shows (b).
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For part (c) we note that because the µi and the νi are both generators for σ∨ ∩ΛT then
expressing µi in terms of νi defines an isomorphism SpecC[µi] → SpecC[νi] = T σ. This
together with the argument for part (b) gives (c).

Henceforth we now will write pσ : Y (σ) → X for pσ,µi,λ : Y (σ, µi, λ) → X as we are only
concerned with the isomorphism class of Y (σ). The embeddings Y (σ) can be used to produce
embeddings Y (Σ) for any fan Σ with support in the negative Weyl chamber.

Stacky Modification for the loop group

For each i ∈ {0, . . . , r} we have the maximal parahoric Pi = Pηi ⊂ LpolyG with ηi defined
in example 4. Let Li ⊂ Pi be it’s Levi factor. Denote the 1 parameter subgroup generated
by ηi as ηi(C×) ⊂ Tn. The map 1× T ⊂ Tn → Tn/ηi(C×) is an isomorphism and defines a
maximal torus in Li.

Let Ci denote the Weyl chamber of Li and µi,j ∈ C∨i ∩ hom(T,C×) a list of generators.

Also let e1, . . . , er ∈ hom(T ′,C×) be the elements that define the map T ′
β−→ T from (2.18)

and β∗ : hom(T,C×)→ hom(T ′,C×) the associated dual map.
Remark that here we can actually work with V ⊗ V ∗ because we are starting at the

boundary and working with the polynomial loop group.
Observe for any ν ∈ hom(T ′,C×) and any regular dominant weight (0, λ, l) of LpolyG we

can form the representation Cν⊗V (0, λ, l). For notation convenience we denote End(V (0, λ, l)) =
E(λ, l) and End(Cν ⊗ V (0, λ, l)) = E(ν, λ, l).

Construction 6. Following construction 5 choose a regular dominant weight (0, λ, l) such that
for each µ ∈ F = ∪ri=0{µi,j} we have (0, λ+ µ, l) is a regular dominant weight.

We are going to define r + 1 elements [id(i)] of

P
(
End(λ, l)

r⊕
j=1

E(ej, λ, l)⊕ E(ej, λ, l)
⊕
µ∈F

E(β∗(λ+ µ), λ+ µ, l)

)
.

For each (0, λ + µ, l) let Vi(0, λ + µ, l) denote the finite dimensional Li representation
generated by the highest weight vector. For ν ∈ hom(T ′,C×) let idν,λ+µ

i denote the identity
in Cν ⊗ Vi(0, λ+ µ, l), write simply idλ+µ

i if ν = 0.
Let Fi ⊂ F be the union of {µi,j} and those µ ∈ S which are in the monoid generated

by the µi,j. Then we set [id(i)] = [idλi
⊕

id−ei,λi

⊕
j 6=i id

ej ,λ
i

⊕
µ∈Fi id

β∗(λ+µ),λ+µ
i ].

Let Orb′(i) be the T ′ × (Ln
polyG)× T ′ × (Ln

polyG) orbit closure of [id(i)]. Then set

Di = [Orb′(i)/T ′]

∂X aff,poly = [∪ri=0Orb
′(i)/T ′]

(2.21)

Remark 5. One is able to obtain a full embedding of LnG however the boundary will be
the same as the boundary of Xaff . The problem is that the base points [id(i)] are not
specializations of the identity.
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Theorem 2.7.5. Each Di is a formally smooth ind-stack. Each closed point p ∈ Di has
finite isotropy group. Further Di fibers over Pi\LpolyG × LpolyG/Pi and further X aff,poly

satisfies the valuative criterion for completeness.

Proof. By 2.6.1(e) Di contains an open substack isomorphic to the product of a formally
group and a smooth toric stack which has finite isotropy group. For each i the Li×Li orbit
closure of [id(i)] in Di is isomorphic to the compactification Li constructed in 2.7.3. Then by
2.6.1(e) again it follows that we have a morphism Di → Pi\LpolyG × LpolyG/Pi with fibers
the desired compactification.

To check the valuative criterion note any morphism SpecC[[t]]→ X aff,poly must map into
some Di and then the result follows because Pi\LpolyG×LpolyG/Pi is a projective ind-scheme
and Di is proper over Pi\LpolyG× LpolyG/Pi.

This result will be used in the next chapter.
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Chapter 3

Degeneration

This chapter is adapted from a pre-print.

3.1 Introduction

This paper introduces a moduli problem XG of G-bundles on twisted curves that “compacti-
fies” the moduli space of principal G-bundles on a family of smooth curves degenerating to a
nodal curve. More precisely, we show the moduli functor XG satisfies the valuative criterion
for completeness, which is a compactness statement for non separated spaces.

To motivate this problem we give a brief history of the subject starting with geometric
invariant theory. Fix two positive integers r, d. One of the first moduli problems which was
intensely studied using geometric invariant theory was the moduli spaceMr,d(C) of semistable
rank r vector bundles of degree d on a smooth curve C of genus g ≥ 2. Mumford showed
the locus of stable bundles is always a smooth quasi projective variety [NS64, Mum63].
Seshadri then showed in [Ses67] that including the semistable bundles always yields a normal
projective variety and hence a modular compactification when there are strictly semi stable
bundles (which can happen if (r, d) > 1).

In [Ram75], Ramanathan extended the notion of semistability to principal G-bundles;
there he also constructed moduli spaces for stable G-bundles on a curve. When G is semisim-
ple it was shown by Balaji, Seshadri [BS02] and Faltings in [Fal93] that there is a projective
coarse moduli space MG(C) of semistable G-bundles providing a modular compactification
of the moduli space of strictly stable bundles.

Interest increased in these moduli spaces after a 1994 result of Faltings (for G semisimple)
and Beauville, Lazlo (for G = SLn) regarding the global sections a particular line bundle L
on MG(C). The result states that H0(MG(C), L) coincides with the vector space of conformal
blocks appearing in conformal field theory. A crucial idea in establishing this result it to
work with the moduli stack MG(C) parametrizing all G-bundles on C. The stackMG(C) is
not proper but is complete which means it satisfies the existence (but not uniqueness) part
of the valuative criterion for properness.
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The connection with conformal field theory effectively computed the dimension ofH0(MG(C), L)
using a result called the Verlinde formula. The proof of the Verlinde involves degenerating
C to a nodal curve where computations are easier. The work of Faltings and Beauville,Lazlo
suggested, at the very least, of considering degenerations of both MG(C) and MG(C).

In fact the idea of degeneration had already proven useful a decade before in 1984, when
Gieseker had used degeneration techniques on M2,2n+1(C) to prove a conjecture of Newstead
and Ramanan [Gie84]. In 1993 Caporaso used Giesker’s approach to give a compactification
of the moduli space of C×-bundles over the moduli space of stable curves M g. Just a year
later, Pandharipande [Pan96] gave a compactification over M g of Mr,d using torsion free
sheaves. In 1996, Faltings [Fal96], used torsion free sheaves to give degenerations of Mr,d(C)
and MG(C) for G = SPr, Or. Then in the 1999 paper [NS99], Nagaraj and Seshadri extended
Gieseker’s approach to give a different degeneration for Mr,d(C).

One advantage of the Gieseker approach is that the resulting singularities are milder;
indeed the boundary of the degeneration (the locus not parameterizing GLr-bundles on the
original nodal curve) is a divisor with simple normal crossings [Ses00, §5]; in contrast the
singularities for the torsion free sheaf approach are worse [Fal96, sect. 3] (they are formally
smooth to the singularity at the zero matrices in the variety {XY = Y X = 0} with X, Y
square matrices). Nagaraj and Seshadri’s work seemed to solidify the Gieseker approach as
a standard alternative to using torsion free sheaves.

The remaining developments in this summary include mostly results using the Gieseker
approach. Let Mr,d be the moduli stack of rank r vector bundles of degree d and set
MGLr = td∈ZMr,d. In 2005, Kausz [Kau05a] provided a degeneration of MGLr(C) using a
compactification KGLr of GLr. In 2009, Tolland [Tol09], gave a Gieseker comapactification
for the moduli of C× bundles over M g,n. Recently, Martens and Thaddeus [MTa] gave
compactifications of arbitrary reductive groups using a Gieseker like approach to studying
degenerations of G bundles on genus 0 curves. On the other hand, Schmitt [Sch05] has
provided a torsion free sheaf approach for an arbitrary semisimple group G although it
should be noted that the approach depends on a non canonical embedding G→ SL(V ).

The contribution we make here is to offer a Gieseker-like degeneration for MG with G
a simple group. Let us now state the main theorem of this paper more precisely. Let S =
SpecC[[s]] and let CS be a projective curve over S such that the generic fiber CC((s)) is smooth
and the special fiber C0 is a nodal curve with a single node. Let G be a connected, simple
and simply connected algebraic group. We define a moduli stack XG(CS) parametrizing G-
bundles on what we call twisted modifications of CS. Then XG(CS) containsMG(CC((s))) as
an open substack and

Theorem 3.5.4. The stack XG(CS) satisfied the valuative criterion for completeness: let
R = C[[s]] and K = C((s)); for a finite extension K → K ′ let R′ denote the integral closure
of R in K ′. Given the right commutative square below, there is finite extension K → K ′ and
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a dotted arrow making the entire diagram commute:

SpecK ′ //

��

SpecK

��

h∗ // XG(CS)

��
SpecR′

h

44

// SpecR
f // S

The approach of this paper is to use the connection between loop groups and the moduli
of principal bundles on curves as well as the embedding of the loop group from Chapter 2.
Further, because we work with stacks, this approach works in all genus and works for both
reducible and irreducible nodal curves.

We now elaborate on the notion of a twisted modification. Specifically a twisted mod-

ification C ′S of CS is a curve over S with a map C ′ f−→ C such that if C∗S = CS\{p} with
p the node, then f−1(C∗S) → C∗S is an isomorphism and f−1(p) is [Rn/µk] where Rn is a
connected chain of P1s (see figure 3.1), µk is the group of kth roots of unity and the value of
k is determined by G. The stack XG(CS) parametrizes G-bundles on twisted modifications

��
�PPPP��

��

Figure 3.1: A chain of P1s of length 3.

C ′ of CS where the G-bundle has prescribed equivariant structure on the fixed points of the
µk action on f−1(p). We call such an object a twisted Gieseker bundle on CS.

The restriction of the G bundle to the chain [Rn/µk] is a µk equivariant G-bundle. The
use of equivariant G-bundles on chains is an idea introduced by Martens and Thaddeus in
[MTa]. In fact they worked with C×-equivariant bundles but both Martens and Thaddeus
had mentioned to me that they considered working with µk-equivariants and that it could
be a viable alternative.

At the same time I was lead to consider µk equivariant G-bundles for an entirely different

reason. Namely, under the base change S
s 7→sk−−−→ S, the standard genus 0 degeneration to a

node C[x, y, s]/(xy−s) becomes C[x, y, s]/(xy−sk) which can be identified with µk invariants
in C[u, v] where ζ ∈ µk acts by ζ(u, v) = (ζu, ζ−1v). This observation had been made and
used by both Faltings and Seshadri. The step taken here was to combine this observation
with equivariant bundles on chains to arrive at the definition of XG(CS). Finally, I relate the
geometry of XG(CS) to the geometry of the loop group embedding constructed in Chapter
2 to show the valuative criterion of completeness for XG(CS).

The basic idea for the proof of theorem 3.5.4 is as follows. Working in a neighborhood of
the node, the moduli space of G-bundles on these equivariant chains is naturally isomorphic
to a certain orbits closure ∂X aff,poly of the polynomial loop group from Chapter 2. This
allows one to show that the objects in XG(CS) degenerate in way that corresponds to a
LpolyG-orbit stratification of ∂X aff,poly and consequently deduce the completeness statement
form a corresponding completeness statement for ∂X aff,poly.
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The outline of the paper is as follows. Section 3 contains a discussion of some of the subtler
points about the moduli spaces MG andMG. It also contains some standard arguments used
throughout the paper. Section 4 develops results on G bundles on twisted curves. When C
is a fixed smooth curve there is some overlap with [VB]. We then proceed to a fixed nodal
curve with a single node, and then to fixed curve where the node has been replaced with a
µk equivariant chain. In section 5 we define precisely the moduli problem XG(CS) and prove
the main theorem.

3.2 Basic constructions, conventions and notation

Here we pin down conventions for various tools, construction and other notation used
throughout the paper. This is an attempt to delegate notation building here and have
the other sections focused on proving the main theorem.

Groups and Lie algebras

We use G to denote a simple, connected and simply connected algebraic group G over C and
T ⊂ G a maximal torus. Let g = Lie(G), t = Lie(T ) and let ∆ ⊂ t∗ be the roots so that
g = t⊕α∈∆ gα. Let ∆+ be a choice of positive roots so that ∆ = ∆+ ∪−∆+. Let r = dimT
and α1, . . . , αr denote an ordered choice of simple roots.

We have a parallel set of conventions for the loop group LG. As a functor, the loop
groups is defined on C-algebras via LG(R) := G(R((z))). Similarly, the polynomial loop
group is LpolyG(R) := G(R[z±]).

There is a strong parallel between LG and G which is best seen by introducing LnG :=
C× n LG or Ln

polyG := C× n LpolyG. The group structure is given by

(u1, γ1(z)) · (u2, γ2(z)) = (u1u2, u
−1
2 γ1(z)u2γ2(z))

u−1
2 γ1(z)u2 = γ1(u−1

2 z)

A maximal torus for LnG is C× × T for any maximal torus T ⊂ G. In sections 4,5
we work with LpolyG and it’s Lie algebra Lie(LpolyG) = g ⊗ C[z±] =: g[z±]. Define d by
Lie(C×× T ) = Cd⊕ t. We are now in a position to set up analogous root notation for g[z±]
and it is conventional to use the term affine to differentiate it from the notation for g. The
root spaces for g[z±] are of the form zigα and zjt. Let ∆aff ⊂ (Cd ⊕ t)∗ be the subset so
that

Cd⊕ g[z±] = Cd⊕ t
⊕

(n,α)∈∆aff

zngα.

Then the elements of ∆aff are called the affine roots. Let zi∆ stand for the roots of the
form (i, α) for α ∈ ∆. A choice of positive roots is ∆aff,+ = ∆+

⋃
i≥1 z

i∆ ∪ {(i, 0)}.
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Let θ denote the longest root in g. The simple roots for C×nLpolyG are (0, α1), . . . , (0, αr), (1,−θ).
All of this notation also applies to LnG = C×nLG. By abuse of notation we denote (0, αi)
with αi and set α0 = (1,−θ).

(Co-)Characters, Parabolic and Parahoric Subgroups

For any torus T we have the lattice of characters hom(T,C×) and co-characters hom(C×, T ).
Further, for (η, χ) ∈ hom(C×, T )× hom(T,C×) we set 〈η, χ〉 := χ ◦ η ∈ Z.

For T ⊂ G a maximal torus and for η ∈ hom(C×, T ) the set P (η) := {g ∈ G| limt→0 η(t)gη(t)−1 exists}
is a subgroup. A parabolic subgroup is any subgroup P ⊂ G conjugate to some P (η).

We can apply the same construction for η ∈ hom(C×,C××T ) to get a subgroup P (η) ⊂
LnG. A parahoric subgroup is any group conjugate to one of the P (η). By abuse of notation,
we use P (η) to denote its image under the projection LnG → LG. Parahoric subgroups of
LG are any subgroups conjugate to one of the P (η).

Parabolic and parahoric subgroups come with natural factorizations P (η) = L(η)U(η)
known as a Levi decomposition: L(η) = {g ∈ G| limt→0 η(t)gη(t)−1 = g} and U(η) = {g ∈
G| limt→0 η(t)gη(t)−1 = 1}. A simple is example comes from η0 : C× → C× × T defined by
η0(t) = (t, 1). Then η0(t)g(z)η0(t)−1 = g(tz) and P (η0) = G[[z]] = G(C[[z]]) =: L+G. The

Levi factorization is G ·N where N is the kernel of the map G[[z]]
z 7→0−−→ G.

By tQ we denote hom(C×, T ) ⊗Z Q. The Weyl chamber is defined as Ch := {η ∈
tQ|〈αi, η〉 ≥ 0}. It is a simplicial cone whose faces are given by {〈α, η〉 = 0|α ∈ I} for
subsets of I ⊂ {α1, . . . , αr}.

Similarly, we have the affine Weyl chamber Chaff = {η ∈ Q ⊕ tQ|〈αi, η〉 > 0}; now the
faces are in bijection with subsets {α0, . . . , αr}. It is convention to instead work with the
affine Weyl alcove Al := Chaff ∩ 1⊕ tQ = {η ∈ tQ|0 ≤ 〈αi, η〉, 〈θ, η〉 ≤ 1}. A face F of Al is
F ′ ∩ 1⊕ tQ where F ′ is a face of Chaff .

Any η ∈ Ch determines a fractional co-character C× → T but nevertheless a well defined
parabolic P (η). Any parabolic is conjugate to some P (η) and if η, η′ are in the interior of
the same face then P (η) = P (η′). Similarly any η ∈ Al determines a parahoric P (η) ⊂ LG.
Any parahoric is conjugate either to P (η) or to P (−η). Let Ale = {η ∈ Al|〈θ, η〉 = 1}. If
η ∈ Ale the resulting parahoric is called exotic. Alternatively, the inclusion {α1, . . . , αr} ⊂
{α0, . . . , αr} defines a map from faces of Ch to those of Al. The faces missed by Ch are
exactly those contained in Ale.

The exotic parahorics give rise to moduli spaces of torsors on curves which are not
isomorphic with moduli spaces of G-bundles. Informally then the exotic parahorics can be
viewed as geometry only visible to LG. Exotic parahorics are studied in depth in [VB]; there
they are called nonhyperspecial maximal parahoric subgroups.

The ordered simple roots {α0, α1, . . . , αr} determine ordered vertices {η0, . . . , ηr} deter-
mined by the conditions 〈ηi, αj〉 = 0 for i 6= j and 〈η0, α0〉 = 1. If we write θ =

∑r
i=1 niαi

and set n0 = 1 then one can check these condition can be expressed as

〈αi, ηj〉 =
1

ni
δi,j (3.1)
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Now for each I ⊂ {0, . . . , r} we define ηI =
∑

i∈I ηi. Then ηI lies in the face of Al
associated to the complement of I; if I = ∅ we take ηI to be the trivial co-character. Finally,
we set

PI = P (ηI) P−I = P (−ηI)
UI = U(ηI) U−I = U(−ηI)

LI = L(ηI) = L(−ηI)
(3.2)

One can check that PI = ∩i∈IP (ηi). It is sufficient to establish this at the level of Lie
algebras because P (η) is connected ∀η ( the map g 7→ limt→0 η(t)gη(t)−1 defines a retraction
onto the Levi factor which is connected). Returning to Lie algebras, we note the ⊃ direction
is routine to verify. Going the other way we have Lie(PI) is spanned by Cd ⊕ t and those
Xα for which 〈α, ηI〉 ≥ 0. It is suffices to work with α negative so that 0 ≥ 〈α, ηi〉∀i. Then
we have 0 ≥

∑
i∈I〈α, ηi〉 = 〈α, ηI〉 ≥ 0 which is only possible if each term is equal to 0; i.e.

Xα ∈ Lie(Pi)∀i ∈ I.

(Equivariant)-Bundles, Quotient Stacks and torsors

Let H be a linear algebraic group over C. A principal H-bundle over a base scheme B is
scheme P with a smooth map P → B such that any p ∈ B has an fppf neighborhood B′ such
that P ×B B′ ∼= B′ ×H. Because all of our group schemes are smooth we can equivalently
require local triviality in the étale topology but below we generally work on curves with fppf
covers coming from formal neighborhoods of points.

Given a scheme B equipped with an action of an algebraic group H we can form the
quotient stack [B/H]. By definition a morphism B′ → [B/H] is the data of a principal
H-bundle P over B′ together with an H-equvariant map P → B. Quotient stacks play a
prominent role in our use of twisted curves defined in the next section.

Given a base B with the action of a group Π an equivariant H-bundle on B is a bundle
P → B together with an action of Π making the following diagram commute

Π× P

��

// P

��
Π×B // B

(3.3)

Equivalently, or by definition, an equivariant H-bundle is a H-bundle on [B/Π]. For b ∈ B
let Πb denote the stabilizer of b in Π. Then the above diagram produces an action of Πb on
the fiber of P over b. The action is determined by a representation ρ : Πb → H. In general
we summarize this situation by saying that the equivariant structure of P at b is given by ρ.

Let G be a connected, simply connected simple group over C. The basic source of
equivariant bundles in this paper are G-bundle on [SpecC[[z]]/µk] where ζ ∈ µk acts by
z 7→ ζz. Any G-bundle on SpecC[[z]] is trivial and so an equivariant bundle is determined
by its equivariant structure µk → G at the closed point of SpecC[[z]].

We also utilize torsors for a sheaf of groups G. In general, given a curve C and a sheaf
of groups G on C we define a G-torsor to be a sheaf of sets F on C together with a right
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action of G such that (1) there is a fppf cover {Ci → C} such that F(Ci) 6= ∅ and (2) the
action map G × F → F ×F is an isomorphism.

Given G as above, we can form the sheaf U 7→ homsch(U,G) =: Gstd(U). Generally our
sheafs of groups agree with Gstd on an open set U ⊂ C but in general have more intricate
behavior C\U . Torsors for Gstd can be identified with G bundles and so the notion is most
relevant when working with a sheaf of groups G 6= Gstd; we often write simply torsor to
indicate a torsor for a sheaf of groups G 6= Gstd to be specified later. Examples of torsors are
given in 3.3.

Conventions on Curves

Generally we work over SpecC and a scheme will mean a scheme over SpecC. Let S be
a scheme. We denote a flat family of curves C → S as CS. If B is an S-scheme then
CB := CS ×S B. For affine schemes SpecR→ S we write CR for CSpecR.

Generally we work with a fixed curve over SpecC or with a family of curves over S =
SpecC[[s]]. Set S∗ = SpecC((s)) and S0 = SpecC = SpecC[[s]]/(s) the closed point. Then
CS always denotes a curve with generic fiber CS∗ smooth and special fiber C0 := CS0 nodal
with unique node p. We write CS − p for the open subscheme CS\{p}. We also assume CS
is a regular surface as scheme over SpecC.

For any closed point p in a scheme Z we denote by ÔZ,p the completion of OZ,p with
respect to the maximal ideal. We often use D to denote a formal neighborhood of a point
in a curve. The cases that will arise are

• p ∈ C a smooth curve, ÔC,p ∼= C[[z]] and we set D = SpecC[[z]]

• p ∈ C0 is the node, ÔC,p ∼= C[[x, y]]/xy and we set D0 = SpecC[[x, y]]/(xy)

• p ∈ CS is the node, ÔCS ,p ∼=
C[[s,x,y]]
(xy−s)

∼= C[[x, y]] and we set DS = SpecC[[x, y]]

• for k ≥ 2 and kth roots u, v of x, y we set D
1
k
S = SpecC[[u, v]]

The last case arises as follows. We first notice that if we base change DS under s 7→ sk

then DS becomes SpecC[[x, y, s]]/(xy − sk). If we let µk denote the kth roots of unity then

SpecC[[x, y, s]]/(xy − sk) = D
1
k
S //µk where ζ ∈ µk acts by ζ(u, v) = (ζu, ζ−1v)for ζ ∈ µk. A

basic strategy we employ is to replace the curve SpecC[[x, y, s]]/(xy − sk) with the orbifold

or twisted curve [D
1
k
S /µk].

In section 5 we utilize results on twisted curves from [AOV11]. We now recall the defi-
nition of a twisted curve (with no marked points) in characteristic 0. A twisted nodal curve
C → S is a proper Deligne-Mumford stack such that

(i) The geometric fibers of C → S are connected of dimension 1 and such that the coarse
moduli space C of C is a nodal curve over S.
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(ii) If U ⊂ C denotes the complement of the singular locus of C → S then U → C is an
open immersion.

(iii) Let p : Spec k → C be a geometric point mapping to a node and let s ∈ S denote the
image of Spec k under C → S and let mS,s denote the maximal ideal of the local ring
OS,s. Then there is an integer k and an element t ∈ mS,s such that

SpecOC,p ×C C ∼= [Dsh/µk]

where Dsh denotes the strict henselization of D := SpecOS,s[u, v]/(uv− t) at the point
(mS,s, u, v) and ζ ∈ µk acts by ζ(u, v) 7→ (ζu, ζ−1v).

We did not mention markings because largely we will not make use of them except
for one exception. If C is a smooth curve we can twist at a marked point p as described
below. Let p ∈ C and D = SpecC[[z]] as in the first bullet point above and fix a positive
integer k and a kth root w of z. We have SpecC((w))/µk = SpecC((z)) so let C[k] denote
C − p ∪SpecC((z)) [SpecC[[w]]/µk]. It is a twisted curve whose coarse moduli space is C.

In a similar fashion, with C0, CS as in the bullet points, we can construct twisted curves
C0,[k] and CS,[k] with coarse moduli space C0, CS and such the the fiber of the node is [pt/µk].

3.3 Survey of Facts about MG(C)

The problem of compactifying G-bundle on nodal curves involves some subtleties that are
well known to the experts but are nevertheless worth stating explicitly. These subtleties
include coarse moduli spaces vs stacks, issues on nodal curves, Gieseker bundles vs torsion
free sheaves, and the connection with the loop group.

MG, MG, completeness and compactness

Let H be reductive group over C. If C is a smooth curve of genus g over SpecC then there
is a stack MH(C) parametrizing principal H-bundles on C. It is a smooth algebraic stack
of dimension dimH(g − 1). Further there is a universal bundle P univ → C ×MH(C) such

that if P → C × B is any H-bundle then there is a morphism B
f−→ MH(C) such that

P ∼= (id, f)∗P univ.
Let us now specialize to groups G as in 3.2. It is known that Pic(MG(C)) = Z and

there is a generator L which is ample. Using L, one constructs the coarse moduli space
of semistable G-bundles MG(C) = Proj

⊕
n Γ(MG(C), L⊗n) [Tel00, §8]. This is not the

conventional construction but illustrates how MG(C) can be recovered from MG(C). On
the other hand, MG(C) has the advantage of being a projective variety and hence compact
whereas MG(C) is not separated and thus not compact.

The case of MSL2(P1) is an instructive example. As a set, MSL2(P1) = N where n
corresponds to the bundle O(n)⊕O(−n) where we abbreviate O = OP1 . Further, the ample



CHAPTER 3. DEGENERATION 49

generator L ∈ Pic(MSL2(P1)) satisfies H0(MSL2(P1), L⊗n) = C so MSL2(P1) = Proj C[t] =
SpecC which corresponds to O ⊕O, the unique semistable bundle.

Further there is a vector bundle E → P1 × Ext1(O(1),O(−1)) [NS65, Lemma 3.1] such
that E|P1×v corresponds to the extension v ∈ Ext1(O(1),O(−1)) = H1(O(−2)) = C. For
v 6= 0 this extension is the Euler sequence

0→ O(−1)→ O⊕O → O(−1)→ 0

Comparing with the trivial family p∗1(O⊕O) on P1×A1 we get two maps A1 f1,f2−−−→MSL2(P1)
that agree on C× such that f1(0) = O⊕O and f2(0) = O(1)⊕O(−1). This showsMSL2(P1)
is not separated and further 0, 1 ∈ MSL2(P1) are in the same connected component; this
construction generalizes to show MSL2(P1) is connected. More generally, π0(MG(C)) =
π1(G).

Because of this behavior, we can at most ask for MG(C) to satisfy the existence part of
the valuative criterion for properness; this is called completeness. Specifically, a morphism
of stacks X → Y is complete if for every complete discrete valuation ring R with fraction
field K and every diagram with solid arrows there exists a dotted arrow making the diagram
commute.

SpecK ′ //

��

SpecK

��

// X

��
SpecR′

44

// SpecR // Y

where K → K ′ is a finite extension R′ is the integral closure of R in K ′.
If C is a smooth curve, then MG(C)→ SpecC is complete. Completeness fails when C

is nodal as is discussed in the next section.

Nodal Curves and the case of GLn

If C is a nodal curve then MG(C) may be complete. For the group C× this holds on any
curve of compact type. If C is a chain of P1s and H is reductive then MH(C) is discrete
and naturally isomorphic toMH(C̃) hence complete [MTb, Variation 4]. But as soon as the
irreducible components of C have genus ≥ 2 thenMH(C) will not be complete. Even if the
genus is 1 we will run into trouble as the next example shows.

Consider the curve C = {y2 − x2(x + 1) = 0} ⊂ A2. Consider the divisor defined on
C × C× defined by the section t 7→ (t2 + 2t, (t2 + 2t)(t + 1), t). This defines a line bundle
on C × C×. The limit as t 7→ 0 is the nodal point which doesn’t define a line bundle but
a rather a torsion free sheaf. By enlarging the moduli problem to parametrize torsion free
sheaves one can get a compact coarse moduli space [Fal96, Ses00].

A key insight originally due to Gieseker [Gie84] is that torsion free sheaves can be re-
placed by vector bundles on modified curves. Specifically, on any nodal curve C with nodes
{p1, . . . , pm}, a torsion free sheaf F on C can be realized as the pushforward of a vector bun-
dle F on a modification C ′

π−→ C where π−1(C − {p1, . . . , pm}) → C is an isomorphism and
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π−1(pi) is a chain of projective lines of length at most the rank of F . Further, if π∗(F ) = F
then for each P1 ⊂ π−1(pi) it is necessary that F |P1 = O(1)⊕i⊕Ork(F)−i with i > 1 and that
H0(π−1(pi), F |π−1(pi)⊗O(−p′i−p′′i )) = 0 where p′i, p

′′
i denote the extreme points on the chain

π−1(pi).

Torsors versus G bundles

See 3.2 for the definition of a torsor for a sheaf of groups G. The point of discussing G-torors
is that a family of G bundles over a nodal curve can limit to a G torsor which cannot be
identified with a G-bundle.

Starting with G we can form the sheaf of groups Gstd(U) := homSch(U,G). Any principal
bundle F on C defines a torsor F for Gstd by F(U) 7→ Sect(U, F |U). In fact in much the same
way vector bundles can be identified with locally free sheaves, G bundles can be identified
with Gstd-torsors.

More generally let P ⊂ G be a parabolic subgroup. Let L+
PG = {γ ∈ G[[z]] |γ(0) ∈ P}.

Construct a sheaf of groups GP on SpecC[[z]] = {(z), (0)} by GP ({(z), (0)}) = L+
PG and

GP ({0}) = G((z)). Given a smooth curve C and a point p we notice that Gstd|C−p and

GP agree over SpecC((z)) ∼= C − p ×C Spec Ôp and thus define a sheaf of group which
we also denote GP . Clearly we can iterate over (xi) = x1, . . . , xm ∈ C with parabolics
(Pi) = P1, . . . , Pm. Call the resulting sheaf of groups G(xi),(Pi). Then G(xi),(Pi)-torsors are
exactly quasi parabolic bundles: G-bundles on C with reduction of structure group to Pi at
xi.

In the examples mentioned thus far all the G-torsors can be identified with G-bundles
potentially with additional structure; this is not always the case. The groups L+

PG are
parahoric subgroups and we can apply the same construction to any parahoric subgroup P
(see 3.2 in particular for the definition of (exotic) parahorics). Specifically, given a set (Pi)
of parahoric subgroups we can analogously construct a sheaf of groups G(xi),(Pi). When the
parahorics are exotic the resulting moduli spaces are not isomorphic to moduli spaces of
G-bundles on C; see remark 7 after corollary 3.4.3.

The double coset construction

There is a close connection between the loop group LG and the moduli stack MG(C) for a
smooth curve C. Notice any γ ∈ G(C − p) = homSch(C − p,G) can be Laurent expanded
around p to produce an element in LG. This realizes G(C − p) as a subgroup of LG which
we denote LCG. Let mp ⊂ OC,p be the maximal ideal then choosing a basis z ∈ mp/m

2
p

determines an isomorphism Spec ÔC,p ∼= SpecC[[z]] = D.
To make the connection between LG and MG(C) we introduce two functors. Let CAlg

denote the category of C-algebras. Let T ′ : CAlg → Set be defined by setting T ′(R) to be
the set of isomorphism classes of triples (P, τC , τD) where P is principal G-bundle on CR,
τD : G×DR

∼−→ P |DR , τC : G× (C− p)R
∼−→ P |(C−p)R are trivializations. Let T be the functor
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defined by setting T (R) to be isomorphism classes of pairs (P, τC) defined as above. We have

forgetful functors T ′
fD−→ T

fC−→MG(C) defined by (P, τC , τD)
fD−→ (P, τC)

fC−→ P .
Let τ ∗D denote the restriction of τD to D∗R = SpecR((z)) and define τ ∗C similarly. Then

we get a map

T ′
ΘC,D−−−→ LG

(P, τC , τD) 7→ (τ ∗C)−1 ◦ τ ∗D.
(3.4)

Of course we also have Θ−1
C,D : T ′ → LG given by (P, τC , τD) 7→ (τ ∗D)−1 ◦ τ ∗C . For definiteness

we work with ΘC,D but this choice is inconsequential.
Denote by LG/L+G the sheaf associated to the pre sheaf R 7→ LG(R)/L+G(R) in the

fppf topology. Then, for example, if R → R′ is faithfully flat, γ ∈ LG(R′), γ1, γ2 denote
the images of γ under the two maps R′ ⇒ R′ ⊗R R′ =: R′′ and γ1γ

−1
2 ∈ L+G(R′′) , then

letting γ denote the class of γ in LG(R′)/L+G(R′) we have γ1 = γ2 ∈ LG(R′′)/L+G(R′′).
By definition this determines a point of (LG/L+G)(R) which we denote γ ⇒ (γ1, γ2).

We define a map T
ΘC−−→ LG/L+G as follows. If (P, τC) ∈ T (R) then there is faithfully

flat base extension R → R′ such that P |DR′ admits a trivialization τD and hence a point of
T ′(R′). Let γ(τD) = ΘC,D(P, τC , τD) ∈ LG(R′). With γi(τD) as above we set ΘC((P, τC))
= γ(τD) ⇒ (γ1(τD), γ2(τD)). If τ ′D is another trivialization γ(τ ′D), γi(τ

′
D) differ from the

unprimed version by elements in L+G hence define the same element in the quotient.

Similarly, we define a map MG(C)
Θ−→ LCG\LG/L+G. Let P ∈ MG(C)(R) then by

[DS95], there is a faithfully flat (in fact étale) base change R→ R′ such that P |(C−p)R′ admits
a trivialization τC and hence a point of T (R′). Let γ(τC) = ΘC((P, τC)) ∈ (LG/L+G)(R′)
and γi(τC) denote the two images of γ(τC) in (LG/L+G)(R′⊗RR′). Let γ(τC) denote the class
of γ in LCG(R′)\(LG/L+G)(R′) and define γi(τC) similarly. One checks γ1(τC) = γ2(τC)
and we set Θ(P ) = γ(τC) ⇒ (γ1(τC), γ2(τC)); as in the definition of ΘC , the map Θ is
independent of the choice τC .

Let πD : LG → LG/L+G and πC : LG/L+G → LCG\LG/L+G be the quotient maps.
Summarizing, we have a commutative diagram

T ′

fD
��

ΘD,C // LG

πD
��

T

fC
��

ΘC // LG/L+G

πC
��

MG(C) Θ // LCG\LG/L+G.

(3.5)

We stress that while ΘD,C ,ΘC are easy to construct, in order to construct Θ we need to
use the non trivial result [DS95] of Drinfeld and Simpson. The construction of the maps
ΘD,C ,ΘC ,Θ we refer to collectively as the double coset construction (DCC). The connection
between MG(C) and LG can then be stated as
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Theorem 3.3.1. All the horizontal maps in the diagram (3.5) are isomorphisms.

Proof. See [BL94b, Prop.3.4] for details. For each map one constructs a map in the other
directions and checks it is the required inverse. For the inverse to ΘC,D, we construct for
every γ ∈ LG(R) a G-bundle on CR with trivializations on (C− p)R, DR. If R is Noetherian
then (C − p)R t DR form an fppf cover of CR and standard descent allows us to glue the
trivial G-bundles on (C − p)R and DR over D∗R = R((z)) using γ as a transition function.
In [BL95] Beauville and Lazlo show such gluing is possible for an arbitrary C-algebra R.
Alternatively, for any C-algebra R we can write R = lim−→Ri with Ri Noetherian. By fixing
an embedding G ⊂ SLn(C) we can realize any γ ∈ LG(R) as an n × n matrix with entries
in R. Each entry lies in some Ri and it follows there is a single Ri such that γ ∈ LG(Ri).
Then we can apply fppf descent to obtain a G-bundle with trivializations on CRi and pull
everything back to CR.

For the inverse to ΘC , let γ ∈ (LG/L+G)(R). Then there is a faithfully flat base change
R → R′ such that we can present γ as γ ⇒ (γ1, γ2) with γ ∈ LG(R′) as discussed below
(3.4). Set λ = γ1γ

−1
2 . Let (P ′, τC , τD) = Θ−1

C,D(γ) and let (P ′′i , τi,C , τi,D) = Θ−1
C,D(γi) for

i = 1, 2 be the two different pull backs to CR′′ where R′′ = R′ ⊗R R′. The group L+G(R′′)
acts on (P ′′i , τi,C , τi,D) by changing the trivialization τi,D. We have λ := γ−1

2 γ1 ∈ L+G(R′′)
and evidently (P ′′1 , τ1,C , τ1,D) = (P ′′2 , τ2,C , τ2,D)λ. Applying the forgetful map fD we see
(P ′′1 , τ1,C) = (P ′′2 , τ2,C) in T (R′′) and therefore this data descends to (P, τC) ∈ T (R). The
argument for Θ is similar and omitted.

We now describe a few variants of the DCC. The descent lemma [BL95] of Beauville
and Lazlo in general will not apply to these variants but we can still argue by filtering by
Noetherian subrings as in the proof above.

Suppose M is a moduli space of sheaves of sets on a smooth curve C with a marked
point p such that for all P ∈ M we have P |C−p ∈ MG(C − p). Suppose further that all
objects are isomorphic over D and the set of automorphisms of P |D is a subgroup H ⊂ LG.
Let TM denote the moduli of space of pairs (P, τ) where τ is a trivialization of P |C−p. Then
the DCC yields maps

TM
ΘHC−−→ LG/H

M ΘH−−→ LCG\LG/H.
(3.6)

For example, we can takeM be the moduli space of quasi parabolic bundles with a reduction
to a parabolic Q ⊂ G at p ∈ C. Then H = L+

QG = {γ ∈ L+G|γ(0) ∈ Q}.
Consider a nodal curve C0 with single node p; we have Spec ÔC0,p

∼= SpecC[[x, y]]/xy =
D0 soD∗0 = SpecC((x))×C((y)) and LG×LG takes the roles of LG andG∆ = G(C[[x, y]]/xy)
takes the role of L+G. The DCC yields

T
ΨC0−−→ LxG× LyG/G∆

MG(C0)
Ψ−→ LC0G\LxG× LyG/G∆.

(3.7)
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We can generalize as before to a moduli stack M of sheaves of sets on the nodal curve
C0 such that for all P ∈ M we have P |C0−p ∈ MG(C0 − p) and all objects are isomorphic
over D0 and Aut(P |D0) is a subgroup of LxG× LyG. Defining TM in an analogous manner
we obtain

TM
ΨHC0−−→ LxG× LyG/H

MG(C0)
ΨH−−→ LC0G\LxG× LyG/H.

(3.8)

For example, we could take M to be the moduli of quasi parabolic G-bundles with a
reduction of the structure group to a parabolic Q ⊂ G at the node p. Then H = {(γ1, γ2) ∈
L+
QG× L

+
QG|γ1(0) = γ2(0)} where L+

QG = {γ ∈ L+G|γ(0) ∈ Q}.
Another variant is to take a twisted curve C[k] with twisted point p and a smooth coarse

moduli space C. We choose a kth root w of z so that C[k] ×C D = [SpecC[[w]]/µk] where

ζ ∈ µk acts by w 7→ ζw. Let µk
η−→ G be a homomorphism; the proof of lemma 3.4.4 shows we

can take this to be the restriction of a co-character C× η−→ G. Then ζ ∈ µk acts on LwG =
G((w)) by g(w)

η−→ η(ζ)−1g(ζw)η(ζ); this action is explained in the proof of proposition
3.4.2. Let (LwG)µk denote the invariants. Then for g(z) ∈ LG = G((z)) the assignment

g(z) 7→ gη(w) := η(w)g(wk)η(w)−1 defines an isomorphism LG
η(w)( )η(w)−1

−−−−−−−−−→ (LwG)µk and
in this way allows us to consider LCG ⊂ LG as a subgroup of (LwG)µk .

Let MG,η(C[k]) be the moduli stack of G-bundles on C[k] with equivariant structure at
p determined by η. Let TG,η be the moduli of paris (P, τ) with P ∈ MG,η(C[k]) and τ a
trivialization of P over C[k] − p. The DCC yields

TG,η
ΘηC−−→ (LwG)µk/(L+

wG)µk

MG,η(C[k])
Θη−→ (LCG)µk\(LwG)µk/(L+

wG)µk .
(3.9)

Finally, we can consider a fixed twisted nodal curve C0,[k] with twisted node p and coarse

moduli space C0. We choose kth roots u, v of x, y so that C0,[k] ×C0 D0 = [Spec C[[u,v]]
uv

/µk]
where ζ ∈ µk acts by (u, v) 7→ (ζu, ζ−1v). We define MG,η(C0,[k]), TG,η similarly as above.
The DCC yields

TG,η
ΨηC0−−→ (LuG× LvG)µk/(G∆)µk

MG(C0)
Ψη−→ (LC0G)µk\(LuG× LvG)µk/(G∆)µk .

(3.10)

3.4 Bundles on twisted curves and twisted chains

Here we investigate G-bundles on twisted nodal curves. The motivation to consider these
objects comes from the valuative criterion for completenss. Specifically it comes from the
following local calculation.

Let CS be as in 3.2 and f : S → S any morphism. Let CS,f denote the base change and
CS∗,f := CS,f ×S S∗. The valuative criterion requires that we provide, for any G-bundle P
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on the smooth curve CS∗,f , an object F on CS,f such that F |CS∗,f is P ; we assume that F is
at least a sheaf of sets.

By abuse of notation let f denote also the map on rings C[[s]]
f−→ C[[s]]. Assuming

f(s) 6= 0 we can, after suitable change of coordinates, normalize f so that f(s) = sk, with
k 6= 0. We can further restrict to k ≥ 1, otherwise f maps to the generic point and the
base change is a family of smooth curves. When k ≥ 2, let CS,[k] denote the twisted curve
obtained from CS by removing a formal disc DS around the node and gluing in the quotient

stack [D
1
k
S /µk]; see 3.2 for definitions. Then there is a map CS,[k] → CS,f realizing the latter

as the coarse moduli space of the former. By abuse of notation let p ∈ CS,[k] also denote the
twisted node, then CS,[k] → CS,f restricts to an isomorphism CS,[k] − [p] ∼= CS,f − p.

Proposition 3.4.1. Let p be the node in CS,f . Let P be a G-bundle on CS∗,f . There is
a G-bundle P ′ on CS,f − p extending P . If k = 1 then P ′ extends to a G-bundle on CS,f .
If k > 1 then there is a G-bundle P ′′ on CS,[k] that restricts to P ′ under the isomorphism
CS,[k] − [p] ∼= CS,f − p.

Proof. Let K be the generic point of CS∗ . In [dJHS11, Corollary 1.5] it is shown that
H1(K,G) = 1. Therefore we can extend P over the generic point of C0 by taking it to be
trivial in a neighborhood of this point. Thus we have extended P on the complement of a
codimension 2 subset. The surface CS,f − p is always smooth and by [CTS79, Thm 6.13] the
G-bundle extends to all of CS,f − p. When k = 1 the surface CS,f is smooth and applying
again [CTS79] covers this case.

We now assume k ≥ 2. By the above, it suffices to study F in a neighborhood of the
node. So we restrict to DS = SpecC[[x, y]] and then DS,f = SpecC[[x, y, s]]/(xy − sk). The
basic observation is that C[[x, y, s]]/(xy − sk) is the ring of µk invariants in C[[u, v]] with
action given by ζ(u, v) = (ζu, ζ−1v) and we identify uk = x, vk = y, uv = s. By [BF10, Prop.
3.7], every G-bundle on DS,f − p = SpecC[[x, t]][x−1] ∪ SpecC[[y, t]][y−1] is the restriction
of a G-bundle on [SpecC[[u, v]]/µk]; the result is stated for SpecC[x, y, s]/(xy − sk) but the

same proof works in our case. Consequently there is a G-bundle on [D
1
k
S /µk] that extends P

over the node.

Fixed curve

We now enter into an analysis of G-bundles on twisted curves. Let C[k] denote a twisted curve
with smooth coarse moduli space C and a single twisted point p with stabilizer group µk. We
show G-bundles P on C[k] can be identified with torsors F on C and that the moduli of such
F on C is not isomorphic toMG(C). This represents an obstruction to completingMG(CS)
by only parametrizing degenerations of G-bundles on C0; one should include degenerations
of G-bundles on C0,[k] or degenerations of torsors on C0.

Let η ∈ hom(C×, T )⊗ZQ be an exotic co-character so that the associated parahoric P =
P (η) is exotic ( see 3.2). Let Gstd be the sheaf of groups defined by C ⊃ U 7→ homSch(U,G).
Let GP be the sheaf of group constructed in 3.3; namely GP |C−p = Gstd and GP(ÔC,p) = P .
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Let TGP (C) be the moduli space of pairs (F , τ) consisting of a GP-torsor F on C together
with a trivialization τ over C − p. Similarly, let TG,η(C[k]) be the moduli space of pairs
(P, τ) consisting of a G bundle P on C[k] with equviariant structure determined by η (see
(3.3) in 3.2 and the paragraph below it) and a trivialization τ on C − p. Define TGP (D) and

TG,η([D
1
k /µk]) similarly with C − p replaced by D − p.

Proposition 3.4.2. Suppose kη ∈ hom(C×, T ). Let GP ,C,C[k], D = SpecC[[z]],[D
1
k /µk] be

as above. Choose a kth root w or z so that D
1
k = SpecC[[w]]. Let i[k] : [D

1
k /µk] → C[k] and

i : D → C be the natural maps. Then we have isomorphisms

TGP (D) TGP (C)i∗oo

ΘPC
��

ΞC // TG,η(C[k])

ΘηC
��

i∗
[k] // TG,η([D

1
k /µk])

LG/P η( )η−1

// (LwG)µk/(L+
wG)µk

where ΞC is defined to be (Θη
C)−1 ◦ η( )η−1 ◦ ΘPC and ΘPC is the map in (3.6), Θη

C the map
in (3.9), and η( )η−1 is g(z)P 7→ η(w)g(wk)η(w)−1(L+

wG)µk .

Proof. Using descent theory as in the proof of theorem 3.3.1 we construct inverses to i∗, i∗[k].

Let (PR, τ) ∈ TGP (DR); after a flat base change R → R′, the pullback of PR become trivial
and comparing with τ defines a loop ∈ LG(R′). By gluing with the trivial bundle over C−p,
we obtain a bundle with a fixed trivialization over C − p× SpecR. Again by descent theory
this is well defined and gives an inverse map TGP (D)→ TGP (C) similarly we have an inverse

map TG([D
1
k /µk])→ TG(C[k]).

To establish that ΘP ,Θη are isomorphisms it suffices to show their restrictions TGP (D)→
LG/P and TG,η([D

1
k /µk]) → (LwG)µk/(L+

wG)µk define isomorphisms. In the first case this
follows because a point LG/P defines descent data for an object in TGP (D).

To handle the equivariant case we need to compute the µk equivariant automorphisms of
SpecC((w))×G over SpecC((w)). In order for γ ∈ LwG = G((w)) to define an equviariant
automorphism of SpecC((w))×G (and thus determine an element of (LwG)µk) we need for
ζ ∈ µk

(w, g)

γ

��

ζ // (ζw, η(ζ)g)

γ

��
(w, γ(w)g)

ζ // (ζw, η(ζ)γ(w)g) = (ζw, γ(ζw)η(ζ)g)

Or γ(w) = η(ζ)−1γ(ζw)η(ζ). Thus we are concerned with invariants for the action of µk

given by γ(w)
ζ−→ η(ζ)−1γ(ζw)η(ζ).

We can now argue as before to establish TG,η([D
1
k /µk]) → G((w))µk/G[[w]]µk is an iso-

morphism. It remains to check LG/P → (LwG)µk/(L+
wG)µk is an isomorphism.
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Let γ ∈ G((z)) and set γη(w) := η(w)γ(wk)η(w)−1; the following shows γη(w) ∈ (LwG)µk :

γη(w)
ζ−→ η(ζ)−1η(ζw)γ(wk)η(ζw)−1η(ζ)

= γη(w)

where we have used that (ζw)k = wk and η(ζw) = η(ζ)η(w). Similarly, one can check for
any g(w) ∈ G((w))µk that gη(w) = η(w)g(w)η(w)−1 ∈ G((z)) by checking it is invariant

under the action gη(w) 7→ gη(ζw); thus LG
η( )η−1

−−−−→ ((LwG)µk) is an isomorphism.
Now let γ ∈ P (η). We show in this case γη ∈ G[[w]]. It is sufficient to do this at the level

of Lie algebras again because the groups involved are connected. In particular, Lie(P (η))
has a basis consisting of elements of the form Xαz

i where Xα is the root space associated
to α. We have η(w)Xαz

iη(w)−1 = Xαw
k〈η,α〉zi. Now the value of 〈η, α〉 is a rational number

between −1 and 1. We can check if this is in g[[w]] by checking if k〈η, α〉+ki ≥ 0. But this is
equivalent to 〈η, α〉+ i ≥ 0. Finally, Xαz

i ∈ Lie(P (η)) implies that limt→0 t
〈η,α〉+iXαz

i exists

which guarantees that 〈η, α〉+ i ≥ 0. Altogether, we see LG
η( )η−1

−−−−→ ((LwG)µk) descends to
an isomorphism as in the statement of the proposition.

LetMGP (C) be the moduli stack of GP-torsors on C andMG,η(C[k]) be the moduli space
of G bundle on C[k] with equivariant structure determined by η.

Corollary 3.4.3. Suppose kη ∈ hom(C×, T ). The isomorphism ΞC : TGP (C) → TG,η(C[k])
of proposition 3.4.2 descends to an isomorphism Ξ: MGP (C)→MG,η(C[k])

Proof. In light of the previous proposition, the argument is purely formal and follows as in
the proof of theorem 3.3.1; see also [BL94b, prop.3.4].

Let P be a G-bundle on C[k]. The restriction of P to C − p is a G-bundle. By [DS95] it
is trivial. Consequently the forgetful map TG,η(C[k]) → MG,η(C[k]) is essentially surjective
and equivariant for the action of LCG = G[C − p] which changes the trivialization. It
descends to give a map LCG\TG,η(C[k]) → MG,η(C[k]) and one can construct an inverse
by associating to P the set of trivializations over C − p. The same argument holds for a
GP-torsor F on C. We obtain isomorphisms MGP (C)

∼−→ LCG\LG/P and MG,η(C[k])
∼−→

LCG\(LwG)µk/(L+
wG)µk . Finally, the isomorphism LG/P η( )η−1

−−−−−→ (LwG)µk/(L+
wG)µk gives

an isomorphism LCG\LG/P → LCG\(LwG)µk/(L+
wG)µk which establishes the result.

Remark 6. In [VB], Balaji and Seshadri develop similar results in the context of Bruhat-Tits
group schemes. For corollary 3.4.3 see specifically [VB, Thm 5.2.2].

Remark 7. For G = SLn all the parahorics of LG are conjugate by elements in LGLn to
subgroups L+

QG ⊂ L+G where Q ⊂ G is a parabolic. Consequently the resulting moduli
spaces can be identified with moduli spaces of vector bundles with in general nontrivial
determinant. However in general the parahorics will no longer be even abstractly isomorphic
and thus neither will be the resulting moduli spaces. For example, SP4 has a parahoric
whose Levi factor is SL2 × SL2 which distinguishes it from the standard parahoric SP4[[z]].
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Remark 8. Let ηi be the vertices of Al. Define ki as the minimum integer such that ki · ηi ∈
hom(C×, T ) and set kG = lcm(ki). The ηi correspond to the maximal parahorics Pi of LG
and further any parahoric P is conjugate to a subgroup of some Pi. It follows readily that
k = kG is the minimum value of k for which the statement of corollary 3.4.3 holds for any
particular parahoric P .

In section 3.5 we will need to fix the value of k; this is possible by remark 8 and lemma
3.4.4. To state it we introduce some notation. Let i be a positive integer and set C∗i =
SpecC[[x, y, s]]/(xy − si) − (0, 0, 0). For any two positive integers i, j we can obtain C∗ij as
a base change either from C∗i or C∗j , that is the left commutative diagram induces the right
commutative diagram:

C[[s]] C[[s]]
sj←[s
oo C∗ij //

��

C∗i

��

C[[s]]

si←[s

OO

C[[s]]

si←[s

OO

sj←[s
oo C∗j // C∗1

Lemma 3.4.4. Let k = kG be as in remark 8 and let l be any positive integer. Let P be a
G-bundle on C∗l . Then there is a G-bundle P ′ on C∗k such that P ∼= P ′ on C∗lk.

Proof. The curve C∗l has an l-fold cover C∗1 → C∗l . By [BF10, Prop. 3.7], a G-bundle P
on C∗l is equivalent to a µl equivariant G-bundle on C∗1 , which in turn is determined by a
homomorphism µl → G.

Let ζ ∈ µl be a generator and µl → G a homomorphism; by abuse of notation let ζ also
denote the image in G. Then ζ ∈ G is a semisimple element any by [Hum75, Thm. 22.2],
ζ lies in a Borel subgroup; by[Hum75, Cor. 19.3] it follows that ζ lies in a maximal torus
T and thus we can take µl → G to be the restriction of a co-character η ∈ C× → T ⊂ G,
but for any such η, the co-character ηl will always define the trivial action. Thus, setting
tZ = hom(C×, T ) and tQ = hom(C×, T ) ⊗Z Q, we can take η ∈ tZ/l · tZ ⊂ tQ/tZ where the
inclusion is given by η 7→ 1

l
η.

Further, identifying η with C× (id,η)−−−→ C××T ⊂ LnG, we can also transform by the affine
Weyl group W aff := NLnG(C× × T )/(C× × T ) and thus assume 1

l
η ∈ Al. For some subset

I ⊂ {0, 1, . . . , r = rk(G)}, we can express η =
∑

i∈I aiηi with ai ∈ (0, 1) ∩Q and ηi ∈ tQ the
vertices of Al.

Consider ηI =
∑

i∈I ηi; because kηi ∈ hom(C×, T )∀i we have that ηI determines a G-
bundle P ′ on C∗k . We claim P, P ′ pull back to isomorphic bundles on C∗kl. For this it

suffices to show TG, 1
l
η([D

1
kl
S /µkl])

∼= TG,ηI ([D
1
kl
S /µkl]) and this in turn reduces to showing

that the framed automorphism groups of P, P ′ coincide. The automorphism groups are
connected so it reduces to a Lie algebra calculation. As these are subgroups of G[[u, v]]
(with x = ukl, y = vkl) the Lie algebra is spanned by formal sums of Xαu

ivj. If i ≥ j then
this is Xαu

i−j(uv)j and uv is fixed by µkl so we are reduced to the one variable case; we can
argue analogously if j ≥ i. Then the claim about automorphism groups follows because ηI
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and 1
l
η lie in the interior of the same face of Al; follow the argument in the paragraph after

(3.2) in section 3.2.

Fixed Nodal curve

Let C0,[k] be a twisted nodal curve with a single twisted node p. Let C0 be it’s coarse moduli
space and by abuse of notation we also write p ∈ C0 for the node. The stabilizer of p ∈ C0,[k]

is µk and in particular C0,[k] ×C0 D0
∼= [D

1
k
0 /µk] =.

For an parahoric P let LU be its Levi decomposition and set P∆ = ∆(L) n (U × U).
Similarly as in 3.3 one can construct a sheaf of groups G∆ over C0 such that G∆(ÔC0,p) = P∆

and G∆|C0−p = Gstd. Let MG∆(C0) denote the moduli stack of G∆ torsors on C0 and let
TG∆(C0) denote the moduli space of pairs (F , τ) where F ∈MG∆(C0) and τ a trivialization
of F over C0 − p. Define TG∆(C0) similarly.

Let η ∈ hom(C×, T ) ⊗Z Q and consider the moduli stack MG,η(C0,[k]) of G-bundles on
C0,[k] with equivariant structure at p determined by η. Let TG,η(C0,[k]) denote the moduli
space of pairs (P, τ) with P ∈ MG,η(C0,[k]) and τ a trivialization of P on C0,[k] − p. Define

TG,η([D
1
k
0 /µk]) similarly.

The arguments of proposition 3.4.2 and corollary 3.4.3 readily extend to nodal curves
and we obtain

Proposition 3.4.5. Suppose kη ∈ hom(C×, T ) and set P = P(η). Let G∆,C0,C0,[k],

D0 = SpecC[[x, y]]/xy, [D
1
k
0 /µk] be as above. Choose kth roots u, v of x, y so that D

1
k
0 =

C[[u, v]]/uv. Let i0,[k] : [D
1
k
0 /µk] → C0,[k] and i0 : D0 → C0 be the natural maps. Let

G∆
u,v = {(g1, g2) ∈ L+

uG× L+
v G|g1(0) = g2(0)}. Then we have isomorphisms

TG∆(D0) TG∆(C0)
i∗0oo

ΨP
∆

C
��

ΞC0 // TG,η(C0,[k])

ΨηC
��

i∗
0,[k]

// TG,η([D
1
k
0 /µk])

LG× LG/P∆η( )η−1

// (LuG× LvG)µk/(G∆
u,v)

µk

where ΞC0 is defined to be (Ψη
C)−1 ◦ η( )η−1 ◦ ΨP

∆

C and ΨP
∆

C is the map in (3.8), Ψη
C the

map in (3.10), and the last map is the product of g(z)P 7→ η(w)g(wk)η−1(w)(L+
wG)µk . The

isomorphism ΞC descends to an isomorphism Ξ: MGP (C0)→MG,η(C0,[k]).
�

Connection with Ln
polyG

In Chapter 2 a stacky orbit closure ∂X aff,poly was constructed which is analogous to the
boundary of the wonderful compactification of a semisimple adjoint group. In particular,
the components are smooth and intersect transversely. Let r = rk(G). There are 2r+1 − 1
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orbits OI labeled by the subsets I of {0, . . . , r + 1} with I 6= ∅ and OI is further described
by:

Proposition 3.4.6. Let LI ,P±I ,U
±
I be as in (3.2) in section 3.2 and let Z0(LI) be the

connected component of the center Z(LI) of LI . Define P∆,±
I = ∆(LI) n (UI × U−I ). We

have

OI =
LpolyG× LpolyG

Z0(LI)× Z0(LI) · P∆,±
I

In particular, the orbit OI fibers over LG/PI×LG/P−I with fiber LI,ad = LI/Z0(LI). Further,
when I is a singleton set the group Z0(LI) is trivial and when I has cardinality > 1 we have
Z0(LI) = Z(LI).

The isomorphisms of proposition 3.4.5 allows us to identify O{i} with TG,ηi([D
1
k
0 /µk]),

TG,ηi(C0,[k]); here ηi is the ith vertex of Al. The natural expectation is that TG,ηi([D
1
k
0 /µk])

can further degenerate to a moduli problem parametrized by the higher co-dimensional orbits
in C× n LpolyG and similarly with TG,ηi(C0,[k]). We show that this is indeed the case in the
next sub section.

G-bundles on Twisted Chains

In the previous section we saw that associated to the singleton sets {i} ⊂ {0, r + 1} there
is a moduli space parametrizing G-bundles on a twisted nodal curve and further the moduli
space can be identified with an orbit of the wonderful embedding of the loop group. In this
section we introduce a more general moduli problem which we show is isomorphic to the
orbit OI in the wonderful embedding for any I ⊂ {0, . . . , r + 1}.

Let Rn denote the rational chain of projective lines with n-components; figure 3.1 in the
introduction depicts a chain of length 3. There is an action of C× on Rn which scales each
component. Let p0, . . . , pn denote the fixed points of this action.

Recall u, v are kth roots of x, y which are our coordinates near a node. Let p′, p′′ be

denote the closed points of SpecC[[u]], SpecC[[v]] and finally let D
1
k
n be the curve obtained

from SpecC[[u]] tRn t SpecC[[v]] by identifying p′ with p0 and p′′ with pn.

The group µk acts on D
1
k
n through its usual action on u, v and through the inclusion

µk ⊂ C× on the chain Rn. For an n-tuple (β0, . . . , βn) ∈ hom(C×, T )n, we can speak about

the equivariant G-bundles on D
1
k
n with equivariant structure at pi determined by βi. We

refer to this equivalently as a G-bundles on [D
1
k
n /µk] of type (β1, . . . , βn).

Further, we can also glue [D
1
k
n /µk] to C0 − p0 to obtain a curve Cn,[k]. Let Cn denote the

coarse moduli space of Cn,[k].

We call Cn a modification of C0 and Cn,[k] a twisted modification of C0. (3.11)
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Recall the specific co-characters η0, . . . , ηr defined in (3.1) in 3.2. For I = {i1, . . . , in} ⊂
{0, . . . , r}, let TG,I([D

1
k
n /µk]) denote the moduli space of pairs (P, τ) where P is a G-bundles

on [D
1
k
n /µk] of type (ηi1 , . . . , ηin) and τ is a trivialization on [SpecC((u))× C((v))/µk]. Let

H = Aut(P ) then restriction to SpecC[[u]] and SpecC[[v]] realizes H ⊂ (LuG)µk × (LuG)µk .

Theorem 3.4.7. Let I ⊂ {0, . . . , r} and TG,I([D
1
k
n /µk]) be as above. Then there is an

isomorphism

TG,I(C0,[k])
ΨηI−−→ (LuG)µk × (LuG)µk/H

η−1
I ( )ηI−−−−−→ LpolyG× LpolyG

Z(LI)× Z(LI) · P∆,±
I

.

where ΨηI is as in (3.10) and η−1
I ( )ηI is described in proposition 3.4.5. Let i : [D

1
k
n /µk]→

C0,[k] be the natural map. Then i∗ : TG,I(C0,[k])→ [D
1
k
n /µk] is an isomorphism. In particular,

TG,I(C0,[k]), TG,I([D
1
k
n /µk]) are isomorphic to an orbit in the wonderful embedding of Ln

polyG.

Proof. That i∗ is an isomorphism follows formally so we focus on showing that TG,I([D
1
k
n /µk])

is isomorphic to the stated homogeneous space. We suppress the isomorphism η−1
I ( )ηI and

work inside G((x))×G((y)) with the help of the identification [SpecC((u))× C((v))/µk] =
SpecC((x))× C((y)).

The strategy is the same as in the proof of proposition 3.4.2 and corollary 3.4.3 above.

Namely, fix an object (P, τ) of TG,I([D
1
k
n /µk]). The restriction of P to SpecC[[x]]tSpecC[[y]]

is necessarily trivial and comparing with τ produces loops in G((x))× G((y)) = LG× LG.

Loops are identified that differ by an automorphism of P over [D
1
k
n /µk]; that is, an element

of H. We will show H ∼= Z(LI)× Z(LI) · P∆
I ⊂ LG× LG. Then we notice that

LG× LG
Z(LI)× Z(LI) · P∆

I

∼=
LpolyG× LpolyG

Z(LI)× Z(LI) · P∆,±
I

,

The above isomorphism holds because for PI,poly = PI∩LpolyG we have LG/PI = LpolyG/PI,poly ∼=
LpolyG/P−I,poly; these statements are proved in [Kum02, 7.4].

We turn now to computingH = Aut(P ). LetHu = Aut(P |[SpecC[[u]]/µk]), Hn = Aut(P |[Rn/µk])
and Hv = Aut(P |[SpecC[[v]]/µk]). Let evu : Hu → G be the restriction of an automorphism
to the special point; define evv similarly. Finally let ev0,n : Hn → G × G be the re-
striction of an automorphism to the two extreme points of [Rn/µk]. Then we have H =
{(fu, fn, fv)|(evu(fu), evv(fv)) = evn(fn)} ⊂ Hu ×Hn ×Hv.

By 3.4.2, we have Hu ×Hv = P (ηi0)× P (ηin).
We now compute Hn. Let E = E(ηi1 , . . . , ηin) denote P |[Rn/µk]. In fact, automorphisms

of G-bundles on [Rn/C×] have been computed by Martens and Thaddeus in [MTa]. They
consider a slightly different situation where they fix ηi0 = ηin = 0, but we can still use the
same methods to handle our case.
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Then results of [MTb] imply Hn is connected so we pass to Lie(Hn) = H0([Rn/µk], adE).
Let ev0,n denote also the map on Lie algebras ev0,n : H0([Rn/µk], adE) → g ⊕ g. The map
ev0,n is embedding because ker ev0,n = H0([Rn/µk], adE(ηI) ⊗ O(−p0 − pn)) = 0 by lemma
3.4.8. For a tuple of integers (b0, . . . , bn) let O(b0, . . . , bn) denote line bundle on [Rn/µk] with

equivariant structure at the fixed points pi given by bi. Then adE ∼= ⊕rk(G)
i=1 O(0, . . . , 0)⊕α∈∆

O(α ◦ ηi1 , . . . , α ◦ ηin) and we can compute separately for each α.
For α a root of LI we have α · ηij = 0 and these roots contribute a factor of ∆(Lie(LI))

to the image of ev0,n. If α is negative, 〈α, ηi0〉 = 0, and some other 〈α, ηij〉 < 0 then there is
a consecutive subset {i0, i1, . . . , ij′} such that 0 = 〈ηi0 , α〉 = . . . = 〈ηij′−1

〉 and 〈ηij′ , α〉 < 0.
Then [MTa, 1.2(c)] implies (Xα, 0) ∈ g ⊕ g lies in the image of ev0,n; in fact [MTa, 1.2(c)]
ensures there is such a C×-invariant section which is then necessarily µk invariant. Similarly,
if α is positive, 〈α, ηin〉 = 0 and some other 〈α, ηij〉 > 0 then the image contains (0, Xα).

There is a second contribution to the group Hn. Namely, we can lift Aut(Rn) = (C×)n

to E. Describe Rn = ∪ni=1Ci as a chain of P1s going from left to right with fixed points
pj−1, pj ∈ Cj on the jth component. Let (C×)j be the jth C× factor in Aut(Rn). Then lifting
(C×)j to E requires a homomorphism C× → G for each fixed point. This homomorphism
must be ηij−1

at pj−1 and by continuity it must also be ηij−1
on all Ci with i < j. Similarly

the lifting is determined by ηij on all Ci with i > j.
Let PI ⊂ G be the parabolic associated to the co-character ηI =

∑
ij∈I ηij and let LIUI be

its Levi decomposition. Each ηij maps into Z(LI) and under ev0,n generates a complement to
∆(Z(LI)) ⊂ Z(LI)× Z(LI). Also UI consists of those Xα with α > 0 such that 〈ηij , α〉 > 0
for some ij. Altogether, we get that Hn = Z(LI)× Z(LI) ·∆(LI) n (U−I × UI).

Consulting (3.2) in section 3.2 and comparing the computations of Hu, Hv, Hn, we con-
clude that H = Z(LI)× Z(LI) · LI n (U−I × UI) ∼= Z(LI)× Z(LI) · P∆

I .

Lemma 3.4.8. For {i0, . . . , in} ⊂ {0, . . . , r} let E = E(ηi0 , . . . , ηin) be the G-bundle with
splitting type (ηi0 , . . . , ηin). Then H0([Rn/µk], adE ⊗O(−p0 − pn)) = 0

Proof. For a tuple of integers (b0, . . . , bn) let O(b0, . . . , bn) denote line bundle on [Rn/µk]
with equivariant structure at pi given by bi. Then O(−p0 − pn) = O(−1, 0, · · · , 0, 1). We
remind the reader that a single subscript ηl denotes a specific co-character with l ranging
from {0, . . . , r} and double subscripts ηij are used to denote ordered subsets {i1, . . . , in} ⊂
{0, . . . , r}.

We have adE = ⊕rk(G)
i=1 O(0, . . . , 0)⊕α∈∆O(α◦ηi0 , . . . , α◦ηin). Clearly the trivial summand

poses no problem. By symmetry we can focus on α positive, in which case we show that

H0([Rn/µk],O(α◦ηi0 , . . . , α◦ηin)⊗O(−p0−pn)) = H0([Rn/µk],O(α◦ηi0−1, . . . , α◦ηin+1)) = 0.

Because all the ηi are in the Weyl alcove we have all α ◦ ηij ≥ 0. Also for the longest root
θ =

∑
i niαi we have 1 = θ◦ηj =

∑
i ni(αi◦ηj) and all the ni ≥ 1. This implies αi◦ηj = 1

ni
δi,j.

Express our fixed α =
∑

imiαi with 0 ≤ mi ≤ ni. Let us first establish some properties
of O(α ◦ ηl, α ◦ ηl′) on [P1/µk]. The degree of O(α ◦ ηl, α ◦ ηl′) is

d = kα ◦ (ηl − ηl′) = k(
mI

nl
− ml′

nl′
) (3.12)
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and we note d is an integer with |d| ≤ k. Provided d ≥ 0 the global sections are spanned by
the µk-invariant monomials xd−d

′

0 xd
′

1 where x0 has weight k
nl

and x1 has weight k
nl′

.

We examine the restriction of O(α◦ηi0 , . . . , α◦ηin)⊗O(−p0−pn) to various components.
Clearly we can restrict to those components where the degree is d > 0. Below, when we
restrict to the j component [P1/µk] we set l = ij−1 and l′ = ij .

Suppose we restrict to a component with d,ml′ > 0 then nl ≥ ml > d so all monomials
of degree d have nonzero weight provided the weight is less than k. This holds because xd0
has the highest weight and it is d k

nl
which is less than k. Consequently there are no sections.

We now assume ml′ = 0. If we restrict to the first component then tensoring with
O(−p0−pn) lowers the degree by 1 and again there are no sections. Otherwise, if the degree
of the jth component of the bundle is k then there are two sections xk0, x

k
1 that we must show

cannot extend to a global section. Assume xk1 is non vanishing at pj. The degree on the j+1
component is either 0 or negative. If the degree is 0 then on the j+ 2 component the degree
is either 0 or negative. Thanks to tensoring with O(−p0 − pn) we are certain to eventually
get a negative bundle which has no sections. Therefore the section xk1 cannot extend. But
to extend the section xk0 on the j − 1 component we need a section on bundle with degree
d > 0 and ml′ > 0 which is impossible by the previous paragraph.

Remark 9. For comparison with the C× equivariant automorphisms see [MTa, 2.13,2.19].

Remark 10. In (3.12) we concluded that the degrees of the bundle on the chain have to be
bounded by k. It is worth noting that this recovers the moduli problem considered for GLr
by Kausz [Kau05a]. In this case one can work on non twisted curves; that is, with k = 1.
Then Gieseker bundles are exactly vector bundles on modifications of the curve such that
the restriction to a chain splits as a direct sum O and O(1) and H0(Rn, E(−p′ − p′′)) = 0.
The latter condition implies H0(Rn, adE(−p′ − p′′)) = 0.

3.5 Twisted Gieseker Bundles

In this section we begin with a curve CS as in section 3.2 and construct an algebraic S-stack
XG(CS) such thatMG(CS) ⊂ XG(CS) is a dense open substack and the boundary is a divisor
with normal crossings. Further we show the morphism XG(CS)→ S is complete.

For the remainder of this section we fix a simple group G as in section 3.2 and further
fix an integer k = kG as in remark 8. The only exception is proposition 3.5.1 where k can
be any integer ≥ 1.

For convenience, we recall some of the notation from 3.2. Namely, S = SpecC[[s]],
S∗ = SpecC((s)), S0 = SpecC[[s]]/(s) = SpecC, C0 = CS0 . For B an S-scheme we set
B∗ = B ×S S∗, B0 = B ×S S0. We also have DS = SpecC[[x, y]] considered as an S-scheme

via s 7→ xy and D0 = SpecC[[x, y]]/(xy). Further, we set D
1
k
S := C[[u, v]] where uk = x and

vk = y. Then DS,[k] = [D
1
k
S /µk]; the coarse moduli space of DS,[k] is SpecC[[x, y, s]]/(xy−sk).

We further fix p ∈ CS to be the node.
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To define XG(CS) we need to define twisted modifications of CS; this is a relative version
of (3.11). Then in subsection 3.5 we define XG(CS) to be the moduli stack parametrizing
G-bundles on twisted modifications. There we prove the main theorem which shows that
XG(CS) satisfies the valuative criterion for completeness.

Twisted Modifications

Let CS be a nodal curve. A modification of length ≤ n of CS over B is a curve C ′B over B
with a morphism C ′B

π−→ CB such that

• C ′B is flat over B and π is finitely presented and projective

• C ′B∗
π−→ CB∗ is an isomorphism

• for b ∈ B0 the map of curves C ′b
π−→ Cb is a modification; that is the fiber π−1(pb) over

the unique node pb ∈ Cb is a rational chain of P1s with at most n components and
there is b ∈ B0 such that π−1(pb) has exactly n components.

Example 1. In [Gie84, 4.2], Gieseker constructs modifications of length n overB = C[[t1, . . . , tn+1]]
mapping to C[[s]] via s 7→ t1 · · · tn+1 and where the maximum number of components in the
modification is reached only over (0, . . . , 0). Further, the ith node is locally described by
B[[x, y]]/(xy − ti).

We recall the construction for n = 1; it is sufficient for our purposes to work with the curve
DS = C[[x, y]]. The base change to C[[t1, t2]] is D[[t1,t2]] := SpecC[[t1, t2, x, y]]/(xy − t1t2)
and the modification D′[[t1,t2]] is the blow up of D[[t1,t2]] along the ideal (x, t1). The fibers of

the map D′[[t1,t2]] → SpecC[[t1, t2]] agree with those of D[[t1,t2]] except over (0, 0) where the
node has been replaced by a chain of length 1.

By a series of analogous blowups we obtain a modification D′[[t1,...,tn+1]]

f−→ D[[t1,...,tn+1]]

of DS over SpecC[[t1, . . . , tn+1]] such that for ∅ 6= I ⊂ {1, . . . , n + 1} the fiber of f over
{ti = 0}i∈I is a modification D|I|−1 of D0 of length |I| − 1. This local construction extends
to give a modification C ′[[t1,...,tn+1]] of CS over SpecC[[t1, . . . , tn+1]]. Gieseker in fact proves

this construction gives a versal deformation of the curve Cn in (3.11). We utilize this in the
proof of theorem 3.5.2.

Let (g1, . . . , gn) ∈ (C×)n act on C[[t1, . . . , tn+1]] by (t1, . . . , tn)
(g1,...,gn)−−−−−→ (g1t1,

g2

g1
t2, . . . ,

gn
gn−1

tn,
1
gn
tn−1).

This action extends to C ′[[t1,...,tn+1]] such that for every closed point q ∈ SpecC[[t1, . . . , tn+1]]

the stabilizer of q in (C×)n coincides withAut(C ′q/Cq). We setMdfn = [C[[t1, . . . , tn+1]]/(C×)n].
This is an algebraic S-stack that comes equipped with a curve [C ′[[t1,...,tn+1]]/(C×)n] and the
modifications of CS over B that arise from S-maps B →Mdfn we call local modifications of
length ≤ n.

A twisted modification of length ≤ n of CS over B is a twisted curve C ′B such that its
coarse moduli space C ′B is a modification of length ≤ n of CS over B. A twisted modification
is of order k if the order of the stabilizer group of every twisted point has order exactly k.
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Similarly, a twisted modification is of order ≤ k if the order of the stabilizer of every twisted
point has order ≤ k. A local twisted modification C ′B is a twisted modification whose coarse
moduli space C ′B is a local modification. In the rest of this paper we work primarily with
(twisted) local modifications.

Remark 11. Restricting to local modifications is probably unnecessary but it simplifies our
arguments and is sufficient to prove the main theorem.

Let Mdf twn denote the functor that assigns to B → S the groupoid of twisted local
modifications of CS over B of length ≤ n. Let Mdf tw,kn ⊂ Mdf tw,≤kn be the functors of
twisted local modifications of order k and order ≤ k respectively.

Proposition 3.5.1. Let k ≥ 1, n ≥ 0 be integers. The functors Mdf twn and Mdf tw,≤kn are
algebraic stacks. Further Mdf tw,≤kn ⊂Mdf twn is an open substack and Mdf tw,kn ⊂Mdf twn is a
closed algebraic substack. Further, all of these stacks are locally of finite type.

Proof. The basic tool is to use the stack of all genus g curves. For an integer g let Sg denote
the functor on Sch which to any scheme B assigns the groupoid of all (not necessarily stable)
genus g nodal curves C → B. In [AOV11, A] it is shown that Sg is an algebraic stack locally
of finite type; see also [Ols07, §5]. If C ′B → CB is a local modification then forgetting the
map to CB defines a morphism Mdf → Sg.

Let Mtw
g be the functor which to any scheme B assigns a genus g twisted curve C → B.

In [AOV11, A] it is shown that Mtw
g is algebraic with a representable map to Sg. Further the

sub functor Mtw,≤k
g ⊂Mtw

g of twisted curves with twisting or order ≤ k is an open algebraic
substack. Then the result follows from

Mdf twn = Mdfn ×Sg Mtw
g

Mdf tw,≤kn = Mdfn ×Sg Mtw
g ,

and that Mdf tw,kn is the closed substack Mdf tw,≤kn \Mdf tw,≤k−1
n where we have used [dJea,

06FJ,0509] to conclude that open and closed substacks behave as expected.

Given a twisted modification C ′B, we define subschemes pB, p
′
B and p′b for b ∈ B0 by the

fiber product diagrams:

pB

��

// p

��

p′B

��

// p

��

p′b

��

// p0

��

CB //

��

CS

��

C ′B //

��

CS

��

D′b

��

// D0

��

B // S B // S b // S0

Where D′B := C ′B ×CB DB and D′b is the restriction to b ∈ B.
Notice that p′b is nothing other than the rational chain of P1s that appear in a modification

over the fiber of the node. Further, pB and p′B are defined so that the map C ′B−p′B → CB−pB
is an isomorphism.
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The definition of twisted Gieseker bundles and the completeness
statement

Let r = rk(G); if C ′B is a twisted modification of length ≤ r, then a G-bundle on C ′B is called
admissible if the co-characters determining the equivariant structure at all nodes are linearly
independent over Q and are given by a subset of {η0 . . . , ηr}; see (3.1) in section 3.2 for the
definition of the ηi.

Let B be an S-scheme. Define a groupoid XG(CS) over S-schemes by the assignment

X (CS)(B) =

〈
PB
��

C ′B // CB

〉

where C ′B is a twisted local modification of CB and PB is an admissible G-bundle on CB.
Isomorphisms are commutative diagrams

PB
∼= //

��

QB

��

C ′B

!!

∼= // C ′′B

}}

CB

For notational convenience we abbreviate XG(CS)(B) as XG(B).

Theorem 3.5.2. The functor XG = XG(CS) is an algebraic stack locally of finite type. It
contains MG(CS),MG(CS∗) as dense open substacks and the complement of MG(CS∗) is a
divisor with normal crossings.

Proof. We first show that XG is a stack fibered in groupoids. Namely, we show (1) for
x, y ∈ XG(B) that U → Isom(x|U , y|U) is a sheaf on Sch/B and (2) descent data is effective.

Objects x, y as above consist of G-bundles on twisted modifications of order k of some
fixed length. By proposition 3.5.1, (1) and (2) holds for twisted local modifications and so it’s
enough to check (1) and (2) on the additional data of G-bundles on a twisted modification.
By definition, G-bundles are determined by local gluing data (so (2) holds). Further, given
two G-bundles P,Q we can identify the isomorphisms P → Q as the sections of P × Q/G
over the base and this forms a sheaf so (1) holds.

To show XG is algebraic we adapt a proof [Hei10, Prop.1] of Heinloth; namely we will
verify Artin’s axioms [dJea, 07Y3]. First we recall some deformation theory of G-bundles.
Let A be a local Artin C[[s]]-algebra with maximal ideal m and residue field k. Let I ⊂ A be a
nilpotent ideal such that mI = 0. An object x ∈ XG(A/I) can be identified with a G-bundle
P on a twisted curve C ′A/I . If P is an extension of P over A then the auomorphisms of P

inducing the identity on P are classified by H0(C ′A/I , ad(P )⊗A/I I). The possible extensions
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are classified by H1(C ′A/I , ad(P )⊗A/I I) and obstructions lie in H2(C ′A/I , ad(P )⊗A/I I) = 0;

see [Har10] for the case of GLr and for general G this can be deduced from the proof of
[Hei10, Prop.1].

Artin’s axioms can be stated as (1) ∆: XG → XG × XG is representable by algebraic
spaces, (2) If B = lim←−Bi with B,Bi affine then lim−→XG(Bi) → XG(B) is an equivalence, (3)

XG satisfies the Rim-Schlessinger (RS) condition, (4) H i(C ′A/I , ad(P ) ⊗C I) for i = 0, 1 are

finite dimensional where I = (ε) ⊂ C[ε]/ε2 = A, (5) formal objects come from Noetherian
complete local rings R ⊃ m with R/m finite type over S, and (6) XG satisfies openness of
versality. We elaborate on (3),(5),(6) when we verify them below.

We also use that any algebraic stack locally of finite type over a locally noetherian base
automatically satisfy (1) - (6); see [dJea, 07SZ]. In particular, the algebraic stack Mdf tw,kn of
proposition 3.5.1 satisfies (1) - (6).

By [LMB00, Cor.3.13], we can verify (1) by showing Isom(x, y) : Sch/U → Sets is rep-
resentable by an algebraic space for every x, y ∈ XG(U). The objects x, y can be identified
with G-bundles P,Q over a fixed curve C ′U . Then Isom(x, y) can be identified with the sheaf
of sections of P ×G Q = P ×Q/G crossed with Aut(C ′U/CU) which is an algebraic space by
[KM97, thm 1.1].

Statement (2) amounts to showing for any P → C ′B there is an index j, a modification
C ′Bj and a G-bundle Pj → C ′Bj such that P → C ′B is pulled back from Pj → C ′Bj . Because
twisted local modifications form an algebraic stack we can reduce to showing this for the
G-bundles. That is there is a fixed k such that if we define C ′Bj+k as the pull back of C ′Bj
under Bj+k → Bj then C ′B = lim←−C

′
Bj+k

. We must then show there is a j such that P → C ′B
is pulled back from Pj+k → C ′Bj+k and this follows because G-bundles are finitely presented.

For the RS condition suppose we have a pushout Y ′ = Y tX X ′ with (1)X,X ′, Y, Y ′

spectra of local Artin rings of finite type over S and (2) X → X ′ a closed immersion. Then
the RS condition states that the functor XG(Y ′)→ XG(Y )×XG(X) XG(X ′) is an equivalence
of categories. We show the functor is essentially surjective; that it is fully faithful is a formal
argument we omit.

The condition holds with XG replaced with Mdf tw,kn so we can assume the following
situation

C ′X //

��

C ′X′

��

C ′Y // C ′Y ′

where all curves are pulled back from C ′Y ′ . We further have G-bundles PX , PX′ , PY on the
respective curves such that PX′ , PY extend PX . We can consider PX′ ∈ MG(C ′Y ′)(X ′) and
similarly for PX , PY . The stackMG(C ′Y ′) is algebraic by lemma 3.5.3. The latter satisfies the
RS condition so there is a G-bundle PY ′ extending all others and it is necessarily admissible
because otherwise the bundles PX , PX′ , PY would not be admissible.

Statement (4) follows readily because we work with twisted curves which have projective
coarse moduli spaces.
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A formal object is a triple ζ = (R, ζn, fn) where (R,m) is a Noetherian complete ring,

ζn ∈ XG(SpecR/mn) and ζn
fn−→ ζn+1 are morphisms over SpecR/mn → SpecR/mn+1.

There is a notion of morphisms of formal objects and they form a category. Any ψ ∈ XG(R)
gives rise to a formal object by restriction along SpecR/mn → SpecR; this is a functor
from XG(R) to formal objects over R. We must show this is an equivalence. We show it is
essentially surjective; that it is fully faithful follows formally.

The argument is similar to the verification of (3). Assume now (R, ζn, fn) is a formal
object of XG. Forgetting the data of the G-bundle produces a formal object of Mdf tw,kl

where l is the length of modification at the closed point of SpecR. Because Mdf tw,kl is
algebraic, the formal objects comes from a twisted modification C ′R. Now the original data
of the G-bundles on the various C ′R/mn = C ′SpecR ×SpecR SpecR/mn define a formal object of

the algebraic stackMG(C ′R) and hence there is a G-bundle extending them which, as in the
verification of condition (3), is necessarily admissible.

Openness of versality is explained precisely in [dJea, 07XP] but using the Kodoira-Spencer
map [Har10, 2.7], as in [Hei10, Prop.1], the statement can be simplified. Let PR → C ′R be
an object of XG(SpecR) and let Puniv be the universal bundle over C ′R ×RMG(C ′R) and let

π be the projection to MG(C ′R). Then PR gives a map SpecR
f−→ MG(C ′R) and there is an

induced Kodoira-Spencer map TR → f ∗(R1
π,∗ad(Puniv)) where TR denote the tangent sheaf

of SpecR. Openness of versality means that this map being surjective is an open condition
which follows because the locus where a map of coherent sheaves is surjective is open. We
conclude that XG(CS) is algebraic.

Let ηi be the vertices of Al, then Di := MG,ηi(C0,[k]) ⊂ XG −MG(CS∗) and because
we have fixed the value of k, Di appears only once in the boundary. Further, the proof of
theorem 3.5.4 below shows any object ∈ XG −MG(CS∗) is in the closure of some Di hence
XG −MG(CS∗) = ∪ri=0Di and thus MG(CS∗) is an open sub stack. Using theorem 3.4.7
we conclude that ∪ri=0Di can be presented as a quotient of X aff,poly from Chapter 2; the
former has simple normal crossing singularities. Finally, MG(CS) = XG − ∪i 6=0Di, which is
open.

Lemma 3.5.3. Let C → B be a twisted curve over a locally noetherian base C-scheme B
and let H be an affine algebraic group over C. Then the functor MH(CB) which assigns to
any B′ → B the groupoid of principal H-bundles on CB ×B B′ is an algebraic stack locally
of finite type.

Proof. Writing pt = SpecC, we have [pt/H]→ pt is a morphism of finite presentation hence
so is [pt/H]×B → B. We observe thatMH(CB) = HomB(C, [pt/H]×B) and apply [Aok06b]
to conclude the result. Note we must check an additional condition from [Aok06a]; namely
that MH(CB) satisfies condition (5) stated in the proof of theorem 3.5.2:

HomR(CR, [pt/H]× SpecR)→ lim←−HomR/mn(CR/mn , [pt/H]× SpecR/mn) (3.13)

is an equivalence for any SpecR→ B with R a complete local Noetherian ring R. By [Ols07],
after an étale extension on the base, there is a finite flat morphism Z → C over B with Z
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a projective scheme. As in [Aok06b, pg. 50], we can verify (3.13) after replacing C with Z.
Then HomB(Z, [pt/H]×B) =MH(ZB) which is an algebraic stack locally of finite type by
[Wan]; in particular (3.13) holds by [dJea, 07SZ].

We now come to the main theorem

Theorem 3.5.4. Let R = C[[s]] and K = C((s)); for a finite extension K → K ′ let R′

denote the integral closure of R in K ′. Given the right commutative square below, there is
finite extension K → K ′ and a dotted arrow making the entire diagram commute:

SpecK ′ //

��

SpecK

��

h∗ // XG(CS)

��

SpecR′

h

44

// SpecR
f

// S

Proof. If f factors through S∗ ⊂ S then the morphism h∗ determines a G-bundle on the
smooth curve CS∗ and completeness of MG(CS∗) assures we can extend this to a G-bundle
over CS∗ ×S∗ SpecR′ which produces the required morphism h.

Assume now f is surjective. As in proposition 3.4.1, normalize f so it is given by s 7→ sl

for l ≥ 1. Also by proposition 3.4.1, the map h∗ amounts to a G-bundle P on C[[x, y, s]]/(xy−
sl)−(0, 0, 0). By lemma 3.4.4, after a finite base change, we can identify P with the restriction
of a G-bundle on twisted curve of order k. Moreover, we can further suppose the equivariant
structure of the bundle is determined by a co-character η which lies in a face of Al. If
η happens to be one of the vertices ηi of Al then we’ve determined an objects of XG(CS)
extending E.

In general η lies in a higher dimensional face ofAl and there is a subset I = {ηi1 , . . . , ηin} ⊂
{0, . . . , r} such that P (η) = PI where PI is defined in (3.2) section 3.2. Let D

′ 1
k
S be the it-

erated blowup of D
1
k
S = SpecC[[u, v]] such that D

′ 1
k
S

π−→ SpecC[[u, v]] is a modification of

length ≤ n−1 and let E(ηI) be the bundle on [D
′ 1
k
S /µk] determined by fixing the equivariant

structure at the jth node in π−1(0, 0) to be ηij . Because η, ηI lie in the same face of Al they
determine isomorphic bundles hence E(ηI) yields an object in XG(CS) extending E.

Finally, if f is the map s 7→ 0 then the map h∗ define an admissible G bundles Ph∗ on a
curve Cn,[k] as in (3.11). By definition, there is a subset I = {ij} ⊂ {0, . . . , r} of cardinality
n + 1 such that Ph∗ |Dn,[k]

is an equivariant bundle with equivariant structure at pj ∈ Dn,[k]

determined by ηij .
After potentially a faithfully flat base change SpecR′ → SpecR the bundle is trivial on

the complement of the chain ∼= C0 − p0. By theorem 3.4.7, fixing a trivialization defines
a morphism SpecK ′ → TG,I(Dn,[k]) =

LpolyG×LpolyG
Z(LI)∆(LI)n(U−I ×UI)

. Further we have a commutative
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diagram

SpecK ′∗
φ

//

��

LpolyG×LpolyG
Z(LI)∆(LI)n(U−I ×UI)

��

SpecR′
φ
// LpolyG/P−I × LpolyG/PI .

(3.14)

This follows because LpolyG/P−I × LpolyG/PI is a projective ind variety. Let H = LpolyG×
LpolyG, H1 = ∆(LI)n (U−I ×UI) and H2 = P−I ×PI . Identifying K ′ = C((s)) and using that
∪m≥1C((s1/m)) is the algebraic closure of C((s)) we conclude that after another base change
SpecK ′′ → SpecK ′ the element φ ∈ H/H1((s)) lifts to an element φ′ ∈ H((s1/m)) for some
m. The fact that φ extends to a map φ on C[[s]] means that φ′ has a factorization φ′ = φ′′ψ
where φ′′ ∈ H[[s1/m]] and ψ ∈ H2((s1/m)). By applying a change of trivialization over the

normalization D̃0 we can replace φ′ with ψ. Then using the Levi decomposition of H2 we can
factor ψ = ψL × ψU where ψL ∈ LI((s1/m))× LI((s1/m)) and ψU ∈ U−I ((s1/m))×UI((s1/m)).
Finally by applying a suitable automorphism over Dn,[k] we can replace ψ simply with ψL.
Altogether the map φ induces a morphism ψL : C((s1/m)) → H2 → H2/H1

∼= LI . By abuse
of notation let the composition also be denoted ψL. Since we have only changed φ by
automorphisms and extensions of the variable, the map ψL is in the same isomorphism class
of φ.

Using the Bruhat decomposition for loop groups we conclude ψL ∈ L[[s1/m]]η′(s1/m)L[[s1/m]],
where we again can take η′ to be in the affine Weyl alcove. Then as in the previous case we
find a subset I ′ ⊂ {0, . . . , r} such that P (η′) = P (ηI′) where ηI′ =

∑
ij∈I′ ηij and use this to

construct an object in XG(CS) extending h∗.
This degeneration terminates when the subset I = {0, . . . , r} because then the right

vertical map in (3.14) is an isomorphism.
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