
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Action selection and coordination: Perspectives from movement speed learning

Permalink
https://escholarship.org/uc/item/6ns2d0z1

Author
Hillenbrand, Sarah Frances

Publication Date
2015
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6ns2d0z1
https://escholarship.org
http://www.cdlib.org/


Action selection and coordination: 
Perspectives from movement speed learning

by 

Sarah Frances Hillenbrand

A dissertation submitted in partial satisfaction of the 

requirements for the degree of 

Doctor of Philosophy 

in

Neuroscience

in the

Graduate Division

of the 

University of California, Berkeley

Committee in Charge:

Professor Richard B. Ivry, Ph.D. (Chair)
Professor Michael A. Silver, Ph.D.
Professor David Whitney, Ph.D.

Professor Steve L. Lehman, Ph.D.

Summer 2015





Abstract

Action selection and coordination: 
Perspectives from movement speed learning

By

Sarah Frances Hillenbrand

Doctor of Philosophy in Neuroscience

University of California, Berkeley

Professor Richard B. Ivry, Chair

In his 1945 book The Phenomenology of Perception, French philosopher Maurice 
Merleau-Ponty wrote, “The body is our general medium for having a world.” When learning to 
move, our bodies implicitly know what to do, letting experiences tweak our neural circuits to 
etch in precise models of the world. These experiences wire up complex capabilities in bodies 
that were born ready to move, but did not yet know what a pen, a cartwheel, or a hug was. 

What is arguably more difficult is using our minds to gain explicit understanding of the 
processes governing learning and movement. For this, we have science. Merleau-Ponty later 
wrote, “Science manipulates things and gives up living in them. It makes its own limited models 
of things; operating upon these indices or variables to effect whatever transformations are 
permitted by their definition, it comes face to face with the real world only at rare intervals.” In 
this dissertation, I present the outcomes of my own manipulations, my own limited models 
which, at rare intervals, come face to face with the ways in which our bodies construct our world.

In Chapter 2, I investigated a potential problem for the use of functional magnetic 
resonance imaging (fMRI) to study human motor behavior. Task-related changes in heart rate can
cause changes in the blood oxygen level dependent (BOLD) signal, potentially masking effects 
of interest. Correcting for heart rate fluctuations did not fundamentally change the brain's 
responses to arm movements. However, because these corrections did improve the explanatory 
power of fMRI analyses, my work stands as an illustration of the efficacy of this correction. 

In Chapter 3, I had people learn to produce movements of certain speeds in a virtual 
shuffleboard game. When learning movement directions, delayed feedback impairs performance 
due to processing limitations in a brain structure called the cerebellum. Because feedback is 
naturally delayed in shuffleboard, I asked whether delays affect learning of speeds, as well. They 
did not, suggesting that the cerebellum is not involved in learning movement speeds from errors. 

In Chapter 4, I sought to confirm this speculation using fMRI. I scanned the brains of 
people as they played shuffleboard. I found no evidence that the cerebellum was involved in the 
processing of errors of movement speed. However, successful task performance robustly 
activated the dorsal striatum, a structure involved in learning from rewards and forming habits. 
These results suggest that, when people learn to move at certain speeds, they depend more on 
memories of times they got it right than on feedback telling them to speed up or slow down. 

1



Acknowledgments

I am first and foremost deeply grateful to my advisor, Richard Ivry, who is a fearsome 
experimentalist, an inspirational leader, and a kind and caring mentor. These traits are rare in 
isolation and unheard of in a single individual. I consider myself lucky to have learned from him.

This work has also benefited greatly from the efforts of the following individuals. Thanks to: 

Chapter 2: 

John Schlerf, my co-author, for foundational training in understanding, selecting, and 
implementing fMRI analyses, all delivered with superhuman patience. 

Rick Redfern, for frequent miscellaneous repairs made with minimal judgment.

Chapter 3: 

Kristin Calsada, a summer student whose assistance and patience in getting experiments up and 
running were invaluable. 

Trisha Vaidyanathan, Ashok Krishna, and Janice Chua, trusted research assistants, who 
contributed heroic data collection efforts.

Chapter 4: 

Katherine Okpara and Tina Tu, two intelligent, reliable, and fun research assistants who have 
been of tremendous help through countless pilot studies, scan sessions, and programming 
challenges. 

Ben Inglis, for counsel on scan sequences and artifacts, and for general wit and wisdom.

Financial support:

This work was supported by the National Science Foundation Graduate Research Fellowship 
Program and the National Institutes of Health (NS074917, HD060306).

Data presented in Chapters 2-4 were collected at the Henry J. Wheeler, Jr. Brain Imaging Center 
at the University of California, Berkeley, which receives support from the National Science 
Foundation through their Major Research Instrumentation Program, award number BCS-
0821855.

i



Table of Contents

List of Figures ..............................................................................................................................iii

List of Tables .................................................................................................................................iv

Chapter 1: Introduction ...............................................................................................................1

Chapter 2: Impact of task-related changes in heart rate on estimation of hemodynamic 
response and model fit of BOLD responses ................................................................................5
     Submitted as Hillenbrand, S.F., Ivry, R.B., & Schlerf, J.E., Impact of task-related changes in 
      heart rate on estimation of hemodynamic response and model fit.

     2.1 Introduction ..........................................................................................................................5
     2.2 Material and methods ...........................................................................................................6
     2.3 Results ................................................................................................................................11
     2.4 Discussion ..........................................................................................................................17
     2.5 Conclusions ........................................................................................................................21

Chapter 3: Limited effect of temporal constraints on feedback in learning to control 
movement speed ..........................................................................................................................22

     3.1 Introduction ........................................................................................................................22
     3.2 Material and methods .........................................................................................................25
     3.3 Results ................................................................................................................................31
     3.4 Discussion ..........................................................................................................................39
     3.5 Conclusions ........................................................................................................................43

Chapter 4: Involvement of dorsal striatum but not cerebellum in trial-by-trial learning of 
movement speed ..........................................................................................................................44

     4.1 Introduction ........................................................................................................................44
     4.2 Material and methods .........................................................................................................47
     4.3 Results ................................................................................................................................57
     4.4 Discussion ..........................................................................................................................75
     4.5 Conclusions ........................................................................................................................81

Chapter 5: Conclusion ................................................................................................................83

References ....................................................................................................................................85

Appendix (Supplemental material for Chapter 4) ...................................................................96

ii



List of Figures

Chapter 2
2.1 Change in physiological measures evoked by reaches ...........................................................12
2.2 Regions of interest ..................................................................................................................14
2.3 Deconvolved HRFs .................................................................................................................15
2.4 Model comparisons: Increase in percent variance explained and nested F-tests ....................18

Chapter 3
3.1 Experimental setup and task ...................................................................................................26
3.2 Schematic of distance and timing manipulations for Experiments 1-3 ..................................28
3.3 Experiment 1 Results ..............................................................................................................33
3.4 Experiment 2 Results ..............................................................................................................35
3.5 Experiment 3 Results ..............................................................................................................38

Chapter 4
4.1 Task .........................................................................................................................................48
4.2 Motor (unperturbed) and visual (perturbed) performance metrics .........................................58
4.3 Responsivity to perturbations: raw and z-scored, by target and transition .............................59
4.4 Relationship between trial type, behavioral variables of interest, and movement variables . .60
4.5 Perturbations reduce correlation between hand speed and feedback distance ........................61
4.6 Movement localizer ................................................................................................................64
4.7 Feedback (FB) vs. No feedback (NF) trials ............................................................................66
4.8 Hit trials vs. Miss trials ...........................................................................................................67
4.9 Parametric effect of absolute error ..........................................................................................69
4.10 Parametric effect of signed error ...........................................................................................70
4.11 Effects of reaction time, after controlling for effects of hand speed .....................................72
4.12 Effects of hand speed, after controlling for effects of reaction time .....................................73
4.13 Effects of hand speed by feedback condition, after controlling for effects of reaction time 74

Appendix: Supplementary material for Chapter 4
1 Movement variables not used as parametric modulators of imaging data .................................96
2 Correlation matrix comparing movement parameters and behavioral effects of interest...........97

iii



List of Tables

Chapter 2
2.1 Regions of interest ..................................................................................................................14
2.2 Comparison of deconvolved HRFs from the Uncorrected model
       with each of seven Corrected models ....................................................................................16
2.3 Percent variance explained .....................................................................................................17

Chapter 4
4.1 Questionnaire and post-questionnaire interview items and responses ....................................62
4.2 Clusters of activation, p < .05, family-wise error corrected ...................................................64
4.3 Activations centered on peaks reaching p < .001, uncorrected ...............................................64
4.4 Regions modulated by reaction time and hand speed, p < .001, uncorrected .........................76

iv



Chapter 1: Introduction

Humans and other organisms are capable of skillfully executing a stunningly diverse 
repertoire of motor behaviors. Given that very few of these behaviors are possible at birth, 
lifelong learning is required to build up this repertoire. People must learn to select the correct 
actions, and to coordinate those actions, using feedback about what they did right and what they 
did wrong. This feedback is used to issue corrections both as the movement unfolds in real time 
and on subsequent attempts at executing the same movement. 

Often thought of as an implicit process, a form of knowing how to do something, folk 
wisdom holds that motor learning is the process of sculpting a poorly understood “muscle 
memory.” However, motor learning also requires explicit knowledge of facts about the world: for
instance, information about a surface's friction, an object's weight, and proper movement 
technique can all influence both the selection and coordination of actions (cf. Stanley & 
Krakauer, 2013). Motor learning is likely to rely upon some combination of explicit and implicit 
processing. However, the division of labor between neural circuits that encode models of 
ourselves and of the world is not clear. At present, there is one point of agreement in the motor 
learning community, and that is simply that there must exist more than just one neural system for
motor learning (Karni et al., 1998; Smith et al., 2006; Taylor et al., 2014; and for review, see 
Shadmehr et al., 2010 and Krakauer & Mazzoni, 2011).

In order to become motorically competent adults, it is thought that people form internal 
representations, or models, of the consequences of their actions. These consequences may be 
sensory: for instance, in reaching for a cup of coffee, I see and feel my arm traveling across my 
desk. I compare the actual and intended consequences of my movement to form what is termed a 
sensory prediction error, adjusting subsequent movements to bring the actual and intended 
consequences into better alignment. People are also thought to form models of the likely 
outcomes of actions: whether a reward will be received for a given action or not. When an 
expected reward is not received, this creates a negative reward prediction error; when an 
unexpected reward is received, this creates a positive reward prediction error. Prediction errors, 
sensory or reward-based, require experience to build accurate predictions. Motor learning, then, 
is perhaps better described as the acquisition of internal models that have predictive power for 
the control of movements.

In a task which required participants to compensate for a rotation imposed on their cursor 
by reaching in the opposite direction, it has been demonstrated that people can learn from either 
rewards and from errors (Izawa & Shadmehr, 2011). However, only errors induce sensory 
recalibration, indicating that the selection of actions is likely to be driven by rewards, while the 
coordination of actions is likely to be driven by errors. Despite this neat division of labor, real-
world behaviors are not so neat: At any given moment, any body in motion is simultaneously 
selecting and coordinating actions. Nevertheless, in studying human motor learning, key 
differences exist between task used to model reward-based and error-based learning. 

From rewards or lack thereof, people learn which behaviors to repeat and which to avoid 
(Sutton & Barto 1998; Schultz 1998; O'Doherty et al., 2004; Daw et al., 2006; Niv 2009; 
Glascher et al., 2010). Although selecting appropriate actions is in a way a prerequisite for the 
appropriate coordination of those actions by the motor system, action selection is often thought 
of as a cognitive process, with little consideration of the motor system. Behavioral studies of 
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reward learning draw heavily upon the ways in which instrumental conditioning and decision-
making have been modeled. Participants often learn from binary feedback to learn associations 
between actions and positive or negative outcomes—that is, the success or failure of their 
decisions in producing a reward (O'Doherty et al., 2004; Daw et al., 2006; Niv 2009; Glascher et 
al., 2010). 

From errors, people learn precise patterns of coordinated muscle activations to achieve 
their goals with increasing skill and accuracy (Shadmehr & Mussa-Ivaldi 1994; Thoroughman & 
Shadmehr 2000; Fine & Thoroughman 2006, 2007; Thoroughman & Taylor 2007; Tanaka et al., 
2009). Behavioral studies of human motor learning often alter the mapping between actions and 
the physical consequences of those actions. This has been achieved by rotating cursor feedback 
in a paradigm known as visuomotor rotation learning (Redding & Wallace, 1988; Martin et al., 
1996; Krakauer et al., 2000; Mazzoni & Krakauer, 2006), jumping the target to another location 
mid-movement (Diedrichsen et al., 2005), introducing a force field into the workspace 
(Shadmehr & Mussa-Ivaldi, 1994; Donchin et al., 2003), or altering the gain of movements 
(Turner et al., 2003; Krakauer et al., 2004). People must then achieve their goal of reaching the 
target by learning from sensory feedback and adjusting their movements on a trial-by-trial basis 
(Desmurget & Grafton, 2000). Many types of movements have been studied this way in 
laboratory settings, including saccades (for review, see Iwamoto & Kaku, 2010), locomotion (for
review, see Torres-Oviedo et al., 2011), and reaching movements (for review, see Krakauer & 
Mazzoni, 2011). In case after case, people learn to compensate for a range of feedback 
perturbations.

The divisions between reward- and error-based learning run deeper than their behavioral 
signatures: indeed, these processes appear to occur in different brain structures entirely. Reward-
based learning is thought to occur in the striatum, while error-based learning is thought to occur 
in the cerebellum (for review, see Houk & Wise, 1995; Doya 2000; Shadmehr & Krakauer, 
2008). Patient studies and neuroimaging studies have shed new light on the neural underpinnings
of motor learning. Patients with damage to brain regions known as the striatum and the 
cerebellum (among them, patients with Parkinson's Disease and cerebellar ataxia, respectively) 
have been critically important in identifying roles for these structures human motor learning, and
these roles have frequently been confirmed through the use of neuroimaging (Pascuale-Leone et 
al., 1993; Martin et al., 1996; Gabrieli et al., 1997; Doyon et al., 1997; Imamizu et al., 2000; 
Desmurget et al., 2003; Desmurget et al., 2004; Krakauer et al., 2004; Maschke et al., 2004; 
Seidler et al., 2004; Diedrichsen et al., 2005; Seidler et al., 2006; Grafton et al., 2008; Tunik et 
al., 2009; Viviani et al., 2009; Schlerf et al., 2012; for review, see Doyon et al., 2003 & Seidler 
2010). 

 A neuroimager by training, I began my graduate research with the goal of using 
functional magnetic resonance imaging (fMRI) to disentangle the processes driving reward- and 
error-based learning. The analysis of fMRI data often relies upon regression to identify brain 
regions where activity matches one or more predictions (see Friston et al., 1995, but see Poline &
Brett, 2012). However, the “brain activity” measured is not neural but, in fact, hemodynamic in 
origin. The blood oxygen level dependent (BOLD) signal measured by fMRI is thought to reflect
underlying neural activity (for review, see Logothetis & Wandell, 2004). 

The relationship between neural activity and the BOLD signal is complicated by sources 
of physiological noise like heart rate and respiration. In an earlier study from our laboratory, 
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error-related activations in the cerebellum nearly escaped detection because heart rate was 
relatively depressed following errors compared to correct trials (Schlerf et al., 2012). The relative
decrease in blood flow to the head gave the appearance that the cerebellum was more responsive 
not to errors, but to correct trials. Similarly, increases in heart rate may result in the delivery 
more blood to the brain. If these increases or decreases are correlated with aspects of the task, we
reasoned, estimating true neural responses may in fact be impossible. 

In a first experiment, I investigated whether changes in heart rate caused by a simple 
movement task could be estimated and removed from the fMRI timeseries data (Chapter 2). 
Simple movements elicited an increase in heart rate but no change in another measure, 
respiratory variation. Correcting for heart rate, but not respiratory variation, resulted in subtle 
changes to the shape of plotted BOLD responses. Furthermore, correcting for heart rate 
significantly improved model fit for a majority of participants in the primary motor cortex and 
for a minority of participants in the cerebellum. The magnitude of this improvement, on average, 
was similar for heart rate and respiratory variation corrections. As testament to the importance of 
considering task-related changes in the rate of physiological processes, both corrections resulted 
in larger improvements than a rate-insensitive correction that is commonly used by fMRI 
researchers. These results highlight the need to include records of the rate of change in possible 
sources of physiological noise in fMRI analyses, with the caveat that all corrections may not be 
equally effective for all individuals and all regions of the brain.

Turning from the study of how to improve imaging methodology, I next set out to study 
actual human motor learning in the brain. For this, I designed a novel behavioral task based on 
the real-world game of shuffleboard. However, as ever, it was necessary to truly understand 
behavior before identifying its basis in the brain. Chapter 3, I present the results of a behavioral 
study designed to pinpoint the effects of naturally-occurring delays and other forms of delay in 
the shuffleboard task. In real-world shuffleboard, people learn despite a delay of up to several 
seconds between movement and feedback about that movement. In studies of visuomotor 
rotation learning, by contrast, delaying feedback by as little as several hundreds of milliseconds 
diminishes learning dramatically (Kitazawa et al., 1995). The putative reason for this cost of 
delay is that learning will only occur when motor representations and error signals in the 
cerebellum co-occur (cf. Ito, 2002). The cerebellum contains a gridlike map of movement- and 
feedback-transmitting fibers which run perpendicular to each other, and learning is thought to 
proceed through modifications to the strength of synapses at the junctions between the two fiber 
types. If a delay is injected, the movement representation is already gone by the time an error 
signal passes through this junction, and no learning can occur. Using a virtual shuffleboard task, I
asked whether this cost of delayed feedback applied to learning movement speeds, as it does to 
learning movement directions. 

Performing movements accurately requires specifying the appropriate direction and speed
(or force, or amplitude, depending on the circumstances). These two movement variables, 
thought to be specified independently in the brain, play by very different sets of rules when it 
comes to how quickly learning occurs and how broadly it generalizes to new contexts (Bock 
1992; Pine et al., 1996; Krakauer et al., 2000; Vindras & Viviani, 2002; Turner et al., 2003; 
Krakauer et al., 2004). Assuming at least some degree of separation in the neural encoding of 
speed and direction, the shuffleboard task offers an opportunity to examine temporal constraints 
on learning in a different domain. A range of temporal manipulations were used to investigate the
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effects of feedback delay, predictability, and ecological validity (i.e. similarity to the physics of 
real-world shuffleboard). In three experiments, we found limited evidence that delays impact the 
learning of movement speeds. There was a slight advantage of predictably timed feedback, but 
this advantage was limited to situations where predictability was created through the use of a 
range of temporal intervals thought to extend beyond the limits of cerebellar error processing. 
These results indicate that the temporal constraints imposed on learning by the circuitry of the 
cerebellum do not apply when movements are adjusted in terms of speed, rather than direction.

Given that temporal constraints on learning were minimal in the shuffleboard task, it 
would be reasonable to assume that the cerebellum might not be a critical component in the 
neural network required for learning this task.  To address this hypothesis, I turned to fMRI in 
Chapter 4. We adapted the shuffleboard task to include frequent changes in target location and 
perturbations on participants' visual feedback. By ensuring the persistence of errors throughout 
the scan session, we were able to image the brains of people as they made trial-by-trial 
adjustments to movement speed. 

We identified the primary motor cortex and right anterior lobe of the cerebellum as 
involved in movement. However, the remainder of our effects of interest were found outside of 
the cerebellum. The dorsal striatum was found to be involved in feedback processing, and 
responded more strongly to correct trials than to errors. This region, thought to be involved in 
habit formation, reward learning, and the regulation of movement vigor and variability, may be 
driving learning in the shuffleboard task by reinforcing the formation of memories of desired 
movement speeds. While we cannot definitively rule out a role for the cerebellum in such a task, 
our results suggest that, when movement speeds must be updated from one trial to the next, 
performance relies less upon error processing than upon reward processing. Future work will use
computational model-based predictions to identify regions involved in the implementation of 
updated motor plans on subsequent trials. 

The work presented in this dissertation began with the goal of better understanding how 
people process feedback to learn from errors and rewards. To get at this, it was first necessary to 
be sure the effects measured using fMRI were truly neural in origin and not the result of 
confounding factors Chapter 2). Next, in approaching the study of motor learning itself, it was 
important to account for behavioral differences in multiple forms of motor learning (Chapter 3). 
Finally, it was time to peek inside the skull in order to determine where in the brain errors and 
rewards are processed to govern intentional adjustments to movement speed (Chapter 4). Motor 
learning, despite its centrality to our existence as organisms who navigate and manipulate the 
world, remains a complex and poorly understood phenomenon. It is my hope that the work 
presented here in some small way provides guidance on how to approach the study of motor 
learning and insight into its some of its numerous determinants.
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Chapter 2: Impact of task-related changes in heart rate on estimation of hemodynamic 
response and model fit of BOLD responses

Modified from manuscript submitted as Hillenbrand, S.F., Ivry, R.B., and Schlerf, J.E., Impact of 
task-related changes in heart rate on estimation of hemodynamic response and model fit 

2.1 Introduction

Functional magnetic resonance imaging (fMRI) is widely used to examine responses of 
the human brain to a variety of tasks and stimuli. One disadvantage of the method is that it 
provides an indirect measurement of neural activity by measuring changes in the blood 
oxygenation level dependent (or BOLD) signal, changes that occur on a much slower time scale 
than the corresponding changes in the activity of local neural populations (Ogawa & Lee, 1990; 
Logothetis, 2003). This issue is mitigated by block designs where stimuli or task conditions 
alternate between present and absent for tens of seconds at a time. Some psychological 
processes, however, are only appropriately studied in event-related designs in which the events 
of interest are brief.

In order to determine whether a particular brain area is active in a given task, most 
researchers employ a general linear model (GLM) and regression analysis to identify brain 
regions in which the BOLD response matches a set of predictions (see Friston et al., 1995, but 
see Poline & Brett, 2012). The relationship between neural activity and the changes in blood 
flow, volume, and oxygenation that form the basis of the BOLD signal is complex (Buxton & 
Frank, 1997; for review, see Logothetis & Wandell, 2004). Fortunately, the fMRI response is 
essentially linear and time-invariant (Boynton et al., 1996; Dale & Buckner, 1997; Friston et al., 
1994), and the brain response can often be efficiently extracted using events separated by only a 
few seconds (Dale 1999). Since the coupling between the neural and BOLD responses has a 
similar shape across a wide variety of conditions, a canonical hemodynamic response function 
(HRF) is frequently employed in fMRI analyses (Friston et al., 1998). 

However, the HRF has been shown to differ across individuals, brain regions, and events 
(Handwerker et al., 2004). Generating a predicted BOLD response using the canonical HRF can 
therefore result in a poorer fit in comparison to individualized HRFs, potentially leading to 
mischaracterizations of neural activity (Hernandez et al., 2002; Handwerker et al., 2004).

The fit of any GLM can be diminished by failing to account for factors that are correlated
with each other, a problem that is especially pronounced in event-related studies of BOLD signal
that are more susceptible to noise. Two important and measurable but often ignored 
physiological covariates are heartbeats and respiration (Glover et al., 2000). The beating of the 
heart causes pulsations in blood vessels and cerebrospinal fluid (CSF), creating artifacts near 
large blood vessels, around ventricles, and even in deep sulci (Dagli et al., 1999). Additional 
artifacts are introduced by respiration, as the rise and fall of the chest cavity during breathing 
causes both brain motion and inhomogeneities in the magnetic field (Glover et al., 2000; Raj et 
al., 2001). It is therefore desirable to measure heartbeats and breathing to account for their 
influence on the BOLD response. The RETROICOR method developed by Glover and 
colleagues (2000) provides one such approach, charting the phase of cardiac and respiration 
processes relative to the time of image acquisition. Variance attributable to the phase of these 
processes may be removed in preprocessing of fMRI time series or accounted for by adding 
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nuisance regressors to the GLM. 
One limitation of the RETROICOR correction is that it does not consider how changes in 

the rate of physiological processes may affect the BOLD signal. Changes in both heart and 
respiration rate can cause fluctuations in the BOLD signal (Birn et al., 2006, 2008; Shmueli et 
al., 2007; Chang et al., 2009; Chang & Glover, 2009). Importantly, these changes can be task-
related, associated with variations in arousal (Tursky et al., 1969), movement preparation 
(Damen & Brunia, 1987), response inhibition (Jennings et al., 1991, 1992; for review see 
Jennings & van der Molen, 2002), and feedback processing (Crone et al., 2003, 2005). 

We previously demonstrated the importance of considering task-related changes in non-
neural, physiological processes in a study designed to identify neural regions responsive to 
movement errors (Schlerf et al., 2012). When physiological regressors were not included in the 
GLM analysis, movement errors led to a broadly distributed decrease in the BOLD response in 
the cerebellum. However, there was also a reliable reduction in heart rate following movement 
errors. Since there was sufficient heart rate fluctuation beyond that associated with the movement
errors, the effect of heart rate on the BOLD response could be accurately and independently 
modeled (Schlerf et al., 2012). When this correction was applied, the cerebellar deactivations 
were no longer evident. Instead, an increase in the BOLD signal was observed on error trials that
was restricted to the arm area of the anterior cerebellum. Thus, the error signal in the cerebellum 
was only evident after task-dependent changes in heart rate were included in the modeling of 
BOLD responses. 

In the current study, we systematically investigated the potential consequences of task-
related fluctuations in heart rate and respiration on the HRF using a progressive series of 
analyses. Rather than focusing on movement errors, we measured simpler behavioral variable: 
arm movement. We first demonstrate that heart rate is affected by arm movement, but respiration
is not. Given these relationships, we examined how the inclusion of physiological regressors in 
the GLM influenced the shape of the estimated arm movement-related HRF. Finally, we 
quantified the added explanatory power of different sets of physiological regressors, individually 
and in combination.

2.2 Material and methods

2.2.1 Participants

Eleven healthy right-handed participants were tested (7 female, mean age 24.1 years). 
The participants provided written, informed consent under a protocol approved by the University
of California, Berkeley Institutional Review Board. 

2.2.2 Task

Prior to scanning, participants were fitted with a custom bite bar. During the scanning 
session, the bite bar was mounted to the head coil to minimize head movement. Stimuli were 
backprojected onto a screen mounted inside the bore of the magnet and viewed via a mirror 
mounted to the head coil. From a supine position, the participants held a robotic manipulandum 
(www.fmrirobot.org) in their right hand. The manipulandum was positioned over the 
participant’s abdomen and could be freely moved in a plane parallel to the scanner bed. 
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Participants were trained to make short (8 cm) out-and-back reaching movements along 
the axis of the body toward their head, chiefly by flexion about the elbow. They were instructed 
to terminate each return movement such that in between trials, the hand rested comfortably near 
the navel. Participants were instructed to move when a central fixation crosshair changed color 
from red to green. For all runs, the green crosshair was presented for 500 ms, regardless of inter-
trial interval. Participants were told to initiate the movement as soon as they saw the color 
change, generating a rapid out and back movement. To minimize corrective movements, there 
was no visual feedback of hand position during scanning. At the termination of each return 
movement (when the hand coordinates were no more than 1 cm apart for a minimum of 500 ms),
the start position of the hand for the next trial was automatically adjusted to correspond to the 
central fixation crosshair. 

All participants completed a training session in a mock scanner 1-7 days prior to the 
scanning session. This served to familiarize the participants with the scanning environment and 
trained them in the movement task. The training session consisted of four runs and was designed 
to train the participants to make movements with relatively uniform amplitude in the scanner 
without relying on feedback. The training runs provided feedback that became progressively less 
informative as the training continued. In the first run, the participants received online feedback of
the cursor position, as well as knowledge of results (KR) about reach amplitude at the end of 
each movement. KR was given in numeric form, shown above the fixation crosshair as a 
percentage of the desired 8 cm amplitude for 500 ms immediately following completion of the 
return movement. For the next run, they were only given KR (no online cursor feedback), and for
the final two runs, no feedback was provided. At various points in the training session, the 
experimenter provided verbal coaching concerning movement initiation, speed, and amplitude. 

The scanning session consisted of an anatomical scan and three functional scans (one 
localizer run and two task runs). The localizer run lasted 6 minutes and 40 seconds and consisted 
of 12 12-second blocks, with rest periods of 21.3 seconds in between each block. There were two
types of blocks during the localizer run: reach and auditory (6 of each block type). Reach blocks 
were indicated by presentation of the word “Reach” on the screen. Participants then produced 
eight out-and-back movements, initiating each movement when they saw the fixation crosshair 
turn green. Over the 12-second block, the crosshair turned green every 1500 ms. Auditory blocks
were indicated by the appearance of the word "Listen" on the screen, and participants heard eight
balloon popping sounds, one every 1500 ms. These trials were part of a separate study and will 
not be discussed further here. The reach and auditory blocks alternated in a pseudorandom 
manner, with the order counterbalanced across participants. 

The two task runs (as well as a practice reaching task run completed during the 
anatomical scan) consisted of 30 randomly timed reaches, with inter-movement intervals (IMIs) 
ranging between 4 and 22 seconds (run duration of 5 min). An optimization procedure was used 
to create the order of the IMIs: 1000 random sequences of IMIs were generated, and the six most
efficient were selected, based on the contrast Move vs. Rest. From these six, sequences were 
selected at random for each participant's training, practice, and task runs. 

Efficiency was calculated following the guidelines of Dale (1999), according to the 
equation:

Efficiency = 1/ trace((XTX)-1)    (Equation 1)
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where the design matrix X = [X1X2 . . . X12] is a horizontal concatenation of delta (stick) functions
that represent the stimulus timing at each lag and trace refers to the sum of the eigenvalues of a 
given matrix. While efficiency is typically computed for a particular contrast, in the case of HRF 
extraction that contrast is simply the identity matrix, so we disregarded it here.

2.2.3 Imaging parameters

Data were collected on a 3 T MAGNETOM Trio scanner (Siemens Healthcare, Erlangen, 
Germany) at the University of California, Berkeley Brain Imaging Center. A 12-channel 
transverse electromagnetic send-and-receive radiofrequency head coil was used. One high-
resolution T1-weighted MPRAGE anatomical scan (TR = 1900 ms; TE = 2.52 ms; 1 × 1 × 1 mm 
voxels; acquisition matrix 256 x 256; field of view 25 x 25 cm) was acquired for each 
participant. Multi-slice echo-planar imaging (EPI) was used to collect functional imaging data 
(gradient-echo EPI sequence; TR = 2000 ms; TE = 26 ms; 36 ascending sagittal slices; 3.3 x 3.13
x 3.13 mm voxels; flip angle, 90°; acquisition matrix 64 x 64; field of view 20 x 20 cm; 150 
volumes per task run, 200 volumes per localizer run) using parallel imaging reconstruction 
(GRAPPA) with an acceleration factor of 2. 

2.2.4 Physiological monitoring and analysis

During scanning, physiological signals were recorded using a BIOPAC physiological 
monitoring system (www.biopac.com). Heartbeat was measured using a photoplethysmograph 
placed on the participant’s left index finger. Respiration was measured with a pneumatic pressure
sensor placed several centimeters below the sternum and held in place with an elastic strap. 
Analog TTL signals generated by the scanner were recorded to temporally align these 
physiological measurements with the EPI time series. All data were recorded at 125 Hz, with 
separate recordings initiated for each functional run.

Physiological regressors were created using the Physiological Log Extraction for 
Modeling (PhLEM) v1.0 toolbox for SPM5 (Verstynen & Deshpande, 2011). The PhLEM 
package marks respiration and heartbeat events using an automatic peak detection algorithm. On 
a few occasions, the spacing between the detected peaks indicated that a peak had been missed 
by the algorithm. In these cases (0.03% of all events), the data were visually inspected and peaks 
were manually added at the appropriate deflection in the waveform.

The heart rate time series was computed following the methods described in Chang et al. 
(2009). For each 6 s window centered on a given 2 s TR in the fMRI time series, the mean inter-
beat interval was computed and expressed in units of beats per minute. This time series was then 
shifted by 0-11 TRs to produce 12 time series lags of 0-22 seconds (HR regressors). This 
agnostic approach imposes no constraint on the shape of the transfer function between heart rate 
and the BOLD signal. 

The respiration time series was computed using a measure of respiratory variation (RV) 
(Chang et al., 2009), which is a simpler and more robust alternative to RVT (respiration volume 
per unit time) (Birn et al., 2008). Similar to the procedure for HR, RV was obtained by 
computing the standard deviation of the respiration waveform within a 6 s sliding window 
centered on each 2 s TR. This time series was then shifted by 0-11 TRs to produce 12 respiration 
volume (RV) regressors. 
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Regressors to estimate the effects of respiratory and cardiac phase were made using the 
RETROICOR method (Glover et al., 2000) as implemented in PhLEM (Verstynen & Deshpande,
2011). Using a Fourier expansion, the first two harmonics of the heartbeat and respiration events 
were computed. Both sine and cosine waveforms were included, yielding a total of eight phase 
regressors. 

The effect of reaching movements on our two physiological variables of interest, heart 
rate (HR) and respiratory variation (RV), was assessed. HR and RV regressors served as 
dependent variables to identify task-related changes by time-locking the estimate of each 
variable to the onset of each movement cue. These values were calculated separately for each 
run, with the data normalized by subtracting out the mean heart rate for that run.

We opted to examine task-related changes in RV rather than in the respiration signal 
itself, following previous work in which the former has been used as a nuisance regressor (Chang
et al., 2009). The RV regressor captures changes in depth and/or frequency of breaths, yielding a 
measurement that is associated with respiratory tidal volume. Changes in tidal volume are 
hypothesized to trigger a feedback loop involving vasodilation, blood flow changes, and 
ultimately, compensatory changes in the rate and depth of the breaths themselves (Birn et al., 
2006, Chang & Glover, 2009).

2.2.5 fMRI data preprocessing

Functional imaging data were preprocessed and analyzed using SPM5 
(www.fil.ion.ucl.ac.uk/spm) and Matlab (www.mathworks.com/products/matlab). The first five 
volumes of each run were discarded to remove T1 equilibration effects. Images were slice-time 
corrected using sinc interpolation and then realigned to the mean image of each run to correct for
head movement. All functional images were then coregistered to an anatomical scan and 
smoothed with a Gaussian kernel (FWHM = 8 mm). 

2.2.6 ROI localization

We focused on two a priori anatomical regions of interest (ROIs) to examine activations 
during reaching movements. The precentral gyrus ROI was selected to include contralateral 
primary motor cortex, and the right anterior lobe of the cerebellum (lobules I-V) ROI was 
selected to include the ipsilateral cerebellar representation of the hand (Table 2.1). 

A GLM analysis was performed on the localizer data from each participant. Movement 
blocks and the irrelevant sound blocks were modeled by convolving their onset timing with the 
canonical hemodynamic response function (HRF) in SPM. No physiological regressors were 
included in the ROI definition procedure. Selecting ROIs based on their fit to a canonical HRF 
may introduce a bias in the estimates of the deconvolved hemodynamic responses, as this will 
preferentially identify voxels in which the response already resembles the canonical HRF. 
However, the block design of the localizer task reduces this bias, as the model fit in such a 
design is only weakly affected by the choice of response function (Handwerker et al., 2004; 
Handwerker et al., 2012).

Whole-brain t-statistic maps for the contrast Move vs. Rest were created. Local maxima 
in the a priori regions of interest were selected as peaks to center the individually specified 
ROIs. From these peaks, the ROIs were expanded outward to include all of the contiguous 
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voxels within the t-statistic map that exceeded a threshold of p < .05 (family-wise error 
corrected). 

The number of voxels meeting this statistical criterion was computed for each ROI in 
each individual. Across participants, the smallest number of voxels meeting this criterion was 83.
To keep the size of the ROIs constant, ROIs were limited to the 83 closest contiguous voxels in 
all participants. While M1 ROIs were centered on local maxima in the left (contralateral) 
precentral gyrus, the ROI could extend beyond the precentral gyrus. No local maximum was 
identified within the precentral gyrus for one participant. However, we were able to identify a 
peak in the postcentral gyrus, based on visual inspection of the anatomical scan to which 
functional images were coregistered, with the surrounding set of 83 contiguous voxels extending 
into the precentral gyrus. For two additional participants, a small number (< 10) of voxels in the 
ROI extended into the postcentral gyrus.

Cerebellar ROIs were centered on local maxima in the right ipsilateral anterior lobe 
(lobules I-V). To make the cerebellar ROIs, the t-statistic map was first masked by the cerebellar 
segmentation produced by the Spatially Unbiased Infra-tentorial (SUIT) toolbox in SPM5 
(www.icn.ucl.ac.uk/motorcontrol/imaging/suit.htm, Diedrichsen et al., 2009). These masks were 
hand-edited by overlaying them on the anatomical scan for each participant and removing voxels
outside the cerebellum (e.g., from parts of occipital cortex that lie just dorsal to the anterior lobe 
of the cerebellum).

For visualization purposes only (Figure 2.2), ROIs were warped to the MNI (M1) or 
SUIT (cerebellum) templates and overlaid on a group-averaged anatomical scan in MNI space to 
create an overlap map. This visualization was created using AFNI (afni.nimh.nih.gov). Note, 
however, that all analyses were conducted in participants' native space.

2.2.7 HRF estimation

A separate GLM was calculated for each of the two task runs for each participant. The 
basic, uncorrected GLM modeled movements as delta (stick) functions at movement cue onset 
and at 11 lags of 2 seconds each, using a Finite Impulse Response (FIR) expansion model. 
Within the M1 and cerebellar ROIs, parameter estimates were obtained and averaged across 
voxels. The mean parameter estimates for the contrast Move vs. Rest within each ROI, when 
plotted over the 11 lags, provide an estimate of the hemodynamic response to movement within 
the ROI. Additional GLMs included combinations of physiological regressors. The basic 
physiological regressors were 12 lags of heart rate (HR), 12 lags of respiratory variation (RV), or
8 phase regressors. The set of phase regressors always included both cardiac and respiratory 
phase, as commonly implemented using the RETROICOR method (Glover et al., 2000). We 
tested models including HR alone, RV alone, phase alone, all pairwise combination of the 
regressors (HR + RV, HR + phase, and RV + phase), and a model that included all three. 

In summary, the HRF was estimated using eight separate GLM analyses: the Uncorrected 
model (not including physiological covariates) and seven Corrected models (Table 2.2). The 
parameter estimates comprising the deconvolved HRF for each of the Corrected models were 
compared to those of the Uncorrected model using a 2-way repeated-measures ANOVA, with 
factors Time (12 lags, beginning with movement cue onset) and Model (2 models: Uncorrected 
vs. Corrected). 
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2.2.8 Percent variance explained and model comparisons

The percent variance explained by each of the eight models was calculated and compared 
to that of the other models using three tiers of nested model pairs (Figure 2.4). The first level 
involved a comparison of each of the models containing a single set of regressors (HR at 12 lags,
RV at 12 lags, or the 8 phase regressors) to the Uncorrected model. The second level compared 
models with two sets of regressors to the models containing single sets of regressors (e.g., HR 
plus phase was compared to HR only and, in a separate comparison, to phase only). The third 
level compared the model that included all three regressors to each of the three paired-regressor 
models. 

Analyzing nested models allowed us to determine what effect each additional regressor or
set of regressors had on the overall percent variance explained. It also allowed an assessment of 
whether the variance explained by a given set of regressors could be redundantly explained by 
another set of regressors. This is particularly important, as it was previously unknown whether 
RV and HR have redundant effects on the BOLD response, especially in a task-dependent 
context. It is possible that both variables would provide a comparable improvement in fit over 
the uncorrected model. However, Schlerf et al. (2012) found that only HR provided a useful 
correction, perhaps related to the observation that there was a significant change in HR following
movement errors, but not in RV. 

To quantify variance explained, pairwise F-tests were used, taking into account 
differences in degrees of freedom based on the different numbers of free parameters in the 
models, according to the equation:

                F = [(RSSreduced- RSSfull) / (# of additional parameters)] /        (Equation 2)
   RSSfull / (# of time points - # of parameters in full model - # of runs)                                  

with RSS standing for Residual Sum of Squares, and where the reduced model is the model that 
includes fewer physiological parameters than the full model, at each level of comparison.

2.3 Results

2.3.1 Head motion

Head motion during the task was minimal, likely because the participants were restrained 
by a bite bar and had previously completed a training session within a simulated scanner 
environment. The maximum excursion of the head in any direction was calculated for each of the
localizer and task runs. The median maximum excursion from the initial head position was 0.3 
mm (mean = 0.4 mm, sd = 0.2 mm) for the localizer run and 0.2 mm (mean = 0.2 mm, sd = 0.8 
mm) for the task runs. Head position drifted more than 1 mm in only two individuals, both 
during the initial localizer run (1.3 mm and 1.4 mm). 

2.3.2 Evoked change in heart rate and respiration

Across participants, each reach induced an increase in heart rate of about 1%, peaking at 
4 s after the movement cue onset and returning to baseline at approximately 8 s (Figure 2.1A). 
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Figure 2.1 Change in physiological measures evoked by reaches
Mean evoked change in heart rate (HR, panel A) and respiratory variation (RV, panel B) 
regressors, normalized by subtracting out the mean values across each run. Shaded area 
represents standard error of the mean across participants. Vertical line indicates movement cue 
onset, time = 0 s.

This result is in agreement with previous reports of the influence of movement on HR (Damen &
Brunia, 1987, Jennings & van der Molen, 1991, 1992, Schlerf et al., 2012). A negligible increase 
of about 0.0015% was observed for RV, with two broader peaks, one around 6 s after the 
movement cue and the other at around 16 s (Figure 2.1B). 

To statistically evaluate these changes, one-way repeated-measures ANOVAs were 
conducted on the two dependent variables (HR, RV). Four time windows were used in separate 
ANOVAs to identify long- and short-term changes due to movements as well as changes leading 
up to the movement and longer-scale fluctuations. The first was limited to the five samples after 
movement, spanning 0 – 10 s. The second and third each included eleven samples: one window 
extended from 20 s prior to movement cue onset and included the sample taken coincident with 
the movement cue onset (time = 0 s), while the other extended from the movement cue onset to 
20 s following the movement cue onset. The fourth window included 21 samples, starting 20 s 
prior to movement cue onset and extending to 20 s after the movement cue onset, for a total 
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window size of 42 seconds. The 5-sample window was selected to focus on movement-triggered 
changes, whereas the 21-sample window was used to include effects of readiness or anticipation 
preceding movements, as well as longer-latency movement-triggered changes. 

The effect of time on HR was significant for all four time windows, although the effect 
was considerably weaker in the window preceding the movement cue onset (5 sample: F(4,10) = 
17.12, p < .00001; 11 sample preceding: F(10,10) = 2.05, p = .04; 11 sample following: F(10,10) 
= 12.06, p < .0001; 21 sample: F(20,10) = 7.85, p < .00001). The effect of time was not 
significant for RV over any time window (5 sample: F(4,10) = 1.68, p = .17, 11 sample 
preceding: F(10,10) = 0.88, p = .56; 11 sample following: F(10,10) = 1.22; p = .29, 21 sample: 
F(20,10) = 1.24; p = .23).

2.3.3 HRF estimation

The localizer run was used to identify functional ROIs. Table 2.1 lists the coordinates of 
the centers of the ROIs for each participant, along with the t-statistic thresholds used to restrict 
the ROIs to the most reliably active voxels. Figure 2.2 shows location and overlap of ROIs.

The HRF within each M1 and cerebellar ROI was estimated using eight separate GLM 
analyses: the uncorrected model and the seven corrected models (GLMs that included HR, RV, 
and phase alone, all pairwise combinations, and the Fully Corrected model that includes all three 
variables). The mean parameter estimates at each lag in the Move vs. Rest contrast are plotted for
each ROI in Figure 2.3. These plots represent the hemodynamic response to reaching movements
in each ROI. Because differences among the models were minimal, we only show the results 
from the Uncorrected and Fully Corrected models, although all models were included in the 
statistical tests. 

The HRFs for each of the Corrected models were compared to the Uncorrected model 
using seven 2-way repeated-measures ANOVAs, with factors Time (12 TRs, beginning with 
movement cue onset and extending for 22 s) and Model (Corrected vs. Uncorrected model).

All ANOVAs revealed a significant main effect of Time. While the effect of Model was 
not significant for any of the ANOVAs, all comparisons in which the Corrected model included 
HR as a regressor yielded a significant interaction between Time and Model for both the M1 and 
cerebellar ROIs (p < .0001 in all cases where HR was included, 4 of 7 models), indicating that 
the Corrected models yielded shapes of the HRF time courses that were different from those 
generated by the Uncorrected model. Table 2.2 summarizes these interaction effects.

To identify differences between time points in the group HRF, post hoc paired t-tests were
conducted using Bonferroni adjusted alpha levels of p < .004 per test (.05/12). No time point 
reached significance at this threshold. Including physiological regressors in the model resulted in
a slightly lower peak in the cerebellar HRF (Figure 2.3). A similar pattern was observed for M1, 
with the addition of a more pronounced reduction in the post-stimulus undershoot compared to 
the cerebellar HRF, although differences between the HR models and the uncorrected model 
failed to reach significance at all time points. 
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Table 2.1 Regions of interest
Maximum T-statistic at ROI center in M1 and cerebellum (T-peak), along with center coordinates
of each ROI. ROIs were generated by including the 83 nearest contiguous voxels above the 
threshold (p < .05, family-wise error corrected).  

Figure 2.2 Regions of interest 
Overlap map of individual 83-voxel ROIs in M1 (A) and cerebellum (B), spatially normalized 
for visualization only and overlaid on group-averaged anatomical slices in MNI space. Color bar 
at right indicates proportion of overlap of the ROIs of individual participants. Midsaggital view 
of slices in shown on the right for each panel. 
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Subject M1 T-peak M1 coordinate Ce T-peak Ce coordinate

1 10.49 -30 -28 68 11.68 7 -56 -13
2 14.54 -21 -45 58 10.54 16 -43 -27
3 13.7 -23 -32 68 8.39 25 -61 -19
4 10.38 -22 -30 69 9.16 28 -42 -28
5 17.13 -18 -34 64 15.45 16 -32 -26
6 9.76 -12 -19 68 11.94 19 -25 -28
7 12.85 -27 -29 69 16.09 2 -42 -10
8 12.76 -28 -9 57 20.76 27 -20 -26
9 14.42 -45 -20 58 16.15 4 -30 -11
10 8.69 -12 -19 68 9.86 28 -13 -19
11 9.28 -28 -28 59 9.78 22 -27 -28



Figure 2.3 Deconvolved HRFs
HRFs deconvolved from each participant’s ROI for the Uncorrected (gray) and Fully Corrected 
(black) models in M1 (A) and Cerebellum (B). Bottom row of each panel shows the mean HRF 
across all participants. Axes and legends for individual plots are as labeled in group plots. In 
individual plots, error bars represent the standard error of the mean across voxels; in group plot, 
error bars are within-participant (Loftus) error bars, given that our statistical tests of interest (i.e.,
uncorrected vs. corrected) are conducted within-participant.
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Table 2.2 Comparison of deconvolved HRFs from the Uncorrected model with each of 
seven Corrected models
Interaction term quantifies time-dependent differences in HRF between models. 

2.3.4 Percent Variance Explained and Model Comparisons

We next asked whether including task-dependent effects on the physiological variables 
improved the fit of our eight GLMs. Table 2.3 reports percent variance explained by each of the 
models. For all models, percent variance explained was greater in M1 compared to the 
cerebellum. Given that the responses in M1 tended to have higher peaks, be more consistent 
across participants, and bear a stronger resemblance to the canonical HRF, this result is perhaps 
unsurprising. However, it is possible that our ROI selection procedure resulted in greater 
heterogeneity of responses among voxels in the cerebellar ROI due to the ROIs extending 
beyond the anterior lobe.  

For each region, including a new set of regressors (individually or in combination) 
yielded a mean increase of variance explained between 6.9 and 12.3% (Figure 2.4). The addition 
of HR and RV regressors tended to improve model fits more than phase regressors. Overall, for 
M1, the increase for the Fully Corrected model compared to the Uncorrected model ranged from 
23.9% to 37.5% across participants. The comparable range for the cerebellum was 22.8% to 
31.1%. Figure 2.4 illustrates, in the percentages adjacent to each arrow, the mean additional 
percent variance explained by the addition of each set of regressors.

A nested series of pairwise F-tests were used to test the impact of adding each set of 
physiological regressors. For each F-test, a given model was compared to a subordinate, reduced 
model from which one set of regressors had been removed (see Equation 2). This allowed 
quantification of the improvement in model fit due to the addition of a given variable as defined 
by a set of regressors. In M1, adding HR and RV regressors significantly improved the fit for a 
majority of participants, while adding phase did not (Figure 2.4). In the cerebellum, the number 
of participants with significantly improved fit was lower, and there were no substantial 
differences when adding HR, RV, or phase regressors. 

Given the similarity of the mean additional percent variance explained in M1 and the 
cerebellum following the addition of physiological regressors, the disparity in number of 
participants with significantly improved fit is somewhat surprising. Paired t-tests on additional 
percent variance explained for each correction were used to directly compare the relative efficacy
of these corrections in M1 and the cerebellum. No significant differences were found for any of 
the nine corrections (p > 0.15 for all). Thus, while the effects tended to reach statistical 
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Table 2.3 Percent variance explained
Values represent mean percent variance explained, standard error of the mean, and minima and 
maxima across participants, within all participants' M1 and Cerebellar (Ce) ROIs, for each 
model. 

significance for individual participants only in M1, the overall magnitude and pattern of 
improvements was quite similar for both M1 and the cerebellum. 

2.4 Discussion

The current study examined how task-related changes in heart rate and respiration 
influence the BOLD response and therefore might impact the interpretation of neural activity. 
Specifically, we assessed how including physiological nuisance regressors, some of which 
contained task-related fluctuations, altered the shape of the computed hemodynamic response 
function. The inclusion of these regressors allowed us to account for additional variance, even as 
the overall shape of the HRF remained relatively unchanged. 

2.4.1 Improvements in model fit obtained using nuisance variable regression

fMRI studies that seek to account for physiological fluctuations typically include heart 
rate and respiration as nuisance regressors in the GLM. Indeed, in analyses of functional 
connectivity, these physiological corrections are increasingly common (e.g., Birn et al., 2008, 
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Figure 2.4 Model comparisons: Increase in percent variance explained and nested F-tests
Percentage values represent the mean additional percent variance explained by each correction 
(percent variance explained in the full model minus that of the reduced model, as in Eq. 2) for 
M1 (A) and Cerebellum (B) ROIs. Values in parentheses are the number of the 11 participants 
for whom each correction resulted in a significant improvement in model fit (p < 0.05), 
accounting for the reduction in the degrees of freedom due to additional regressors.

2009; Chang et al., 2012). The benefits of this type of nuisance variable regression for task-
related fMRI, however, have not been widely considered. Schlerf et al. (2012) provide an 
extreme example in which the failure to account for the effects of task-related changes in heart 
rate on fMRI responses led to a radically different interpretation than that obtained when heart 
rate changes were included in a GLM. The current study used a nested analysis of a set of 
physiological variables, either modeled individually or in combination within the GLMs. 

In our set of GLMs, those that included heart rate or respiratory variation as a nuisance 
regressor tended to produce greater improvements in variance explained than those that included 
phase. With the fully corrected model, the mean percent variance explained increased from 
24.6% to 52.6% in M1 and from 15.8% to 41.7% in the cerebellum (Table 2.3). In both regions, 
inclusion of RV, HR, and phase regressors in isolation resulted in mean improvements of around 
10% (Figure 2.4). These increases are considerably higher than those reported in a previous 
resting state fMRI study in which the inclusion of cardiac rate regressors only explained an 
additional 1% of the variance (Shmueli et al., 2007). This difference is likely due to the increased
sensitivity of our task- and ROI-based approach. Indeed, the magnitude of our correction effect is
similar to that of Chang et al. (2009), who used a whole-brain analysis of resting state data but 
only in voxels where a significant proportion of the variance was explained by physiological 
regressors. 

Overall, the inclusion of physiological regressors at the individual level improved the fit 
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more reliably in M1 than in the cerebellum. Adding HR to the GLM produced a significant 
improvement in fit in the cerebellar ROI for only three participants (compared to nine for M1), a 
result that was unexpected given the cerebellar findings of Schlerf et al. (2012), which study did 
not directly compare the two regions but found that a similar set of lagged heart rate regressors 
explained about 3% of the variance in the BOLD signal across the cerebellar cortex. 
Furthermore, the shapes of the responses to changes in heart rate were similar to those 
deconvolved by Schlerf et al., 2012. There are, however, a number of noteworthy differences 
between the studies. First, our movement-related ROIs were comprised predominantly by voxels 
in lobules I-V, whereas the heart rate-modulated activity in Schlerf et al. was predominantly 
located in lobule VI. Second, the movement task used in the current study did not employ visual 
targets or involve visual feedback. Third, the movement vs. rest contrast in the current study 
typically produces more reliable activations in the cerebellum (and M1) than the errors vs. 
correct trials contrast examined by Schlerf et al. Accounting for a confounding factor such as 
heart rate may be more important for statistical contrasts that produce less reliable results. 

Including cardiac and respiratory phase, as implemented using RETROICOR and other 
methods, has been shown to provide a significant improvement over uncorrected models (Hu et 
al., 1995; Glover et al., 2000). However, adding the rate of cardiac and respiratory events to 
models may account for non-overlapping portions of variance, given that only heart rate shows 
task-related changes. By using a set of nested GLM analyses, we were able to determine whether
additional sets of regressors redundantly account for variance that could equally well be 
attributed to different sets of regressors. For instance, both alone and in combination with other 
sets of regressors, phase regressors accounted for a smaller proportion of additional variance than
either set of rate-based regressors. Tracking the influence across the levels of the M1 tree in 
Figure 2.4, the inclusion of HR accounts for about 10% additional variance when added to the 
uncorrected model, to a model that already includes phase, or to a model that already includes 
both RV and phase. 

Prior studies of the redundancy of information in physiological regressors have led to the 
recommendation that the regressors be consolidated, either by averaging correlated regressors or 
by replacing sets of shifted time series with single regressors that have been convolved with an 
appropriate response function (respiratory, Birn et al., 2008, and cardiac, Chang et al., 2009). Our
FIR approach, with 11 additional regressors probing the lagging influence of these processes, had
two advantages over previous approaches. First, it allows for the deconvolution of the full HRF. 
Second, it allows the impact of physiological regressors to vary over time. However, our 
approach does entail a greater reduction in the degrees of freedom for statistical testing, and this 
may have increased the prevalence of null results at the individual level.

2.4.2 Task-related changes in physiological variables and their impact on the hemodynamic 
response

Using a simple movement task in a slow event-related paradigm, we observed a robust 
task-related increase in heart rate of about 1%. While the increase in heart rate occurred slightly 
faster (peaking around four seconds) than the canonical hemodynamic response (which peaks at 
around six seconds), the overlap in the time courses of these two responses is considerable and 
therefore of concern for interpretations of underlying neural activity. Since each beat of the heart 
delivers oxygenated hemoglobin to the brain, and the BOLD signal is a measurement of the ratio 
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of deoxygenated and oxygenated hemoglobin, changes in heart rate will modulate the BOLD 
signal and may therefore be misattributed to neural activity. That is, task-related changes in heart 
rate could, at least in some cases, be so closely linked to the task parameters as to be 
indistinguishable from neural changes. 

Many fMRI analysis packages, by default, convolve task regressors with a canonical 
HRF to model event-related responses. For some participants, this may produce an poor fit of the
data (reviewed in Handwerker et al., 2012). Handwerker et al. (2004) provided an example 
where a 1 s error in an individual-specific HRF reduced the explained variance by 10%, and at 2 
s error the explained variance was reduced by 38%. Given that the HRF varies greatly across 
individuals, it has been recommended that a separate task run be included to obtain individual-
specific HRFs (Aguirre et al., 1998; D'Esposito et al., 1999; Handwerker et al., 2004). While this
approach can help account for relatively large inter-individual differences, smaller differences in 
the shape of the HRF may still remain across brain regions. Moreover, these regional differences 
may be differentially influenced by physiological factors, depending on their proximity to 
vasculature and sulci (Birn et al., 2006, 2008). 

Our analyses of the deconvolved hemodynamic response revealed subtle effects of 
physiological corrections. The deconvolved HRFs in both the M1 and cerebellar ROIs were 
similar at the group level, but the inclusion of physiological regressors in the GLM yielded 
heterogeneous changes in the deconvolved HRFs of individual participants. Given the variation 
in the HRF across individuals, brain regions, and task parameters (Handwerker et al., 2004; Birn 
et al., 2008), as well as the spatial heterogeneity of susceptibility to physiological influences 
across the brain (Birn et al., 2008; Chang et al., 2009), differences in the shape of task responses 
caused by task-related physiological covariates are likely to be minor and irrelevant to the 
decision to use the canonical HRF to model task responses. However, the current results point to 
an important role for HR correction in accurately estimating the hemodynamic response, 
particularly when a task-related change in heart rate is present.

In the group data, the HR correction lowered the peak of the estimated HRF in both M1 
and the cerebellum (Figure 2.3). The lower peaks indicate that some of the variance attributed to 
movement-related neural activity (via the Move vs. Rest contrast) was accounted for by the HR 
correction. This observation is in accord with the known impact of heart rate changes on the 
BOLD signal (Shmueli et al., 2007). This relationship has been described by a cardiac response 
function (CRF), deconvolved from fMRI data recorded while participants were lying at rest in 
the scanner. With a deconvolved CRF, heart rate is positively correlated with the BOLD signal at 
lags of around 4 s and negatively at lags around 12 s (Chang et al., 2009). The initial positive 
correlation, combined with the increase in heart rate induced by our movement task, offers an 
explanation for the reduced HRF peaks following addition of HR regressors. Specifically, 
variance that had previously been misattributed to neural responses was re-allocated to 
physiological variables, decreasing parameter estimates for the movement regressors at these 
lags.

Because of the involuntary nature of the autonomic process, heart rate is less controllable 
experimentally than respiration (Birn et al., 2006, 2008). However, the discrete nature of 
heartbeats has the advantage of reducing the number of possible sources of variance in the 
BOLD signal compared to changes in either the rate or depth of respiration. Importantly, a 
movement task such as that employed here can be a reliable modulator of heart rate. Indeed, a 
movement task might be used to drive a change in heart rate should an experimenter wish to 
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explore individual physiological response functions. Convolving physiological regressors with 
this function avoids the loss of degrees of freedom imposed by an exhaustive lagged approach. 
Furthermore, modeling individual-specific changes in heart rate due to movements as small as 
button presses could account for unwanted sources of variance across a range of tasks. Other 
cognitively or emotionally demanding tasks are known to influence heart rate, and, as such, the 
BOLD response would likely be influenced by the inclusion of heart rate regressors in a GLM. 

Respiration, on the other hand, was not reliably modulated during our simple movement 
task. The lack of an effect of RV regressors on the shape of the hemodynamic response is 
consistent with our previous event-related study of movement errors (Schlerf et al., 2012). 
Naturally-occurring changes in respiration may result from depth, duration, and/or frequency of 
breaths, necessitating tighter experimental control through cued breathing tasks in order to 
independently assess these sources of variance (Birn et al., 2006, 2008, 2009). However, it is 
unclear to what extent cued changes in respiration mimic naturally-occurring changes in 
respiration (Birn et al., 2008). Further research on the impact of RV on fMRI signals is needed, 
given the lack of effect of RV on the HRF but comparable efficacy of HR and RV in nuisance 
variable regression in the current study (Table 2.3, Figure 2.4). 

2.5 Conclusions

Sources of variance in fMRI studies that are unaccounted for may influence the shape of 
the hemodynamic response function (HRF) and/or model fit. These unmodeled variables may be 
particularly problematic when they are correlated with task factors. We modeled a set of 
physiological variables as nuisance regressors to examine their impact on the deconvolved 
hemodynamic response and on model fit. Regressing out task-related changes in heart rate (HR) 
resulted in subtle changes in the HRF in both cerebellum and M1, with or without the presence 
of respiratory variation (RV) and phase regressors. These results indicate that the BOLD 
response can be more accurately estimated by including HR in a GLM even when changes in HR
are correlated with changes in the contrast of interest. As assessed by model fit at the group level,
the inclusion of both RV and HR regressors resulted in significant improvements in model fit that
exceeded those of phase regressors, further underscoring the need to account for both task-
related and task-independent changes in the rate of physiological processes when inferring 
patterns of neural activity from fMRI time series. 
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Chapter 3: Limited effect of temporal constraints on feedback in learning to control 
movement speed

3.1 Introduction

Humans learn from their mistakes. Across a variety of tasks, sensory information about 
errors can be used to update subsequent movements on a trial-by-trial basis (Desmurget & 
Grafton, 2000). In laboratory settings, errors can be induced and studied by altering the mapping 
between a participant's movements and the outcomes of those movements. Such studies have 
shown that people can successfully use feedback about errors to adapt hand movements to a 
variety of perturbations, including visuomotor (prism) rotations (Redding & Wallace, 1988; 
Martin et al., 1996; Krakauer et al., 2000; Mazzoni & Krakauer, 2006), force fields (Shadmehr &
Mussa-Ivaldi, 1994; Donchin et al., 2003), target jumps (Diedrichsen et al., 2005), and gain 
alterations (Turner et al., 2003; Krakauer et al., 2004). In these tasks, the spatial mismatch 
between expected and actual feedback provides a teaching signal that can be used to adjust 
subsequent movements.

Various lines of evidence suggest that error-based learning in motor control may be 
limited to situations in which the feedback about an error arrives within a small temporal 
window after the movement is completed. In a dramatic example involving visuomotor rotation 
learning, shuttered prism goggles were used to delay endpoint feedback by precise intervals 
ranging from 0 to 1000 ms, and learning was attenuated by about 50% when feedback was 
delayed by as little as 500 ms (Kitazawa et al., 1995).  

More generally, temporal constraints in the subsecond range are ubiquitous in 
sensorimotor learning. Studies of eyeblink conditioning in rabbits, where the presentation of a 
tone is followed by a puff of air, have demonstrated that conditioning is less robust when the 
conditioned and unconditioned stimulus are more than 300 ms apart (Schneiderman & 
Gormezano, 1964; Smith 1968). Below this limit, animals are able to learn highly precise 
representations of the interval between the conditioned and unconditioned stimuli, timing their 
eyeblink appropriately in order to attenuate the aversive air puff (Millenson et al., 1977; 
McCormick & Thompson, 1984). Similar intervals are important for linking contextual cues to 
motor outputs in humans: When the gap between the two events exceeds 600 ms, people are 
unable to use contextual information to facilitate motor performance on subsequent trials 
(Howard et al., 2012; Howard et al., 2013). 

The circuitry and physiology of the cerebellum have been proposed to provide a basis for 
these temporal constraints (Ito 2002; Ohyama et al., 2003). The cerebellum has been implicated 
not only in error-based learning (Martin et al., 1996; Diedrichsen et al., 2005; Donchin et al., 
2012; Schlerf et al., 2012) but also as a structure that contains precise temporal representations 
within the subsecond range (for review, see Ivry & Spencer, 2004; Mauk & Buonamano, 2004). 
For example, in eyeblink conditioning, lesions to the cerebellar cortex degrade the fidelity of 
temporally specific stimulus-response associations. Following such lesions, the eyeblink may 
still occur, but it is inappropriately timed (McCormick & Thompson, 1984; Perrett et al. 1993; 
Koekkoek et al. 2003). At the cellular level, error-based learning is thought to be the result of 
long-term depression (LTD) occurring at Purkinje cell synapses (Marr, 1969; Albus, 1971; Ito, 
1984). This form of LTD is critically dependent upon the temporal coincidence of motor 
commands carried by parallel fibers and error signals carried by climbing fibers (for review, see 
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Ito 2002). Disruption of this critical link between movement and feedback about that movement 
diminishes the brain's ability to form associations. 

Despite these limitations, the results from a pair of recent studies challenge the idea of 
temporal specificity for feedback processing in sensorimotor adaptation. With online feedback, 
interference from a delay was mitigated if the participant was trained with delayed feedback 
during a baseline phase prior to the introduction of the perturbation (Honda et al., 2012a,b). 
Thus, it may be that the critical temporal factor is consistency, whether immediate or delayed.   

The notion that motor skills may be learned with delayed feedback is also supported by 
an abundance of real-world tasks that involve delayed feedback. Players of bocce, golf, and 
archery routinely experience delayed outcome feedback. Moreover, shuffleboard players move 
and release a puck, watching as it slides along a surface to its final resting place. In this context, 
there is a relationship between movement velocity and feedback delay, such that greater applied 
forces will lead to longer delays between the hand movement and the puck coming to a complete
stop. As the puck travels, it may come to a stop at the target location, travel further than 
anticipated and pass the target earlier than anticipated (an overshoot), or fail to reach the target 
altogether (an undershoot). Thus, only successful movements result in feedback about the 
outcome of the movement (binary success or failure) and the nature of the error (continuous size 
and direction) co-occurring; unsuccessful movements may result in feedback about the outcome 
occurring either before or after the size and direction of the error are apparent.

 Although the player has access to both the felt sense of their arm movement and vision of
the puck as it travels, precise information about the size and direction of the error produced by 
his/her movement is determined only when the puck has come to a stop. Proprioceptive feedback
from early portions of a movement can provide a useful temporal cue for the timing of 
subsequent movements (Schmidt & Christina, 1969). As such, it is possible that these delays 
become predictable from the early proprioceptive information. However, during the early stages 
of learning, endpoint feedback is necessary for identifying the proprioceptive signals that lead to 
positive outcomes. How the brain binds delayed feedback to long-completed movements in order
to update future motor plans remains unclear.

It has been hypothesized that the cerebellum is capable of issuing and updating separate 
spatial and temporal predictions about feedback, allowing learning to occur despite delays 
between these two sources of feedback (Miall et al., 1996). Compensation for delayed feedback 
has also been observed in manual tracking studies (Foulkes & Miall, 2000; Miall & Jackson, 
2006), suggesting that the cost of delaying feedback can be overcome in certain situations. In 
compensating for a delay while tracking a moving target, intermittent corrective movements 
become more precise but not necessarily more frequent or smoother (Miall & Jackson, 2006). 
This suggests that delay adaptation occurs through direct modification of feedforward motor 
commands, rather than by simply delaying these commands using a separate temporal prediction 
error (Miall & Jackson, 2006, but see also Farshchiansadegh et al., 2015). However, a role for a 
separate temporal prediction in other tasks, particularly those which rely on endpoint feedback, 
cannot be ruled out. A recent study of manual tracking with delayed feedback demonstrated an 
important role for the predictability of the trajectory of a tracked stimulus in adapting to a delay 
(Rohde et al., 2013). Furthermore, the temporal specificity of stimulus-response associations 
formed in eyeblink conditioning suggests that temporal models of feedback may be as precise 
and important as visuospatial ones. 

One common feature of visuomotor rotation learning, force field learning, and manual 
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tracking tasks is that participants maintain spatial accuracy by updating an internal model of how
their movements will traverse the workspace (Shadmehr & Mussa-Ivaldi, 1994; Miall & 
Reckess, 2002; Tseng et al., 2007). These adjustments may occur via the cerebellar error signal 
updating the weights of connections between visually tuned neurons in the parietal cortex and 
directionally tuned neurons in the motor cortex (Tanaka et al. 2009). Gain adaptation, by 
contrast, is an example of a task where learning is based on errors of movement amplitude (and 
therefore, a correlate of amplitude, movement speed), rather than movement direction. 
Specifying an appropriate gain for a movement necessarily entails temporal prediction, as 
movements that are hypo- or hypermetric will terminate early or late. 

Some behavioral studies have characterized roles of prior exposure, variability, and 
sensory feedback in learning to produce movements of particular speeds and amplitudes 
(Schmidt 1969; Zelaznik & Spring, 1976; Zelaznik et al., 1987). Studies of gain adaptation have 
primarily focused on the vestibulo-ocular reflex (Kawato & Gomi, 1992; Raymond & Lisberger, 
1998). Computational models of vestibulo-ocular reflex adaptation have proposed a unified 
mechanism for control of gain and timing (Yamazaki & Nagao, 2012), building on previous 
neural network-based accounts of timed responses in eyeblink conditioning (Buonomano & 
Mauk, 1994; Medina et al., 2000). However, most studies of trial-by-trial error-based learning in 
reaching tasks have relied on visuomotor (prism) rotations, the application of force fields, and 
target jumps. In all of these cases, learning is guided by errors of movement direction. As a 
consequence of this focus, it remains unclear whether feedback delays similarly affect the 
learning of both movement speed and direction. 

Constraints associated with tasks that involve using feedback to correct directional errors 
(e.g., visuomotor rotations) may not generalize to tasks requiring corrections in movement speed 
or amplitude. Behaviorally, motor adaptation to a change in cursor gain proceeds quickly and 
generalizes broadly across the workspace (Bock 1992; Pine et al., 1996; Krakauer et al., 2000; 
Vindras & Viviani, 2002). Adaptation to visuomotor rotations, on the other hand, proceeds more 
slowly and generalizes narrowly around trained targets (Pine et al., 1996; Krakauer et al., 2000; 
Brayanov et al., 2012). Neurally, movement direction and amplitude are thought to be specified 
in independent circuits, each subject to distinct computational constraints (Bock 1992; Krakauer 
et al., 2004; Vindras & Viviani, 2002). 

It remains unknown whether gain and/or amplitude-based learning is subject to similar 
temporal constraints as those observed in studies of direction-based learning. In learning to 
specify movement direction, artificial delays in feedback timing do not convey additional 
information about the success or failure of the movement. In contrast, when learning the desired 
amplitude and speed of a movement, the timing of feedback can convey an additional error 
signal that is redundant with the spatial signal. In shuffleboard, for instance, a puck that 
undershoots the target stops short in both time and space; similarly, a puck that overshoots the 
target continues to travel past the desired time and location. This redundancy may enhance 
learning by rendering the temporal and spatial error congruent, potentially leading to supra-
additive efficacy of the two cues (Ernst & Banks 2002; Ivry & Richardson 2002). 

The effect of this congruence leads to the prediction that, in movement speed learning, 
delayed feedback may result in superior performance relative to immediate feedback. 
Specifically, it is possible that temporal predictions afforded by meaningful delays may play a 
facilitatory role in anticipating and learning from delayed feedback on a trial-by-trial basis. We 
hypothesized that predictably delayed feedback—that is, feedback presented at a delay that is 
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correlated with some movement parameter—may provide temporally predictive information that 
bolsters the accuracy of adjustments to future movements. Such an advantage could ultimately 
outweigh any cost of delayed feedback that may be present in movement speed learning. 
Temporal predictions may become more important when learning to compensate for errors of 
movement speed, as movements with differing speeds, amplitudes, or forces may have 
consequences that are differently extended in time. Given that there is a clear cost of delayed 
feedback in learning to adjust movement direction (Kitazawa et al., 1995), and that delays do not
typically scale with error direction in ecological settings, an advantage of predictability may be 
unique to learning movement speeds.  

A novel paradigm was devised to test the role of temporal constraints on learning to 
produce movements of certain speeds. This paradigm, a virtual shuffleboard task, relies on 
naturally committed errors rather than perturbations, as participants needed to learn to move a 
sensitive controller in order to hit a target that was presented at different distances from the start 
position. In each trial, the participant pushed a virtual puck across a "release line." Hand speed at
the crossing of this line determined how far the puck "traveled" up the screen, with greater 
movement speeds reaching farther (higher) positions. Participants had access to both visual and 
proprioceptive cues while the puck was under their control. Once released, the visual feedback 
was removed, only reappearing at the final endpoint. 

Groups of participants were provided with identical spatial feedback, but the timing of 
this feedback varied. We hypothesized that predictably delayed feedback—that is, feedback 
presented at a delay that is correlated with some movement parameter—may provide a temporal 
prediction that enhances the accuracy of adjustments to future movements. Experiment 1 
searched for a cost of simple feedback delays on learning. Experiment 2 examined the impact of 
potentially informative delays in variable feedback timing schemes, examining the effects of 
predictability and of ecological validity on learning. In Experiment 3, these effects were re-
examined with a shortened range of delays, selected to correspond to the range required for 
cerebellar-dependent learning (under 600 ms, cf. Howard et al., 2012). 

3.2 Material and methods

3.2.1 Participants

140 participants were recruited for this study. Of these, six were excluded for poor 
performance as outlined in section 3.2.7, resulting in a total of 134 participants (77 female, mean 
age = 20.8, sd = 2.2). 

All participants were right handed with normal or corrected-to-normal vision and 
completed an informal colorblindness test prior to the study. All participants were naive to the 
purpose of the study and received course credit for their participation, along with a bonus of two 
cents for every hit target. The participants provided written informed consent in accord with a 
protocol approved by the Institutional Review Board at the University of California, Berkeley. 

3.2.2 Experimental Setup

Participants were seated comfortably at a table and instructed to hold the handle of the 
manipulandum (fmrirobot.org) with their knuckles pointing forward. Movements were made by 
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Figure 3.1 Experimental setup and task
A. Participants held the handle of a robotic manipulandum to move an onscreen cursor. 
B. Presentation of a puck in the lower portion of the screen was the cue to move. 
C. Example endpoint feedback shown in red for misses.
D. Example endpoint feedback shown in green for hits.

moving the handle away from the body in the z-plane. They were instructed not to rest their 
elbow on the table (to avoid curved reaching trajectories). The manipulandum recorded hand 
position at 1000 Hz.  

Stimuli were displayed on an LCD monitor placed 1.1 meters from the edge of the table 
(Figure 3.1A). This allowed sufficient space for the arm of the manipulandum to move freely. 
Note that the horizontal plane of motion was perpendicular to the monitor. This setup also 
situated the participant at the edge of a much longer space than the height of the monitor, 
creating the impression of a long distance to be covered by their puck. When the puck was 
visible, it was constrained to move only along the y-axis (vertically on-screen), ignoring lateral 
deviations produced by participants in the x-direction (horizontally on-screen). Participants were 
informed of this constraint and instructed to minimize side-to-side movements. 

3.2.3 Task Instructions
 

Participants were told they would be playing a virtual shuffleboard game. In real-world 
shuffleboard games played on a physical surface (usually the ground or a long, narrow table), the
speed of the puck at the moment of release determines how far the puck will travel along a given 
surface. The experimenter demonstrated this concept by pushing and releasing a real puck on a 
smooth surface while emphasizing the importance of the translation from hand speed to distance 
for task success. 
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In the virtual simulation of this game, the on-screen puck was presented as a white circle 
with a radius of 0.5 cm (Figure 3.1B). The puck was automatically released when the 
participant's hand crossed the blue release line; participants were instructed not to simulate a 
releasing action. Hand speed at the moment the hand crossed the line determined how far the 
puck would travel. To reinforce this, the puck was visible only as their hand approached the 
release line. Once the participant's hand crossed the line, the puck disappeared, reappearing at a 
distance from the line as determined by their hand speed (endpoint-only feedback). The color of 
the puck at the time of its reappearance provided additional feedback: red if it landed outside of 
the target (Figure 3.1C) and green if it landed within the boundaries of the target (Figure 3.1D). 

The participant’s goal was to move his/her hand at a speed that caused the puck to land on
one of four target locations. Targets were presented visually as blue circles with an on-screen 
radius of 1.5 cm. The target could be situated 2.0, 5.3, 8.8, or 12.0 cm from the center of the 
screen. The release line was located 5 cm below the center of the screen, with the puck's start 
position 15 cm below the center of the screen. 

After initially demonstrating the speed-to-distance translation with a real object on a 
table, the experimenter demonstrated 10-30 trials of the task at varying speeds using the 
manipulandum, confirming verbally that the participant understood they would be required to 
adjust their hand speed to hit various targets. Participants were told to "follow through" on their 
movement in a manner that felt natural. They were reminded that movement speed, and not the 
distance covered by the movement, would determine the distance traveled by the puck. 
Participants moved the handle back to the start location immediately following each trial. They 
received two cents for each “hit,” and the total amount accumulated was displayed on screen at 
the end of each block. 

3.2.4 Task Structure

The experimental session was composed of five blocks. Within each block, there were 
eight miniblocks that consisted of 12 consecutive trials with a single target. Each of the four 
targets was presented twice during a block. The order of targets was pseudo-randomized, subject 
to the constraint that the target position changed for each miniblock. 

At the beginning of each trial, a target and a puck appeared on the screen, signaling the 
participant to move. Once the participant's hand moved past the release line, the puck 
disappeared and reappeared some distance from the line. Feedback timing was defined relative to
the time that the participant's hand crossed the line. The red or green puck feedback remained 
visible for 500 ms. A new target appeared after the participant moved back to the starting region 
and maintained a steady position for 500 ms (change in hand position below 1 cm). Participants 
could take a break at any time, although very few took breaks during a block. 

3.2.5 Speed-to-Distance Mapping to Determine Puck Endpoint

Participants' hand speeds at the moment of puck “release” were determined by calculating
the time it took to traverse a 5 cm window preceding the release line (Figure 3.2A). The distance 
traveled for a given hand speed was calculated as:

d = -v2/a (Equation 1) 
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Figure 3.2 Schematic of distance and timing manipulations for Experiments 1-3
A. Schematic representation of the mapping of movement speed to feedback distance, which was
identical for all experiments. Blue circles indicate the approximate speed required to hit each of 
four targets situated at different distances from the release line. This mapping is in fact slightly 
parabolic, as per Equation 1. However, in the space sampled here, the relationship is essentially 
linear. 
B. Schematic representation of timing manipulations for Experiment 1.
C. Schematic representation of timing manipulations for Experiment 2. For simplicity, axes 
uniformly terminate at 1000 ms. The actual range of feedback times for hitting any target was 
160-1058 ms (Physics) and 380-1142 ms (Reverse Physics). Maximum feedback times were 
1440 ms (Physics, at far edge of screen) and 1300 ms (Reverse Physics, at release line). When 
randomized, feedback occurred between 0 and 1200 ms (Random Group).
D. Schematic representation of the timing manipulations for Experiment 3. For simplicity, axes 
uniformly terminate at 1000 ms. The actual range of feedback times for successfully hitting any 
target was 214-631 ms (Short Physics) and 169-586 ms (Short Reverse Physics). The maximum 
feedback times were 800 ms (Short Physics, at far edge of screen) and 800 ms (Short Reverse 
Physics, at release line). When randomized, feedback occurred between 0 and 800 ms (Short 
Random Group).

28



where d is the distance the puck will travel, v is the velocity at the moment of release, and a is a 
constant representing deceleration, given a fixed coefficient of friction for a surface. Across all 
experiments, the deceleration constant a was set to 30,000 s. This value was selected such that 
speeds of 5.0 cm/s and 87.2 cm/s caused the puck to land at the release line or far edge of the 
monitor, respectively. The range of speeds required to hit the four targets was 40.7-50, 51.5-58.8,
61.0-67.6, and 68.5-73.5 cm/s. Given that participants could see the cursor moving as it 
approached the line, the task was programmed such that the space above/beyond the release line 
had a greater coefficient of friction than the space below/preceding the line. However, the speed-
to-distance mapping remained constant across all participants and all sessions. If a participant 
produced a speed that caused the puck to "land" beyond the edge of the monitor, a "Too fast" 
warning was displayed. 

3.2.6.i Timing Manipulations, Experiment 1

Two groups were tested in Experiment 1 (Figure 2B). For the Instantaneous group (n = 
16, 6 female, mean age 21.4), the feedback puck appeared as soon as the participant’s hand 
crossed the release line. For the Delay group (n = 15, 10 female, mean age 20.5), the onset of the 
feedback puck was delayed for 1000 ms (Figure 3.2B). 

3.2.6.ii Timing Manipulations, Experiment 2

Three groups were tested in Experiment 2 (Figure 2C). For the Physics group (n = 16, 9 
female, mean age 20.9, one of 17 excluded), the time required for the puck to come to a complete
stop (i.e., time at which feedback appeared) was calculated as: 

t = -v/a (Equation 2) 

where t is time elapsed between release and the puck stopping/reappearing, v and a are as in 
equation 1. Because the coefficient of friction (and, therefore, the deceleration constant) was 
arbitrary, as was the mapping between virtual space and the monitor, feedback times were 
transformed to fall within a range of times that fit the monitor's boundaries. To ensure a realistic 
task environment, a spatial and temporal discontinuity between locations before and after the 
release line was not ideal. However, allowing participants to view the puck as it traveled towards 
the release line while still using an unscaled feedback mapping beyond the release line would 
have required a monitor that approximated the length of a real-world shuffleboard table. To avoid
this, the virtual shuffleboard table was truncated to omit the first portion of the puck's trajectory 
following the release line. As such, the puck was limited to land at any location between the 
release line and the edge of the monitor. The screen-adjusted feedback time was given as:

t_adjusted = -k*v/a – s (Equation 3)

where k was 410,850 ms, s was 956 ms, and the total range of feedback times was 0 to 1440 ms. 
For successful movements, the ranges of feedback times for each of the four targets 
corresponded, from closest to farthest, to 160-413, 455-655, 714-895, and 920-1058 ms. Relative
to the moment at which the hand crossed the release line, participants received endpoint 
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feedback at the screen-adjusted feedback time. 
This mapping was flipped for participants in the Reverse Physics group (n = 17, 8 female,

mean age 21.5) by subtracting the feedback time for the Physics timing group from a fixed value 
of b:

t_reverse = b - (-k*v/a – s)  (Equation 4)

where b is 1300 ms. For the extreme cases, the feedback time was 0 ms (for fast movements that 
carried the puck off the monitor) and 1300 ms (for slow movements that resulted in the puck 
stopping just past the release line). For successful movements, the ranges of feedback times for 
each target, from closest to farthest, were 886-1142, 645-844, 405-586, and 242-380 ms. Note 
that this range differs slightly from the Physics timing, as a compromise was made between 
aligning the ranges of feedback times within each target and aligning the feedback times for 
pucks landing at the edges of the workspace.   

As a control, the Physics and Reverse Physics groups' performance were compared to a 
third group that was tested with Random timing (16, 10 female, mean age 20.4, one of 17 
excluded). For these participants, the feedback delay was a random value from the range of 100-
1200 ms. Note again that this range differs from both the Physics and Reverse Physics ranges. 
Once again, priority was given to presenting feedback at times that aligned with the ranges 
corresponding to the four targets, rather than the complete range across the workspace. The 
Random timing scheme's range is slightly expanded outside of these limits to allow for 
occasional feedback times matching extreme trials for the Physics and Reverse Physics groups.

3.2.6.iii Timing Manipulations, Experiment 3 

Three groups were tested in Experiment 3 (Figure 2D): Short Random, Short Physics, and
Short Reverse Physics. For all groups tested in Experiment 3, the range of feedback delays was 
compressed relative to Experiment 2. After setting k to 190,000 ms and s to 300 ms (Equation 3),
the resulting range of feedback times was 0 to 800 ms. 

For the Short Physics group (n = 23, 15 female, mean age 20.2, one of 24 excluded), the 
ranges of feedback times given for hitting each of the four targets were 214-333, 353-445, 472-
556, and 568-631 ms. In an attempt to obtain data wherein baseline performance was more 
similar to other groups, a second group of nine Short Physics participants was recruited after the 
group size reached 15. However, baseline performance for this second group was similarly poor. 
Analyzing the group of 15 and the group of 9 separately does not change the results of 
comparisons between Short Physics and other groups, nor does analyzing the first and last 12 
participants as separate groups. As such, the results for the large merged group are reported here. 

For the Short Reverse Physics group (n = 15, 10 female, mean age 21.6, two of 17 
excluded), b was set to 800 ms (Equation 4), so that a puck landing at the edge of the monitor 
reappeared at 0 ms, while a puck reappearing just at the release line reappeared at 800 ms. The 
ranges of feedback times for hitting each of the four targets were 467-586, 355-447, 244-328, 
and 169-232 ms. Note that our goal of compressing feedback to below 600 ms (cf. Howard et al.,
2012; Howard et al., 2013) applies approximately to the maximum feedback time for a 
successful movement (i.e., the farthest successful throw for the Short Physics group—feedback 
time 586 ms—and the closest successful throw for the Short Reverse Physics group—feedback 
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time 631 ms, a small expansion beyond the desired range). 
For the Short Random group (n = 16, 9 female, mean age 20.9, one of 17 excluded), 

feedback was presented at randomly selected time within the range of 0-800 ms. As in 
Experiment 2, the Short Random timing scheme's range was slightly expanded outside of these 
limits to allow for occasional feedback times matching extreme trials for the Short Physics and 
Short Reverse Physics groups.

3.2.7 Exclusion criteria

Participants whose data suggested that they had not understood the task were excluded 
using three criteria. First, one participant was excluded for failing to traverse the release line in 
one smooth movement on more than 5% of the trials. Second, three participants were excluded 
because they were of low overall performance compared to the rest of their group. This was 
defined by calculating the mean error, on all trials across all blocks, for each of the 8 groups. 
Participants whose overall mean error was more than two standard deviations above their group's
mean error were excluded. It should be noted that this approach failed to exclude participants 
with abnormally high error from the Short Physics group in Experiment 3, as the mean and 
variance of error for this group were exceptionally high. Finally, for each individual participant, 
the mean feedback distance was plotted as a function of target distance, averaging the data over 
all trials in all blocks. For a participant who is responding to changes in target location, this plot 
should have a positive slope, because far targets require faster movements to achieve an 
appropriate feedback distance. A too-shallow slope would indicate that the participant was not 
adjusting their movement speed in response to the change in target locations but rather simply 
moving at relatively the same speed for all targets. Therefore, if the slope of a given participant's 
function was more than two standard deviations below the group mean slope, he/she was 
excluded. Two participants were excluded for this reason (one each in Physics and Short 
Physics). A third participant (Short Reverse Physics) who was excluded for high mean error also 
met the criterion for exclusion by this metric.

3.3 Results

Across all experiments, all groups reduced their absolute error over the course of five task
blocks, from an overall mean of 2.4 cm in block 1 to a mean of 1.7 cm in block 5. However, the 
task remained quite challenging throughout the session: mean percent hits (calculated as the 
mean of group means, weighting groups rather than individuals equally) increased from 47.6% in
block 1 to 52.7% in block 5. Participants improved their accuracy by scaling their hand speed as 
a function of target distance, and as participants' performance improved over the course of the 
session, faster movements were associated with larger errors, a pattern that is consistent with 
known speed-accuracy tradeoffs (Fitts 1954; Schmidt 1969; Schmidt et al., 1979). All groups' 
absolute error varied as a function of target distance (Figures 3, 4, and 5, panels C and D). The 
negative correlation between movement speed, amplitude, or force and the accuracy of that 
movement is captured by Fitts' Law (Fitts 1954), and borne out across all three experiments.

Given the robust effects of target distance and task block, differences in the groups' 
learning functions across the five task blocks, as well as the groups' overall percent 
improvement, were assessed. Where the temporal manipulations created the potential for target-

31



specific effects of feedback latency, these effects were assessed as well. 

3.3.1 Experiment 1

Experiment 1 examined the effect of feedback delay in the shuffleboard task, comparing 
the performance of participants who received feedback as soon as the hand crossed the release 
point (Instantaneous) or after a 1 s delay (Delay). Superior learning by the Instantaneous group 
would constitute a replication of Kitazawa et al. (1995), extending the reach of a known temporal
constraint in visuomotor rotation learning to movement speed learning. Alternatively, equivalent 
performance would provide evidence for a mechanism for movement speed learning that is not 
subject to these constraints.

Both groups improved at the task over five task blocks. This reduction was evident both 
in the absolute error data (Figure 3.3A) and when the data were normalized with respect to 
performance in block 1 (Figure 3.3B), and was consistent across all targets (Figure 3.3C). To 
compare the two groups' learning functions, a two-way mixed effects ANOVA was conducted on 
the raw absolute error scores, with factors of group and block. There was no reliable difference 
between groups, F(1,4) = 2.65, p = .102, nor was there a significant group x block interaction, 
F(1,4) = 1.98, p = .102. A series of post hoc t-tests was used to directly compare the groups at 
each block. None of these comparisons revealed a reliable difference between the Instantaneous 
and Delay groups. Confirming that the participants improved with practice, however, there was a
significant effect of block, F(1,4) = 13.92, p < .0001. 

The data were also analyzed in terms of percent improvement, defined as the difference 
between block 5 and block 1 absolute error scores, divided by the block 1 score (Figure 3.3E). A 
two-sample t-test was conducted on the percent improvement scores. Consistent with the raw 
data, there was no difference between the groups on this measure, t(29) = .01, p = .91. 

To test for target-specific differences in performance, the two groups' asymptotic 
performance (block 5) was compared at each of the four targets (Figure 3.3 C, D). There was no 
effect of group, F(1,3) = .75, p = .39, nor was there a group x target interaction, F(1,3) = 1.27, p 
= .29. However, there was an effect of target, F(1,3) = 55.04, p < .0001, consistent with the 
speed-accuracy tradeoff observed across the experiment. No effects of group or target were 
observed when a similar analysis was performed on the percent improvement data. 

In summary, delaying feedback by 1 s did not have a measurable impact on learning in 
the shuffleboard task. This result is in contrast to the significant cost of delayed feedback that has
been observed in visuomotor adaptation tasks (e.g. Kitazawa et al., 1995). These results suggest 
that temporal constraints may differ between tasks involving adaptation of a spatial 
transformation (e.g., visuomotor rotation) and a spatiotemporal mapping (e.g., movement speed 
or gain).

3.3.2 Experiment 2 

Experiment 2 investigated the effect of modifying the simplified task to reintroduce the 
temporal variation that occurs ecologically in shuffleboard when played with a real object. 
Absolute error was compared between a group that received unpredictably timed feedback 
(Random group) and a group that received feedback that was predictable and congruent with 
ecological shuffleboard experiences (Physics group). The primary goal of this comparison was to
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Figure 3.3 Experiment 1 Results
A. Absolute error as a function of task block. 
B. Absolute error as a function of task block, normalized to block 1 performance.
C. Absolute error as a function of target distance over five task blocks.
D. Absolute error as a function of target distance during blocks 1 and 5.
E. Percent improvement in absolute error from block 1 to block 5. 
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determine the roles of temporal prediction in feedback processing. In this comparison, superior 
performance with predictable timing would indicate reinforcement of spatial feedback by 
temporal signals. 

A secondary goal was to determine whether the negative results obtained in Experiment 1
could be attributed to the non-ecological nature of the Instantaneous and Delay timing schemes. 
To determine whether ecological validity shapes task performance, a third group was introduced 
(Reverse Physics group). This group was given feedback with timing that was predictable, but 
non-ecological. The Physics (ecologically timed) and Reverse Physics (non-ecologically timed) 
groups were compared to each other. In this comparison, superior performance with ecologically 
timed feedback (Physics group) would suggest an important role for previous real-world 
experience in the use of temporal predictions. Equivalent performance between the two timing 
schemes would suggest that predictability alone, and not previous experience, is the key factor 
driving enhancement of performance with learning. To examine whether there is a general 
advantage of predictable feedback timing, ecological or otherwise, the Physics and Reverse 
Physics groups were also merged and compared to the Random group.

A tertiary goal was to dissociate movement speed from feedback latency through the 
introduction of the Reverse Physics group, as these factors are confounded in the Physics group 
(and in real-world shuffleboard). By incorporating a group whose shortest-latency feedback 
occurs following the fastest movements and whose longest-latency feedback occurs following 
the slowest movements, the effects of feedback latencies can be disentangled from known those 
of speed-accuracy tradeoffs (Fitts 1954). More specifically, if failure in Experiment 1 to replicate
the interference due to long-latency feedback (Kitazawa et al., 1995) is due to the non-ecological
nature of the Instantaneous and Delay timing schemes, a cost of longer latencies could be 
detected in Experiment 2, particularly where feedback timing is ecological (Physics group). 
However, such a cost could be clearly attributed to feedback latency and not to simple known 
speed-accuracy tradeoffs only if it is evident when long latencies are applied to the fastest, most 
difficult movements (Physics group) as well as to the slowest, least difficult movements (Reverse
Physics group).

As in Experiment 1, all three groups reduced their error over five task blocks; this was 
evident both in the raw (Figure 3.4A) and normalized (Figure 3.4B) data, and was consistent 
across all targets (Figure 3.4C). A two-way mixed effects ANOVA was conducted on the raw 
absolute error scores, with factors of group and block. There was a significant effect of group, 
F(2,4) = 4.78, p = .013. Post hoc two-sample t-tests indicated that the Physics group differed 
significantly from the Random group during block 4, t(29) = -2.69, p < .01, and during block 5, 
t(29) = -2.42, p < .05, and a trend during block 2, t(29) = -1.87, p = .07. The Random group did 
not differ significantly from the Reverse Physics group during any block, although there was a 
trend in block 4, t(31) = -1.8, p = .08. The Physics group did not differ significantly from the 
Reverse Physics group during any block. Confirming that participants improved with practice, 
there was a significant effect of block, F(2,4) = 23.38, p < .0001. We next assessed the effect of 
predictability by combining the Physics and Reverse Physics groups' absolute error scores and 
comparing them to the Random group. Again, there was a significant effect of group, F(1,4) = 
156.76, p < .0001, and a significant effect of block, F(1,4) = 23.82, p < .0001. There was also a 
significant group x block interaction, F(1,4) = 7.14, p < .0001. Post hoc t-tests indicated that the 
two groups differed significantly during block 4, t(46) = 2.54, p < .01, with a trend in block 5, 
t(46) = 1.87, p = .07.
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Figure 3.4 Experiment 2 Results
A. Absolute error as a function of task block. 
B. Absolute error as a function of task block, normalized to block 1 performance.
C. Absolute error as a function of target distance over five task blocks.
D. Absolute error as a function of target distance during blocks 1 and 5.
E. Percent improvement in absolute error from block 1 to block 5.  
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The groups were also compared in terms of percent improvement (Figure 3.4E). A one-
way ANOVA revealed no difference between the groups' percent improvement, F(2,47) = 0.97, p
= .39. There was also no difference when the Physics and Reverse Physics groups' data were 
combined and then compared to the non-predictable Random group, t(46) = 1.40, p = .17. 
Despite the abovementioned difference in asymptotic error between the Physics and Random 
groups, normalizing for baseline performance in this way results in a difference that is far from 
significant. It is important to note that, while asymptotic error may illustrate the level of 
performance that is possible with predictably timed feedback, between-group differences are at 
least partly attributable to differences in baseline performance. Given this, we emphasize that our
timing manipulations did not affect learning, despite facilitating improved performance near the 
end of the session. 

To test for target-specific differences in performance, the asymptotic performance (block 
5) of the two predictably timed feedback groups (Physics and Reverse Physics) at each of the 
four targets was compared using a two-way mixed effects ANOVA. Because feedback latency is 
only regular for Physics and Reverse Physics, we confined our analysis to these two groups. 
There was a significant effect of group, F(1,30) = 4.75, p < .05. There was also a significant 
effect of target, F(1,3) = 28.67, p < .0001, confirming that as in Experiment 1, faster movements 
to farther targets resulted in larger errors (Figure 3.4 C,D). However, there was no group x target 
interaction, F(1,3) = 0.61, p = .61. A similar analysis compared the groups' percent improvement:
there was no main effect of group, F(1,3) = .006, p = .94. There was also no main effect of target,
F(1,3) = 1.99, p = .12, or group x target interaction, F(1,3) = 2.10, p = .106, on percent 
improvement scores. A series of post hoc t-tests was performed on both the asymptotic 
performance and percent improvement to directly compare the groups at each block. None of 
these comparisons revealed any reliable differences between the Physics and Reverse Physics 
groups. 

In summary, our results indicate firstly that unpredictable feedback timing (Random 
group) imposes a cost on performance relative to predictable feedback timing (Physics and 
Reverse Physics groups). This cost did not become evident until late in training, when 
performance approached asymptotic levels. Indeed, participants in the Random group performed 
similar to the predictable groups in the first three blocks (Figure 3.4A), suggesting that early 
learning may be less susceptible to the cost of unpredictable feedback timing. Secondly, the cost 
of unpredictable feedback timing is evident regardless of whether that predictability aligns with 
previously experienced physical mappings, suggesting that the regularity of feedback timing, 
rather than the veridicality of this timing, drives relative enhancements in performance. When 
comparing predictable (Physics and Reverse Physics merged) to non-predictable (Random) 
timing schemes as a whole, there was no difference. Thirdly, there were no target-specific gains 
in performance to indicate that feedback latency impacted speed-accuracy tradeoffs in the 
predictably timed groups. In the most extreme case, the effect of feedback timing might 
overcome the effect of speed-accuracy tradeoffs (Fitts 1954) in the Reverse Physics groups, 
reversing the slope of the absolute error plotted as a function of target distance relative to the 
Physics group (Figure 4D). However, the lack of a group x target interaction indicated that 
speed-accuracy tradeoffs outweighed the effects of our timing manipulations. 

3.3.3 Experiment 3
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Experiment 3 addressed one limitation of Experiment 2: the temporal ranges used 
exceeded a putative limit of around 600 ms for error-based learning due to long-term depression 
in the cerebellum (Schneiderman & Gormezano 1964; Kitazawa et al., 1995; Howard et al., 
2012). In addition to exceeding these temporal limits on learning, the long-latency timing 
schemes may also have failed to engage cerebellar mechanisms involved in subsecond timing 
(Ivry & Keele 1989). In Experiment 1, the Delay group consistently received feedback at 1 s, 
400 ms later than the 600 ms limit. In Experiment 2, a suprasecond range was employed to make 
the differences in feedback timing more salient. This ensured that participants were able to form 
associations between their movements and the resulting feedback latencies, but it also resulted in
all three groups in Experiment 2 receiving feedback later than the 600 ms limit on roughly half 
the trials. For the Random group, this latency could surpass 600 ms on any trial. For the Physics 
group, exceeding this limit occurred primarily for the two farther targets, and for the Reverse 
Physics group this occurred primarily at the two closer targets. Therefore, Experiment 3 sought 
to reduce the possible impact of cerebellar non-engagement at long latencies by compressing the 
range of feedback times to be within this 600 ms limit. As a secondary goal, Experiment 3 also 
sought to render the delays less salient in order to limit the influence of high-level cognitive 
recall in making and using temporal predictions. It may be the case that rather than learning a 
continuous distribution of feedback latencies in Experiment 2, participants formed temporal 
predictions that were specific to each target. By compressing the temporal range of latencies in 
Experiment 3, we sought to prevent participants from forming such representations. 

As in Experiments 1 and 2, all three groups reduced their error over five task blocks, and 
again, this reduction in error was evident both in the raw (Figure 3.5A) and normalized (Figure 
3.5B) data. This effect was consistent across all targets (Figure 3.5C)A two-way mixed effects 
ANOVA was conducted on the raw absolute error scores, with factors of group and block. There 
was a significant effect of group, F(2,4) = 55.39, p < .0001, a significant effect of block, F(2,4) =
40.40, p < .0001, and a significant interaction between block and group, F(2,4) = 6.90, p = < .
0001. As confirmed by post hoc t-tests, this interaction was primarily driven by the poor baseline
performance of the Short Physics group, an anomaly that leads us to interpret all comparisons to 
this group with caution. The Short Random group differed significantly from the Short Physics 
group during block 4, t(38) = 2.39, p < .05, with a trend during block 1, t(38) = 1.90, p = .06. 
However, the Short Random group's performance was superior to the Short Physics group's in 
this block, an effect that runs counter to our prediction that compressed predictability would be 
advantageous over nonpredictive feedback. The Short Physics group also differed significantly 
from the Short Reverse Physics group only during block 1, t(37) = 2.65, p < .005. Here again, the
Short Physics group's absolute error was dramatically higher than the Short Reverse Physics 
group's during either block. The Short Random and Short Reverse Physics groups did not differ 
significantly during any of the 5 blocks. Assessing the effect of predictability by combining 
absolute error scores of the Short Physics and Short Reverse Physics groups' and then comparing
them to the Short Random group produced similar results: There was a significant effect of 
group, F(1,4) = 228.86, p < .0001, a significant effect of block, F(1,4) = 38.09, p < .0001, and a 
significant group x block interaction, F(1,4) = 11.51, p < .0001. Post hoc t-tests compared the 
groups' performance at each block and indicated that the two groups differed during block 1 only,
t(53) = 2.29. This effect reflects elevated baseline performance in the Short Physics group and 
cannot be interpreted as a learning difference.

The groups were also compared in terms of percent improvement (Figure 3.5E). In a one-
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Figure 3.5 Experiment 3 Results
A. Absolute error as a function of task block. 
B. Absolute error as a function of task block, normalized to block 1 performance.
C. Absolute error as a function of target distance over five task blocks.
D. Absolute error as a function of target distance during blocks 1 and 5.
E. Percent improvement in absolute error from block 1 to block 5. 

38



way ANOVA, the groups differed, F(2,52) = 3.49, p < .05. However, this effect was again driven
by the Short Physics group's high error during block 1. There was no difference between the 
combined Short Physics and Short Reverse Physics group and the non-predictable Short Random
group, t(53) = 1.46, p = .15.

To identify target-specific differences in performance, asymptotic performance (block 5) 
of the two predictably timed feedback groups (Short Physics and Short Reverse Physics) at each 
of the four targets was compared using a two-way mixed effects ANOVA. As in Experiment 2, 
the analyses of target-specific effects was restricted to only these two groups, testing whether 
reversing the latencies for the four targets between the two groups altered the main effect of 
target distance. There was a significant effect of group, F(1,30) = 48.18, p < .0001, and of target, 
F(1,3) = 46.71, p < .0001. The latter effect confirms that, as in Experiments 1 and 2, faster 
movements to farther targets resulted in larger errors (Figure 3.5 C,D). There was also a 
significant interaction of group and target, F(1,3) = 4.48, p < .005. A similar analysis compared 
the groups' percent improvement: there was a significant effect of group, F(1,3) = 14.92, p < .
0005, but no main effect of target, F(1,3) = .69, p = .56, and no interaction, F(1,3) = .47, p = .70. 
A series of post hoc t-tests was performed on both the asymptotic performance and percent 
improvement to directly compare the groups at each target location. There was a difference in 
asymptotic performance at the second target from the release line, t(37) = 2.0, p < .05, reflecting 
the lower asymptotic error at this target in the Short Reverse Physics group. This result differs 
from the expected superior performance of the Short Reverse Physics group at the farther targets.
There was also a difference in percent improvement at the farthest target from the release line, 
t(37) = 2.16, p < .05. However, this difference was driven once again by the elevated baseline at 
this target in the Short Physics group. 

In summary, at the short latencies employed in Experiment 3, the manipulations of 
feedback timing had no effect. We predicted that if short latencies and predictable, ecological 
timing schemes provided the most redundantly informative error signals, the Short Physics group
would benefit the most from the increased cerebellar engagement in predicting feedback delays. 
However, this group's baseline performance (block 1) was elevated for reasons beyond our 
explanation, thereby precluding the possibility of a definitive conclusion. At present, we can only
speculate that this difference may have arisen through the random assignment of participants to 
groups, i.e., unskilled or unmotivated participants were assigned to the Short Physics group. 
Nevertheless, in Experiment 3, the Short Reverse Physics and Short Random groups performed 
roughly equivalently. In Experiment 2, the Physics and Reverse Physics groups performed 
roughly equivalently. Given this equivalence, we then assume that the reduced salience of the 
narrowed temporal window in Experiment 3 makes it unlikely that any differences between the 
Short Physics and Short Reverse Physics groups' performance are the result of our temporal 
manipulations. We therefore take the Short Reverse Physics group as the sole uncontaminated 
indicator of performance due to predictable feedback timing as compared to unpredictable (Short
Random) timing, and conclude that compressed predictability confers no advantage compared to 
a compressed unpredictable timing scheme. At a minimum, it appears that within cerebellar 
timescales, there is not an important role for temporal prediction in movement speed learning. 

3.4 Discussion

Temporal constraints affect learning in numerous types of error-based learning, typically 
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by diminishing learning when the interval between events that are relevant for learning extends 
beyond a few hundred milliseconds (Schneiderman & Gormezano, 1964; Kitazawa et al., 1995; 
Howard et al., 2012). However, unlike studies with fixed, arbitrary delays, players of real-world 
shuffleboard may exploit a temporal feature of the movement itself to create useful temporal 
predictions. Specifically, faster movements create sensory consequences that are more extended 
in both time and space.  

Such delays are neither available nor informative in tasks that require adjustments to 
movement direction. However, when delays are available and informative, we hypothesized that 
maintaining performance in the face of these delays might rely upon cerebellar temporal 
processing mechanisms. Spatial and temporal prediction errors may reinforce each other to 
facilitate the formation of internal models of the effects of movement speed in the brain. 
Alternatively, shuffleboard players might rely upon extracerebellar mechanisms to improve task 
performance. This seems plausible given the nature of the task, because movement direction and 
speed are thought to be specified independently in the brain (Vindras & Viviani, 2002; Vindras et
al., 2005). Many properties of movement direction learning do not generalize to movement speed
learning (Bock 1992; Krakauer et al., 2000, 2004), and such discrepancies may be attributable to 
the recruitment of extracerebellar structures governing movement speed (Turner & Desmurget, 
2010).  

Surprisingly, the results of three experiments indicate that learning to adjust movement 
speeds on a trial-by-trial basis is not sensitive to feedback timing. In Experiment 1, we 
demonstrated that learning was not impaired by delayed feedback. In Experiment 2, we 
demonstrated that predictable timing schemes resulted in lower asymptotic error. However, 
normalizing to baseline levels of revealed that predictable timing did not result in greater 
improvements in performance. Furthermore, there was no effect of ecological validity of the 
timing schemes on asymptotic performance, ruling out effects of previous experience and/or 
increased realism in enhancing performance relative to unpredictable timing schemes. In 
Experiment 3, the effects of predictability seen in Experiment 2 were eliminated by using a 
narrower range of feedback times thought to recruit cerebellar processing mechanisms. The 
absence of an effect of predictability at these timescales suggests that any beneficial effect of 
predictably timed feedback derives from cognitive, likely attentional, mechanisms (cf. Large & 
Jones, 1999). 

3.4.1 Putative cerebellar constraints on learning: behavioral dissociations

The costs associated with delays in visuomotor rotation learning is thought to derive from
the circuitry of the cerebellum. More specifically, efference copies of motor commands must be 
followed within roughly 600 ms by an error-triggered complex spike in order for the synapses 
involved in motor representations to be eligible for learning via long-term depression (Ito 2002; 
Ohyama et al., 2003). If error-based feedback arrives too late, no learning can occur. By this 
logic, susceptibility of motor learning to a delay cost may be a signature of cerebellar 
involvement in any given task. Delaying feedback has been shown to diminish trial-by-trial 
learning in a visuomotor rotation paradigm (Kitazawa et al., 1995), similar to limitations seen in 
other forms of sensorimotor learning (Schneiderman & Gormezano, 1964; Howard et al., 2012; 
Howard et al., 2013). However, we failed to find a similar cost of delayed feedback in our 
shuffleboard task. In particular, delaying feedback presentation by 1 s did not adversely affect 
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movement speed learning (Experiment 1). Moreover, the lack of a cost of longer delays seen in 
Experiment 1 was replicated in the target-specific analyses of Experiments 2 and 3. Specifically, 
shorter feedback latencies at the farther targets (Reverse Physics and Short Reverse Physics 
groups) did not overpower the dominant effect of speed-accuracy tradeoffs: larger errors were 
always produced at faster speeds/farther targets, regardless of whether feedback latencies were 
long or short. 

Delayed feedback produces diminished learning in visuomotor rotation paradigms, and 
delays are known to interfere with learning whenever they come between events relevant for 
learning (Schneiderman & Gormezano, 1964; Smith 1968; Howard et al., 2012). The 
discrepancy between our findings and those of previous studies may be attributed to differences 
in task demands between learning to produce movements in certain directions and at certain 
speeds. It may be the case that cerebellar involvement is minimal for processing errors of 
movement speed and that an alternative, extracerebellar mechanism is used for evaluating and 
responding to feedback. Alternatively, the cerebellum may indeed be involved in the task, based 
on its hypothesized role in timekeeping (Ivry & Spencer, 2004) to learn from errors in the 
prediction of feedback delays (Miall et al., 1993). We tested this by employing temporally 
informative feedback delays in Experiments 2 and 3, and found that the advantage of predictable 
feedback timing, regardless of ecological validity, was limited to situations where predictability 
was achieved through delays extending beyond the temporal limits of cerebellar processing 
(Experiment 2 but not Experiment 3). Thus, our results do not support a role for a separate 
temporal prediction in cerebellar error processing, suggesting instead that movement speed 
learning relies primarily on extracerebellar mechanisms.
 The effects of temporal predictability at long latencies in Experiment 2 may be due to 
conflicts between the Random timing scheme and participants' past experience, in which larger 
force impulses cause pucks to travel for greater amounts of time. Alternatively, these effects 
could arise from the inability of participants to anticipate feedback in the Random timing 
condition. The similar benefits arising from the Physics and Reverse Physics conditions relative 
to Random timing support the latter hypothesis. The results indicate that, to facilitate learning, 
predictable feedback timing need not align with veridical or previously experienced temporal 
mappings (Experiment 2). 

Despite this lack of effect of previous experience, we note that analysis of block-specific 
(asymptotic) effects on error shows that the cost of unpredictable feedback timing emerges late 
in learning. This cost could be a fatigue effect, resulting from the additional cognitive effort 
required to process unpredictably timed feedback. Alternatively, the fact that error reduction for 
the Physics and Reverse Physics conditions did not occur until blocks 4 and 5 may reflect 
participants' developing familiarity with the predictable temporal mappings. It may be the case 
that there is one system for early learning that is less temporally sensitive and another system for 
later fine-tuning of learning that shows temporal sensitivity. 

In Experiment 3, we tailored the range of feedback intervals to fit within putative 
cerebellar limits (cf. Howard et al., 2012), thereby rendering the differences in timing less 
perceptible. Thus, any effects of predictability are more likely to be attributable to the non-
cognitive, unconscious mechanisms within the cerebellum than they would have been with 
longer intervals. We hypothesized that short-latency predictable feedback timing could produce 
an error signal that was optimized for both cerebellar processes and temporal feedback 
predictions. Instead, we found that the benefit of predictable feedback timing seen in Experiment
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2 was not evident in Experiment 3, indicating that this benefit relied on salience of the 
predictable delays. However, the elevated baseline error in the Short Physics group leaves a 
residual ambiguity, as asymptotic performance in this group is similar to the other groups, while 
the reduction in error over the five blocks is much greater. Had the Short Physics and Short 
Reverse Physics groups differed in a reliable way, this would have provided evidence for a role 
for ecological validity (or of previous experience with temporal mappings) at a cerebellar 
timescale, despite the lack of such an effect at more cognitive timescales. However, no such 
effect was found. Our findings are consistent with temporal predictability appears to facilitating 
learning from feedback through improved attentional capture.

3.4.2 Alternative neural circuitry involved in movement speed learning: the striatum

There are many reasons why shuffleboard, and similar tasks which involve learning 
optimal movement speeds from trial-by-trial delayed feedback, are not subject to putatively 
cerebellar temporal constraints. First, it may simply be more difficult to modulate temporal and 
dynamic movement variables relative to spatial ones. That is, it may be harder to move at a 
certain speed rather than to or towards a certain location. Second, our results may have differed 
had our task required different movement dynamics. For instance, the use of a force field to 
simulate the resistance of a puck's mass may have created a more ecologically-sound 
environment and engaged different processes. Indeed, it remains unclear whether kinematic 
manipulations like visuomotor rotations are compensated by different mechanisms than dynamic 
manipulations like force fields (Criscimagna-Hemminger et al., 2010; but see Donchin et al., 
2012; Schlerf et al., 2013). Further work is needed to address possible effects of task difficulty 
and movement dynamics.

A third possibility, however, is that learning in our shuffleboard task relies on 
extracerebellar mechanisms: participants may have learned to repeat successful actions rather 
than learning to correct for errors. That is, our task may engage reward-based learning and 
explicit memory retrieval rather than error-based learning and sensorimotor retuning (Krakauer 
& Mazzoni 2011). Because participants attempted to hit four discrete targets, they may have 
relied upon learning discrete hand speeds and corresponding delay ranges, rather than adjusting 
their movements adaptively in response to continuous spatial and temporal prediction errors. 
This selection-based account of learning (Shadmehr et al., 2010; Costa 2011; Krakauer & 
Mazzoni 2011) leads to the prediction that striatal mechanisms involved in reward learning and 
movement speed regulation shape performance when movements have temporally extended 
consequences.

 Notably, Kitazawa and colleagues showed that even visuomotor rotation learning was 
not completely abolished when feedback was delayed beyond 500-600 ms. In fact, some learning
still occurred when feedback was delayed by as much as 1000 to 5000 ms (Kitazawa et al., 
1995), suggesting the existence of a secondary, less temporally sensitive, learning mechanism. It 
has been demonstrated that visuomotor rotation learning can be driven by either sensory or 
reward prediction error (Izawa & Shadmehr, 2011), with reward prediction error signals 
associated with the basal ganglia. This prediction error, driven by dopamine signaling in the 
striatum, has long-lasting impacts on learning, with activity in these striatal neurons actually 
increasing over post-reward intervals as long as 16 s (Fiorillo et al., 2008).  

The striatum's role in controlling movements provides further reason to assign it a role in 

42



trial-by-trial learning in the shuffleboard task. This structure has been implicated in controlling 
the speed and timing of movements, possibly through dopaminergic modulation of the gain of a 
perceptual reference signal (Yin 2014). In humans, Parkinson's disease has long modeled the 
syndrome associated with striatal dysfunction: Parkinson's patients show hypometria, 
hypophonia, micrographia, and bradykinesia (Hallett & Khoshbin, 1980; Berardelli et al., 2001; 
Pfann et al. 2001; Desmurget et al., 2003; Viviani et al. 2009). This is in accord with a role for 
the basal ganglia in scaling the force, or vigor, of movements (Desmurget et al., 2003; Turner et 
al., 2003; for review, see Turner & Desmurget, 2010). In primates, spiking activity in the primary
output nucleus of the sensorimotor striatum, the globus pallidus internus (GPi), scales with 
movement amplitude and velocity (Turner & Anderson, 2005). Furthermore, inactivation of the 
GPi causes slowing and hypometria of movements in monkeys (Desmurget & Turner, 2008). 

A PET study in  humans found cerebellar activations during rotation learning and striatal 
activations during gain learning (Krakauer et al., 2004), supporting the notion that direction and 
speed may be specified independently and by distinct neural systems. However, there is 
neuroanatomical evidence that the cerebellum and basal ganglia are directly connected through 
the thalamus (for review, see Bostan et al., 2013). The interaction of distinct neural systems 
during error- and reward-based learning paradigms is a topic of much debate (for example, see 
Smith et al., 2006; Inoue et al., 2015). For instance, a fast, cerebellar program may drive 
improvements in performance early in learning and a slow, striatalprogram may drive 
improvements late in learning (Shadmehr et al., 2010). Conversely, the striatum may drive early 
selection of actions while the cerebellum refines late specification of actions: consistent with this
view, one study found a role for the basal ganglia in visuomotor rotation learning only after 
restricting the analysis to the early stages of learning (Seidler et al., 2006). 

We infer that the absence of effects of simple delayed feedback indicates an 
extracerebellar locus of trial-by-trial movement speed learning. The temporal imprecision of 
striatal circuits, combined with the association of these circuits with movement speed regulation, 
make this structure an attractive candidate for improving trial-by-trial performance. Further 
imaging studies are needed to directly assess the underlying mechanisms.

3.5 Conclusions

We developed a novel shuffleboard task to examine temporal constraints in the learning 
and regulation of movement speed. The main finding from this study is that we failed to identify 
strong temporal constraints; in particular, task performance did not suffer when feedback 
presentation was delayed by 1 s. However, predictable feedback timing conferred an advantage 
both when the mapping was predictably congruent with real-world task analogues and when this 
mapping was reversed. The advantage was revealed by comparison to feedback timing that was 
randomized, and thus rendered unpredictable, within an identical temporal range. More 
speculatively, the advantage conferred by this predictability may be extracerebellar, possibly a 
striatal, origin. When predictability was restricted to a cerebellar timescale, performance was not 
dramatically enhanced relative to a non-predictable timing scheme within this same temporal 
range. Thus, while a role for temporal prediction may exist in tasks like shuffleboard, bocce, 
golf, archery, and other games with long delays between action and outcome, further study is 
needed to determine whether this role generalizes to other tasks based on movement amplitude 
and speed as well as to tasks based on movement direction. 
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Chapter 4: Involvement of dorsal striatum but not cerebellum in trial-by-trial learning of 
movement speed

4.1 Introduction

In learning to produce novel movements, people process multiple types of feedback. 
Although current neural models of motor learning encompass a distributed network of brain 
structures, the functional and computational contributions of the components of this network to 
feedback processing remain unclear (for review, see Shadmehr et al., 2010 and Krakauer & 
Mazzoni, 2011). Feedback may come in the form of rewards, increasing the probability of 
selecting actions that were previously successful, or lack of reward, decreasing the probability of 
selecting actions that were not successful (Sutton & Barto, 1998; Schultz, 1998; O'Doherty et al.,
2004; Daw et al., 2006; Glascher et al., 2010). Feedback may also indicate the size and/or 
direction of errors, influencing the coordination of future actions by triggering adjustments in 
movement parameters according to the nature of the error experienced (Shadmehr & Mussa-
Ivaldi, 1994; Thoroughman & Shadmehr, 2000; Fine & Thoroughman 2006, 2007; Tanaka et al., 
2009). Behaviorally, people can learn motor tasks using feedback about either errors or rewards, 
although only error-based feedback causes the sensory recalibration that is thought to drive 
performance changes in motor adaptation tasks (Izawa & Shadmehr, 2011). 

Evidence from neuroimaging and patient studies has implicated a number of cortical and 
subcortical sites in human motor learning (Martin et al., 1996; Desmurget et al., 2003; 
Desmurget et al., 2004; Krakauer et al., 2004; Grafton et al., 2008; Tunik et al., 2009; Viviani et 
al., 2009; for review, see Doyon et al., 2003, O'Doherty, 2004; Seidler, 2010), including the 
striatum and the cerebellum (for review, see Doya, 2000; Shadmehr & Krakauer, 2008). 
Neuroimaging studies have demonstrated that both structures are active during motor learning 
tasks and undergo changes in activation as skill develops (Imamizu et al., 2000; Seidler et al., 
2004; Diedrichsen et al., 2005; Seidler et al., 2006; Schlerf et al., 2012). Furthermore, patients 
with damage to either the striatum or the cerebellum exhibit deficits on a wide variety of motor 
control and motor learning tasks like sequence learning and visuomotor or force field adaptation 
(Pascual-Leone et al., 1993; Martin et al., 1996; Gabrieli et al., 1997; Doyon et al., 1997; Doyon 
et al., 1998; Desmurget et al., 2004; Maschke et al., 2004). 

These two brain structures are thought to drive two distinct systems for learning. 
Mismatches between the actual and intended consequences of an action register as sensory 
prediction errors, triggering complex spikes in the cerebellum (Marr, 1969; Albus, 1971; Ito, 
1984). Meanwhile, unexpected rewards create a reward prediction error, reflected in the firing of 
dopaminergic cells in the striatum (Schultz et al., 1997; Sutton & Barto, 1998; Schultz, 1998). 
Neuroanatomically, both structures are well-positioned to influence behavior through plasticity 
within their extensive, somatotopically organized loops with motor and non-motor cortical 
structures (for review, see Alexander & Crutcher, 1990; Houk & Wise, 1995; Middleton & 
Strick, 2000). However, these structures may also interact directly rather than operating purely in
independently: recent neuroanatomical tract tracing studies have revealed that the two are 
bidirectionally connected through the thalamus (for review, see Bostan et al., 2013). 

Error-based and reward-based learning differ in terms of their feedback signals and neural
circuitry, but also in terms of the tasks typically used to model them. Behavioral studies and 
computational models of error-based learning typically rely on tasks which provide vectorial 
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feedback, either during a movement or upon completion of a movement, about the direction and 
magnitude of errors within a given workspace (Shadmehr & Mussa-Ivaldi, 1994; Thoroughman 
& Shadmehr, 2000; Mazzoni & Krakauer, 2006; Fine & Thoroughman 2006, 2007; Cheng & 
Sabes 2007; Grafton et al., 2008). According to these models, trial-by-trial learning involves 
correcting for some proportion of a movement error’s magnitude on subsequent trials 
(Thoroughman & Shadmehr, 2000; and for review, see Thoroughman et al., 2007). In contrast, 
reward-based learning is often examined by having participants learn from the success or failure 
of choices between two or more differently rewarding stimuli (O'Doherty et al., 2004; Daw et al.,
2006; Glascher et al., 2010). In this case, contributions of the motor system are often minimal, as
proportions of decisions in favor of each alternative are analyzed as a function of changes in the 
probability, rate, or size of rewards. 

Studies which point to a role for the cerebellum in error-based learning have traditionally 
relied on spatial error signals that cause people to alter their movement direction (Martin et al., 
1996; Donchin et al., 2003; Grafton et al., 2008; Taylor et al., 2010; Criscimagna-Hemminger et 
al., 2010; Schlerf et al., 2013). The tasks used in these studies, including visuomotor and force 
field adaptation paradigms, impose directional perturbations on participants' feedback, measuring
the resulting incremental adjustments to motor programs that occur over tens of trials. As 
learning proceeds, the heading angle or force of participants' movements changes direction in a 
trial-by-trial fashion as movements become aligned with the goal. 

As people learn new motor skills, however, movement direction is not the sole parameter 
that is altered in response to feedback. For instance, when using a new computer mouse for the 
first time, a person may have to adjust the gain, or speed-to-distance mapping, of their 
movements. Behavioral and neuroimaging studies have revealed important distinctions between 
movement direction and speed (or between movement direction and amplitude or gain, as these 
covary) in terms of learning rate, generalization, and neural activations (Bock 1992; Pine et al., 
1996; Krakauer et al., 1999; Krakauer et al., 2000; Vindras & Viviani, 2002; Turner et al., 2003; 
Krakauer et al., 2004; Diedrichsen et al., 2005; Vindras et al., 2005). Taken together, these results
suggest that movement direction and speed are specified independently in the brain. Given that 
error-based and reward-based learning are viewed as less independent than previously imagined, 
both behaviorally (Izawa & Shadmehr, 2011) and neuroanatomically (for review, see Bostan et 
al., 2013), we asked whether direction and speed are adjusted by distinct or overlapping systems 
for trial-by-trial motor learning.

While the cerebellum is thought to be critical for updating movements in tasks with 
directional errors (Martin et al., 1996; Donchin et al., 2012; Grafton et al., 2008; Taylor et al., 
2010), the striatum has been implicated in the regulation of movement vigor (Turner et al., 2003; 
Krakauer et al., 2004; Spraker et al., 2010; Beierholm et al., 2013; and for review, see Shadmehr 
& Krakauer, 2008 and Turner & Desmurget, 2010). Vigor, for a given amount of friction or 
resistance, is a measure of movement speed or of the magnitude of force impulses applied, and 
therefore a covariate of amplitude or gain. Vigor may be implicitly altered through sensitivity to 
reward, as in cases where people are faster to reach or saccade to more rewarding stimuli 
(Mazzoni et al., 2007; Xu-Wilson et al., 2009; Beierholm et al., 2013), but it may also be learned,
as a scaling factor for movements in gain adaptation paradigms (Bock 1992; Pine et al., 1996; 
Krakauer et al., 2000; Turner et al., 2003; Desmurget & Turner, 2010). Importantly, however, 
movement speed itself is typically not the substrate of trial-by-trial adjustments in motor learning
studies. 
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Nevertheless, there exist many real-world tasks in which people scale the speed or 
amplitude of their motor output to displace an object by a certain distance from one trial to the 
next (for example, shuffleboard, bocce, frisbee, or pushing a child on a swing). Studies of 
learning to produce movements with a certain speed or amplitude have relied on gain adaptation 
paradigms. Studies of gain adaptation of either saccades or reaches impose perturbations on 
participants' movement amplitude or speed. In contrast with directional tasks like visuomotor or 
force field adaptation, people can learn a new scaling factor relatively quickly and can generalize
it globally across workspaces, sometimes in a single trial (Bock 1992; Pine et al., 1996; Krakauer
et al., 1999; Krakauer et al., 2000). Studies of motor learning have emphasized responses to 
directional errors, possibly because the process driving gain adaptation is fast and therefore not 
as amenable to study through the use of trial-by-trial experimental interventions. 

We sought to explore a less-studied aspect of movement learning, asking whether the 
neural sites active during trial-by-trial learning of movement speed are similar to or distinct from
the cerebellar sites previously identified for learning movement direction (Diedrichsen et al., 
2005; Schlerf et al., 2012). To address this question, we used functional magnetic resonance 
imaging (fMRI) to scan the brains of healthy participants as they played a virtual shuffleboard 
game. In this task, participants produced hand movements in which their hand speed determined 
the distance traveled by a virtual “puck.” The participants attempted to choose the appropriate 
speed to hit one of three targets that varied in distance. Thus, the task used movement speed 
rather than movement direction as a substrate for trial-by-trial learning. 

In imaging performance of this task, several design considerations facilitated estimation 
of effects of interest in the brain. We used a movement localizer that was independent of the 
main task to identify movement-responsive regions. We also inserted no-feedback trials in the 
main task runs to allow us to subtractively identify feedback-responsive regions. A fast event-
related design with frequent changes in target location and a random perturbation schedule 
ensured that error-based corrections persisted throughout the scan session despite the typical fast 
time course of gain adaptation (Bock 1992; Krakauer et al., 2000; Desmurget et al., 2000). To 
make the game challenging and engage error-based learning mechanisms throughout the 
scanning session, feedback was perturbed on some of the trials. These perturbations also allowed
us to precisely measure participants' responsivity to these errors. Finally, both binary and 
parametric measures of task performance were used to quantify two distinct types of behavioral 
responses in the brain. Specifically, performance was analyzed both in terms of trial success (hit 
or miss) and in terms of trial accuracy (error size). We hypothesized that responses would exhibit
trial-by-trial modulation by error size, consistent with some models of error-based learning 
(Thoroughman & Shadmehr, 2000).

We compared our imaging results to three possible outcomes. First, we tested whether, 
when the presence of errors is prolonged over time through the use of perturbed feedback, 
cerebellar regions involved in processing errors of direction would also be activated by errors of 
speed. Such a result would suggest that the cerebellum processes errors about either movement 
speed or direction, provided these errors persist long enough to drive improvements in motor 
precision. Second, given the independent coding of direction and speed, the shuffleboard task 
could instead recruit the striatum to modulate vigor. Such a result would suggest that the role of 
the cerebellum in error-based learning may be limited to tasks which require corrections to 
movement direction. Finally, we tested if the task could recruit the striatum not because of the 
use of speed as a substrate for learning but because of the mechanism used for learning: task 
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performance may in fact proceed via reinforcement learning rather than sensorimotor adaptation 
of internal models of gain. 

4.2 Material and methods

4.2.1 Participants

Twenty healthy right-handed adults participated in this study (one excluded due to poor 
task performance; of those remaining, 8 female, mean age 27.5 years). All had normal or 
corrected-to-normal vision and completed a color blindness test prior to the study. The 
participants provided written informed consent under a protocol approved by the University of 
California, Berkeley Institutional Review Board. All participants were compensated for their 
time and received additional bonus pay based on their task performance. Participants were 
informed of the bonus pay only after informed consent was obtained.

4.2.2 Experimental setup

Prior to scanning, participants were fitted with a custom bite bar. During the scanning 
session, the bite bar was mounted to the head coil to minimize head movement. Physiological 
signals were recorded during scanning using a BIOPAC physiological monitoring system 
(www.biopac.com). Heartbeat was measured with a photoplethysmograph placed on the 
participant’s left index finger, and respiration was measured with a pneumatic pressure sensor 
placed several centimeters below the sternum and held in place by an elastic strap. Visual stimuli
were backprojected onto a screen mounted inside the bore of the magnet and viewed via a mirror
mounted to the head coil. From a supine position, participants held a robotic manipulandum 
(www.fmrirobot.org) in their right hand. The manipulandum, which recorded hand position at 
1000 Hz, was positioned over the participant’s abdomen and could be freely moved in a plane 
parallel to the scanner bed. Before scanning, participants completed a training session in which 
they held the manipulandum from a standing position while viewing stimuli on a 27.5 x 34 cm 
LCD monitor. 

4.2.3 Task: Overview

Participants were told they would be playing a virtual shuffleboard game. As in real-
world shuffleboard games, the speed of the hand at the moment of release determined how far 
the puck would travel. Participants attempted to cause virtual pucks to land on targets presented 
at one of three locations in the workspace (Figure 4.1). In our virtual simulation of this game, the
visible workspace in the scanner subtended 20 degrees of visual angle along the vertical axis and 
36.2 degrees along the horizontal axis. This workspace corresponded to 36.7 x 66.4 cm in the 
robotic manipulandum's native space, which had a 1:1 mapping with hand movements (when the 
puck was under the participant's control). The puck was displayed as a white dot with a 1 cm 
diameter (1.1 degrees of visual angle). The targets were displayed as blue circles with a diameter 
of 4 cm (3.7 degrees of visual angle). The three target locations were at 7 cm, 12 cm, and 17 cm 
(5.5, 10.0, and 14.3 degrees of visual angle) above a blue line, the release line. This line was 
positioned 10 cm (8.3 degrees of visual angle) above the puck's start location on each trial. To 
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Figure 4.1 Task
A. Target and puck at the onset of a Feedback trial
B. Target and puck at the onset of a No Feedback trial
C. Example feedback on a trial in which the puck missed the target
D. Example feedback on a trial in which the puck hit the target
E. Relationship between hand speed and feedback distance, in hand space and the 
manipulandum's native workspace. Targets are to scale; centers are marked with yellow rings for 
illustrative purposes only.
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cross this line, the participant had to move the manipulandum at least 10 cm on each trial, 
although the actual movements were slightly larger due to follow through after crossing the 
release line. 

At the onset of each trial, a white puck appeared at the start location, simultaneously with 
the appearance of one of the three targets. The participant was instructed to make an out-and-
back movement in the direction of the target, primarily by flexion about the elbow. They were to 
adjust the movement speed to create a desired “force” that would cause the virtual puck, when 
“released,” to land on the target. The puck remained visible until the hand reached the release 
line. At this point, the cursor jumped to its final position, determined as a function of hand 
velocity (see below). The puck was constrained to move only along the y-axis (vertically on the 
screen), ignoring any small lateral deviations in the hand trajectory along the x-axis (horizontally
on the screen). Participants were informed of this constraint and were instructed to minimize 
movements along the x-axis. They were instructed to make a smooth out-and-back movement, 
returning the hand to the vicinity of the start location after each “throw.” Because the puck 
distance was based on the velocity at the release line, the movement always extended beyond this
point. Return movements were terminated with the hand hovering over the navel as the 
participant lay in a supine position. The trial ended when the hand position did not change by 
more than 1 cm over a 500 ms period. To avoid imposing demands on participants to find the 
start location, the start position for each trial was automatically adjusted to the final hand 
position from the previous trial, and the workspace was recalibrated about this point. The inter-
trial interval (ITI, defined as the time elapsed between target onsets) was 3 s, with a random 
amount of jitter between 0 and 500 ms added to the onset of each trial.  

We did not impose any delay between the point at which the hand reached the release line
and the reappearance of the puck at its final position. This, of course, is unlike a natural 
shuffleboard task in which the participant would observe the puck as it traversed the workspace. 
One alternative would have been to animate the puck's trajectory on-screen. However, we opted 
to use a no-delay approach to facilitate perturbation of the feedback position of the puck on some
trials (see below). Another alternative would have been to use endpoint-only feedback, but 
randomly vary the interval between movement and feedback, a method that would have allowed 
us to separately model movement and feedback in an event-related design. However, 
sensorimotor learning can be subject to temporal constraints, with reduced learning as feedback 
is delayed (Kitazawa et al., 1995; Howard et al., 2012). The results presented in Chapter 3 
suggest that this may not be the case for the shuffleboard task; nevertheless, to avoid any 
possible effects of feedback delay introduced by this particular study design, we opted to treat 
the movement and feedback as a single entity rather than separating the two in time. 

Spatial feedback in the form of puck location was reinforced with color feedback that 
indicated trial success. The puck reappeared as red if it landed outside of the target region and 
green if it landed within the target boundaries (Figure 4.1B,C). This feedback was presented on 
the screen for 350 ms. Thus, participants received feedback only about the puck’s endpoint (the 
location where the puck would have come to rest). Participants received five cents bonus pay for 
each trial on which the puck hit the target but received no feedback about the bonus pay until 
after the conclusion of the experiment.

Participants' hand speeds were determined by calculating the time it took to traverse a 5 
cm (4.1 degree) region adjacent to the release line (cf. Chapter 3). The virtual distance traveled 
by the puck was proportional to the square of the hand speed (Figure 4.1E). Given the diameter 
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of the target, the range of hand speeds required to hit the three targets was 38.9-52.1, 55.6-64.7, 
and 67.6-75.0 cm/s. We also set boundary conditions in terms of the displayed position of the 
puck. Specifically, a hand speed of 5.0 cm/s or less caused the puck to land at the release line, 
and a speed of 87.2 cm/s caused the puck to land at the upper edge of the monitor. If a participant
produced a speed that caused the puck to "land" at a location beyond the edge of the monitor, a 
warning was displayed instead to tell them to slow down. 

Trials were counterbalanced within each run such that each of the three target locations 
was presented an equal number of times, and the transitions between target locations (including a
condition in which the target location did not change from one trial to the next) occurred with 
nearly equal frequency. Of nine possible transitions between targets (including target location 
repetitions), the distribution of transitions within any given run was balanced such that there 
were 16 instances of each possible transition per run, with the exception that one transition 
occurred only 15 times. This exception was required to maintain an even number of target 
presentations. Nine possible task runs were created, each missing a single instance of one of the 
nine transitions. For each participant, five of these runs were selected at random for the scan 
session. 

Feedback in the form of the red or green puck and distance traveled was provided on 75%
of trials. On the remaining 25%, no feedback was provided. Participants were cued at the onset 
of each trial as to whether the trial was a feedback trial (Figure 4.1A, filled target at trial onset) 
or no-feedback trial (Figure 4.1B, hollow target at trial onset). We opted to provide these cues 
rather than simply withholding feedback without warning because the latter situation could 
produce an unwanted prediction error signal (the absence of an expected feedback signal). 
Participants were informed that they would receive bonus pay for producing the correct 
movement speed on no-feedback trials. We note, however, that despite this instruction, 
participants' errors were slightly larger on no-feedback trials than on feedback trials (Figure 
4.2A). 

On some feedback trials, visual perturbations were applied to the location of participants' 
feedback. This was done for two reasons. First, to ensure that our effects are due to true error 
processing-related activity in the brain, perturbations reduced the correlation between movement 
speed and error size (Figure 4.5). Second, perturbations provided a way to maintain a relatively 
constant proportion of errors throughout the scan session, ensuring that errors were not 
experienced solely within the early portion of the scan session (Figure 4.2A). Note that this 
manipulation has the effect of creating trials in which the participant produced the correct hand 
speed but received an error, as well as trials in which they produced the incorrect hand speed but 
were given feedback indicating the trial was successful. We will refer to errors as either visual 
error (the difference between the puck's perturbed, on-screen location and the target) or motor 
error (the error based on their unperturbed hand speed, which was not seen by participants). 
However, the analyses will focus on visual errors, based on the assumption that this corresponds 
to the participants’ belief about their performance. This assumption is confirmed by the 
participants' responses to a questionnaire which probed their awareness of the perturbations 
(described in section 4.2.6).

One of three perturbations was applied on each feedback trial: positive, negative, and 
zero. In the zero-perturbation condition, the feedback was veridical and based on the hand speed 
at the release line. In the positive-perturbation condition, the feedback distance was increased 
relative to the veridical mapping, while in the negative-perturbation condition, it was decreased. 
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The type of perturbation was randomly determined on each trial, with the constraint that each run
contained an equal number of each perturbation type. The size of the perturbation was 20% of 
the distance between the target and the center of the screen. The selection of this perturbation 
size was based on pilot studies in which we sought to maximize the size of the perturbation while
avoiding participants becoming aware of the perturbation as assessed by a post-experiment 
questionnaire. 

Because perturbations were measured from the center of the screen, the proportional size 
of the perturbation increased with target distance (5.7%, 11.7%, and 14.1% of the target distance 
from the release line at the near, middle, and far targets, respectively). In our behavioral studies 
with the shuffleboard task (see Chapter 3), our results have always been consistent with Fitts' 
Law (Fitts, 1954), with larger errors associated with faster movements. Even when this 
relationship between performance and movement speed is taken into account, the scaling of the 
perturbations with target distance ensured that participants would perceive that their performance
was disproportionately poor at the far target and disproportionately good at the close target. 
Therefore, increasing the proportionate size of the perturbation with target distance had the effect
of exaggerating the effect of Fitts' Law. 

This was done in part to reverse the speed-accuracy tradeoff described in Seidler et al., 
2004, a study which allowed movement vigor to be increased as participants attempted to hit 
larger (easier) targets. In contrast, we are interested in studying the process of learning to specify 
particular movement speeds. A cost of this approach, however, is that the perturbations become 
less effective at reducing the correlation between speed and error size for the closest target 
compared to the farthest target (Figure 4.5). However, differences in performance across targets 
were accounted for in the fMRI analysis either by z-scoring the distribution of error sizes for 
each target or by isolating data within target distances (Section 4.2.13).

4.2.4 Task: Training

All participants completed a training session outside the scanner immediately before 
scanning. This session familiarized the participants with the robotic manipulandum and the task. 
First, the experimenter explained the natural translation from movement speed to puck distance 
in real-world shuffleboard, demonstrating by pushing a real puck along a table. The experimenter
then explained how to use the manipulandum to control the on-screen puck. Participants were 
told that their hand speed would be measured at the release line, similar to a police officer using 
a radar gun to measure speed, and that their hand speed would translate into the puck's travel 
distance. The red and green feedback for misses and hits was explained, as well as the filled and 
hollow circles for feedback and no feedback trials. Critically, participants were not informed of 
the perturbations. 

Following these instructions, the participant observed as the experimenter completed a 
practice run of the task. The participant then completed the same practice run. The practice run 
consisted of twenty trials, a truncated version of the actual task runs. The practice run, like the 
task runs, included feedback and no feedback trials at all targets. Feedback was unperturbed 
during this practice run. In two cases, the participant was asked to repeat the practice based on 
concerns with their performance. 

After completing the practice run, the experimenter re-emphasized that the participants 
should keep their movements as smooth as possible, cross the release line on every trial, and 
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avoid double reaches within a trial. They were also informed that they would receive five cents 
for each time they succeeded in hitting the target. Participants were not given any information 
about their cumulative task performance at any point during the scan session.

4.2.5 Task: Scanning

The scanning session consisted of an anatomical scan and six functional scans: five task 
runs and one localizer run. Each participant completed an additional practice run during the 
anatomical scan. Each task run lasted 7 minutes and 44 seconds (232 volumes), while the 
localizer run lasted 5 minutes and 40 seconds (170 volumes). The localizer run was always 
obtained after the task runs.

The five task runs consisted of ten seconds of rest followed by 144 trials, with an inter-
trial interval (ITI) of 3 s. Trial onsets alternated between being synchronized with the beginning 
of a volume acquisition or to the middle of the acquisition. The ITI was randomly jittered 
(between 0 and 500 ms was added to the onset of each 3 s trial). There were a total of 720 trials 
per participant over five task runs. 

For the localizer run, the participants were informed that they would not receive feedback
on any of the trials and that they should aim to reach with a consistent, comfortable speed on 
each trial. This run consisted of 9 blocks of 6 no-feedback trials (hollow blue ring targets, all at 
the middle target distance), each of which lasted 18 seconds, with rest periods lasting 20 seconds 
in between each block. 

Because we were primarily interested in comparing trials with errors of differing sizes, 
we did not include null events in the task design. Instead, task runs contained no-feedback trials, 
providing a basis for subtractively isolating fMRI responses related to feedback processing. The 
localizer run, comprised entirely of no-feedback trials with rest periods, provided a basis for 
isolating pure movement-related responses. 

4.2.6 Post-scanning questionnaire and interview

After the scan session, participants completed a questionnaire (Table 4.1). They were first
asked to describe the task in their own words. This allowed us to assess general comprehension 
of the task. Participants were then asked to indicate their level of agreement with each of ten 
questions (0 to 100% agreement). The first of these were basic, checking for potential across-
participant covariates like arm fatigue and confidence, although none of these measures were 
used as covariates in any behavioral or imaging analysis. The last two questions were of greatest 
interest, probing participants' awareness of the perturbations. The first asked whether the 
program “seemed glitchy” and the second asked whether they were “sometimes surprised” to see
where their puck landed. 

The experimenter then conducted a brief oral interview. Participants were told that there 
had been two groups of participants: For the manipulated group, the puck would sometimes land 
at a location that did not correspond to hand speed; for the non-manipulated group, the puck 
always landed at a location that corresponded to hand speed. Participants were asked to indicate 
their group assignment. If they reported the manipulated group, they were asked to indicate when
they had first suspected the feedback had been altered: early in the experiment, late in the 
experiment, while filling out the questionnaire, or only when the experimenter indicated that 
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feedback had been manipulated for some participants.

4.2.7 Imaging parameters

Data were collected on a 3 T MAGNETOM Trio scanner (Siemens Healthcare, Erlangen, 
Germany) at the Henry H. Wheeler, Jr. Brain Imaging Center at the University of California, 
Berkeley. A 12-channel transverse electromagnetic send-and-receive radiofrequency head coil 
was used. One high-resolution T1-weighted MPRAGE anatomical volume (TR = 1900 ms; TE = 
2.52 ms; 1 × 1 × 1 mm voxels; acquisition matrix 256 x 256; field of view 25 x 25 cm) was 
acquired for each participant. Multi-slice echo-planar imaging (EPI) was used to collect 
functional imaging data (gradient-echo EPI sequence; TR = 2000 ms; TE = 23 ms; 36 ascending 
sagittal slices; 3.1 x 3.1 x 3.0 mm voxels; flip angle = 90°; acquisition matrix 64 x 64; field of 
view 20 x 20 cm; 232 volumes per task run, 170 volumes per localizer run). 

4.2.8 Physiological monitoring and analysis

Physiological nuisance covariates were generated using the procedure outlined in Chapter
2. Analog TTL signals generated by the scanner were recorded to temporally align physiological 
measurements with the EPI time series. Cardiac and respiratory data were recorded at 125 Hz. 
For fMRI analysis, physiological regressors were created using the Physiological Log Extraction 
for Modeling (PhLEM) v1.0 toolbox for SPM8 (Verstynen & Deshpande, 2011). The PhLEM 
package marks respiration and heartbeat events using an automatic peak detection algorithm. 
Based on visual inspection of the data, it was not necessary to manually perform corrections of 
the heart rate and respiration waveforms for any participant.

The heart rate and respiration time series were computed following the methods described
in Chang et al. (2009) and in Chapter 2. Heart rate was calculated in units of beats per minute. 
This time series was then shifted by 0-11 TRs to produce 12 time series lags of 0-22 seconds (HR
regressors). The respiration time series was computed using a measure of respiratory variation 
(RV) that was obtained by computing the standard deviation of the respiration waveform within a
6-s sliding window centered on each 2-s TR. This time series was then shifted by 0-11 TRs to 
produce 12 respiration volume (RV) regressors. Although there exist basis functions that model 
the relationship between changes in these physiological processes and the BOLD signal (Birn et 
al., 2008; Chang et al., 2009), we opted to avoid constraining the hypothesized shape of this 
relationship, instead adopting the more flexible and exhaustive  model containing a series of 
lagged regressors as in Chapter 2. We did this to avoid the assumption that basis functions based 
on resting state data are generalizable and effective in the removal of effects of task-related 
changes.

Regressors to estimate the effects of respiratory and cardiac phase were made using the 
RETROICOR method as described in Glover et al. (2000) and in Chapter 2. The first two 
harmonics of the heartbeat and respiration events were computed, and both sine and cosine 
waveforms were included, for a total of eight phase regressors. 

4.2.9 fMRI data preprocessing

Functional imaging data were preprocessed and analyzed using SPM8 
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(www.fil.ion.ucl.ac.uk/spm) and Matlab (www.mathworks.com/products/matlab). The first five 
volumes of each run were discarded to remove T1 equilibration effects. Images were slice-time 
corrected using sinc interpolation. Each volume was then realigned using a two-pass procedure: 
firstly  to the first image of its run, and secondly to the mean image across all runs. All functional
images were then coregistered to an anatomical scan and smoothed with a Gaussian kernel 
(FWHM = 5 mm). 

4.2.10 Exclusion criteria: participants and individual trials

One participant's dataset was excluded because her mean absolute error on the 
shuffleboard task was greater than two standard deviations above the group mean across all runs 
and all target distances. 

Three types of trial were excluded from any of the behavioral and fMRI analyses that 
included error size as a variable. These trials were not excluded from factorial analyses that 
defined trial types based on stimulus presentation alone, independent of the response. These trial 
types were as follows: 1) Trials with excessive movement speed which generated a feedback 
distance (sometimes perturbed) that was beyond the upper edge of the screen (and followed by 
the “too fast” warning). These trials were infrequent (mean = 5.5 of 720 trials, sd = 6.3, 
minimum = 0 trials, maximum = 13 trials). 2) No response trials or trials in which the hand failed
to cross the release line. These were also infrequent (mean = 1, maximum = 8). 3) Double reach 
trials in which the participant's hand path entered the 5 cm window preceding the release line 
(the window that was used to obtain a measure of hand speed) and then reversed towards the 
start position before a second reversal to cross the release line. Again, there were very few of this
type of trial for each participant (mean = 1, maximum = 5). 

4.2.11 Behavioral analyses: Performance metrics and responsivity to perturbations

For each trial, signed and absolute error were defined as the difference (or absolute value 
of the difference) between the puck and target locations, both relative to the release line. For each
run and target location, the mean percentage of successful trials (percent hits) was calculated. 
Both metrics were calculated in terms of the real (unperturbed) motor error and the presented 
(perturbed) visual error. 

Signed and absolute error were measured in units of centimeters. However, for imaging 
analyses involving error scores, z-scored values were used in the regressors. Z-scores were 
computed by first grouping data according to the target distance, and then by separating feedback
and no-feedback trials, resulting in six different conditions. A Fisher Z-transform was then 
applied to the error size distribution for each condition. Signed and absolute error were z-scored 
separately, as were real and visual error. 

As an indicator of error-based learning in the shuffleboard task, participants' responsivity 
to the perturbations was measured by measuring changes in performance across successive trials.
For this analysis, motor distance is defined as the distance at which the puck would have been 
presented on an unperturbed trial (this distance is fully determined by hand speed). This was 
calculated for each trial N, and the mean change in motor distance between trial N and trial N+1 
was calculated as a function of perturbation type on trial N. 
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4.2.12 Selection of movement variables for parametric modulations

Five movement-related variables were recorded for each trial. These were used to create 
regressors that, when added to models as parametric modulators, controlled for unwanted sources
of variance in the imaging data. These variables were reaction time (the interval between 
presentation of the target and puck and the initiation of movement in each trial), time to line (the 
time between movement initiation and release line crossing), movement duration (the time 
between movement initiation and release line crossing), hand speed (see above), and movement 
amplitude (the distance, in centimeters, covered by the hand prior to reversing trajectory). 

These variables were calculated separately for the following trial types in different 
contrasts (Appendix, Supp. Figure 4.1): hits vs. misses, feedback vs. no-feedback trials, target 
location, and run number. The correlation of each of these variables with each other, as well as 
with feedback distance and absolute and signed visual and motor error, was examined across all 
targets and for each target location separately (Appendix, Supp. Figure 4.2). This was done to 
search for collinearity among regressors of interest which could have negatively impacted our 
ability to estimate effects of interest (Dale 1999; Monti, 2011). Note that some correlations are 
only meaningful for a specific target location: For instance, due to the non-uniformity of 
proportional perturbation size (as outlined in section 4.2.3 and in Figure 4.5), the effectiveness of
the perturbations in reducing the correlation between hand speed and error can only be assessed 
within each particular target location. 

All five variables were used as parametric modulators in preliminary models which 
included only a single modulator for all trial onsets. In each of these models, group-level one-
sample t-tests were conducted on participants' parameter estimates. The effects of reaction time 
and hand speed were relatively strong and widespread compared to the statistical maps for the 
other movement variables. Furthermore, the other variables' maps contained activation peaks that
coincided substantially with either the reaction time or speed maps. 

Five additional models were then fit in which all five movement regressors were 
included. Each of these five models was used to estimate the effect of a single movement 
regressor, which was serially orthogonalized with respect to the preceding regressors. Note that, 
by definition, the time to line and speed variables are strongly negatively correlated. However, 
both were examined because speed was not measured across the entire approach trajectory to the 
line, but only at a small window preceding it. Therefore, for these variables, additional models 
were fit in which only one or the other was included. One-sample t-tests on the parameter 
estimates for the final regressor in each model produced statistical maps representing the effect 
of this variable, after controlling for the four others. Of these maps, those showing the effects of 
reaction time and speed contained substantially more significant voxels compared to those 
showing the effects of time to line, movement duration, and movement amplitude (these results 
are not shown). Within the maps for reaction time and speed, the effects remained relatively 
widespread, even after controlling for other movement variables. For this reason, reaction time 
and hand speed were selected to be used as parametric modulators in all imaging analyses. 
Although not shown, all analyses were repeated without these modulators, and the results were 
compared to determine whether any effects of interest may have been removed by this 
correction. Where this correction had a clear impact, it is noted in the text.

4.2.13 Imaging analyses
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Following preprocessing, fMRI data were analyzed using generalized linear models at the
first (individual) level and a random effects analysis at the second (group) level. All first-level 
analyses employed the canonical hemodynamic response function (HRF) as a basis function to 
generate regressors of interest and included head motion parameters and physiological variables 
(heart rate and respiration and their phases) as nuisance covariates. Following first-level model 
implementation, contrasts of interest were computed for each individual. The resulting t-statistic 
maps were spatially normalized to MNI space using the SPM8 and the Spatially Unbiased Infra-
tentorial (SUIT) toolbox in SPM8 (www.icn.ucl.ac.uk/motorcontrol/imaging/suit.htm, 
Diedrichsen et al., 2009), resampled to the resolution of the atlas space (1 mm isotropic), and 
smoothed with a Gaussian kernel (FWHM = 5 mm), before being entered into a group-level one-
sample t-test with participants entered as random factors. 

The movement localizer run was analyzed using a block design to identify areas active in 
the contrast of Move > Rest. The only covariates used in this analysis were the nuisance 
covariates (head motion and physiological regressors). For the main task runs, both factorial and 
parametric designs were used in generalized linear models (GLMs). The former were employed 
to make preliminary comparisons between trial types and the latter to measure effects of error 
size (both signed and absolute). All factorial and parametric analyses were conducted first 
without and then with reaction time and hand speed entered as parametric modulators. When the 
effect of interest was assessed parametrically, these corrective modulators were entered prior to 
the regressors of interest, and the regressors of interest were then serially orthogonalized in SPM.
This approach may have increased the rate of false negative findings due to the correlation 
between hand speed and error (Figure 4.4). 

In general, analyses were conducted in two parallel forms. Some analyses estimated the 
effects of one or more contrasts by modeling trials at all target locations as a single condition. 
Other analyses estimated effects by modeling trials at each target as a separate condition (for a 
total of six separate conditions for all contrasts comparing two conditions in a factorial design) 
taking the conjunction of effects at each of the three target locations. When trials at different 
targets were modeled as a single condition, the error sizes used in the regressors were always z-
scored (within target, and separately for the feedback and no-feedback trials within each target). 
This approach effectively avoids misattributing activations to a given contrast which may 
actually be driven by differences in performance or movement variables across target locations 
(Figure 4.2D). 

Regions involved in feedback processing were defined by comparing feedback trials to 
no-feedback trials, both across target locations and within each target. Note that the differences 
in reaction time, but not speed (Figure 4.4) across this contrast make the use of these variables as
corrective parametric modulators particularly important. Successful and unsuccessful trials (hits 
and misses) were also compared, across all target locations and within each target. Isolating the 
effect of this contrast within each target is particularly important, as participants' performance 
varied as a function of target location due to the motor requirements and differences in 
proportional perturbation size at each target. 

Parametric regressors were used to assess effects of both signed and absolute error size. 
Similar to factorial analyses, parametric effects were estimated both within and across targets. In 
“target z-scored” models, error sizes were z-scored within trials at each target and then used to 
create a single regressor for all trials at all targets. In “target isolated” models, trials at each target
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were modeled as separate conditions, each with parametric modulators (reaction time and speed) 
for only the trials at that target, before taking the conjunction of the resulting statistical maps to 
identify effects that were common across targets. This analysis of error sizes is agnostic to each 
trial's classification as a hit or miss, instead treating error sizes as part of an error size continuum.
Therefore, in a separate analysis, data from each target location were further split into hits and 
misses to test for effects of error size that may only have been apparent for trials that were 
processed as errors.

Clusters of activation surviving the p < .05, family-wise error (FWE) corrected criterion 
are presented in Table 4.2. Activations with peaks reaching the p < .001, uncorrected threshold 
are reported in Table 4.3. All images were thresholded at t(18) = 3.61, p < .001, uncorrected. The 
peak t-statistic and cluster-level FWE corrected p-values are reported in the text below. These 
two metrics correspond to the height and extent thresholds, respectively, although it should be 
noted that many of these activations failed to reach cluster-level significance. Because many 
peaks exceed the height threshold for significance (p < .001, uncorrected) but do not exceed the 
extent threshold (cluster-level p < .05, FWE corrected), all peak of activations with a cluster-
level significance of p < .90 are reported. 

4.3 Results

4.3.1 Task performance in the scanner

Participants' performance was analyzed as a function of target and of task block (Figure 
4.2). Percent hits are plotted as a function of block (Figure 4.2A) and target (Figure 4.2D). Z-
scored absolute error scores are also plotted as a function of block (Figure 4.2C); the z-scored 
visual error, motor error on feedback trials, and motor error on no feedback trials all decreased 
over the course of five blocks. The visual absolute error values on feedback trials were entered 
into a two-way repeated measures ANOVAs with factors of block and target location. As seen in 
Figure 4.2B, there was a significant main effect of block, F(4,72) = 2.75, p = .03. As seen in 
Figure 4.2E, there was also a significant main effect of target location, F(2,36) = 50.77, p < .
0001. There was no significant target x block interaction, F(8,144) = 1.25, p = .27. The visual 
absolute error is also plotted as a function of block, broken down by target distance (Figure 
4.2F). 

Participants' responsivity to perturbations was plotted separately for each target location 
(Figure 4.3). Responsivity was defined as the sign of the change in motor distance (the 
unperturbed feedback location, unseen by participants) from one trial to the next (from any given
trial N to trial N+1), as a function of perturbation (negative, zero, and positive). These shifts are 
plotted in terms of both the raw and z-scored motor distance at each target separately (Figure 
4.3A,B) and by target transition type (Figure 4.3C,D). The raw motor distances provide evidence
that participants respond to changes in target distance (Figure 4.3A,C), as these changes are 
larger than the changes following perturbations. Examining changes in the z-scored distances 
demonstrates that participants adjust for errors by altering their motor output in response to 
perturbed feedback (Figure 4.3B,D). Specifically, if the perturbation on trial N is negative, motor
distance shifts positively from trial N to trial N+1, and vice versa. 

Relationships between task conditions and movement variables to be used as parametric 
modulators of task effects were also investigated (Figure 4.4). Reaction time did not differ 
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Figure 4.2 Motor (unperturbed) and visual (perturbed) performance metrics
A. Participants increased percent hits over five task runs.
B. Participants reduced absolute error over five task runs.
C. Same as B, z-scored within target.
D. Percent hits scaled inversely with target distance.
E. Absolute error scaled with target distance. 
F. Absolute error (visual error, FB trials only) plotted separately for each target, over five task 
runs.

reliably across target (Figure 4.4A), across trial outcome (hits and misses), or across feedback 
condition (feedback and no feedback trials), nor was reaction time correlated with signed or 
absolute visual error (Figure 4.4B). Hand speed, in contrast, varied reliably as a function of target
distance (Figure 4.4C) and was slightly greater for misses at the near target, but was not different
across feedback condition in any target. The correlation between hand speed and visual error was
small when plotted across all targets (Figure 4.4D), but clustering of curves indicates that within 
a given target distance and perturbation type, hand speed is highly determinative of visual error. 

The effect of the perturbations in converting motor errors to visual errors is summarized 
for each target in Figure 4.5, and correlations between movement and task variables are further 
explored in the Appendix.
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Figure 4.3 Responsivity to perturbations: raw and z-scored, by target and transition
A. Participants responded to perturbations by adjusting their motor distance (the unperturbed 
feedback puck distance specified by their hand speed) from trial N (blue) to trial N+1 (red). 
Perturbations on trial N are indicated on the x-axis (Negative, Zero, Positive). Note that 
participants were not presented feedback at the motor distance, but instead viewed feedback with
a visual perturbation added. Motor distance (y-axis) is shown here as a depiction of participants' 
changes in behavior in response to perturbations (x-axis). 
B. Same as A, with motor distances z-scored within target prior to classification according to trial
N, N+1.
C. Participants responded to target location and transitions between targets. Titles above each 
panel indicate target location on trial N and trial N+1.
D. Same as C, with motor distances z-scored within target prior to classification according to 
trial N, N+1.
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Figure 4.4 Relationship between trial type, behavioral variables of interest, and movement 
variables
Note: vertical stacking of data points in scatterplots results from all trials on which a “too fast” 
warning was displayed being set to a feedback distance 2 cm (6.6 degrees) beyond the screen's 
edge.
A. Reaction time as a function of trial success (top) and feedback condition (bottom). 
B. Correlation between reaction time and visual error (top) and absolute visual error (bottom).
C. Hand Speed as a function of trial success (top) and feedback condition (bottom). 
D. Correlation between hand speed and visual error (top) and absolute visual error (bottom).
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Figure 4.5 Perturbations reduce correlation between hand speed and feedback distance
A, B, C: For the near (A), middle (B), and far (C) targets, the relationship between visual 
(perturbed) error and motor (unperturbed) error, signed (top) and absolute (bottom). Data cluster 
in three lines corresponding to the negative, zero, and positive perturbation conditions.

4.3.2 Post-scanning questionnaire and interview

The population mean and standard deviation for each questionnaire item were calculated 
and are reported in Table 4.1. Responses to post-questionnaire interview items are also reported 
in Table 4.1. For each questionnaire item, each participant indicated their agreement with the 
statement as a percentage between zero and 100% (zero indicating strongest disagreement and 
100 indicating strongest agreement). Although no questionnaire data were included in the fMRI 
analyses, the responses provide insight into task performance. Due to the heterogeneity of the 
questionnaire items, results are reported in Table 4.1 for illustrative purposes only. 

Most importantly, questionnaire items 9 and 10 probed participants' awareness of the 
perturbations. These questions were answered before the post-questionnaire interview which 
explicitly asked participants to guess whether their feedback had been perturbed or not. On 
average, participants were nearly perfectly neutral in stating agreement with item 9, which 
indicated that they were sometimes surprised to see their puck's landing place (item 9, mean = 
51.3%, sd = 22). However, these responses do not indicate the source of the surprise. Item 10 
stated that the puck's location seemed attributable to glitches, and participants were on average 
less in agreement with this item than item 9, suggesting that errors were attributed largely to their
own performance rather than to glitches (item 10, mean = 22.9%, sd = 21.2). 

Given a two-alternative forced choice of whether they thought their feedback had been 
manipulated or not, only three of 19 participants thought their feedback had been manipulated 
(Table 4.1, post-questionnaire interview item 1). Of these, one said they had thought this early on
in the experiment, while two said they thought this later in the experiment. No participant 
reported that they were made to think their feedback had been manipulated while filling out the 
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Table 4.1 Questionnaire and post-questionnaire interview items and responses
Participants' responses to questionnaire items indicate their estimated percent agreement with 
each statement. Interview items indicate the number of participants choosing each of two 
options. Note that for interview item 2, participants also had the option to choose “while filling 
out the questionnaire” or “only once the experimenter mentioned it,” however, no participant 
selected either response.

questionnaire or during the interview, although these were included as possible choices.
A minority of participants guessed that their feedback had been manipulated. 

Furthermore, participants did not indicate a high level of agreement with the statement that the 
program had seemed glitchy, and on average, they neither agreed nor disagreed that their 
feedback appeared surprising to them. The questionnaire and interview results therefore indicate 
that participants saw the feedback presented as caused by their own movements, with any 
surprising variance attributed not to glitches or experimenter manipulations but to their own 
performance. The questionnaire data indicate that this self-attribution of errors was likely 
maintained throughout the experiment.

4.3.3 Imaging: Movement localizer

Activations for the contrast Move vs. Rest during the movement are summarized in Table 
4.3 and Figure 4.6. Because not all peaks that survived p < .001 (uncorrected) were also 
significant after cluster correction, all results reported here list both peak-level t-statistics and 
cluster-level p-values. In comparing movement epochs to rest epochs, no clusters survived the 
family-wise error corrected threshold, t(18) = 7.91. However, the modest effect size is likely due 
to the use of a single localizer run. At p < .001 (uncorrected), however, peaks of activation were 
found in the right anterior lobe of the cerebellum, t(18) = 7.59, p = .091, the left precentral gyrus 
(primary motor cortex), t(18) = 7.39, p = .13, the right middle occipital gyrus (visual cortex), 
t(18) = 5.08, p = .16, and the right cerebellum lobule VIIIb, including parts of the vermis 
(posterior lobe), t(18) = 4.33, p = .34. Deactivations during movement, relative to rest, appeared 
in the right (ipsilateral) postcentral gyrus (primary somatosensory cortex), possibly reflecting 
intermanual inhibition, as well as throughout large swaths of visual cortex. 
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Table 4.2 Clusters of activation, p < .05, family-wise error corrected

Table 4.3 Activations centered on peaks reaching p < .001, uncorrected
Regions that appeared in Table 4.2 are starred if they survived family-wise error correction. Note
that the peak coordinate and region name may change, as multiple family-wise error corrected 
clusters may be part of one broader swath of activation. Where areas encompass multiple 
structures, the region name reflects the area as a whole instead of the peak.
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Figure 4.6 Movement localizer
Images show activations and deactivations for the contrast Move > Rest during the localizer run. 
Colorbar at bottom, lower threshold: t(18) = 3.61, p < .001, uncorrected, upper threshold: t(18) = 
7.91, p < .05, family-wise error corrected. 
A. Left primary motor cortex (M1, precentral gyrus) was activated by movements of the 
contralateral (right) hand. Deactivations appeared in the ipsilateral central gyrus and frontal and 
parietal areas.
B. Posterior regions of visual cortex, near the middle occipital gyrus, were activated, while 
swaths of visual cortex and right inferior frontal gyrus/posterior insula were deactivated.
C. Regions of the cerebellum, including the right anterior lobe, vermis, and right posterior lobe 
were activated by arm movements. Ventralmost and dorsalmost portions of the activations lie 
within two somatotopic regions of the cerebellum (Schlerf et al., 2010), and the medial portion is
consistent with an oculomotor role for the vermis (for review, see Kheradmand & Zee, 2011).
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Activations within this run, despite being measured in an independent data set, are not 
further addressed, as the primary effects of interest in analyses of feedback processing lie outside
of these movement-related areas.

4.3.4 Imaging: Factorial effects of interest

Comparisons between Feedback and No feedback were made using two-sample t-tests 
applied as a contrast of the two conditions. Details on location and extent of the activations can 
be found in Table 4.2 and Table 4.3. Because not all peaks that survived p < .001 (uncorrected) 
were also significant after cluster correction, all results reported here list both peak-level t-
statistics and cluster-level p-values. 

The contrast Feedback > No feedback was used to identify feedback processing regions. 
Feedback and No Feedback trials were compared for each target location, and the conjunction of 
the three single-target maps was calculated. These comparisons are summarized in Figure 4.7. 
Within the Feedback > No feedback contrast, one cluster survived at a threshold of p < .05, 
FWE-corrected, in the left head of the caudate nucleus, t(18) = 7.42, p < .001, FWE-corrected. 
Six regions of activation were identified at p < .001 (uncorrected). The first, which corresponds 
to the cluster that was significant following FWE correction, spread bilaterally across the 
striatum, t(18) = 7.42, p < .0001. The five additional activations were located in the right inferior 
temporal gyrus, t(18) = 5.82, p < .004, the right precuneus, t(18) = 4.12, p = .16, the right 
postcentral gyrus, t(18) = 3.91, p = .12, the left anterior cingulate gyrus, t(18) = 3.86, p = .52, and
the right pulvinar nucleus of the thalamus near the hippocampus and brainstem, t(18) = 3.79, p 
= .1). Thus, feedback about movement outcomes activated regions outside of those identified in 
the localizer run, indicating that structures like the striatum and motor and non-motor regions of 
parietal and frontal cortex, are recruited for the evaluation of movement success or failure. 

Within the No feedback > Feedback contrast, one cluster survived at p < .05, FWE-
corrected, in the right superior temporal gyrus, t(18) = 8.16, p < .0001, FWE-corrected. Two 
regions of activation were identified at p < .001 (uncorrected). Of these, one corresponded to the 
right superior temporal gyrus region; at this more lenient criterion, the cluster-level FWE-
corrected p-value was .14. The second was a region in the right superior frontal gyrus, t(18) = 
5.83, p = .13. These deactivations may reflect self-monitoring processes activated in the absence 
of feedback.

Successful and unsuccessful trials (hits and misses) were also compared for each target 
location, and the conjunction of the three single-target maps was calculated (Figure 4.8). For the 
Hits > Misses contrast, three clusters survived at p < .05, FWE: the left putamen, t(18) = 7.94, p 
< .0001, the left superior frontal gyrus, t(18) = 7.92, p < .01, and the right putamen, t(18) = 7.89, 
p < .0001. When the criterion was relaxed to p < .001, uncorrected, two corresponding regions 
were identified, one corresponding to a swath of the striatum which encompassed the left and 
right putamen clusters, t(18) = 7.94, p < .0001, and one corresponding to the left superior frontal 
gyrus cluster, t(18) = 4.78, p = .1. Four additional activations were identified at this threshold in 
the right inferior occipital gyrus, t(18) = 4.82, p = .14, the left superior parietal lobule, t(18) = 
4.27, p = .63, the right inferior parietal lobule, t(18) = 4.22, p = .5, and the right posterior 
cerebellum, t(18) = 4.14, p = .27. Taken together, these results indicate that the striatum responds
robustly to successful actions, and a network of cortical and cerebellar sites mimic this pattern to 
a lesser extent. 
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Figure 4.7 Feedback (FB) vs. No feedback (NF) trials
All images show activations and deactivations for the contrast Feedback > No Feedback during 
task runs. Colorbar at bottom, lower threshold: t(18) = 3.61, p < .001, uncorrected, upper 
threshold: t(18) = 6.68, p < .05, family-wise error corrected. Compared to no feedback trials, 
feedback trials activated regions of the striatum bilaterally (with a cluster in the head of the left 
caudate nucleus surviving at p < .05, FWE-corrected), the right inferior temporal gyrus, 
precuneus, and postcentral gyrus, small regions of the frontal cortex in and around the left 
anterior cingulate gyrus, and the right pulvinar nucleus of the thalamus (near the hippocampus 
and brainstem). Compared to feedback trials, no feedback trials activated the right superior 
temporal gyrus and the right superior frontal gyrus (with the right superior temporal gyrus cluster
surviving at p < .05, FWE-corrected). 

No clusters responded more to misses than to hits at p < .05, FWE-corrected. 
Furthermore, no activations peaks fitting this pattern at p < .001 (uncorrected) were identified. 
This is somewhat surprising, given the robust response to errors identified by previous studies in 
the striatum (Diedrichsen et al., 2005) and the cerebellum (Diedrichsen et al., 2005; Schlerf et 
al., 2012).

4.3.5 Imaging: Parametric effects of interest

Parametric effects of signed and absolute error size were assessed by including 
parametric modulators for each condition in GLMs and conducting one-sample t-tests on the  
parameter estimates for the regressor of interest. All effects were tested using regressors that had 
been orthogonalized with respect to the reaction time and speed modulators. Details on location 
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Figure 4.8 Hit trials vs. Miss trials
All images show activations and deactivations for the contrast Hits > Misses during task runs. 
Colorbar at bottom, lower threshold: t(18) = 3.61, p < .001, uncorrected, upper threshold: t(18) = 
6.68, p < .05, family-wise error corrected. 
A. Compared to misses, hits activated a broad swath of the striatum, bilaterally, a region of 
orbitofrontal cortex in the medial aspect of the superior frontal gyrus, bilaterally, and the right 
inferior occipital gyrus. Three clusters survived at p < .05, FWE-corrected: one in the left 
putamen, one in the right putamen, and the orbitofrontal cluster.
B. Compared to misses, hits activated a region of the right posterior cerebellum. This peak 
surpassed p < .001 (uncorrected), but the region did not survive FWE correction.
C. Compared to misses, hits activated smaller areas in the frontal and parietal lobes bilaterally. 
These peaks surpassed p < .001 (uncorrected), but the regions did not survive FWE correction.

and extent of the activations can be found in Tables 4.2 and 4.3. Because not all peaks that 
survive p < .001 (uncorrected) were also significant after cluster correction, all results reported 
here list both peak-level t-statistics and cluster-level p-values. 
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One cluster survived these analyses at p < .05, FWE-corrected, in the left putamen, t(18) 
= 7.31, p < .003, FWE-corrected. This cluster’s activity was anticorrelated with absolute error 
size when errors were normalized within each target and then compared across all targets. Note 
that this analysis treats error size as a continuum; it is agnostic regarding whether trials were 
classified as hits or misses. After relaxing the criterion to p < .001, uncorrected, four regions 
were identified, one corresponding to the left putamen cluster (Figure 4.9A). At this threshold, 
the putamen cluster expanded to include areas of the striatum bilaterally, t(18) = 7.31, p < .0001. 
The three additional activations were located in the right inferior frontal gyrus, t(18) = 5.47, p = .
4, the right parahippocampal gyrus, t(18) = 5.26, p = .56, and the right inferior occipital gyrus, 
t(18) = 5.16, p = .52.

A similar set of regions exhibited activity that was anticorrelated with absolute error 
(Figure 4.9B): the left putamen, t(18) = 4.44, p = .12, the right putamen, t(18) = 4.34, p = .17, 
and the right inferior occipital gyrus, t(18) = 3.61, p = .46. Note that these regions are very 
similar to the significant clusters identified in the Hits > Misses contrast as well as the significant
cluster in the left putamen obtained using the target z-scored model. However, the more 
restrictive approach of taking the conjunction of three target-specific maps reveals a more focal 
region of the putamen, and not the striatum as a whole. Taken together, these analyses indicate 
that regions of the striatum as well as a region of visual cortex in the right hemisphere reliably 
respond more to small errors and to hits. As in the factorial analyses, no regions were identified 
as responding more to larger errors, or misses.

We also investigated whether effects of absolute error were present within hits and misses
separately. When z-scoring error sizes, activity in the medial aspect of the left superior frontal 
gyrus was anticorrelated with absolute error only for misses; that is, activity was greater for miss 
trials that were nearly hits than for misses with larger errors, t(18) = 4.59, p = .9 (Figure 4.9C). 
Using single-target models, activity in two small regions of the cerebellum was anticorrelated 
with error size, one in the hits condition and one in the misses condition (Figure 4.9D). The left 
posterior cerebellum responded more to near-hits than to misses with larger errors, t(18) = 4.08, 
p = .98, while the right posterior cerebellum responded more to perfect hits than to hits that were 
nearly misses, t(18) = 3.91, p = .97. Note, however, that these effects are far from significant. 
They are reported here to clarify that the general effects of anticorrelation with absolute error are 
likely to be driven by the distribution of error sizes as a whole, rather than reappearing as a 
robust sensitivity to error size when trials were counted as misses. 

Finally, effects of signed error were identified. Because signed error is highly correlated 
with hand speed, particularly at the near target (Figure 4.5), these effects could not be estimated 
using single-target models. However, using target z-scored models, activity in two regions was 
positively correlated with signed error; that is, activity in these regions was greater for 
overshoots than for undershoots (Figure 4.10A and B). Note that this includes hit trials, although 
the z-scored error sizes for these trials will by definition be smaller than for miss trials. These 
activations were located in the right inferior parietal lobule, t(18) = 5.08, p = .6, and the left 
anterior cingulate gyrus, t(18) = 4.83, p = .94. When analyzing hits and misses separately, two 
additional regions were identified as having activity that was anticorrelated with signed error on 
miss trials only; that is, activity in these regions was greater for undershoots than for overshoots 
when the participant missed the target (Figure 4.10C and D). These activations were located in 
the left cuneus, t(18) = 5.33, p = .6, and the left superior frontal gyrus (within the primary motor 
cortex activation for the contrast Move > Rest in the localizer run), t(18) = 4.28, p = .92. Note 
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Figure 4.9 Parametric effect of absolute error 
All images show linear anticorrelations with visual absolute error on feedback trials only during 
task runs. Colorbars, lower threshold: t(18) = 3.61, p < .001, uncorrected, upper threshold: t(18) 
= ~6.62, p < .05, family-wise error corrected. 
A. Using the target z-scored model, activity in regions of the striatum, bilaterally, the right 
inferior frontal gyrus, the right parahippocampal gyrus near the brainstem, and the right inferior 
occipital gyrus was anticorrelated with absolute error. A cluster in the left putamen survived at p 
< .05, FWE-corrected.
B. Using single-target models produced similar, but more focal results. Activity in the left 
putamen, right putamen, and right inferior occipital gyrus was anticorrelated with absolute error.
C. Segregating hits and misses in the target z-scored model revealed that on miss trials only, 
activity in the left superior frontal gyrus was anticorrelated with absolute error.
D. Segregating hits and misses in the target isolated model revealed that on miss trials only, 
activity in the left posterior cerebellum, and on hit trials only, activity in the right posterior 
cerebellum, was anticorrelated with absolute error.
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Figure 4.10 Parametric effect of signed error
All images show linear correlations and anticorrelations with visual signed error on feedback 
trials only during task runs. Note that the same color scheme is here used for both positive and 
negative correlations. Colorbars, lower threshold: t(18) = 3.61, p < .001, uncorrected, upper 
threshold: t(18) = 6.63/6.84, p < .05, family-wise error corrected. 
A, B. In the target z-scored model, activity in the right inferior parietal lobule (A) and the left 
anterior cingulate gyrus (B) was positively correlated with signed error. That is, these regions 
responded more to overshoots.
C,D. In the target z-scored model, activity in the left superior frontal gyrus (C) within the 
primary motor cortex activation (localizer run), and in the left cuneus (D), was negatively 
correlated with signed error. That is, these regions responded more to undershoots.

again, however, that while these peaks of activation (t-statistic) reach p < .001, uncorrected, these
effects are far from significant at the cluster level and are reported here to highlight the dearth of 
regions whose activity was correlated with signed error after removing the effects of reaction 
time and hand speed.

4.3.6 Imaging: Reaction time & hand speed

To account for both linear and quadratic effects, reaction time and hand speed were 
included in all analyses as first-and second-order parametric modulators of the mean of each 
condition's parameter estimate. For analyses using parametric regressors to estimate effects of 
interest, reaction time and hand speed were entered first into the GLM. Using serial 
orthogonalization of regressors in SPM8, this approach ensured that any variance attributable to 
either reaction time or hand speed was removed prior to estimating the effect of interest. For this 
reason, effects are listed in Table 4.4 as “controlling for” each other. Removing this control and 
estimating the effect of each separately produces similar results (data not shown).

We also directly measured the effects of reaction time and speed (Table 4.4 and Figures 

70



Table 4.4 Regions modulated by reaction time and hand speed, p < .001, uncorrected
The starred region name indicates a cluster which also survived family-wise error correction, p 
< .012, although the p-value starred represents the p-value larger cluster thresholded at p < .001, 
uncorrected. 

4.11-4.13). These effects were estimated without z-scoring or otherwise transforming either 
variable. In each case, pooled single-target activation maps are similar to those estimated without
isolating each target first. Therefore, all results presented here were estimated using all trials as a 
single condition in a GLM and applying a one-sample t-test as a contrast on the parametric 
modulators. Although both linear and quadratic effects of reaction time and speed were estimated
and removed from all analyses, here we present only the linear effects. Adding quadratic effects 
of reaction time only minimally alters these maps, and adding quadratic effects of hand speed 
results in less focal activations throughout the brain (data not shown). 

Because effects of reaction time and hand speed were eliminated from all the analyses 
presented so far, they are shown here to illustrate which regions were most susceptible to these 
effects. The effect of hand speed is also separately presented for feedback and no-feedback trials,
given the positive and negative correlations with hand speed in visual cortex. 
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Figure 4.11 Effects of reaction time, after controlling for effects of hand speed
Images show linear correlations and anticorrelations with reaction time, after controlling for 
hand speed, on all trials during task runs. Colorbar at bottom, lower threshold: t(18) = 3.61, p < .
001, uncorrected, upper threshold: t(18) = 6.65, p < .05, family-wise error corrected. Activity 
was positively correlated with reaction time in both anterior and posterior regions of the 
cerebellum, occipital cortex, medial and lateral frontal and parietal cortices. Activity was 
negatively correlated with reaction time in a medial region of the frontal lobe as well as a region 
in the tail of the right caudate nucleus. 

No clusters exhibited activity that was correlated with reaction time at p < .05, FWE-
corrected. Relaxing the criterion to p < .001 (uncorrected) revealed widespread correlations with 
reaction time throughout the brain, including sixteen peaks of activation with a cluster-wise FWE
corrected p-value of .9 or less in motor, visual, and prefrontal and parietal areas as well as the 
cerebellum (Table 4.4 and Figure 4.12). Although activity that correlates with reaction time is 
typical of time-on-task BOLD responses in general, four peaks of activation had activity that was
anticorrelated with reaction time. These were located in the head and tail of the caudate nucleus 
and in areas of prefrontal cortex.

No clusters were found with activity correlated with hand speed at p < .05, FWE-
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Figure 4.12 Effects of hand speed, after controlling for effects of reaction time
Images show linear correlations and anticorrelations with hand speed, after controlling for 
reaction time, on all trials during task runs. Colorbar at bottom, lower threshold: t(18) = 3.61, p <
.001, uncorrected, upper threshold: t(18) = 6.65, p < .05, family-wise error corrected. Activity 
was positively correlated with hand speed in a region of visual cortex, while in a neighboring 
region, activity was negatively correlated with hand speed. Additional negative correlations with 
hand speed were found in the right posterior cerebellum and left primary motor cortex, extending
into premotor regions. 

corrected. However, activation peaks surpassing p < .001 (uncorrected) were found in visual 
cortex (Figure 4.13). A bilateral region of visual cortex was positively correlated with hand speed
(right and left cuneus in Table 4.4), while activity in two nearby regions of visual cortex was 
negatively correlated (right and left cuneus in Table 4.4). While precise retinotopic mappings 
would be needed to confirm the precise location of visual field representations, these regions can 
be said to crudely correspond to regions of visual cortex (Sereno et al., 1995), and the sign of the 
activations suggests that the location of feedback in the visual field determines which portion of 
the visual field representation is activated. 

In addition to anticorrelations with hand speed in the right and left cuneus, activity in four
additional areas was anticorrelated with hand speed: motor, premotor, and visual cortical areas, 
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Figure 4.13 Effects of hand speed by feedback condition, after controlling for effects of 
reaction time
Images show linear correlations and anticorrelations with hand speed, after controlling for 
reaction time, broken down by feedback condition. Colorbar at bottom, lower threshold: t(18) = 
3.61, p < .001, uncorrected, upper threshold: t(18) = 6.65, p < .05, family-wise error corrected. 
A. For feedback trials only, correlations with hand speed were evident in visual cortex, and 
anticorrelations were evident in adjacent visual cortex and primary motor cortex. 
B. For no feedback trials, correlations and anticorrelations within visual cortex, as well as a 
region of the cerebellum near the vermis, were evident.
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as well as a region of the posterior cerebellum, suggesting that these anticorrelations are 
produced by the greater control exerted in slowing down hand speed. This may occur because 
movements made at slower hand speeds take longer, because they are more difficult, because 
they require a greater number of corrective submovements, or because they require greater top-
down control to inhibit movement speed.  

Breaking the effect of hand speed down by feedback and no feedback trials produced 
similar results as the analysis of hand speed across all trials (Table 4.4 and Figure 4.13). 
Surprisingly, it is the putatively retinotopic activations that are preserved in the no-feedback 
trials. Meanwhile, unlike the combined feedback/no feedback trials, no feedback trials alone did 
not show anticorrelation in primary motor cortex, but there was an anticorrelation in the 
cerebellum. This change suggests, firstly, that the effects of hand speed in visual cortex are not 
due to feedback location in the visual field, but rather possibly due to the movement of the puck 
itself and/or predictive imagery generated by the participant. Secondly, regarding the differences 
in motor cortex and the cerebellum, it may be the case that slower movements only cause greater 
activations when movements are directed towards a goal about which feedback will be received. 
According to this interpretation, the anticorrelation with hand speed could be explained by 
participants’ greater caution on feedback trials, as evidenced by their decline in accuracy on no 
feedback trials (Figure 4.2A).

4.4 Discussion

In a task where participants use vectorial feedback about their movement speed to update 
the gain, or scaling factor, of subsequent movements to produce appropriate speeds, we found 
little evidence for the engagement of cerebellar error processing mechanisms. Indeed, no region 
showed greater activity on miss trials compared to hit trials. However, evidence for the 
engagement of the brain's reward circuitry was found in multiple analyses. Specifically, regions 
of the striatum, dorsal to the nucleus accumbens, had greater activity on feedback trials than on 
no-feedback trials. These regions also had greater activity on hit than miss trials, and this activity
was anticorrelated with absolute error (responses were greater for small errors than for large 
errors). This correlation was strongest in the bilateral putamen after separately analyzing effects 
for each target and then taking the conjunction of the resulting three within-target statistical 
maps. These effects persisted after controlling for reaction time and hand speed. 

4.4.1 Behavioral evidence for error-based learning in shuffleboard task

We obtained clear evidence for error-based learning in trial-by-trial analysis of motor 
output. Participants responded to errors by appropriately adjusting their gain on the subsequent 
trial (Figure 4.3). Note that this responsivity is not simply a change in movement speed from one
trial to the next, as such changes may occur in response to either a perturbation or a change in 
target distance. We confirmed that participants responded to both of these (Figure 4.3). Plotting 
raw motor distance scores as a function of target and transitions between targets demonstrated 
that participants change their hand speed with target distance (Figure 4.3A). Normalizing the 
data by z-scoring the distribution of motor distances produced at each target location revealed 
sensitivity to perturbations in terms of changes in gain, as participants' within-target normalized 
motor distance increased following negative perturbations and decreased following positive 
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perturbations (Figure 4.3B). This pattern of behavior is consistent with models of error-based 
learning in which people reduce the error experienced on any given trial by some proportion of 
the error size on the next trial (Thoroughman & Shadmehr 2000). We also note that a majority of 
participants (16 of 19) reported that the perturbations did not cause them to attribute errors to 
influences beyond their own motor skill. 

Persistent errors throughout the experimental session allowed us to measure and compare 
responses to errors of movement speed to responses to errors of movement direction that have 
been described in previous studies (Turner et al., 2003; Krakauer et al., 2004; Diedrichsen et al., 
2005). However, recent work has revealed that humans' responses to errors vary widely as a 
function of error size and schedule (Smith & Shadmehr, 2004; Berniker & Kording, 2008, 2011; 
Wei & Kording, 2009; Marko et al., 2012; Schlerf et al., 2013; Castro et al., 2014; Herzfeld et al.,
2014), making it likely that alternative perturbation sizes and schedules in this task would 
influence participants' responses. The use of frequently shifting goal target locations and random 
perturbations in the present study may have prevented participants from forming clear exemplars
of desired movement speeds at each target. As a result, our shuffleboard task prolonged the 
period of learning beyond what is typical in gain adaptation studies (Bock, 1992; Pine et al., 
1996; Vindras & Viviani, 2002). This allowed us to measure BOLD responses to a range of 
experienced errors over time, although the mean error size was greater for earlier runs than for 
later runs (Figure 4.2). As in Chapter 3 and previous pilot experiments, participants reduced their
absolute error and achieved an increasing proportion of hit trials over the course of the 
experiment (Figure 4.2). However, performance was relatively stable over the scan session, as 
the perturbed feedback imposed limits on participants' ability to improve performance. Learning 
curves were relatively flat, with the mean percentage of hits showing a modest increase from 
52% in block 1 to 57% in block 5 (Figure 4.2A). 

Previous work (Chapter 3) measured responses to errors in the absence of perturbations 
and in environments where target location changed less frequently: for instance, among four 
target distances, a change occurred only every twelve trials in Chapter 3. Though not shown, 
plots of absolute error (learning curves) across these twelve-trial “miniblocks” were steepest in 
the first two trials, becoming relatively flat for the remaining ten trials. By frequently changing 
target distance and perturbing participants' visual feedback, we created a unique environment to 
prolong trial-by-trial gain adjustments. Nevertheless, outside of disease states in which 
performance is very noisy and the use of highly sensitive controllers such as our robotic 
manipulandum, such an unstable environment is uncommon in real-world settings. Because gain 
is typically unlikely to change in a trial-by-trial fashion, it is possible, then, that our participants' 
responsivity to perturbations (which we take as indicative of error-based learning) reflects a 
behavior that is seldom subject to human control. 

Participants' performance reproduced one feature of real-world shuffleboard performance 
and of motor control in general: Accuracy (measured as both visual and motor error) was 
negatively correlated with target distance (Figure 4.2D and E), consistent with established speed-
accuracy tradeoffs (Fitts, 1954). This effect was increased by the perturbations. Thus, the use of 
three target distances created three distinct distributions of error sizes that scaled with hand 
speed. In analyses of imaging data, normalizing within these distributions allowed us to detect 
error and reward processing mechanisms that are common to multiple levels of skill in a single 
task. However, this approach may have resulted in a failure to detect effects of signed error at the
near target after correcting for hand speed (see correlation between hand speed and visual error, 
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Figure 4.4), as the proportionally smaller perturbations did not effectively dissociate visual from 
motor errors (Figure 4.5).

4.4.2 Striatal reinforcement but not cerebellar error signals

Despite the evidence showing that participants adjusted their behavior appropriately from
trial to trial based on the error feedback, we did not observe error-related activity in any brain 
regions, including the cerebellum. As expected, the right anterior lobe of the cerebellum, 
corresponding to the right hand representation in the motor region of the cerebellum (Kelly & 
Strick 2003; Krienen & Buckner 2009) was more active during movements than during rest in 
the localizer run (Figure 4.6), confirming cerebellar involvement in movement during task 
performance. However, it is in this region that previous studies of error-based learning have 
found evidence for error responsivity in the form of greater activation on error trials compared to
correct trials (Diedrichsen et al., 2005; Schlerf et al., 2012). Although our movement localizer 
results indicate that the BOLD signal in this region was sufficiently robust to allow detection of 
effects of interest, our analysis of error-related activity contained no such difference. In 
particular, we did not find elevated activity in this region on miss trials compared to hit trials, nor
did we find a positive correlation with absolute error. 

In contrast, activity in dorsal striatal regions was greater for feedback trials than no 
feedback trials, greater for hits than misses, and anticorrelated with absolute error across all 
trials. Importantly, these effects localized primarily to the dorsal striatum (caudate nucleus and 
putamen), rather than the ventral striatum (nucleus accumbens), suggesting that these effects 
represent changes in motor pathways rather than simple reinforcement signals generated in the 
nucleus accumbens (for review, see O'Doherty et al., 2004; Haber 2011). However, these striatal 
activations are also not likely to reflect movement alone, as neither the caudate nor the putamen 
were more active during movement than rest in the localizer. Furthermore, were these activations
representative of movement alone, it is unlikely that the activations for feedback trials relative to 
no feedback trials, activations for hit trials relative to miss trials, and correlations with absolute 
error would have emerged, given that movement variables like reaction time and hand speed do 
not differ across these comparisons (Figure 4.4). 

To determine whether the sensitivity to error size represents a true sensitivity to non-
binary information in reward outcomes or was simply driven by the same difference that was 
evident in the hits vs. misses comparison, further ROI-based analyses are necessary. Indeed, 
when error size was analyzed separately for hits and for misses, no striatal sensitivity to error 
size remained (Figure 4.9C & D shows only small effects in the left superior frontal gyrus and 
cerebellum). Thus, the anticorrelation with absolute error is unlikely to reflect a stronger 
response to small errors per se; rather, this response is may be driven by these trials' binary 
classification as hit trials.

Activity was sensitive to trial outcome or error size in several other regions. A region of 
orbitofrontal cortex was more active on hit than miss trials, reflecting the engagement of frontal 
mechanisms for processing abstract rewards (O'Doherty et al., 2001). A region of the right 
posterior cerebellum was also more active during hit than miss trials. Furthermore, activity in a 
small region in the left posterior cerebellum was anticorrelated with absolute error on miss trials 
only, while activity in a similarly small region in the right posterior cerebellum was 
anticorrelated with absolute error on hit trials only (Figure 4.9D). However, after family-wise 
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error correction, these clusters were far from significant. It may be the case that the regions of 
the posterior cerebellum where activity was correlated with reaction time (Figure 4.11) and 
anticorrelated with hand speed (Figure 4.12) represent peaks in a larger region for which the 
effects of these movement variables were removed, and with them, the effects of interest. To 
investigate this possibility, we examined the unthresholded Feedback > No Feedback maps, with 
all trials entered as a single condition or as three separate conditions (trials at each of the three 
targets comprising a condition), with and without corrective parametric modulators for reaction 
time and speed included in the model. Before applying the correction, activity in the right 
anterior lobe was slightly greater for no feedback than feedback trials. However, after applying 
the correction, this pattern was reversed. These differences are far from significant even for an 
uncorrected threshold. However, given the error responses previously described in this region 
(Diedrichsen et al., 2005; Schlerf et al., 2012), our results suggest that correction for reaction 
time and hand speed was more likely to reveal feedback-related responses than to obscure them.

The lack of error-related cerebellar activation, and the presence of reward-related 
activation of striatal and cortical sites, may be attributable to one or both of two particularities of 
the shuffleboard task. First, it may be the case that this task requires learning to select, rather 
than to coordinate, appropriate actions. In this case, error feedback would be less essential, with 
participants instead relying on reinforcement of successful action selections (making 
reinforcement of action selection and error-based learning of action coordinations analogous to 
the contributions of explicit and implicit processing as outlined in Taylor et al., 2014). As an 
example of this type of learning, one study found that in visuomotor rotation learning, people can
learn from reward-only feedback, but no sensory recalibration occurs (Izawa & Shadmehr, 2011).
It may be the case that the gain changes driving movement speed learning do not recalibrate 
sensory models of the consequences of actions, but instead represent the retrieval and use of 
previously rewarded gains. 

Second, the shuffleboard task requires learning of movement speed, rather than direction, 
and therefore may not be amenable to modification by cerebellar circuitry. According to one 
model of visuomotor rotation learning, sensory recalibration in this task proceeds through 
cerebellar error signals that modify connection weights between visually tuned neurons in 
parietal cortex and directionally tuned neurons in primary motor cortex (Tanaka et al., 2009). 
Such modifications to motor plans, that occur by altering the mapping between actions and 
directional outcomes, may not extend to modifications to speed-to-distance (gain) mappings. 
Given the relatively fast time course of gain adaptation compared to visuomotor rotation learning
(Bock, 1992; Pine et al. 1996; Krakauer et al. 1999; Krakauer et al. 2000), such a trial-by-trial 
mechanism may be of little use. 

Taken together, our results indicate that the striatum is involved in processing feedback 
about movement speed in the shuffleboard task. We interpret this activation as likely functionally
reinforcing the selection of previously successful actions. Indeed, this interpretation is 
anecdotally supported by our participants' open-ended questionnaire and interview responses, 
which commonly contained mention of attempting to remember the appropriate speed when they
happened to successfully hit a target. 

In comparison, other neuroimaging studies have identified regions very similar to ours in 
which activity is sensitive to error size/type (Diedrichsen et al., 2005), movement speed (Turner 
et al., 2003), or both (Seidler et al., 2004). In one fMRI study, bilateral regions of the putamen 
were suppressed during errors of execution (visuomotor rotation or force field), while these types
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of errors activated the cerebellum (Diedrichsen et al., 2005). The suppression in the putamen is 
consistent with a reward-based interpretation of striatal processing. Importantly, in this same 
study, the putamen was activated by a different kind of error: the prediction error that results 
from a mid-trial change in goal location, measured as the difference between the actual and 
anticipated (at trial onset) goal location. The regions of the putamen that showed these effects 
were nearly identical to regions whose activity was anticorrelated with absolute error in the 
present study (Figure 4.9B). 

In a PET study, activity in similar bilateral regions of the putamen was found to be 
correlated with visuomotor gain (Turner et al., 2003). However, Turner et al. (2003) also found 
that activity in a region of the right posterior lobe of the cerebellum was similarly correlated with
visuomotor gain. In the present study, by contrast, the striatum was not significantly modulated 
by hand speed or signed visual error, possibly owing to the rapid, event-related design used being
less powerful than the block design used by Turner et al. (2003). 

In another fMRI study (Seidler et al., 2004), striatal and cerebellar responses of these 
regions scaled oppositely with both error and speed. Consistent with both Turner et al. (2003) 
and Diedrichsen et al. (2005), activity in a striatal region was correlated with movement speed 
and anticorrelated with error. However, Seidler et al. (2004) varied target size and allowed 
participants' movement speeds to increase naturally for larger, easier-to-hit targets. This positive 
correlation between speed and accuracy captures reward-related increases in vigor (Mazzoni et 
al., 2007; Xu-Wilson et al., 2009; Beierholm et al., 2013), while at the same time reversing the 
speed-accuracy tradeoff in the present data. Seidler et al. (2004) found that a region of the 
anterior lobe of the cerebellum showed an effect opposite that of the striatum, becoming more 
activated as smaller targets required slower movements with more online feedback control. In 
our task, slower movements were associated with smaller errors, and we found striatal sensitivity
to error size but not movement speed. Similarly, in our study, greater movement speed was 
associated with greater errors, leaving open the possibility that the negative correlation between 
cerebellar activity and movement speed canceled error-related activations. 

4.4.3 Contributions of multiple learning systems: Credit assignment of errors and the regulation 
of movement variability

The apparent sensitivity of striatal activity to error size may in fact be driven by a truly 
continuous distribution of responses across error sizes. However, the correlation between error 
size and striatal activity may simply be driven by larger responses for hits than for misses. 
Nevertheless, the behavioral data (Figure 4.3) indicate that participants do, at a minimum, take 
into account the direction of errors and adjust accordingly on the next trial. Therefore, errors are 
indeed being used to drive behavior, but this error processing did not cause a measurable increase
in the cerebellar BOLD signal. This discrepancy between behavioral and imaging results is likely
to reflect the unique aspects of a task in which movement speed, thought to be regulated by the 
striatum, is subject to trial-by-trial adjustments.

One possible explanation for the lack of recruitment of cerebellar error processing 
mechanisms would be that participants did not truly self-attribute the errors as presented on 
screen, which may be a critical driver of cerebellar involvement. This possibility is of particular 
concern because performance on motor learning tasks is known to be affected by credit 
assignment. Studies of visuomotor adaptation to abrupt and gradual perturbations in healthy 
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participants have shown that large (abrupt) and small (gradual) errors produce different amounts 
of adaptation (Torres-Oviedo & Bastian 2012; Wong & Shelhamer 2011), duration of aftereffects
(Hatada et al. 2006; Huang & Shadmehr 2009), and patterns of generalization (Malfait & Ostry 
2004; Kluzik et al. 2008; Torres-Oviedo & Bastian 2012). Credit assignment has been invoked to
explain differing responses to large and small errors. However, within this framework, differing 
predictions emerge. Studies which compare movements before and after the application of 
single-trial perturbations have shown that large errors are discounted (Wei & Kording 2009; 
Marko et al., 2012; Criscimagna-Hemminger et al., 2010). This may occur either because large 
errors are viewed as rare, random occurrences or because it seems unlikely that motor processes 
under volitional control could have produced such errors. In contrast, studies of adaptation where
perturbations may be transient or persist over time suggest that people change their behavior 
more in response to large or persisting errors (Schlerf et al., 2013; Gibo et al., 2013; Herzfeld et 
al., 2014). This may occur because these errors are likely to signal changes in the world that must
be compensated, while small errors may arise from incorrigible motor noise. 

While we cannot analyze credit assignment on a trial-by-trial basis, a majority of our 
participants indicated that they self-attributed errors (Table 4.1), accepting a high level of motor 
noise due to the high gain of the manipulandum and their lack of experience with the task 
(Figure 4.1E). In this unique task environment, participants are responsive to errors despite high 
motor noise, inconsistent error directions induced by the random perturbations, and the 
persistence of errors across the experiment. Errors processed by the cerebellum may provide a 
gating signal that indicates whether there is a mismatch between predicted and actual sensory 
consequences of a movement; if there is, any rewards received are not likely to be self-
attributable. 

According to one view, novel situations should cause the striatum to upregulate 
variability (in other words, explore) in order to facilitate learning about the novel situation (Costa
2011). Behaviorally, the susceptibility of adaptation to the stability of an environment supports 
this claim (Gibo et al., 2013; Herzfeld et al., 2014). The striatum has been implicated in 
upregulating movement variability when reward is low (and, conversely, when error is high), and
Parkinson's disease patients fail to respond to such a change in reward (Pekny et al., 2015). 
While decreases in tonic dopamine reduced patients’ ability to increase exploration in response to
low reward in Pekny et al. (2015), another study showed that increases in tonic dopamine led to 
increased exploration (Beierholm et al., 2013). The regulation of variability, then, may reflect a 
balance struck by the striatum between careful exploration of novel motor patterns when a 
person’s internal models of the world require improvement, and vigorous exploitation of 
established motor patterns when they do not. 

4.4.4 Future directions

The present study focused on processing of trial outcomes (errors and rewards) in a 
movement speed task. Our analyses were designed to identify brain regions involved in error 
processing, rather than in the motor act of adjusting outputs in response to errors. The study 
design allowed for the identification of regions involved in movement (primary motor cortex and
the right anterior lobe of the cerebellum, extending into the vermis and ventral posterior 
cerebellum), in feedback processing (primarily striatal regions), in the differential processing of 
successful and unsuccessful trials (primarily striatal regions), and in the processing of error size 
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(focal bilateral regions of the putamen). 
It remains unclear, however, whether the relevant updates to motor plans (as implemented

by adjusting a forward model, for example, see Tseng et al., 2007) are implemented at the 
moment of feedback delivery or at the time of the subsequent movement. However, future 
analyses of this data set will attempt to identify activations related to the implementation of a 
correction, and not simply the processing of feedback. First, region of interest-based analyses 
will be necessary to further characterize responses to errors themselves. By defining functional 
and anatomical regions of interest, striatal and other responses may be plotted according to error 
size, either confirming or denying the existence of non-binary reward responses driving the 
anticorrelations with absolute error. 

Second, future work will also analyze fMRI responses to perturbations and, more 
generally, errors on subsequent trials. Classifying and analyzing any given trial N in terms of the 
response elicited on trial N+1 may reveal activations that scale with error responsivity. These 
activations may or may not covary with signed error; at present, there is little evidence of 
sensitivity to over- and undershoots, although this contrast is particularly susceptible to false 
negatives given that signed error is correlated with hand speed. 

Third, future work will employ state-space models to produce trial-by-trial estimates of 
error responsivity. Using these estimates as parametric regressors may prove to be a more 
sensitive approach for identifying brain correlates of error responsivity. 

Fourth, more specific factorial analyses will be used to identify differential recruitment of
error and reward processing mechanisms in different contexts. For example, trials at the near 
target could be considered to be part of a high motor accuracy/high reward condition, while trials
at the far target are more likely to be low accuracy/low reward. As motor responses to errors are 
highly dependent on a number of contextual factors, direct comparisons of these contexts may 
reveal, for instance, that errors are processed differently when they are rare compared to when 
they are common. Thus far, however, all analyses have assumed no influence of target-based 
context, taking the conjunction of effects at all three targets to represent task-related activity as a 
whole. 

4.5 Conclusions

In a task designed to elicit trial-by-trial adjustments to movement speed, the present 
results suggest that the dorsal striatum is involved in reinforcing learning of movement speeds. 
Activity in the striatum was not, however, found to be modulated simply by movement speed. 
Furthermore, we found no evidence for the recruitment cerebellar error processing mechanisms, 
possibly due to the non-directional nature of motor errors. 

Due to the novelty of the task, further experiments are needed to characterize both the 
behavioral and neural changes driving performance. However, this task constitutes an atypical 
environment in which movement speeds are adjusted continuously over the course of an 
experiment and in response to errors. Ultimately, task performance may rely on the 
reinforcement of motor memories. Given that the rates of errors and rewards negatively covary 
throughout motor tasks, errors may gate the reinforcement of these memories according to a 
credit assignment framework. Further work is needed to characterize these influences. 

Neurally, we propose that the absence of cerebellar involvement may reflect a lack of 
stable contextual changes that, in tasks with directional errors, may induce exploratory motor 
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learning. It is possible that the use of movement speed as a substrate imposes a goal that is too 
uncommon to be subject to error-based fine-tuning. Alternatively, shifting the balance of credit 
assignment towards self over world in a high-error context may be generally atypical for healthy 
participants, unique to disease states, or specific to movement variables like speed which are not 
as subject to precise control. Our task may be used to model an atypical time course of processes 
similar to gain adaptation. Future work may benefit from such a deviation from directional error-
based tasks, allowing researchers to dissociate multiple learning processes according to divisions
of movement substrate, accuracy, time course of learning, and/or credit assignment for errors. At 
present, these results serve as a demonstration that error-based learning does not necessarily 
engage the cerebellum but can instead proceed in tandem with striatum-based reinforcement 
learning. 
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Chapter 5: Conclusion

There is a pervasive sense of iconoclasm among researchers of motor learning. Although 
the brain is generally considered the organ of thought, we insist that it is actually, in a sense, for 
movement. However, the reality is more complex. At times, organisms appear to be stimulus-
bound, responding in stereotyped or otherwise automatized ways to inputs from the world. At 
other times, organisms are capable of generating astounding variability in their behaviors. 
Neuroanatomically, the basis for the precision and variability with which we complete 
movements is thought to lie in complex loops connecting cortical and subcortical structures. In 
approaching these processes experimentally, variables are painstakingly operationalized, 
paradigms are refined through endless iterations, and rigorous controls are put in place. Despite 
these efforts, methodological challenges and other practical concerns may stand in the way. The 
interplay of cognition and action remains as much a chicken-and-egg type problem as ever.

One such methodological challenge served as the launching point for my graduate school 
researdch. The first experiment in this dissertation (Chapter 2) was a methodological inquiry into
what might have been a serious physiological confound for the interpretation of functional 
magnetic resonance imaging (fMRI) data. Moving forward, I set out to understand how motor 
learning proceeds using a novel shuffleboard task which I developed. The second experiment 
(Chapter 3) used this task to investigate a temporal constraint on learning which, at the time the 
experiment began, was regarded as a methodological obstacle to neuroimaging studies rather 
than an interesting component of motor learning in itself. Humbled by the complexity of this 
issue, I finally committed to a version of this task for use in a scanner environment. The last 
experiment (Chapter 4) draws on key insights from the previous two in order to better understand
how people learn to produce movements of certain speeds. Although these three efforts may 
stand as independent contributions to scientific knowledge, addressing the methodological and 
behavioral aspects of movement speed learning was critically important to the eventual study of 
how the brain processes feedback. 

In Chapter 2, I asked whether the increases in heart rate induced by a simple motor task 
could be causing seemingly task-related responses. Given that previous findings on the locus of 
error processing signals in the cerebellum had critically depended on the removal of this effect 
(Schlerf et al., 2013), it was in principle possible that physiological sources of noise had caused 
widespread contamination of fMRI data. At worst, fMRI researchers had been measuring these 
effects and mistaking them for true neural responses for as long as the method had existed. 
However, the measured responses of motor regions to movements were only slightly different 
when correcting for changes in heart rate. Nevertheless, comparing models with and without 
heart rate correction revealed that this correction had significantly improved model fit of BOLD 
responses for a majority of participants in the primary motor cortex and for a minority of 
participants in the cerebellar hand region. This was not the case for changes in respiration, which
showed no task-related modulation. To prevent contamination of fMRI data in a study of motor 
learning, the suite of corrections developed in this experiment is used again in Chapter 4. It is my
hope that the results of the experiment presented in Chapter 2 serve as evidence for the 
importance of physiological noise correction, and that the methods act as an example to others 
wishing to assess the efficacy of these corrections in their own experiments.

Chapter 3 presents an experiment designed to characterize temporal constraints on 
learning in a novel movement speed task based on real-world shuffleboard. Much of what is 
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known about  human motor learning has come from experiments that use updated versions of 
one of several tasks: visuomotor rotation learning, force field learning, and sequence learning. 
Developed with a scanning environment in mind, the shuffleboard task modeled a learning 
environment in which movements and feedback about those movements are separated in time. 
Such a task might have been useful in measuring separate responses for the two event types. 
However, in visuomotor rotation learning, as in other sensorimotor learning tasks, learning is 
diminished when feedback is delayed (Kitazawa et al., 1995). Furthermore, the timing of 
feedback in real-world shuffleboard is correlated with movement variables. It seemed plausible, 
then, given that the cerebellum is thought to play a role in both temporal processing and 
prediction (for review, see Ivry & Spencer, 2004), that temporal predictions played a role in 
overcoming the cost of delay. A set of temporal manipulations was applied as participants 
learned. At sufficiently long delays, randomized feedback timing can cause a decrement in 
performance. However, given the lack of effect of the majority of our manipulations, this cost is 
small and  likely to be caused by attentional lapses. To the extent that people do learn to produce 
movements of certain speeds, this learning appears unaffected by the temporal constraints on 
learning movements of certain directions. This learning must depend on a neural mechanism that 
is less temporally sensitive than cerebellar error-based learning. This prediction fit with what is 
known about the separate coding of movement direction and amplitude in the brain, but without 
neuroimaging data, our speculations on the neural origin of this behavioral dissociation could not
be confirmed.

In Chapter 4, the shuffleboard task is used in the fMRI scanner to identify brain regions 
involved in processing feedback for movement speed learning. Data were processed using the 
physiological corrections developed in Chapter 2. Based on the mixed results of Chapter 3, the 
task was modified to eliminate delays between movement and feedback. The results of this 
imaging experiment failed to find evidence of cerebellar involvement in erorr processing, 
confirming a prediction drawn from the behavioral results in Chapter 3. If anything, a region of 
the posterior cerebellum was less active during errors than during successful trials; however, the 
removal of effects of movement variables like reaction time and hand speed may have also 
removed true effects. Instead of cerebellar involvement, robust activation of the dorsal striatum 
was found during feedback processing, this activation was greater for successful trials than 
errors, and in fact, this activation was correlated with error size across all successful trials and 
errors. Further analyses will be necessary to rule out alternative explanations and to elucidate the 
link between feedback processing and the actual implementation of updates to motor plans. 
However, at present, the results of Chapters 3 and 4 indicate that trial-by-trial learning of target 
movement speeds is likely to be dependent on striatal reinforcement learning mechanisms and 
not on motor adaptation processes thought to be cerebellum-dependent.

Taken together, these experiments address methodological and scientific issues.  Within 
the field of human motor learning research, this work introduces a novel shuffleboard task which
probes a less-understood aspect of skill learning, how people use reinforcement to regulate and 
vary movement speed. After identifying and minimizing the impact of physiological confounds 
and temporal constraints, a preliminary neuroimaging experiment has provided evidence that 
trial-by-trial reduction in error occurs in tasks where performance is not defined by reduction in 
directional error or sculpted by cerebellar error signals. The science of motor learning is far from 
settled in humans or any other organism. It is my hope that this dissertation contributes solutions 
and provocations that guide the ways in which future researchers approach this slippery topic. 
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Appendix: Supplementary material for Chapter 4

Supplementary Figure 1: Movement variables not used as parametric modulators of 
imaging data 
All variables are plotted as a function of target distance, trial success (hits vs. misses), and 
feedback condition (feedback vs. no feedback).
A. Time to line, defined as the difference between the participant's reaction time and time at 
which the participant's hand crossed the release time.
B. Movement duration, defined as the difference between the participant's reaction time and time
at which the participant's hand reversed trajectory after crossing the release line.
C. Movement amplitude, defined as the distance covered by the hand prior to reversing 
trajectory.
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Supplementary Figure 2: Correlation matrix comparing movement parameters and 
behavioral effects of interest
From top to bottom, RT = reaction time (the interval between presentation of the target and puck 
and the initiation of movement in each trial), time to line (the difference between the participant's
reaction time and time at which the participant's hand crossed the release time), Mov Dur = 
movement duration (the difference between the participant's reaction time and time at which the 
participant's hand reversed trajectory after crossing the release line), Speed = release speed (the 
time taken to traverse a small window immediately preceding the release line), FB Dist = 
feedback distance (speed plus perturbation), movement amplitude (the distance, in centimeters, 
covered by the hand prior to reversing trajectory), Mot Err = motor error (the unperturbed 
difference between the puck's landing, as determined by hand speed alone, and the target 
distance), Abs Mot Err = the absolute value of motor error, Vis Err = visual error (the difference 
beteween the perturbed puck location seen by participants and the target distance), Abs Vis Err = 
absolute value of visual error. For all matrices, colorbar is as in Panel D. 
A. Near target only.
B. Middle target only. 
C. Far target only.
D. All targets.
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