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Quantum error detection improves accuracy of chemical calculations on a quantum
computer

Miroslav Urbanek∗ and Wibe Albert de Jong
Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

Benjamin Nachman
Physics Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

The ultimate goal of quantum error correction is to achieve the fault-tolerance threshold beyond
which quantum computers can be made arbitrarily accurate. This requires extraordinary resources
and engineering efforts. We show that even without achieving full fault-tolerance, quantum error
detection is already useful on the current generation of quantum hardware. We demonstrate this by
executing an end-to-end chemical calculation for the hydrogen molecule encoded in the [[4, 2, 2]]
quantum error-detecting code. The encoded calculation with logical qubits significantly improves
the accuracy of the molecular ground-state energy.

I. INTRODUCTION

Predicting chemical properties from first principles is a
notoriously hard problem. Quantum computing promises
efficient methods for such calculations that can reach far
beyond the abilities of classical computers [1]. Large-scale
calculations on quantum computers will require an ability
to detect and correct errors. However, near-term de-
vices known as noisy intermediate-scale quantum (NISQ)
computers [2] are not expected to be fully fault-tolerant.
Despite this limitation, they can still be useful for solving
certain problems in physics and chemistry. In particular,
the variational quantum eigensolver (VQE) [3, 4] is an
algorithm designed to work well on NISQ computers. It
has been experimentally demonstrated that VQE is able
to find the ground state as well as excited states of small
quantum systems encountered in quantum chemistry and
nuclear physics [3, 5–12]. The performance of NISQ algo-
rithms is currently limited by gate errors and device noise.
Several novel error mitigation and suppression techniques
have been developed to overcome the imperfections of
real devices [13–24].

Quantum error correction (QEC) is a theory developed
in the last two decades to address this problem in a
systematic way. The ultimate goal of QEC is to achieve
the fault-tolerance threshold. Fault-tolerance requires a
large number of qubits, long coherence times, and low
gate errors [25–28]. However, QEC can still be useful
even without achieving the fault-tolerance threshold and
even with only a small number of qubits [29–31]. QEC
can potentially increase coherence times and reduce error
rates in existing devices. There have been efforts to
demonstrate that quantum circuits using QEC codes can
improve accuracy, or at least break even, in comparison
with the original circuits. Previous experiments studied
the traditional three-qubit quantum code [32] and also
demonstrated necessary improvements in qubit and gate
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qualities for QEC [33–35]. There has also been a growing
interest in studying the [[4, 2, 2]] quantum code [36–41].
All these efforts have tested individual steps of QEC
protocols separately. QEC has never been demonstrated
to provide a tangible benefit in practical applications.

In this work we demonstrate that QEC provides an im-
provement in accuracy in an end-to-end quantum-chemical
calculation. We have implemented a two-qubit VQE al-
gorithm for calculating the ground-state energy of the
hydrogen dimer in the [[4, 2, 2]] QEC code [26, 42, 43].
Instead of two physical qubits, the calculation uses two
logical qubits encoded in four physical qubits. The code
facilitates detection of a single bit-flip and phase-flip error
in either of the two logical qubits. Our circuit additionally
uses two ancillary qubits to perform a syndrome measure-
ment during the initial state preparation and to perform
a logical qubit rotation. Using the [[4, 2, 2]] code goes a
step beyond the experiments with the three-qubit quan-
tum code that encodes only a single logical qubit and
cannot simultaneously correct a bit-flip and a phase-flip
error [25, 26].

We first describe the problem being solved, briefly sum-
marize the VQE algorithm, and present a two-qubit circuit
implementing the algorithm. We then discuss the [[4, 2,
2]] code and show how to implement the required logical
gates. This leads to a six-qubit encoded circuit. Our
numerical simulations predict that the encoded circuit
should outperform the physical circuit up to a fairly large
error rate. We then discuss the implementation of both
the two-qubit and the six-qubit circuit on the IBM Q
Experience platform and show that the encoded circuit
improves the accuracy of the potential energy curve of
the molecule.

II. QUANTUM ALGORITHM

Finding the ground-state energy of the H2 molecule
in the minimal basis is the simplest molecular electronic-
structure problem. It is often used as a benchmark to
investigate the performance of quantum-chemical algo-

ar
X

iv
:1

91
0.

00
12

9v
1 

 [
qu

an
t-

ph
] 

 3
0 

Se
p 

20
19

mailto:urbanek@lbl.gov


2

rithms on quantum computers. The respective molecular
Hamiltonian can be transformed into a qubit Hamilto-
nian using the Jordan–Wigner [44], Bravyi–Kitaev [45],
or another similar transformation. Here we use an ex-
plicit transformation defined in Ref. [8] that maps the
subspace of the Hamiltonian corresponding to two elec-
trons with zero total spin to a two-qubit Hamiltonian.
The transformed Hamiltonian is given by

H = g1 + g2Z1 + g3Z2 + g4Z1Z2 + g5X1X2, (1)

where Xi, Yi, and Zi denote Pauli operators acting on
qubit i and gj are classically-calculated coefficients that
depend on the internuclear separation R. We use values
of gj published in Ref. [8].

The VQE algorithm performs particularly well for this
problem. It is a hybrid quantum-classical algorithm that
uses a quantum computer to create and measure the prop-
erties of a parametrized trial wavefunction and a classical
computer to optimize the wavefunction parameters. Our
trial wavefunction is the unitary coupled-cluster (UCC)
ansatz [5, 8, 10, 46, 47]

|ψ(θ)〉 = e−iθX1X2/2|Φ〉, (2)

where θ is a parameter and |Φ〉 = |00〉 is the Hartree–Fock
wavefunction. The wavefunction energy is given by

E(θ) = g1 + g2〈Z1〉θ + g3〈Z2〉θ + g4〈Z1Z2〉θ + g5〈X1X2〉θ,
(3)

where 〈O〉θ = 〈ψ(θ)|O|ψ(θ)〉. VQE uses a quantum com-
puter to estimate the expectation values included in E(θ)
and a classical optimizer to find the value of θ that min-
imizes E(θ). Since our ansatz depends on a single pa-
rameter only, we sample the full domain of θ and use a
peak-finding routine to minimize E(θ). It is then sufficient
to sample the individual expectation values in Eq. (3) only
once and use the same data with any set of coefficients
gj . A quantum circuit that implements VQE is shown in
the top of Fig. 1.

III. ERROR-DETECTING CODE

Our goal is to compare the performance of a circuit
implemented with physical qubits to a circuit implemented
with logical qubits of the [[4, 2, 2]] code. This code maps
two logical qubits into a subspace of four physical qubits
as

|00〉 = 1√
2

(|0000〉+ |1111〉) ,

|01〉 = 1√
2

(|0011〉+ |1100〉) ,

|10〉 = 1√
2

(|0101〉+ |1010〉) ,

|11〉 = 1√
2

(|0110〉+ |1001〉) ,

(4)

where an overline denotes a logical wavefunction. This
mapping allows for the detection of one single-qubit error.
To implement the circuit we have to construct the required
logical gates from the set of available physical gates. Our
set of physical gates is limited to arbitrary single-qubit
gates and CNOT gates between any pairs of physical
qubits.
The encoded circuit is shown in the bottom of Fig. 1.

Its first part is a preparation of the initial logical state
|00〉. The circuit uses an ancilla measurement to detect
an error during the preparation [29]. The measurement
outcome zero corresponds to no error while the outcome
one signals an error.
Some logical gates can be implemented easily because

the corresponding physical gates act transverally, i.e.,
they can be implemented with only single-qubit physical
gates. The [[4, 2, 2]] code also facilitates a very simple
implementation of the logical CNOT gates as CNOT12 =
SWAP12 and CNOT 21 = SWAP13, where an overline
denotes a logical gate and SWAPij swaps physical qubits
i and j [41]. We implement SWAPij and therefore the
CNOT gates without performing any physical operation
by relabelling the respective qubits.
The arbitrary-angle rotation of the first logical qubit

R1
y(θ) cannot be implemented transversally. We apply this

gate by entangling the logical qubit with an ancilla and
performing a rotation and a measurement on the ancilla.
The measurement outcome zero projects the wavefunction
onto the rotated logical state. The gate works correctly
only if the logical qubit is initially in the |0〉 state. A
general gate would require additional physical gates.

IV. EXPERIMENT

The algorithm can be summarized as follows. We sam-
ple the 〈Z1〉θ, 〈Z2〉θ, 〈Z1Z2〉θ, and 〈X1X2〉θ terms for
θ ∈ [−π, π) on a quantum computer. The 〈Z1〉θ, 〈Z2〉θ,
and 〈Z1Z2〉θ terms can be measured with a single cir-
cuit without any basis transformations. However, it is
necessary to perform a basis transformation to measure
the 〈X1X2〉θ term. We therefore execute the circuit with
Rt = I to measure 〈Z1〉θ, 〈Z2〉θ, and 〈Z1Z2〉θ, and with
Rt = H to measure 〈X1X2〉θ. We then calculate the
ground-state energy for each internuclear separation R
by minimizing E(θ).
We ran both the two-qubit logical circuit and the six-

qubit encoded circuit on the Tokyo chip on IBM Q Ex-
perience. The major errors are readout errors [6, 9, 48].
If a qubit is in the |0〉 state there is a significant prob-
ability of measuring outcome one and vice versa. The
readout errors are asymmetric, i.e., the probability of
measuring zero when a qubit state is |1〉 is higher than
the probability of measuring one when the state is |0〉.
This is mostly due to the readout time being significant
in comparison to the T1 coherence time, so the qubit
can decay from the |1〉 state to the |0〉 state during the
readout. We employed a readout error correction tech-



3

q4 = |0⟩

q3 = |0⟩

q2 = |0⟩

q1 = |0⟩

a1 = |0⟩

H

0 a2 = |0⟩ H Ry(−θ) 0

Rt

Rt
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b4

b3

b2

b1
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q1 = |0⟩ Ry(θ)

Rt

Rt

b2

b1
Logical circuit

Encoded circuit

Initial state preparation Unitary coupled-cluster exponential Measurement

(a) (b) (c)

FIG. 1. Quantum circuits for the preparation of the UCC ansatz and for the measurement of the expectation values in Eq. (3).
The two-qubit logical circuit is shown above the corresponding six-qubit encoded circuit. Qubits a1 and a2 are ancillas. (a) The
first section of the encoded circuit prepares the |00〉 logical state. Ancilla a1 is used to detect errors during the preparation.
(b) The middle circuit sections apply the UCC exponential. Encoded CNOT12 gates are implemented by swapping qubits q1

and q2 and are not shown here. We use ancilla a2 to implement the rotation R1
y(θ). The rotation circuit applies a θ-rotation

and a −θ-rotation to the |0〉 and |1〉 states of the first logical qubit, respectively. The complete circuit performs a θ-rotation
because our logical wavefunction is initially prepared in the |00〉 state. (c) The last circuit sections are the expectation value
measurements. Gates Rt perform a basis transformation that depends on the measured term. In particular, Rt = I for the
〈Z1〉θ, 〈Z2〉θ, and 〈Z1Z2〉θ terms as the respective operators are already diagonal in the computational basis and Rt = H for the
〈X1X2〉θ term.

nique known as unfolding [49, 50] based on a Bayesian
probabilistic model [51–53] to correct the readout errors.
We first measured and estimated the probability of each
outcome when the qubits were prepared in each computa-
tional basis state. We then used this probability matrix
to iteratively unfold all measured counts to corresponding
true counts.
The chip contained 20 qubits arranged in a two-

dimensional geometry. There were 72 ways to map our
two-qubit physical circuit and 288 ways to map our six-
qubit encoded circuit to the chip qubits. We found that
the results depended significantly on the chosen qubits
and also on the order of the applied gates. The result vari-
ability is illustrated in Fig. 2. The 〈X1X2〉θ term is the
most sensitive term in Eq. (3). To find an optimal map-
ping, we measured 〈X1X2〉θ for θ = −3π/4, −π/2, −π/4,
0, π/4, π/2, and 3π/4, applied readout error corrections,
and calculated the `1 distances between the corrected
results and the exact results for each mapping. We used
the mappings with the smallest distances to run the final
circuits. The compiler reordered commuting gates based
on the qubit mapping, so this technique took into account
both the qubit mapping and the gate order variability.
We executed the final calculations for both the two-

qubit and the six-qubit circuit using the optimal mappings.
The 〈Z1〉θ, 〈Z2〉θ, 〈Z1Z2〉θ, and 〈X1X2〉θ terms were ob-
tained for 257 values of θ in the [−π, π] interval. Each
measured value was sampled with 8192 shots. For the
encoded six-qubit circuit we postselected the outcomes
based on their ancilla values. In particular, we measured
all six qubits, performed readout error corrections, and

discarded outcomes with nonzero ancilla values. The out-
comes outside the code space were discarded as well. We
renormalized the remaining outcomes and summed counts
of constituent basis states in Eq. (4) to calculate the logi-
cal state counts. The calculated expectation values of the
Hamiltonian terms are shown in Fig. 3. We then used a
peak-finding routine to find θ that minimized the energy
in Eq. (3) for each internuclear separation. The calculated
energy potential curves are shown in Fig. 4. The results
demonstrate that the six-qubit encoded circuit improves
the accuracy of the ground-state energy.

V. DISCUSSION

In summary, we designed a circuit for a VQE calcula-
tion within the [[4, 2, 2]] quantum error-detecting code
space. We executed the circuit on a quantum chip and
observed an improvement in the calculated ground-state
energy of the H2 molecule. Our encoded circuit requires
more physical qubits and gates than our logical circuit
and therefore is more error-prone. However, the gain
by using the code was larger than the loss due to the
circuit complexity. The results show that quantum error-
detection is already useful on NISQ devices even without
achieving full fault-tolerance. The presented method can
be used in addition to other error mitigation techniques.
Our implementation uses two ancillary qubits with postse-
lection on their measured outcomes. In principle, it would
be possible to use just one ancilla if we had an ability to
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FIG. 2. (a) Examples of variablity in the calculated potential energy curves obtained using two random mappings for each
circuit on the 20-qubit Tokyo chip. Gate sequences depend on the chosen mapping as well. (b) Chip geometry with highlighted
qubit mappings. Mappings 2A and 2B are two-qubit mappings (q1, q2) = (1, 6) and (q1, q2) = (14, 18). Mappings 6A and 6B are
six-qubit mappings (a1, a2, q1, q2, q3, q4) = (13, 9, 8, 4, 3, 12) and (a1, a2, q1, q2, q3, q4) = (5, 15, 11, 16, 10, 17).
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FIG. 3. Measured expectation values of terms in the Hamiltonian for both the two-qubit and the six-qubit circuit. The top
panels show the expectation values and the bottom panels show their differences from the exact values. The two-qubit and the
six-qubit circuits were executed on qubits (q1, q2) = (13, 18) and (a1, a2, q1, q2, q3, q4) = (12, 5, 11, 6, 10, 17).
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between the measured energy and the exact energy. Gray band shows the range of chemical accuracy (1.6 × 10−3 Ha). (c)
The value of the UCC parameter θ at the energy minimum. The six-qubit circuit performs better than the two-qubit circuit
especially for small values of θ.
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perform a qubit reset. Similarly, the postselection in the
rotation gate would be unnecessary if we had an ability
to apply conditional gates dependent on measurement
outcomes. Implementing quantum error detecting and
correcting codes tailored to specific applications better
utilizes limited resources and extends the possibilities of
existing devices. It also informs hardware designers which
features will be the most impactful in the next generation
of quantum computers.

Some of the previous VQE experiments [5, 6, 8, 10, 20]
found the ground-state energy of the H2 molecule with a
comparable or better accuracy. They used techniques like
higher qubit states measurement [5], quantum subspace
expansion [8], and noise extrapolation [20] to mitigate
errors. We emphasize that our circuits do not use any such
techniques. Our QEC method demonstrates that on the
same hardware and using the same algorithm, the encoded
circuit results in smaller error than the physical circuit.
Other error mitigation techniques are complementary to
the presented method.
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Appendix A: Hamiltonian transformation

We use a transformation presented in Ref. [8] to map
the electronic-structure space to qubits. The transformed
space corresponds to a H2 molecule with two electrons
and zero total spin. In particular,

a†1↑a
†
1↓|vac〉 → |00〉,

a†1↑a
†
2↓|vac〉 → |01〉,

a†2↑a
†
1↓|vac〉 → |10〉,

a†2↑a
†
2↓|vac〉 → |11〉,

(A1)

where a†is is an operator that creates an electron with
spin s in orbital i and |vac〉 is the vacuum state.

Appendix B: Analytical model

We analyze the effect of noise on the calculated ground-
state energies using the depolarizing noise model. The
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FIG. 5. Energy potential curves of the H2 molecule calculated
analytically using the VQE algorithm with the depolarizing
noise model. The two-qubit gate error rate is p = 5 %. The
six-qubit encoded circuit performs better for error rates up to
about 30 %.

noise operation is given by [25]

ε(ρ) = (1− p)ρ+ p
I

2 , (B1)

where ρ is the density matrix and p is the probabilistic
error rate. The value of p = 0 corresponds to vanishing
noise and p = 1 corresponds to full noise. We assume that
the noise affects only qubits involved in a particular gate
application. Separate operations are used for one-qubit
gates,

εi(ρ) = (1− p1)ρ+ p1

4
∑
Ei∈Pi

E†i ρEi, (B2)

and for two-qubit gates,

εi,j(ρ) = (1− p2)ρ+ p2

16
∑
Ei∈Pi
Ej∈Pj

E†iE
†
jρEiEj , (B3)

where Pi = {Ii, Xi, Yi, Zi} is the set of the unit matrix
and the Pauli matrices acting on qubit i. The noise oper-
ations above are performed on the density matrix after
each gate application to a respective set of qubits. We
characterize the noise channel with only a single parame-
ter p and use p2 = p and p1 = p/16 since the single-qubit
gates have significantly higher fidelities in hardware. The
comparison of the ground-state energy calculated with
the noisy logical and encoded circuits is shown in Fig. 5.

Appendix C: Readout error correction

Correcting measurements of discrete data for readout
bias has a long history. For example, in high energy
physics experiments, binned differential cross sections
are corrected for detector effects in order to compare
them with predictions from quantum field theory. In that
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raw measurement outcomes and with outcomes corrected for
readout errors for both the two-qubit and six-qubit circuits.

context, the corrections are called unfolding (sometimes
called deconvolution in other fields) and a variety of tech-
niques have been proposed and are in active use [49, 50].
Quantum readout error correction can be represented as
a binned unfolding where each bin corresponds to one of
the possible 2m configurations, where m is the number of
qubits.
We use an iterative Bayesian unfolding technique [51–

53]. Given a response matrix

Rij = Pr(measure i | truth is j), (C1)

a measured spectrum mi = Pr(measure i) and a prior

truth spectrum t0i = Pr(truth is i), the iterative technique
proceeds according to an equation

tn+1
i =

∑
j

Pr(truth is i |measure j)×mj

=
∑
j

Rjit
n
i∑

k Rjkt
n
k

×mj ,
(C2)

where n is the iteration number. The advantage of
Eq. (C2) over simple matrix inversion is that the result
is a probability (nonnegative and unit measure). We con-
struct Rij by preparing 2m calibration circuits where each
qubit computational state is constructed with X gates.
The entries of Rij are the fraction of measurements that
qubit configuration i is observed in configuration j. We
use a uniform distribution as the initial spectrum t0i . The
iterative procedure described in Eq. (C2) is repeated until
convergence. The effect of readout error correction on
potential energy curves is shown in Fig. 6.

Appendix D: Qubit mappings

The availability of qubits and their connections has
changed during the data collection. The final data in
Fig. 4 were collected after a connection between qubits
three and nine was turned off. Additionally, qubit seven
was not available during experiments with the six-qubit
circuit. As a result, there were only 70 and 116 possible
mappings from the abstract qubits to the physical qubits
for the two-qubit and the six-qubit circuits, respectively.
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