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1.  Introduction
Atmospheric rivers (ARs) are synoptic-scale long and narrow bands of water vapor transport sourced from 
tropical and/or extratropical regions (American Meteorological Society, 2019; Zhu & Newell, 1998). They 
are responsible for more than 90% of poleward water vapor transport (Zhu & Newell, 1998), highlighting 
their importance to hydrological cycle in midlatitudes, especially at the west coasts of continents (Payne 
et al., 2020; Shields et al., 2018). In the coastal states of the western US, ARs contribute to a large portion 
of total precipitation, especially in the form of heavy precipitation and during the cool season (Detting-
er et al.,  2011; Lavers & Villarini, 2015; Rutz & Steenburgh, 2012; Rutz et al.,  2014). For instance, Rutz 
et al. (2014) reported that over 60% of cool season total precipitation is associated with ARs along the coast 
in northern California, Oregon, and Washington. The percentage contributions by ARs decrease in south-
ern California and farther inland in these states. However, interannual variability of precipitation is also 
high in the region, as exemplified by the recent shift from drought in 2012–2016 to an extremely wet winter 
2016–2017 in California, which was largely associated with variability in landfalling ARs (Swain et al., 2018; 
Wang et al., 2017). Thus, accurate subseasonal-to-seasonal prediction of AR activity and associated precipi-
tation is critically important to assist governments and stakeholders to manage water resources and drought 
and flood risks.

Previous studies have focused on climate modes as the source of AR prediction skill and investigated their 
modulation on ARs over the North Pacific and western US (Baggett et al., 2017; DeFlorio et al, 2018, 2019; 
Guan & Waliser, 2015; Mundhenk et al, 2016, 2018; Pan et al., 2019; Payne & Magnusdottir, 2014). The El 
Niño/Southern Oscillation (ENSO) is the climate mode frequently used in seasonal hydroclimate prediction 
because it strongly influences AR location, frequency, and intensity, and therefore precipitation (DeFlorio 
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et al., 2018; Patricola et al., 2020; Zhou & Kim, 2018). While the displacements of AR activity by ENSO phase 
in the North Pacific were consistently found, there exist some disagreements on the modulation of ENSO 
on landfalling ARs over the western US. For example, Mundhenk et al. (2016) and Guan and Waliser (2015) 
found a poleward increase in North Pacific AR frequency in La Niña periods, and an opposite change during 
the El Niño phase. This is associated with a weakened (enhanced) Aleutian Low and poleward (equator-
ward) shifted subtropical jet in the La Niña (El Niño) phase (Kim et al., 2017; Payne & Magnusdottir, 2014). 
In the western US, Guan and Waliser (2015) concluded that ENSO played a negligible role in affecting land-
falling AR frequency and precipitation. However, others found more frequent landfalling ARs in El Niño 
periods than in La Niña periods (Kim et al., 2017; Mundhenk et al., 2016; Payne & Magnusdottir, 2014). It is 
worth noting that the qualitative assessments were based on a short period of observations (typically under 
40 years in reanalysis) and limited number of El Niño/La Niña events. For winter precipitation, Patricola 
et al. (2020) demonstrated that the ENSO Longitude Index (ELI), a new metric that captures the diversity 
of ENSO's spatial variations (Williams & Patricola, 2018), served as a more useful predictor of western US 
precipitation variability than the commonly used Niño 3.4 index, especially during strong El Niño years. 
But ELI's value in improving the predictive skill of ARs and associated precipitation has not been explored.

The Madden-Julian oscillation (MJO) is another climate mode that has received considerable attention for 
its important role in altering configurations of the Pacific jets and moisture transport, and thus affects the 
predictive skill of AR and precipitation at subseasonal scale (DeFlorio et al., 2019; Nardi et al., 2020; Stan 
et al., 2017). Nevertheless, there is little consensus on the relationship between MJO and landfalling ARs 
over the western US. For instance, Harris and Carvalho (2018) found more frequent landfalling ARs during 
MJO phases 1 and 7, followed by phases 3 and 6. Guan et al. (2012) and Guan and Waliser (2015) conclud-
ed that the MJO exerted little influence on the western US AR frequency and precipitation during most 
phases, except for phase 6 when increased ARs and precipitation were documented. In contrast, Mundhenk 
et al. (2016) found less frequent ARs in the western US during MJO phases 5 and 6. When the time lag effect 
of MJO was considered, Guan et al. (2012) found no consistent relationship between MJO and AR in Cal-
ifornia (including the first 10 days following phase 6), but Mundhenk et al. (2018) discovered consistently 
higher (lower) AR activity in the days following phase 7 (4) in California. When the MJO coexisted with 
different ENSO phases, the responses of ARs and precipitation to their interactions exhibited a high degree 
of incoherence (Collow et al., 2020; Mundhenk et al., 2016). The quasi-biennial oscillation (QBO), a domi-
nant mode of tropical stratospheric variability, is shown to modulate MJO convection (Kuma, 1990; Martin 
et al., 2019; Yoo & Son, 2016) and thus provides subseasonal predictability for ARs and precipitation in the 
western US (Baggett et al., 2017; Mundhenk et al., 2018; Nardi et al., 2020).

While much work has been done to quantify the empirical relationships between climate modes (ENSO 
and MJO in particular) and western US hydroclimate, a lack of consensus on ENSO-AR and MJO-AR re-
lationship limits subseasonal-to-seasonal predictive skills on ARs and precipitation. The factors include 
relatively short observational records, the nonlinear response of ARs to natural modes of climate variability, 
and uncertainties in AR frequency due to AR detection methods (Mundhenk et al., 2016; Rutz et al., 2019). 
Furthermore, the influence of climate modes on AR activity varies greatly by location, season, and time 
scale (Harris & Carvalho, 2018; Mundhenk et al., 2018). The concurrent effects of different climate modes 
have been shown to modulate precipitation, temperature, tropical cyclones, and atmospheric circulation, 
thus offering the potential for improved subseasonal-to-seasonal forecasts relative to the climate modes in-
dividually (Arcodia et al., 2020; Johnson et al., 2014; Patricola et al., 2014; Roundy et al., 2010). In contrast, 
their joint influences on ARs and associated precipitation are less thoroughly studied.

Here, we aim to thoroughly evaluate the sources of subseasonal-to-seasonal predictability of ARs and pre-
cipitation by investigating the individual and concurrent effects of ENSO events and MJO phases on ARs 
landfalling in different subregions of the western US during December–February (DJF). Besides the tradi-
tional ENSO index defined over a fixed region (i.e., Niño 3.4), we also assess whether ENSO diversity (rep-
resented by the ELI) can improve the predictability of landfalling ARs and associated precipitation. Unlike 
past studies primarily based on reanalysis data, our analysis also leverages a large ensemble of regional 
climate model (RCM) hindcasts (27 km resolution) over the period 1981–2017 (Patricola et al., 2020). This 
approach not only enables us to quantify climate mode-AR and AR-precipitation relationships by consid-
ering observations/modeling uncertainties due to internal climate variability (Deser et al., 2020; Shields 
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et al., 2018), but also offers a physically based and systematic assessment of extreme ENSO events' modula-
tion on landfalling ARs and precipitation. Besides ENSO and MJO, we do not include the QBO as another 
predictor because: (1) the impact of MJO and ENSO interaction on AR and precipitation is more relevant 
with our research focus and (2) climate models, especially those with low vertical resolution in the up-
per troposphere and lower stratosphere, have limited capability in simulating QBO (Giorgetta & Roeck-
ner, 2002; Orbe et al., 2020; Richter et al., 2014, 2020). The research questions to be examined are: (1) Can 
the RCM simulations reproduce the climatology and variability of observation-based ARs and precipitation 
in the western US from 1981–2017? (2) How does the location and timing of landfalling AR activity and as-
sociated precipitation depend on ENSO diversity? (3) What are the influences of MJO phases on AR activity 
and precipitation, and do ENSO events modulate the MJO-AR relationship?

In the manuscript, Section 2 describes the observations, reanalysis, and RCM simulations used to detect 
ARs and AR-induced precipitation. Section  3 evaluates the performance of the RCM large ensemble in 
simulating ARs and precipitation. Section 4 presents the effects of ENSO and MJO on ARs and precipitation 
in different regions, and discusses the pathway toward improving AR and precipitation prediction skills. 
Section 5 summarizes concluding remarks and implications for future work.

2.  Data and Methods
To detect winter ARs in the North Pacific and western US, we use an observation-based reanalysis and 
a large ensemble of RCM simulations from 1981–2017, which serve as inputs into an AR detection algo-
rithm. To identify the western US precipitation events associated with ARs, we use a gridded precipitation 
observation data set and the RCM simulations to extract AR precipitation. Based on the observation-based 
ENSO and MJO indices, we further explore the effects of sea surface temperatures (SSTs) and atmospheric 
circulation on ARs and precipitation events. The goal is to evaluate the sources of predictability of ARs and 
precipitation at subseasonal-to-seasonal timescales. More details on the datasets and methods are described 
as follows.

2.1.  Observations and Reanalysis Data

To detect winter ARs in the historical period 1981–2017, we use the Modern-Era Retrospective analysis for 
Research and Applications, Version 2 (MERRA2) developed by NASA's Global Modeling and Assimilation 
Office (Gelaro et al., 2017). This global reanalysis assimilates different sources of observations and provides 
data from 1980 to present. Its horizontal resolution is 0.5° × 0.625° and it includes 72 vertical levels from 
Earth's surface to 0.01 hPa. It was utilized as the only data set to implement the Tier 1 experiment in the 
Atmospheric River Tracking Method Intercomparison Project (Shields et al., 2018). The 6-hourly data was 
imported into an AR tracking algorithm to detect ARs over time and space, as described in Section 2.3.

Daily observations of precipitation are from the NOAA Climate Prediction Center (CPC) Gauge-Based Uni-
fied Precipitation data set (Xie et al., 2010). This gridded data set covers the period from 1948–present and 
the contiguous United States with a spatial resolution of 0.25°, which is similar to the resolution of RCM 
simulations.

2.2.  Regional Climate Model Simulations

We use a large ensemble of high resolution (27 km) climate simulations 1981–2017 to investigate ARs and 
precipitation in the western US. High resolution climate data has been shown to better capture ARs and 
regional precipitation (Hagos et al., 2015, 2016; Shields & Kiehl, 2016; Shields et al., 2018). Furthermore, 
previous studies on AR predictability primarily used a single reanalysis or small ensemble of global cli-
mate model simulations, which cannot address observation or model uncertainties due to internal climate 
variability. In contrast, the large ensemble-based approach simulates different trajectories of atmospheric 
response as a function of internal variability alone and estimates physically plausible ways in which ARs 
can be modulated by low frequency variability (Deser et al., 2020; Shields et al., 2018). Thus, the approach 
used in the current study may lead to a more robust evaluation of climate mode–AR and AR–precipitation 
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relationships and provide important implications for the predictability of ARs and associated precipitation 
over the western US.

The large ensemble RCM data were provided and described by Patricola et al. (2020). The data were generat-
ed by downscaling a 6-hourly global reanalysis (NCEP-DOE AMIP-II Reanalysis, 2.5°  ×  2.5° resolution and 
17 pressure levels) with the Weather Research and Forecasting (WRF) model (Powers et al., 2017) version 
3.8.1 to a higher resolution of 27 km. SSTs are prescribed by the 0.25° daily NOAA Optimum Interpolation 
V2 SST (Reynolds et al., 2002). It is worth noting that long-term ENSO diversity is well represented by the 
ENSO events from 1981 to 2017. We contrasted the distributions of observation-based (ERSSTv5) ENSO 
longitude index (ELI) during DJFs 1981–2017 and 1854–2020, and find no significant difference between 
ELIs in the two periods (p = 0.90; Figure S1). The model was configured with the following physics op-
tions: Single-Moment 3-class scheme (microphysics), Rapid Radiative Transfer Model scheme (radiation), 
Yonsei University scheme (planetary boundary layer), Kain-Fritsch scheme (cumulus), and Noah land sur-
face model. The parameterizations were selected and used by Patricola et al. (2020) to study the western 
US hydroclimate variability. The WRF simulations were then run over a region spanning 20°S–60°N and 
130°E–60°W and comprised of year-long large ensemble hindcasts from 1981 to 2017. Each hindcast covers 
a full water year (from October 1 to September 30 of the following year), as well as the month earlier (i.e., 
September) for initialization and spin-up. There are five ensemble members (initiated on September 1–5) 
in normal years, and 22–25 ensemble members (typically initiated on September 1–25) for seven designated 
wet/dry years (1982/1983, 1997/1998, 2012/13, 2013/14, 2014/15, 2015/16, and 2016/17). To better account 
for observational uncertainty in climate model evaluation (Gibson et al., 2019), we also analyzed the Pa-
rameter-elevation Relationships on Independent Slopes Model (PRISM) precipitation observations (Daly 
et al., 2008) besides the CPC precipitation data set as a comparison.

2.3.  Atmospheric River Tracking Algorithm

The Tempest software package (Ullrich & Zarzycki, 2017) was used to detect ARs in the MERRA2 reanalysis 
and WRF hindcasts. Similar to other AR tracking algorithms, Tempest detects AR with the inputs of integrat-
ed vapor transport (IVT), a metric incorporating water vapor amount and its transport speed. It requires a 
minimum IVT of 250 kg m−1 s−1 at a grid cell and minimum cluster size of 120,000 km2 (Shields et al., 2018). 
A detailed description of the Tempest-defined AR criteria can be found in Patricola et al. (2020). Note that 
for the WRF simulations (27 km resolution), we first aggregated its IVT field to match with the coarser grid 
scale of MERRA2 (∼50 km) by area averaging, and then ran the Tempest software to detect simulated ARs. 
Compared to other AR tracking algorithms, Tempest performs relatively well in capturing the medians of 
AR statistics range among a large pool of AR tracking algorithms, thus reducing the uncertainty due to the 
diversity of AR definitions and algorithms (Rutz et al., 2019). Our analysis divides the western US region 
into three subregions, Oregon and Washington (ORWA), northern California (NCA), and southern Califor-
nia (SCA), facilitating the comparison between landfalling ARs by subregion and overall AR activity across 
the North Pacific and western half of North America (NPNA; 15°N–55°N and 135°E–100°W in Figure 1). 
AR frequency is defined as the accumulated number of 6-hourly time steps by grid cell and season, and re-
gional mean AR frequency is calculated by averaging AR frequency across all grid cells within each region.

2.4.  Classification of Precipitation Events

To identify daily precipitation events over the western US associated with ARs, we matched landfalling ARs 
(at least one AR grid point falling within the western US region) and precipitation events based on their 
timings and locations. The CPC daily observations document 24–h accumulated precipitation ending at 
12Z of the day, which are off by half a day when compared to the WRF simulated daily precipitation events 
(00Z–24Z). Therefore, when we classified daily precipitation events into AR and non-AR categories, the du-
ration of a wet day has to be matched with the time steps of ARs in the same day, avoiding the discrepancy 
due to inconsistent recording times.

In each 24–h daily interval, we first located all the grid points with ARs in at least one of the five 6-hourly 
time steps (00Z, 06Z, 12Z, 18Z, and 24Z in the WRF hindcasts; 12Z, 18Z, 24Z, 06Z, and 12Z in CPC). If a 
grid point records ARs more than once in the same day, then it is only counted once. Next, we searched 
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for grid points that received precipitation within the same 24 h interval. Precipitation events occurring in 
the AR grid points are counted as AR-induced (AR precipitation), otherwise they are considered non-AR 
precipitation. The procedures to identify AR precipitation events were also applied by Rutz et al. (2014). 
We note that the spatial resolutions of the detected AR and precipitation are different, so we aggregated 
the simulated ARs and precipitation to the MERRA-2 grid (∼50 km) using linear interpolation, similar to 
Huang et al. (2020).
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Figure 1.  Spatial patterns of winter atmospheric river (AR) frequency (number of 6-hourly time steps per season) in the (a) Modern-Era Retrospective analysis 
for Research and Applications, Version 2 (MERRA2) reanalysis, (b) Weather Research and Forecast (WRF) hindcasts from 1981 to 2017, and (c) their difference. 
The spatial map shows the North Pacific and western half of North America (NPNA; 15°N–55°N and 135°E–100°W), which includes the three coastal states of 
western US, that is, Washington (WA), Oregon (OR), and California (CA). Stippling in (c) refers to a significant difference in AR frequency between WRF and 
MERRA2 using a grid-cell specific two sample t-test with the p values adjusted by controlling the false discovery rate (Wilks, 2016) at 0.05.
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2.5.  Climate Mode Indices

The ENSO and MJO are important sources of predicting ARs and precipitation in the western US (DeFlorio 
et al., 2019; Pan et al., 2019), but their influences on ARs and precipitation remain disputed (see Introduc-
tion). The ENSO is the predominant mode of interannual variability of sea surface temperature over the 
tropical Pacific, which can be represented by different ENSO indices (Capotondi et  al.,  2015). Here, we 
used two ENSO indices to explore the influence of ENSO diversity (i.e., different longitude and amplitude 
of the SST anomalies extrema; Capotondi et  al.,  2015) on ARs and precipitation. The first index is the 
traditional Niño 3.4 index, which represents SST anomalies in the central equatorial Pacific (5°S–5°N and 
170°W–120°W). The second is the ELI, uniquely characterizing the diversity of ENSO events in a single 
index of longitude (Williams & Patricola, 2018). The ENSO phases and magnitudes during DJFs 1981–2017 
are documented and provided through Table 1 in Patricola et al. (2020). It is worth noting that the iden-
tification of ENSO events between the two metrics are slightly different. For example, the Niño 3.4 index 
indicates that the years with strong El Niño events (≥1.5°C) are 1983, 1992, 1998, 2010, and 2016, however, 
ELI designates strong El Niño events (≥179°E) in 1983 and 1998. Patricola et al. (2020) found that ELI is 
better at predicting the western US hydroclimate variability when compared to the Niño 3.4 index, espe-
cially during strong El Niño years. Thus, we primarily used the ELI-defined ENSO events in the following 
analysis, with Niño 3.4-defined ENSO events for comparison. The goal is to evaluate the sensitivity of EN-
SO-AR relationship to different ENSO indices and facilitate the comparisons with previous studies based 
on the Niño 3.4 index.
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NPNA ORWA NCA SCA

AR frequency:

  MERRA2 (time steps season−1) 23.6 14.6 8.3 5.6

  WRF (time steps season−1) 24.6 15.8 7.0 4.6

  Difference +4.1% +8.1% −14.7% −18.7%

  Correlation 0.68* 0.64* 0.58* 0.62*

Total precipitation:

  CPC (mm season−1) — 343.3 391.7 141.8

  WRF (mm season−1) — 378.4 339.2 81.0

  Difference — +10.2% −13.4% −42.8%

  Correlation — 0.69* 0.62* 0.49*

AR precipitation:

  CPC (mm season−1) — 148.6 144.3 49.1

  WRF (mm season−1) — 101.5 62.1 13.1

  Difference — −31.6% −56.9% −73.4%

  Correlation — 0.64* 0.55* 0.23

AR contribution to total precipitation:

  CPC (%) — 42.2 34.7 32

  WRF (%) — 26.3 16.9 13.2

  Difference — −37.8% −51.3% −58.7%

  Correlation — 0.42* 0.05 0.33*

Note. The asterisk (*) sign indicates that the time series of observations and WRF simulations are significantly 
correlated at the 0.05 level using two sample t-test. The em dash (—) indicates the data is not available or included.

Table 1 
Spatially Averaged 1981–2017 Winter Atmospheric River (AR) Frequency, Total Precipitation, AR Precipitation, and 
AR Contribution to Winter Total Precipitation by Region in the Observations (Modern-Era Retrospective analysis for 
Research and Applications, Version 2 [MERRA2] for AR Frequency, Climate Prediction Center [CPC] for Precipitation) 
and Weather Research and Forecast (WRF) Ensemble Mean, Their Relative Difference (%, WRF in Relative to 
Observations), and Correlation From 1981 to 2017
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The MJO, an intraseasonal variability with a period of 30–90 days, is characterized by clouds and precipita-
tion anomalies near the equator which moves eastward over the Indian and western-central Pacific oceans 
(Madden & Julian, 1971, 1972). This feature has global impacts on weather and climate, including ARs 
and precipitation in the North Pacific and western US (Guan & Waliser, 2015; Zhang, 2005). Here we used 
the real-time multivariate MJO index calculated from observed outgoing longwave radiation, and 850 hPa 
and 200 hPa zonal wind (Wheeler & Hendon, 2004), which is available from the Bureau of Meteorology, 
Australia (http://www.bom.gov.au/climate/mjo/). Eight different MJO phases are defined to mark its prop-
agation across the oceans, and only strong MJO phases (composite amplitude >1) are used to examine their 
associations with ARs and precipitation. During DJFs 1981–2017, the number of days with strong MJO 
phases 1–8 is 164, 228, 313, 279, 269, 297, 351, and 244, respectively. We find that the MJO-AR relationship 
revealed in Figure  8 is not sensitive to the choice of MJO amplitude threshold (not shown). Moreover, 
earlier studies have shown that regional WRF simulations can reasonably simulate MJO, including the 
initiation and propagation of MJO events (Fonseca et al., 2019; Hagos & Leung, 2011), cloud characteristics 
(Hagos et al., 2013, 2015), and the MJO-related variability in precipitation rate (Wang et al., 2016). In the 
WRF large ensemble domain, we also confirm WRF's capability in simulating MJO events represented by 
the anomalies in outgoing longwave radiation (not shown). Given that the WRF domain only covers part of 
the MJO life cycle (Patricola et al., 2020) and the NCEP-DOE AMIP-II global reanalysis provides the initial 
and boundary conditions for the WRF simulations, we choose to use the real-time multivariate MJO index 
with the full MJO life cycle to examine the source of hydroclimate predictability.

3.  Model Evaluation
This section evaluates the performance of WRF simulations in reproducing the spatial and temporal pat-
terns of observation-based DJF ARs and precipitation. Specifically, landfalling ARs in the three western US 
subregions are analyzed and compared, besides the overall AR activity in NPNA. AR precipitation and its 
contribution to DJF total precipitation in the three western US subregions are then assessed.

3.1.  Observed and Simulated ARs

In DJF, MERRA2 ARs are most frequently found extending from the northwestern Pacific around 30°N 
to the Pacific coast of North America (Figure  1a). This pattern resembles the findings by Mundhenk 
et al. (2016) who used a different AR detection algorithm and older generation of reanalysis product (MER-
RA). WRF performs adequately well in reproducing the spatial pattern of AR frequency in MERRA2 (Fig-
ure 1b) with a pattern correlation of 0.873 (95% confidence interval: 0.871–0.875), in agreement with Patri-
cola et al. (2020). Along the coast of the western US, ORWA experience more frequent ARs than California, 
which is seen in both the MERRA2 reanalysis and WRF hindcasts. It is notable that WRF overestimates 
(underestimates) AR frequency in the northwestern (southeastern) North Pacific, but no significant differ-
ence is found over the western US (Figure 1c). WRF also performs well in capturing the standard deviation 
of AR frequency in MERRA2 with a pattern correlation of 0.74 (Figure S3).

Figure 2 shows a large interannual variability in observed landfalling AR frequency but not in NPNA AR 
activity. From 1981 to 2017, MERRA2 AR frequency in ORWA ranged from 5.4 to 25.2 per season, which is 
equivalent to 37% and 172% of the 1981–2017 seasonal average (14.6 per season), respectively. In NCA and 
SCA, the ranges are 17%–241% and 8%–393% of the long-term averages, respectively. In contrast, MERRA2 
AR frequency in NPNA ranged between 90.8% and 107.4% of the 1981–2017 average (23.6 per season). The 
findings suggest that the variability in landfalling AR frequency may be controlled by the large-scale circu-
lation that determines AR location, rather than the AR genesis rate over the ocean basin.

WRF is capable of simulating the climatological mean of AR frequency, as well as its variations over time 
and space (Figure  2 and Table  1). On average, WRF slightly overestimates the AR frequency in NPNA 
(+4.1%) and ORWA (+8.1%) but underestimates the AR frequency in NCA (−14.7%) and SCA (−18.7%). The 
contrasts in simulated AR frequency may be due to a poleward shift in AR landfall locations in the WRF 
simulations (Figure S2). The variability in WRF ensemble-averaged AR frequency from 1981 to 2017 closely 
follows MERRA2 and the two time series are significantly correlated in all regions, with the correlation 
coefficients ranging from 0.58 to 0.64. Each ensemble member in the WRF hindcasts similarly captures the 
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variability in MERRA2 AR frequency. For example, the 2016/17 winter marked the strongest AR activity 
in both NCA and SCA, which is evident across MERRA2 and all WRF ensemble members. Moreover, AR 
intensity, characterized by average integrated vapor transport, is similar between the MERRA2 and WRF 
simulations with a 2.2% difference over the western US (Figure S4), further demonstrating WRF's capability 
in simulating AR activity.

3.2.  Observed and Simulated Precipitation

ARs are important contributors to DJF precipitation along the coast of the western US, and the WRF model 
performs skillfully in simulating the observed spatial patterns of precipitation (including AR precipitation). 
In the CPC observations, the relatively wet areas in coastal ORWA and NCA largely overlap with the ar-
eas affected by active landfalling ARs (Figures 3 and 1), leading to increased AR precipitation (>300 mm 
season−1) and higher AR contributions (>50%) to DJF total precipitation (Figures 3a–3c). In contrast, the 
contribution of ARs reduces to less than 20% of total precipitation in the eastern part of western US region. 
The west-to-east gradient is an indication of the orographic effect of the Cascade Range, which extends from 
NCA to ORWA and prevents the moist air from the Pacific Ocean from traveling further inland. However, 
ARs still lead to nearly a third of winter precipitation across the border regions of ORWA due to the lower 
elevations of the Columbia River basin. The spatial patterns in Figure 3 are in agreement with previous 
studies (Lavers & Villarini, 2015; Rutz et al., 2014). The WRF simulations can generally reproduce the ob-
servation-based gradient of total and AR precipitation, and therefore the AR contribution to seasonal total 
precipitation (Figures 3d–3f), despite a smaller amplitude. Another analysis based on the PRISM gridded 
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Figure 2.  Spatially averaged winter atmospheric river (AR) frequency (number of 6-hourly time steps per season) in the Modern-Era Retrospective analysis 
for Research and Applications, Version 2 (MERRA2) reanalysis (black lines) and Weather Research and Forecast (WRF) hindcasts (blue and red lines) from 
1981 to 2017 over (a) the North Pacific and western half of North America (NPNA), Oregon and Washington (ORWA), and (b) northern California (NCA) and 
southern California (SCA). These regions are shown in Figure 1. Shadings refer to ensemble spread of AR frequency in the WRF large ensembles, and color 
lines represent the WRF ensemble means.
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observations (as opposed to the CPC observations) reveals similar precipitation patterns between observa-
tions and the WRF simulations (Figure S5). The findings are supported by Patricola et al. (2020) and Leung 
and Qian (2009) who found similar patterns of WRF-simulated winter precipitation over the western US as 
observations. The dry bias in WRF-simulated AR precipitation, also found by Martin et al. (2018), is linked 
to the underestimation of AR frequency in California and Oregon (Figure S2), rather than AR intensity 
(Figure  S4). Another possible cause is model limitation in capturing the physical processes (e.g., cloud 
microphysics, surface energy fluxes) critical to the development of AR precipitation events (Gershunov 
et al., 2019; Martin et al., 2018). It is found that increasing model resolution made a little difference in simu-
lated AR precipitation (Kim et al., 2018). Developing more accurate model forcing data (especially low-level 
jet water vapor flux) and physics parameterizations of subgrid-scale processes (e.g., surface energy fluxes 
and cloud microphysics) may lead to more skillful simulation of AR precipitation (Martin et  al.,  2018). 
Therefore, future work is needed to evaluate the performance of WRF in simulating AR precipitation with 
state-of-the-art cloud microphysics schemes and forcing data (such as ERA5 reanalysis), though it is not 
within the scope of the current study.

The WRF model also performs well in simulating the observation-based temporal variability of DJF total 
precipitation and AR precipitation, despite an underestimation of precipitation amount (Table 1; Figures 4 
and S6). For total precipitation, the differences between the WRF simulations and CPC observations are 
+10.2%, −13.4%, and −42.8% in ORWA, NCA, and SCA, respectively. Significant correlations are found 
between the two time series across all three regions (p < 0.01; Table 1). In the CPC observations, 148.6 mm 
(42.2%), 144.3 mm (34.7%), and 49.1 mm (32%) of seasonal total precipitation are associated with ARs in 
ORWA, NCA, and SCA, respectively (Table 1). In the WRF simulations, regional averages of AR precipita-
tion are much lower when compared to the CPC observations, but the time series of AR precipitation are 
still significantly correlated with the observations in ORWA and NCA (p < 0.001). In SCA, the correlation 
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Figure 3.  Spatial patterns of 1981–2017 winter total precipitation (mm season−1), atmospheric river (AR) associated precipitation (mm season−1), and the 
relative contribution of ARs to total precipitation in the Climate Prediction Center (CPC) observations (a–c) and Weather Research and Forecast (WRF) 
hindcasts (d–f).
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is weaker and insignificant (r = 0.23, p = 0.18). Not surprisingly, there exist large biases in the relative 
contributions of ARs to total precipitation across all three regions, but positive and significant correlations 
(p < 0.05) between the observed and simulated AR contributions are found in ORWA and SCA. The un-
derestimations of AR precipitation in NCA and SCA are largely attributed to WRF's underestimations of 
landfalling AR frequency (Figures 2 and S2). In ORWA, simulated AR precipitation is 31.6% lower than that 
of the observations, even with 8.1% higher AR frequency and 10.2% higher total precipitation. This further 
demonstrates WRF model's limitation in simulating AR precipitation events.

AR precipitation is positively correlated with seasonal total precipitation (r: 0.54–0.87) in all regions, con-
sistently seen in the observations and WRF simulations. This highlights the vital role of landfalling AR 
activity in contributing to seasonal total precipitation. In contrast, there is generally a weak and insignifi-
cant correlation between AR frequency in NPNA and AR precipitation in any of the western US subregion 
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Figure 4.  Spatially averaged 1981–2017 winter total precipitation (a), atmospheric river (AR) associated precipitation (b), and the relative contribution of 
ARs to total precipitation (c) in the Climate Prediction Center (CPC) observations (blue lines) over Oregon and Washington (ORWA). Blue shadings refer to 
ensemble spread in the Weather Research and Forecast (WRF) hindcasts, and blue lines represent the WRF ensemble means.
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(except simulated AR and precipitation in ORWA), implying that overall AR activity in NPNA may not be 
a useful predictor of precipitation in the western US. For example, in DJF 2016/17, observed total precipi-
tation (AR precipitation) doubled (tripled) in both NCA and SCA, which were caused by 2.4 and 3.9 times 
more frequent landfalling AR activity, respectively. However, AR frequency over NPNA is virtually the same 
as the climatological mean over the same season. The AR-precipitation relationship is similarly reproduced 
in the WRF hindcasts. What physical mechanisms lead to the weak connection between NPNA AR frequen-
cy and western US precipitation is beyond the scope of this study, but warrants future research.

4.  Results and Discussion
To evaluate the sources of subseasonal-to-seasonal predictability of ARs and precipitation, we first examine 
the effect of different ENSO events on seasonal NPNA and landfalling ARs, as well as AR-related precipita-
tion in the western US. Then we investigate the influence of MJO phases on subseasonal ARs and associated 
precipitation. Lastly, the joint influences of ENSO and MJO on ARs and precipitation are assessed. Both the 
observations and WRF large ensembles are utilized to explore the relationship between the climate modes 
(ENSO and MJO) and western US hydroclimate.

4.1.  The Effect of ENSO on ARs and Precipitation

In this section, we primarily use the ELI-defined ENSO events in the following analysis, but also explore 
Niño 3.4-defined ENSO events for comparison, as discussed in Section 2.5. We compare the results from 
the WRF simulated ARs and precipitation to those from observation-based ARs and precipitation by ENSO 
phase. We show the resulting figures from the WRF-derived analysis in this section, and observation-based 
figures in the supplement for the purpose of comparison. It is worth noting that the number of years (36 wa-
ter years in total from 1981 to 2017) and El Niño/La Niña events are very limited in the MERRA2 and CPC 
observations, making a robust and physically based comparison of ARs and precipitation between ENSO 
phases difficult when compared to those in the WRF hindcasts (318 model years in total from 1981 to 2017).

We find the ELI-based ENSO events have distinct effects on AR activity at ocean basin and regional scale 
over the North Pacific (Figure 5). ENSO events have minor effects on basin-wide averaged AR activity, as 
shown by the small interannual variability in NPNA AR frequency (Figure 2) and similar distributions of 
ARs track density during different ENSO phases (not shown) as in Figure 1. At regional scale, ENSO events 
substantially modulate simulated ARs across NPNA (Figure  5). Specifically, AR activity is strengthened 
along 30°N and weakened to its south and north during El Niño years. Despite some regional differences 
between La Niña and ENSO neutral years, AR activity is weakened along 30°N and strengthened to the 
south and north, which contrasts with El Niño years. Similar responses with the three ENSO phases are 
also evident in the MERRA2 AR spatial patterns (Figure S7), as well as the MERRA2 and WRF-simulated 
AR patterns based on the Niño 3.4-defined ENSO events (not shown). The patterns, consistent with Mund-
henk et al. (2016) and Kim et al. (2017), are associated with an enhanced (weakened) Aleutian Low and 
equatorward (poleward) shifted subtropical jet during El Niño (La Niña) years (Kim et al., 2017; Payne & 
Magnusdottir, 2014).

In the western US, ENSO events exert different influences on AR activity at grid point and regional scale 
(Figure  5). Over a large majority of grid points in the western US, AR frequencies are not significantly 
different between any one of the three ENSO phases and the climatological mean, consistent with Guan 
and Waliser (2015) and Mundhenk et al.  (2016). When aggregating over the western US region, we find 
below-average (above-average) AR frequency relative to DJF climatology during ELI-based El Niño (La 
Niña) periods in both the WRF simulations and MERRA2 reanalysis (Figures 5, S7–S9). In contrast, when 
ENSO events are defined by the traditional Niño 3.4 index, above-average (below-average) AR frequency 
in the MERRA2 reanalysis is found during El Niño (La Niña) events, though their differences from clima-
tology are small (Figure S10). The latter is in qualitative agreement with Payne et al. (2014), Mundhenk 
et al. (2016), and Kim et al. (2017) whose conclusions were also based on traditional ENSO indices defined 
by SST anomalies over a fixed region. The agreement among studies and disagreement between ENSO 
indices imply that ENSO diversity can alter the empirical relationship between ENSO and landfalling AR 
activity, thus leading to large uncertainties.
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For the WRF-simulated ARs in the western US, we find significantly higher AR activity (p < 0.05) in the 
Niño 3.4-defined La Niña years than El Niño and ENSO neutral years (Figure S11). This is inconsistent with 
the MERRA2-based ENSO–AR relationship, despite the same algorithm (Tempest) is used to detect ARs. 
This is due to a large underestimation (−19.2% in relative to MERRA2) of AR frequency by WRF during 
central Pacific El Niño periods, as compared to an underestimation of 4.4% during eastern Pacific El Niño 
events. The WRF-based ENSO-AR correlation is also contrary to the findings in Payne et al.  (2014) and 
Kim et al. (2017). A further analysis reveals that with eastern Pacific El Niño events as defined by the Niño 
3 index (i.e., 1982/83, 1991/92, 1997/98, 2015/16, equivalent to strong and moderate El Niño events based 
on ELI), above-normal AR activity is found in both MERRA2 and WRF data (Figures 2 and 6), consistent 
with Kim et al. (2017). As demonstrated by Patricola et al. (2020; see Figure 12 therein) and Figure 6, more 
frequent landfalling AR activity in the WRF simulations is generally found during extreme El Niño years 
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Figure 5.  Spatial patterns of anomalies in the Weather Research and Forecast (WRF) model-simulated atmospheric river (AR) frequency (number of time steps 
season−1 in relative to winter climatology) during the El Niño/Southern Oscillation (ENSO) Longitude Index (ELI)-based (a) El Niño, (b) La Niña, and (c) ENSO 
neutral phases. The western US region is shown with finer details in Figure S8. Stippling refers to a significant difference in AR frequency between individual 
ENSO phase and climatology using a grid-cell specific two-sample t test with the p values adjusted by controlling the false discovery rate at 0.05.
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(except 1991/92 with weaker AR activity). With central Pacific El Niño events as defined by the Niño 4 index 
(i.e., 1994/95, 2002/03, 2004/05, 2009/10, equivalent to weak El Niño events based on ELI), we uncover be-
low-normal landfalling AR activity in both the MERRA2 reanalysis and WRF simulations (Figures 2 and 6), 
inconsistent with Kim et al. (2017).

The inconsistency may be due to choice of AR definition and detection algorithm, with the Tempest track-
ing algorithm in the current study being more restrictive than the ones used in Payne et al. (2014) and Kim 
et al. (2017). Rutz et al. (2019) concluded that AR tracking methods with more restrictive criteria usual-
ly detect less frequent ARs, consistent with our findings. Given the small and insignificant difference in 
MERRA2 landfalling AR frequency between El Niño and La Niña periods, it is of importance to examine 
whether the detected ENSO-AR relationship is sensitive to tracking algorithms other than Tempest. The 
Tier 1 experiment in the Atmospheric River Tracking Method Intercomparison Project (ARTMIP; Rutz 
et al., 2019) provides a unique resource to test the hypothesis, though it is beyond the scope of the current 
study. Zhou et al. (2020) did examine the uncertainty of ENSO-AR relationship stemming from eight global 
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Figure 6.  Boxplots of the Weather Research and Forecast (WRF) model-simulated atmospheric river (AR) frequency by region and the El Niño/Southern 
Oscillation (ENSO) Longitude Index (ELI)-based ENSO type from winters 1981–2017 over (a) the North Pacific and western half of North America (NPNA), 
(b) Oregon and Washington (ORWA), (c) northern California (NCA), and (d) southern California (SCA). Different types of ENSO events (and abbreviations) 
include strong El Niño (SE), moderate El Niño (ME), weak El Niño (WE), ENSO neutral (EN), weak La Niña (WL), moderate La Niña (ML), strong La Niña 
(SL), and all events combined (ALL). To ensure an equal weighting of simulated ARs by year, the years with five ensemble members are duplicated five times to 
make them 25-member ensemble years. Due to large number of outliers, they are excluded in these plots for improved visualizations of boxes.
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AR tracking algorithms participating in the ARTMIP Tier 1 experiment. They showed that while all algo-
rithms consistently capture the changes of AR by ENSO over the North Pacific basin, uncertainty is large 
for landfalling AR frequency because of its sensitivity to the design of algorithms (i.e., AR detection thresh-
olds). To sum up, the ENSO-AR relationship depends on ENSO indices and climate datasets (and possibly 
AR detection algorithms as well), with the ELI identifying enhanced landfalling AR activity during extreme 
(or eastern Pacific) El Niño events. The findings highlight ELI as a valuable source of seasonal predictability 
of landfalling ARs, besides precipitation in the western US (Patricola et al., 2020).

Next, we further examine the characteristics of AR frequency with strong, moderate, and weak El Niño/La 
Niña phases, and the ENSO neutral phase (Figure 6). Similar changes in AR activity are found in NPNA 
and ORWA, characterized by significantly less frequent ARs with weak El Niño phase and more frequent 
ARs with moderate El Niño and strong La Niña phases. In California (including NCA and SCA), stronger 
AR activity is linked to La Niña and strong El Niño phases, while weaker AR activity is tied to moderate El 
Niño and ENSO neutral phases. This echoes the contracts in landfalling ARs between La Niña phase and El 
Niño and ENSO neutral phases (Figure 5). We also explore the ENSO-AR relationship using the traditional 
Niño 3.4 index and find similar results as the ELI, except for ARs with moderate El Niño phase in NPNA 
and ORWA (Figure S11).

The amount of precipitation associated with landfalling ARs (AR precipitation) corresponds well with AR 
frequency by ENSO phase (Figure 7). Specifically, in ORWA, El Niño phase has less AR precipitation than 
La Niña phase (p < 0.001), primarily because weak El Niño phase is associated with significantly less AR 
precipitation than the other ENSO phases. In NCA and SCA, moderate El Niño and ENSO neutral phases 
are characterized by less AR precipitation. In NCA, El Niño phase has significantly less AR precipitation 
than La Niña phase (p < 0.001), but the difference is insignificant in SCA (p = 0.11). The ENSO-AR precip-
itation relationship is a response to the ENSO-AR frequency connection, as also found by Kim et al. (2017) 
and Guan and Waliser (2015), because the intensities of AR precipitation events in El Niño and La Niña 
phases are similar (Payne & Magnusdottir,  2014). Furthermore, the percentage contribution of ARs to 
seasonal total precipitation generally aligns with the amount of AR precipitation in NCA and SCA (Fig-
ures 7e, 7f and 7b–7c). However, this is not the case in ORWA due to precipitation events induced by non-
AR meteorological systems (e.g., extratropical cyclones, monsoon) and their responses to different ENSO 
phases (Sellars et al., 2015).

4.2.  The Effect of MJO on ARs and Precipitation

Figure 8 exhibits the anomalies in DJF landfalling AR frequency (relative to DJF climatology) following the 
MJO phases with a time lag of 0–36 days. The time lags are chosen because the MJO phases exert influence 
on AR activity (especially those making landfall) at downstream longitudes of the MJO convection and the 
process usually takes days to weeks (Jin & Hoskins, 1995; Mundhenk et al., 2018). In ORWA, MERRA2 AR 
frequency in DJF is below seasonal average for up to 2 weeks after the occurrence of MJO phase 1, above-av-
erage during the third week, and below-average again in week four and five (Figure 8a). AR frequency fol-
lowing MJO phase 2 echoes the evolution of AR anomalies with phase 1, except for shorter time lags, which 
is expected with the typically sequential occurrences of phases 1 and 2. From phases 3 to 5, ARs are higher 
than normal within the first week of time lag. The similarity in AR frequency anomalies along the diagonal 
(from long to short time lags; Figure 8a) suggests a linkage between MJO and landfalling AR activity.

WRF simulations generally agree with the MERRA2 AR-MJO relationship in ORWA, such as the overall 
lower AR frequency following MJO phases 1–2 and 7–8 and higher AR frequency for two weeks subsequent 
to phases 3–5 (Figure 8d). The sign agreement in AR anomalies (anomalies are both positive or negative) be-
tween MERRA2 and WRF is found in 65.1% of MJO-time lag periods, with 23% of being positive and 42.1% 
negative (Figure 9a), and the magnitudes of anomalies vary by MJO-time lag period (Figures 8a and 8d). 
The remaining 34.9% shows disagreement between the two datasets. Within the 36-day lag time period, 
the percentage of agreement in AR anomalies is 53.1% for 14 lagged days and longer and 85.7% for under 
14 days. The evidence demonstrates that WRF is skillful in simulating relative changes in AR frequency 
associated with MJO phases.
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In NCA, MERRA2 AR frequency tends to be lower than the seasonal average in the 2–4 weeks succeeding 
MJO phases 2–3, but increases to above-average in the fifth week subsequent to phases 4–5 (Figure 8b). In 
SCA, similar anomalies in MERRA2 AR frequency are found along the diagonal (from long to short time 
lags), as shown in Figure 8c. The signs of WRF-simulated AR anomalies agree with MERRA2 AR anoma-
lies in 48.7% and 59.9% of MJO–time lag periods in NCA and SCA, respectively (Figures 9b and 9c), despite 
varying magnitudes of anomalies (Figures 8e and 8f). Additionally, in both NCA and SCA, the percentages 
of agreement (WRF vs. MERRA) for longer and shorter than 14 lagged days are virtually the same. The 
MJO-AR relationships in ORWA, NCA, and SCA are in good agreement with those reported by Mundhenk 
et al. (2018; Figures 2 and S2 therein). Moreover, increased landfalling ARs were found during MJO phase 
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Figure 7.  Boxplots of the Weather Research and Forecast (WRF) model-simulated atmospheric river (AR) precipitation (a), (b), and (c) and their relative 
contributions to total precipitation (d), (e), and (f) by region and the El Niño/Southern Oscillation (ENSO) Longitude Index (ELI)-based ENSO type from 
winters 1981–2017 over Oregon and Washington (ORWA), northern California (NCA), and southern California (SCA). To ensure an equal weighting of 
simulated ARs by year, the years with five ensemble members are duplicated five times to make them 25-member ensemble years. Different types of ENSO 
events (and abbreviations) include strong El Niño (SE), moderate El Niño (ME), weak El Niño (WE), ENSO neutral (EN), weak La Niña (WL), moderate La 
Niña (ML), and strong La Niña (SL).
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6 when tropical convection is strong in the western Pacific (Guan & Waliser, 2015; Guan et al., 2012; Payne 
& Magnusdottir,  2014), consistent with the observed and simulated AR activity without time lag in the 
western US (except NCA ARs in MERRA2 and SCA ARs in WRF). The connections between MJO and land-
falling ARs may inform future predictions of ARs in the western US.

We note that after accounting for the multiplicity in testing following Wilks (2016), no significant differ-
ence in MERRA2 AR frequency between any MJO phase and seasonal climatology (i.e., all winter days) is 
found, but significant differences in WRF simulated AR frequency are found over half of MJO and time 
lags (Figure 8). The inconsistency is related to the small sample size in MERRA2 (36 water years from 1981 
to 2017) and large sample size in WRF (318 model years from 1981 to 2017). If we randomly select a single 
WRF realization from each year to form a new 36-year period (i.e., 1981–2017) to mimic the MERRA2 AR 
time series, rather than using the large ensemble, the strong signals in the full WRF hindcasts do not exist.
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Figure 8.  Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA2) (a–c) and Weather Research and Forecast (WRF) model 
simulated (d–f) anomalies in atmospheric river (AR) frequency (percentage difference in relative to all days in winter) by region and Madden-Julian oscillation 
(MJO) phase over (a, d) Oregon and Washington (ORWA), (b, e) northern California (NCA), and (c, f) southern California (SCA). There are 36 water years 
(1981–2017) in the MERRA2 reanalysis and 318 model years from 1981 to 2017 in the large ensemble WRF simulations. Circle refers to a significant difference 
in AR frequency between respective MJO lag days and all winter days using two sample t-test with the p values adjusted by controlling the false discovery rate at 
0.05.
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Figures 10 and 9d–9f show that the anomalies in AR precipitation align with the anomalies in AR fre-
quency during most of MJO-time lag periods. For example, both the CPC observations and WRF sim-
ulations agree that the first week after MJO phase 1 (3) is characterized by decreased (increased) AR 
precipitation in ORWA, which is a result of weakened (enhanced) AR activity. Considering the strong 
and significant correlations between DJF AR frequency and precipitation (including AR precipitation 
and total precipitation; Figure 4), MJO can serve as an important source of predicting precipitation. We 
find the largest increase in observed AR precipitation during MJO phase 3 (time lag 0) in the western 
US, similar to Payne and Magnusdottir (2014). AR precipitation during MJO phase 6 is not significantly 
higher than other phases (except simulated precipitation in SCA), which is also reported by Guan and 
Waliser (2015) and Payne and Magnusdottir (2014). As with AR frequency, significant differences in AR 
precipitation among different MJO phases are not found after considering false discovery rate and the 
effect of sample size.

In ORWA, the qualitative agreement in AR precipitation anomalies between CPC and WRF is found in 
61.8% of MJO-time lag periods, including 27% of positive and 34.9% of negative agreements (Figure 9d), 
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Figure 9.  Agreement and disagreement in atmospheric river (AR) frequency (a–c) and AR precipitation (d–f) anomalies between observation-based data 
and the Weather Research and Forecast (WRF) model simulations by region and Madden-Julian Oscillation (MJO) phase over (a, d) Oregon and Washington 
(ORWA), (b, e) northern California (NCA), and (c, f) southern California (SCA). Positive agreement (anomalies are both positive) and negative agreement 
(anomalies are both negative) are highlighted with green and orange colors, respectively, and disagreement in anomalies is represented by white color.
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which is similar to the degree of agreement in AR frequency. In NCA and SCA, the qualitative agreement 
exists over a majority of time periods (NCA: 52%, including 14.5% positive and 37.5% negative; SCA: 71%, 
including 25.7% positive and 45.4% negative), as shown in Figures 9e and 9f. Within the 36-day lag time 
period, the percentages of agreement in AR precipitation for longer and shorter than 14 lagged days are 
similar to those in AR frequency over all three regions.

The anomalies in AR and precipitation over the western US are supported by earlier studies which explored 
the modulation of MJO on atmospheric dynamics. Gibson et al. (2020) reported that MJO events can modu-
late ridging over the western US and therefore AR and precipitation anomalies. In particular, the west-ridge 
type (a positive geopotential height anomaly centered offshore from California) generally leads to reduced 
AR and precipitation in California, and the ridge's frequency increased significantly after MJO phases 3–6 
with a time lag of 2–4 weeks. Its associated AR and precipitation deficits are consistent with our findings. 
Henderson et al.  (2016) found a significant decrease (increase) in blocking frequency averaged between 
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Figure 10.  Climate Prediction Center (CPC) observational (a–c) and Weather Research and Forecast (WRF) model simulated (d–f) anomalies in atmospheric 
river (AR) precipitation (percentage difference in relative to all days in winter) by region and Madden-Julian oscillation (MJO) phase over (a, d) Oregon 
and Washington (ORWA), (b, e) northern California (NCA), and (c, f) southern California (SCA). There are 36 water years (1981–2017) in the Modern-Era 
Retrospective analysis for Research and Applications, Version 2 (MERRA2) reanalysis and 318 model years from 1981 to 2017 in the large ensemble WRF 
simulations. Circle refers to a significant difference in AR precipitation between respective MJO lag days and all winter days using two sample t-test with the p 
values adjusted by controlling the false discovery rate at 0.05.
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40°N and 60°N over the East Pacific in the two weeks following MJO Phase 3 (7). The anomaly may result 
in increased (decreased) AR and precipitation over the western US (Figures 8–10).

4.3.  The Concurrent Effects of ENSO and MJO on ARs and Precipitation

Landfalling ARs are not only subject to the individual effects of ENSO and MJO, but also influenced by 
their combined effects. Figure S12 exhibits the responses of MERRA2 AR frequency to strong MJO phas-
es (amplitude >1) during El Niño and La Niña winters, respectively. In ORWA, only 54% of El Niño-MJO 
and La Niña-MJO conditions agree with the same sign of anomalies in AR frequency (relative to DJF 
climatology). For example, in the first week following MJO phase 2 (4), decreased (increased) AR activity 
is accompanied with both El Niño and La Niña phases, but discrepancies exist in MJO Phase 1 with time 
lags of 0, 2, and 4 days (Figure S12a and S12d). In NCA and SCA, the percentage of agreements between 
El Niño-MJO and La Niña-MJO conditions are 50% and 44.7%, respectively (Figures S12b, S12e, S12c 
and S12f). In the first one to two weeks following MJO phases 1–3, AR activity in NCA is increased under 
El Niño conditions, whereas it is generally decreased with La Niña conditions (Figure S12b and S12e). 
The contrasting responses lead to modest changes in AR activity when examining the combined effects 
of ENSO events (Figure 8b). For AR precipitation, similar percentages of AR agreement between El Niño-
MJO and La Niña-MJO conditions are found in ORWA (57.9%), NCA (54.6%), and SCA (51.3%), as shown 
in Figure S13. The findings suggest that with the same MJO phase and time lag, AR activity may respond 
similarly or differently to concurrent El Niño/La Niña events. Further, the uncertainty on ENSO-AR rela-
tionship induced by different AR tracking algorithms and ENSO indices (Section 4.1) may also compound 
the responses of ARs to ENSO and MJO.

A similar analysis with the WRF simulations further confirms that interactions between different MJO and 
ENSO phases can lead to variegated responses of AR activity and AR precipitation (Figures 11 and 12). The 
percentages of AR frequency (and associated precipitation) agreement between El Niño-MJO and La Niña-
MJO periods are 61% in ORWA, 48% in NCA, and 57% in SCA, respectively. In both MERRA2 and WRF, the 
agreement in ORWA AR anomalies between El Niño–MJO and La Niña–MJO periods increases with time 
lags ranging from five to one week following the MJO phases. In contrast, increased coherence between El 
Niño-MJO and La Niña-MJO conditions is not found in NCA and SCA. The complicated responses of AR 
activity to the interactions of ENSO and MJO are also reported by Mundhenk et al. (2016). Given that ENSO, 
MJO, and their concurrent effects offer predictive skill for winter precipitation (DelSole et al., 2017), em-
ploying the variegated AR responses to ENSO and MJO detected in the current study may further advance 
the prediction of ARs and precipitation across the western US.

5.  Conclusions
To improve the prediction of western US hydroclimate at subseasonal-to seasonal-timescales, we examine 
the relationships between hydroclimate (including AR frequency and associated precipitation) and low-fre-
quency climate variability (including ENSO and MJO) by using observations and a large ensemble of WRF 
simulations from 1981 to 2017. The large ensemble approach not only enables us to quantify climate mode-
AR and AR-precipitation relationships by considering observations/modeling uncertainties due to internal 
climate variability, but also offers a physically based and systematic assessment of extreme ENSO events' 
modulation on landfalling ARs and precipitation. We find that WRF reproduces the spatial and temporal 
patterns of AR frequency, including the climatological mean and interannual variability. WRF also repro-
duces the mean and variability of seasonal total precipitation in the western US and the variability of AR 
precipitation, although it underestimates AR precipitation.

ENSO plays different roles in modulating AR activity at ocean basin, regional, and grid point scale. ENSO 
has small effects on the North Pacific basin-wide averaged AR activity and grid-scale ARs in the western 
US, but it influences ARs at regional scale. Specifically, AR activity is strengthened (weakened) along 30°N 
and weakened (strengthened) to its south and north during El Niño (La Niña and ENSO neutral) years, 
consistent with previous literature. When aggregating ARs over the western US, we discover that the EN-
SO-AR relationship depends on ENSO indices (ELI and Niño 3.4) and climate datasets (MERRA2 and WRF 
simulations), with the ELI identifying enhanced landfalling AR activity during extreme (or eastern Pacific) 
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El Niño events in both datasets. The findings highlight ELI as a valuable source of seasonal predictability 
of landfalling ARs. While the responses of ORWA ARs to different ENSO phases are similar to NPNA ARs, 
NCA and SCA share close ENSO-AR relationship. Moreover, AR precipitation corresponds well with AR 
frequency by ENSO phase.

This study also shows a relationship between MJO and landfalling AR activity. MJO can lead to anoma-
lously high/low AR frequency across the western US, depending on the phase of MJO and time lag. For 
example, AR frequency in ORWA decreases in the two weeks following MJO phases 1, 2, 7, and 8, but 
increases after phases 3–5 with the same time lags. In addition, the lack of statistically significant MJO-
AR relationships in observations can be attributed to the small sample size, as the relationships are sig-
nificant in the full set of WRF large-ensemble, but insignificant for a subset of the large-ensemble data. 
Furthermore, ENSO substantially modulates the MJO-AR relationship in both the large ensembles and 
observations, triggering variegated responses of landfalling ARs and AR precipitation in La Niña and El 
Niño years. If we compare El Niño-MJO and La Niña-MJO periods, only ∼50% of their anomalies in AR 
frequency have the same sign (i.e., both positive or negative). With time lags ranging from 5 to 1 week 
following MJO phases, the agreement in ORWA AR anomalies between El Niño-MJO and La Niña-MJO 
periods increases, but the increased coherence is not found in NCA and SCA. A parallel analysis for AR 
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Figure 11.  Anomalies in the Weather Research and Forecast (WRF) model simulated atmospheric river (AR) frequency (percentage difference in relative 
to all days in winter) by El Niño/Southern Oscillation type (a–c: El Niño, d–f: La Niña) and Madden-Julian oscillation (MJO) phase over (a, d) Oregon and 
Washington (ORWA), (b, e) northern California (NCA), and (c, f) southern California (SCA). Circle refers to a significant difference in AR frequency between 
respective MJO lagged days and all winter days using two sample t-test with the p values adjusted by controlling the false discovery rate at 0.05.
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precipitation further confirms the joint influence of ENSO-MJO on AR precipitation. Our findings high-
light the need for evaluating concurrent effects of different climate modes on ARs and precipitation, and 
may shed light on a path toward accurate subseasonal-to-seasonal prediction of ARs and precipitation 
over the western US.

Data Availability Statement
The MERRA-2 reanalysis is available through the NASA Goddard Earth Sciences Data Information Ser-
vices Center (https://disc.gsfc.nasa.gov/datasets?keywords=%22MERRA-2%22&page=1&source=Mod-
els%2FAnalyses%20MERRA-2). CPC US Unified Precipitation data are provided by the NOAA/OAR/ESRL 
PSL, Boulder, Colorado, USA, from their website at https://psl.noaa.gov/. The PRISM precipitation data 
are provided by the PRISM climate group at the Oregon State University (https://prism.oregonstate.edu). 
The WRF data are publicly available through the NERSC portal (https://portal.nersc.gov/archive/home/
projects/cascade/www/ARs_WesternUSprecip).
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Figure 12.  Anomalies in the Weather Research and Forecast (WRF) model simulated atmospheric river (AR) precipitation (percentage difference in relative 
to all days in winter) by El Niño/Southern Oscillation type (a–c: El Niño, d–f: La Niña) and Madden-Julian oscillation (MJO) phase over (a, d) Oregon and 
Washington (ORWA), (b, e) northern California (NCA), and (c, f) southern California (SCA). Circle refers to a significant difference in AR precipitation between 
respective MJO lagged days and all winter days using two sample t-test with the p values adjusted by controlling the false discovery rate at 0.05.
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