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ABSTRACT: Undocumented Orphaned Wells (UOWs) are wells without an operator that have limited or no documentation with
regulatory authorities. An estimated 310,000 to 800,000 UOWs exist in the United States (US), whose locations are largely
unknown. These wells can potentially leak methane and other volatile organic compounds to the atmosphere, and contaminate
groundwater. In this study, we developed a novel framework utilizing a state-of-the-art computer vision neural network model to
identify the precise locations of potential UOWs. The U-Net model is trained to detect oil and gas well symbols in georeferenced
historical topographic maps, and potential UOWs are identified as symbols that are further than 100 m from any documented well. A
custom tool was developed to rapidly validate the potential UOW locations. We applied this framework to four counties in California
and Oklahoma, leading to the discovery of 1301 potential UOWs across >40,000 km2. We confirmed the presence of 29 UOWs from
satellite images and 15 UOWs from magnetic surveys in the field with a spatial accuracy on the order of 10 m. This framework can
be scaled to identify potential UOWs across the US since the historical maps are available for the entire nation.
KEYWORDS: oil and gas industry, undocumented orphaned wells, historical topographic maps, artificial intelligence, computer vision,
semantic segmentation, U-net

■ INTRODUCTION
The United States (US) has a long history of hydrocarbon
extraction, with about 3.7 million oil and gas (O&G) wells
drilled since the 1850s.1 Although abandonment requirements
vary by state2−6 and may have differed in the past, today well
operators are generally required to plug and abandon O&G
wells when they are no longer profitably producing oil or gas.
Wells that do not have “a legally or financially viable
responsible party for plug and abandon operations,”7 such as
due to bankruptcy, are considered orphaned.

An orphaned well may also be undocumented, defined by
the Interstate Oil and Gas Compact Commission (IOGCC) as
one “that is entirely unknown to the regulatory agency or a
well of which the agency has some evidence, but which
requires further records research or field investigation for
verification”.7 Wells that are both undocumented and

orphaned are referred to as Undocumented Orphaned Wells
(UOWs). These mostly occur because the management,
tracking and regulation of O&G wells in the US is overseen
by state agencies, which were typically established many years
after the first wells were drilled in their jurisdiction. Based on
information provided by some states, the IOGCC estimates
there are 310,000 to 800,000 UOWs in the US.7 Estimates of
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documented abandoned wells in the US vary from over 2.3
million8 to 3.6 million.9

Orphaned wells can present hazards to human health10,11

and ecosystems.12 These include the release of methane, a
powerful greenhouse gas, hydrogen sulfide, and volatile organic
compounds into the atmosphere,13 as well as contamination of
freshwater aquifers and surface water14 from oil, brine and
methane leakage.15,16 Notably, methane leakage from
orphaned wells is a potentially significant source of carbon
emissions to the atmosphere during oil and gas operations.11

Hence, identification of UOWs will allow proper character-
ization and plugging to mitigate potential environmental risks.

Throughout the years, several methods have been developed
to find UOWs, typically at spatial scales ranging from small
plots to oil fields. Observational approaches leverage ground-
based or remote sensing surveys using satellite imagery,
LiDAR, magnetometers and other instrumentation, such as gas
sensors or metal detectors, to identify the precise location of
the UOW.17−20 Data mining approaches, instead, include
searching for well locations from O&G databases, historical
records, photographs, and lease or farmline maps.21 UOWs
have also been reported to state agencies when discovered by
individuals or citizen science efforts.22,23

To date no methods have been developed to identify the
precise location of UOWs across whole states and basins. It has
been difficult to scale up and transfer estimates from local
studies to other regions due to the diversity of landscapes, oil
production histories and practices, and the amount of
documentation available in different parts of the US. In
2022, the Consortium Advancing Technology for Assessment
of Lost Oil & Gas Wells (CATALOG)24 program was initiated
by the US Department of Energy to assist regulatory agencies
in reducing the impact of UOWs. One of the program’s
primary goals is to develop methods to identify the locations of
UOWs across the US.

In this study, we describe a semiautomated, transferable
method developed for the CATALOG program to identify
UOWs at regional scales in the US using the US Geological
Survey (USGS) Historical Topographic Maps Collection
(HTMC), a digital archive of about 190,000 georeferenced
topographic maps published between 1884 and 2006.25 We
focus on a subset of these maps, referred to as “quadrangles”,
which have consistent symbols for a variety of natural and
manmade features, including O&G wells. There are about
131,000 quadrangles in the HTMC, comprising 69% of the
entire database.

Traditional approaches for image feature extraction involve
techniques like edge detection, color separation using
clustering, or template matching to identify regions of interest.
Many studies have used this approach on historical maps for
the identification of topographical lines,26 elevation spots,27

roads28 or other features.29 The main advantage of these
techniques is that they do not require training data, but their
performance is sensitive to the choice of parameters. For this
reason it is difficult to find a unique set of parameters that
apply across the variability in map backgrounds and color
distortion occurring in the quadrangles, despite their focus on
consistency.

In recent years, neural networks have proven to be extremely
effective in the field of computer vision, often outperforming
traditional approaches in tasks like image segmentation. In
particular, the convolutional neural network U-Net model30 is
a popular choice due to its skill in diverse image identification

tasks. Contrary to traditional computer vision algorithms the
U-Net model is capable of generalization and does not require
parameter tuning for different maps.

The objective of this study is to demonstrate that the
HTMC quadrangles are a good source of information for
identifying UOWs. We accomplish this by developing a
semiautomated workflow that can quickly detect wells in the
maps, and verifying the results using field surveys and satellite
images. Hence, we developed a framework that (1) identifies
O&G well symbols from the HTMC with high precision
leveraging the state-of-the-art U-Net computer vision algo-
rithm, (2) classifies potential UOWs by screening against
O&G databases, and (3) provides the ability to verify the
results quickly through a custom script.

We demonstrate the effectiveness of this framework by
identifying 1301 potential UOW locations in the major oil
producing regions of Kern and Los Angeles counties in
California, and Oklahoma and Osage counties in Oklahoma.
For some sites we provide verification of the presence of
UOWs based on evidence from satellite images and field
investigations, and find that our algorithm can identify UOW
locations with an average accuracy of the order of 10 m. The
method can eventually be applied to other maps, besides the
quadrangles, that lack consistency in features and symbols,
although this would require identifying and labeling all the
variations across maps. To our knowledge, this is the first
approach developed to identify UOWs at county scales,
enabling stakeholders to rapidly identify potential UOW
locations in their regions of interest and prioritize them for
field verification.

■ METHODS
Data Sets. Maps from the HTMC are digitally available for

the contiguous US (CONUS), Hawaii and part of Alaska as
georeferenced raster images,31 where each pixel, and by
extension a feature in the map, is associated with specific
geographical coordinates. Within the HTMC, we used a series
of maps issued between 1947 and 1992 covering the CONUS,
each spanning 7.5 min of longitude and latitude at 1:24,000
scale, referred to as “quadrangles”. These maps are useful for
identification of UOWs over large areas because they use
consistent colors and symbols to indicate natural and man-
made features such as mountain tops (represented as brown
crosses), rivers and canals (blue lines), vegetated areas (various
green patterns), roads (black double lines), buildings (black
rectangles), water tanks (filled black circles), and importantly
O&G wells (hollow black circles)32 (see Figure SI1 for
examples of maps used in this study).

The records of documented O&G wells were retrieved from
official state databases. For California, we used the California
Geologic Energy Management Division (CalGEM) database
containing information for 241,684 wells.33 In Oklahoma we
used 462,445 records from the Oklahoma Corporation
Commission34 and 43,822 records from the Osage Bureau of
Indian Affairs35 for a total of 506,267 wells.
Selection of Study Areas. To demonstrate our workflow,

we used counties, rather than oil fields or other geographic
domains, as spatial units. Counties have clearly defined
boundaries, and include areas beyond oil fields that have a
greater variety of land uses and topographies, which prevents
bias toward regions of predominant hydrocarbon extraction.
We used quadrangle maps that covered any part of a county,
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resulting in study areas that are slightly larger than official
county boundaries.

We first identified states of interest as the ones with
substantial early oil production as noted from annual
production data available for all states in the US through
1935.36 California and Oklahoma were interchangeably first
and second for annual oil production in the first decades of the
1900s (Figure SI2a). California had the most cumulative
production from 1914 to 1935, and Oklahoma was the second
largest from 1917 to 1933 (Figure SI2b). Thus, we chose to
investigate areas in California and Oklahoma, because of the
relevance in early oil production of these two states.

Within each state of interest, we repeated the same analysis
at a finer scale to select counties with the highest oil
production in the early years. We did not consider dry gas
production because it was not a target of early hydrocarbon
resource development. In California, Los Angeles County had
the largest annual production prior to 1900 and Kern County
thereafter (Figure SI3a),37 and the two counties had the most
cumulative production since 1901 (Figure SI3b). In
Oklahoma, Osage County has a portion of the oldest and
largest oil field in the state (Bartlesville-Dewey, discovered in
1897) and almost the entirety of the fourth largest field, also
discovered relatively early (Burbank, discovered in 1920).
Oklahoma County includes most of the second largest field,
discovered relatively early (Oklahoma City, discovered 1928),
and much of another large field (Edmund West, discovered
1943).38

In summary, we chose to apply our workflow to Kern and
Los Angeles counties in California, and Osage and Oklahoma
counties in Oklahoma because of their production history, as
well as distinct land use (rural and urban) to test the
performance of the algorithm across a diversity of map types.
The two states also had gaps between the start of oil
production and the establishment of well documentation
regulations. The first oil and gas regulatory agency in

California, the Division of Oil, Gas, and Geothermal
Resources, now known as CalGEM, was established and
started regulating the industry in 1915.39,40 In Oklahoma, the
Oklahoma Corporation Commission was established in 1907
and started to fully regulate the oil and gas industry in
1915.41,42 We also considered these counties as locations
where field activities were planned as part of the CATALOG
program, to enable on-the-ground confirmation of potential
UOWs detected from our algorithm.
Labeling and Preprocessing. We selected 79 maps in

California, representative of the different background colors
and landscape features present in the HTMC (Figures 1a and
SI1). From each of these maps we cropped one or more 1000
× 1000 pixel tiles (Figure 1b), where each pixel is
approximately 2 m ground resolution, for a total of 440 tiles.
We used the software Labelme43 to manually tag the locations
of 11,046 wells by visually identifying well symbols in the map
and recording the location of their centers (Figure 1c). It took
a total of 40 h for a single operator to complete this task. For
areas where no wells are present, no locations were recorded.
We intentionally did not use maps from Oklahoma for training
to demonstrate the generalizability of the workflow to new
regions that the model was not trained on. This leverages the
consistency in quadrangle maps throughout the United States,
and would avoid the need to create labels for every potential
region where UOWs may exist.

After the labeling, we generated a corresponding binary
mask for each tile, where the location of a well is denoted by a
solid disc of 4 pixels radius (and area of 49 pixels) with value 1.
Tiles with no wells have masks with only 0 values. Because the
well symbol size varies throughout the map series, averaging
about 6 pixels in radius, we chose slightly smaller discs of 4-
pixel radius to ensure that each disc is entirely contained within
the hollow black circles, accounting for their size differences.

Each 1000 × 1000 pixel tile and its corresponding mask
were split into 16 equally spaced 256 × 256 pixel tiles for a

Figure 1. (a−e) Visual workflow of pretraining processing steps using (a) a 1954 map of Bakersfield, CA, (b) a 1000 × 1000 pixel tile within it, (c)
the locations of the labeled well symbols displayed by blue dots connected by lines, (d) a 256 × 256 pixel inset and, (e) its relative binary mask
generated from the labels to be used as pairs during training. (f−j) Visual workflow of the well detection process using (f) a 1953 map of Belridge,
CA, (g) a selected 256 × 256 tile within it showing oil wells and tanks as hollow and solid black circles respectively, (h) the probability map of well
pixels as predicted by the computer vision algorithm, (i) the final identification and localization of wells, (j) the visualization of the detected wells
on a map shown as blue circles and unique identifiers. Documented wells are shown in purple, and a potential UOW in red, with the distance to the
closest documented well displayed in meters (brown number).
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total of 7040 image/mask pairs (Figure 1d,e). Every pair is
augmented 10 times using a random rotation ranging from 0 to
360°, and random horizontal and/or vertical flip, ultimately
producing 70,400 image/mask pairs. This constitutes the data
set for our detection algorithm, which was randomly split 60−
20−20 for training, validation and test sets. To prevent data
leakage, no samples from the same original map were allowed
to be present in more than one set. Also, labeled map tiles are
categorized according to their dominant land cover color
background, i.e., red for urban areas, green for vegetation, blue
for water bodies and white for undefined, and each category is
represented in each set of the model. The validation set was
used to tune the model parameters and the test set constitutes
out-of-sample images used solely for performance evaluation.
Segmentation Model and Training. We used a U-Net

neural network,30 a state-of-the-art deep learning computer
vision model, to detect well symbols on the maps. The model
performs image segmentation using pairs of images and their
relative binary masks as inputs, and is trained to identify pixels
of value 1 in masks as target objects (see Supporting
Information for details on model implementation for this
study). To evaluate the performance of the model, we used the
intersection over union (IoU) metric, which quantifies the
ratio of correctly detected pixels.44 It took about 2 h to
complete the training using 4 GPUs in parallel when using an
exclusive node on the Department of Energy’s NERSC
supercomputer.
Segmentation Postprocessing. The outcome of the

image segmentation is a probabilistic map with pixel values
ranging from 0 to 1, with values closer to 1 indicating the
presence of a well (Figure 1h). Pixels with values equal to or
greater than 0.5 were mapped into ones, while values below 0.5
were mapped into zeros (Figure 1i). Pixels with values 1 and
less than 4 pixels apart (i.e., the radius of well masks) were
considered contiguous and grouped into one object, and their
centroid computed as an average of the object’s pixel
coordinates. For evaluation purposes, if a centroid was located
up to 4 pixels away from the center of a well symbol identified
during the labeling process, the detected object was considered
a true positive (TP). Conversely, if the centroid of the detected
object was more than 4 pixels apart from the center of any well
symbol, the object was considered a false positive (FP) for the
purpose of the detection by the algorithm. Finally, hollow
black circles present in the map that were not detected by the
model were considered false negatives (FN). The precision,
defined as TP/(TP + FP), and recall, defined as TP/(TP +
FN), were tuned by thresholding the detected objects by their
area. The precision and recall in the validation set were equal
to 0.99 and 0.88 respectively, when the threshold area was set
to 45 pixels (see the Supporting Information for details about
the threshold choices).
Workflow to Identify Potential UOW Locations in

Topographical Maps. After training and validating the
neural network, we identified potential UOWs by the following
process (Figure 1f−j). First the map margins were stripped and
the resulting image sliced into 256 × 256 tiles (Figure 1g) with
a 25-pixel overlap with adjacent tiles to ensure that any well
symbol cut off during the slicing was present as full circles in
one of the tiles. The model was applied to each tile separately,
resulting in probabilistic maps (Figure 1h) that were combined
using a union operator and transformed into binary masks
(Figure 1i), where pixels with values 1 are grouped as
described above. Finally, we used the projection information

present in the georeferencing metadata of each map to
translate the pixel location of the detected wells into
geographical coordinates. These steps resulted in a list of
locations of the O&G symbols (i.e., hollow black circles)
present in each map.

We then matched the geographical locations of wells
detected by the model with documented wells from state
databases (Figure 1j). We included all the documented wells
present in a database, irrespective of their status (active,
plugged, etc.) or spud date. In particular, we did not use spud
dates as a filter because they are only available for a subset of
documented wells across our study areas.

If a detected well was located more than 100 m away from
any documented well, it was flagged as an “unvetted potential
UOW”. The choice of this value is justified by the fact that
documented wells can have errors in location coordinates on
the order of tens of meters, particularly for wells that predated
modern GPS technology,21 or due to errors in the
georeferencing process. Also, we estimated a 15 m uncertainty
in the locations of potential UOWs based on differences in
coordinates of the same well in multiple colocated maps issued
at different time periods.

We then visually inspected the corresponding well symbols
of all unvetted potential UOWs, and only retained those that
are confirmed to be hollow black circles. To do this at scale, we
developed a custom script that isolates and displays the area
surrounding each unvetted potential UOW, enabling rapid
manual confirmation with a simple mouse click. In this way, we
filtered out incorrectly detected symbols and produced a list of
vetted potential UOWs (Figure SI4).

Since the quadrangle maps are published within a 45 year
time range, multiple maps can cover the same geographical
domain at different time periods. Hence, we removed
redundancies by merging wells detected in two or more
maps issued at different time periods that are less than 15 m
away from each other. The merge distance of 15 m is based on
the average distance determined by visual inspection of 50 well
locations displayed in at least two maps at different times. The
final outcome of this workflow was an atemporal location of
unique potential UOWs, which we refer to as potential UOWs.
Verification of Potential UOWs with Satellite Imagery

and Historical Photographs. We used modern satellite
images from Google Earth to find visual evidence of the
presence of a well. Since the spatial resolution of the satellite
images does not allow for direct identification of a wellhead on
the surface, we visually inspected the area surrounding the
location of a potential UOW (at maximum zoom) for the
presence of a well-related structure. In particular, the detection
of an oil rig was used as a proxy for the presence of a well.
Other structures, like an oil pad, storage tanks and disturbed
terrain, were considered supporting evidence.

We noted the locations of documented wells surrounding
each UOW to avoid mistakenly identifying them as potential
UOWs. The presence of visible well-specific structures within
100 m (matching the buffer radius in the potential UOW
detection methodology) are used as evidence to confirm the
presence of the UOW. The approximate center of the visible
feature was recorded as the actual geographical coordinates of
the well, and used to compute the distance between the
observed UOW site and the location detected by our
algorithm.

Since wells can be cut off below the surface during plugging
and abandonment, there could be many instances where
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UOWs do not have visual evidence in current satellite imagery.
For this reason, we used historical aerial photos, taken between
1927 and 2012 from the geospatial collection of the University
of California Santa Barbara (UCSB) library45 to identify
historical infrastructure. For a few potential UOWs, we
downloaded older aerial photos (available at no cost) of the
corresponding region, dated as close as possible to the
publication date of the topographic map showing the potential
UOW. Since the photos were not georeferenced, we manually
georeferenced each photo using features such as roads to
match the map features. We prioritized field investigation in
sites where a historical aerial photo suggested the presence of a
well, indicated by visible features such as storage tanks, wells,
derricks, and ancillary equipment for field examination.
Field Verification of Potential UOWs. Field surveys were

used to verify the locations of some potential UOWs. The
presence of a well in the field was verified by the detection of a
magnetic anomaly consistent with the presence of a quasi-
vertical metal pipe below ground. The equipment used
consisted of a backpack-mounted Geometrics G-864 magneto-
meter with cesium vapor technology to measure the total
magnetic field, paired with a nonmagnetic Tallysman GPS to
simultaneously collect locations, and a Getac ZX70 tablet to
observe the magnetic measurements in real time. In
exploratory field campaigns, we also used a Dunham &
Morrow DML2000-XR portable metal detector to identify the
presence of buried metal structures. The detailed field data
collection workflow is described in the Supporting Informa-
tion.

■ RESULTS
Identification of UOWs from Historical Topographical

Maps Using Deep Learning. Our computer vision model,
tested on 14,080 data points that were not present in the
training set, provided a precision of 0.98 and recall of 0.88,
which reflects our conservative choice of model parameters to
favor higher precision over recall. The ultimate performance of
our workflow, as measured by the ratio of vetted to unvetted
potential UOWs (hereafter referred to as RVU), varied from
30 to 98% depending on the study area (Table 1). An
explanation on the reduction of performance from the
algorithmic precision to the RVU is presented in the
Discussion and Supporting Information.

Using our workflow, we identified the unique locations of a
total of 1301 potential UOWs (Table 1), of which 539 are in
California (14 UOWs/1000 km2 in Kern and Los Angeles
counties), and 762 are in Oklahoma (43 UOWs/1000 km2 in
Osage County and 110 UOWs/1000 km2 in Oklahoma
County). The coordinates of each well are provided as tables
and geospatial files in an associated data set in the Supporting
Information.

The counts of potential UOWs identified using our method
are likely underestimated for various reasons, and the
identification of potential UOWs can be affected by errors in
documented well locations (see Discussion section for details).
Additional verification from both visual inspection of the
topographic maps and evidence from field campaigns or
satellite images are required to confirm UOW locations and
estimates.
Verification and Prioritization Using Satellite or

Aerial Imagery. In Oklahoma, several potential UOW
locations are identifiable from visual inspection of Google
Earth satellite images (Figure 2a,b). After inspecting all the 261

locations of potential UOWs within the borders of Osage
County, we found 29 sites that had clear evidence of the
presence of well-specific structures in the vicinity of the
potential UOWs (Table SI1 and Figure SI5). This suggests
that most of the potential UOWs in this region have no above
ground structure visible from a satellite or that they are buried
underground. For the 29 sites with visible surface features, the
center of the oil rig was considered to be the location of the
well. The average distance between the locations of the
potential UOWs detected using our algorithm and the sites
identified by satellite imagery is 9.4 ± 0.9 m. Although the
exact location of a wellhead is typically at one end of a pump
jack, choosing the center of the rig does not substantially affect
the average distance between the satellite-based estimate and
model-generated coordinates, when considering multiple wells.

In contrast, in California many of the locations did not have
surface features detectable by satellite imagery since wells are
typically cut off below the surface during plugging and
abandonment (e.g., Figure 2d). For this reason we visually
investigated 50 potential UOW sites identified by our
algorithm in Kern County using aerial photos from45 and
found that 25 sites had evidence of oil extraction activity such
as storage tanks, derricks and ancillary equipment (Figure 2e).
Because of their low resolution, the images cannot be used to
confirm the presence of a well. Instead, the sites with
photographic evidence of historical production activities were
prioritized for further field investigation.
Field Verification of UOW Locations. In June 2023, we

conducted an exploratory field campaign to determine the
locations of 21 detected potential UOWs in Kern County
(Table SI2). We found that 8 of the sites were inaccessible
(i.e., on private property). Additionally, we found that the
portable metal detector was not reliable enough to be used as a

Table 1. Summary of the Wells Identified in the Four
Counties in California and Oklahoma Chosen for This
Studya

county Kern, CA
Los Angeles,

CA Osage, OK
Oklahoma,

OK

oldest field
discovery

ca. 189046 187647 1904b38 1928b38

production first
regulated

1915 1915 1915 1915

surface (km2) 21,140 12,310 5,970 1,860
total maps 564 513 96 60
maps per 1000 km2 26.7 41.7 16.1 32.3
documented wells 156,445 23,034 43,962 6,314
detected wells 58,892 42,975 13,755 3,675
unvetted potential
UOWs

959 1,518 552 519

vetted potential
UOWs

748 462 543 401

vetted to unvetted
ratio (RVU)

0.78 0.30 0.98 0.77

potential UOWs 298 181 261 204
potential UOWs
per 1000 km2

14.1 14.7 43.7 109.7

potential UOWs to
documented wells
ratio

1.9 × 10−3 7.9 × 10−3 5.9 × 10−3 3.2 × 10−2

aWell counts in this table only include those present within county
lines. An additional 357 potential UOWs (60 in California and 297 in
Oklahoma) were identified in surrounding regions outside county
lines present in corresponding HTMC quadrangles. bOldest >100
MMbbl.
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tool to confirm the presence of UOWs due to the low signal-
to-noise ratio, potentially caused by other metal structures
(e.g., pipes or construction materials) in the vicinity of well
structures. In February 2024, we conducted a second field
campaign in the same area of Kern County to visit the 13
accessible sites. Using the backpack-mounted magnetometer,
we confirmed the presence of 9 UOWs based on the magnetic
anomalies compatible with the existence of a buried vertical
metal pipe (Figure 2f and Table SI2 and Figure SI6a,b). In
March 2024, we conducted another field campaign in Osage
County to visit the locations of 14 potential UOWs (Table
SI2), of which 6 were confirmed as UOWs using the
magnetometer survey (Figure SI6c,d). No magnetic anomalies
were detected for the remaining 8 wells that were all located in
the same area. A visual representation of the field verification
workflow can be found in Figure SI7.

Overall we found magnetic anomalies compatible with the
presence of wells in 15 out of 27 sites. The wells detected were
on average 11.7 ± 1.8 m from the coordinates of potential
UOWs identified using our workflow, which is statistically

equal to the average distance found using satellite imagery
considering their respective standard errors.

■ DISCUSSION
Accuracy of Potential UOW Location Estimates. In this

study, we demonstrated a workflow that applies a deep learning
computer vision algorithm to historical topographic maps to
precisely locate potential UOWs. Through this workflow, we
found the locations of 1301 potential UOWs in four US
counties with long oil production histories. We confirmed the
accuracy of the geographical coordinates to be on the order of
10 m through satellite image analysis and field investigations,
which indicates that the results from our algorithm can be
reliably used to discover UOWs.

However, the counts of potential UOWs identified through
this workflow are likely underestimated for various reasons.
First, these estimates are derived from quadrangle maps, which
were issued between 1947 and 1992 that may not contain wells
that had already been buried at the time of mapping. Also, the
number of maps covering the same area throughout these years
can vary, with some locations having very limited temporal
coverage. As a result, wells built and dismantled in between the
publication of two consecutive maps in the same area may not
be detected through our workflow. Additionally, merging wells
present in the same location across maps issued at different
time using a buffer radius (see Methods section) can also result
in underestimates of well counts.

Second, our definition of a UOW is based on the choice of a
100 m spatial buffer between detected and documented wells.
Despite this being a reasonably large buffer, we found that
some of our potential UOWs may actually be documented
wells because of location errors in the official databases or
topographic maps. For example, in our field investigations, we
found plaques with lease and well names for five of the six
confirmed potential UOWs in Osage County. No documented
wells are present in the official database located within 100 m
from these potential UOWs but some potential matches to
known wells can be hypothesized by comparing leases and
names (API numbers are not always available). Thus, our work
flow also provides a means to improve the accuracy of well
locations in official databases.

Third, when finding a match for potential UOWs in the
official state databases we search across all the documented
wells irrespective of their spud date, including those drilled
after the historical maps were issued. Ideally, documented wells
that had spud dates subsequent to the issue date of a map
would be excluded in the comparison, which could result in a
larger number of potential UOWs being discovered. However,
we did not do this since only 32% of wells in California and no
wells in Oklahoma had spud dates in the state databases.

Finally, we acknowledge that despite the manual vetting
process, human identification errors of the black circles can
occur due to the quality and resolution of some of the well
symbols on the quadrangles, particularly when these are
indistinguishable to the human eye from other similar features
(e.g., black squares indicating buildings and blue circles
denoting water wells). Hence, we emphasize that subsequent
to identification of a potential UOW from our workflow,
confirmation through of remote sensing imagery or field
investigations is required to verify the presence of the well.
UOW Identification Enabled by Recent Advances in

Deep Learning and Computer Vision. The quadrangle
maps within the HTMC are the most consistent series of

Figure 2. (a) Portion of an HTMC map in Osage County, OK from
1973. Colored circles indicate O&G wells: purple = documented
wells, blue = detected wells, and red = potential UOWs. The numbers
in dark blue are unique IDs assigned to each detected well. Numbers
in brown represent the distance in meters of the potential UOW to
the closest documented well. (b) Zoomed satellite image of the area
showing an oil rig 9.4 m away from the detected well symbol. (c)
Portion of an HTMC map for Kern County, CA from 1953 with wells
indicated as described in (a). (d) Satellite image of the same area of
(c) showing no structure currently visible. (e) Zoomed-in historic
aerial photo from 1956 showing the presence of a structure. (f)
Magnetic survey (dots) showing signal compatible with the presence
of an underground well. Maximum value of the anomaly being 6.5 m
away from detected coordinates. The background is a 2D linear
interpolation of the magnetic field from the dots on a color scale
shown on the right, and is intended as a visual aid to visualize the
magnetic field anomaly.
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georeferenced, historical maps with continental-scale coverage
that we are aware of. This makes it possible to use automated
computer vision approaches, which rely on the same graphical
data for feature extraction. However, detection of O&G well
symbols presents nontrivial challenges, even with the
consistency in features across the quadrangles. First, the digital
HTMC maps were generated by scanning paper maps present
in archives and libraries. They have significant distortions in
color due to the printing and scanning process, as well as the
natural discoloration in the physical maps after decades of use.
Hence the maps can contain distinct color patterns, which are
particularly evident in the background colors that represent
different land cover types (Figure SI1). The color distortion
also affects the quality of the map symbols, causing variation in
colors and size throughout the data set. Thus, it is not possible
to precisely determine the size of the well symbols because of
variations in their radii across maps. In some cases, even the
human eye cannot distinguish between variations such as the
blue and black colors used to represent water and O&G wells,
respectively.

Traditional computer vision approaches, such as edge
detection and template matching, cannot generalize across
the variations present in the quadrangle maps. However,
modern neural networks for computer vision are capable of
generalization and do not require parameter tuning to perform
proficiently in contexts different than the ones they have
originally been trained. In particular, the U-Net model is a
convolutional neural network that performs semantic segmen-
tation for pixel-level classification, and is trained on the
Imagenet data set. An alternate deep learning approach would
involve object detection with models such as YOLO.48

Comparisons between these two techniques are limited, but
two recent studies suggest that the U-Net outperforms YOLO
for the tasks investigated.49,50 As described below, we leverage
the circular symmetry present in the well symbols by tagging
their centers in the labeling process. This allowed us to
translate the symbol detection task into a semantic
segmentation one in an efficient manner, and to use the
better performing U-Net model. When fine-tuned on our map
training set, the U-Net model also outperforms traditional
computer vision approaches (see Supporting Information and
Figure SI8 for details). For example, this model is less prone to
mistakenly identify shapes of comparable size (e.g., squares
versus circles).

Our two-part workflow for identifying UOWs first involves
using the U-Net model to detect well symbols in a map, and a
second step where the detected symbols are classified as
potential UOWs based on their proximity to documented
wells. The low values of the ratios of potential UOWs to
documented wells (Table 1) indicate that identification of
UOWs is computationally an imbalanced learning problem,
with an extremely small number of targets to identify from the
entire data set. This has important implications for the overall
performance of our workflow, requiring extremely high
algorithmic precision to identify the small number of desired
targets. Hence, the minimization of prediction errors through
improvement of precision is important, since any misclassifi-
cation error is compounded by the imbalance of potential
UOWs to documented wells. We aimed to achieve this goal by
(1) utilizing a consistent, high-resolution geospatial data set
containing information about O&G wells across multiple
regions, and (2) developing an algorithm emphasized on high
precision for detection of well locations. In particular, we chose

to tune one of the few free parameters of the U-Net model,
namely the size above which a detected object is considered a
correctly identified symbol (referred to as the area threshold),
to deliberately favor precision over recall (see details of U-Net
architecture in the Supporting Information). This was done to
minimize the number of FPs (requiring higher precision)
instead of maximizing the overall number of identified objects
(resulting in lower recall).

However, improving model precision alone is not sufficient
to result in high performance of the entire workflow. For
example, our model detects wells with a precision of 0.98,
while the ratio between vetted to unvetted UOWs (RVUs)
range from 0.3 to 0.98. The discrepancy between these
performance values is explained by the fact that since FPs are
misclassified features (e.g, numbers such as zeroes and nines,
culverts, roundabouts), they can occur anywhere in the map.
Because there are substantially higher numbers of such features
across the maps relative to the number of wells, typically the
FPs are located further than our buffer distance of 100 m from
any documented well and are hence classified as UOWs. This
results in a bias in most FPs being identified as potential
UOWs, leading to a lower RVU compared to the U-Net model
precision. Using the test precision of 0.98, the expected
number of FPs is equal to 0.02 × D, where D is the number of
detected wells. In comparison, the number of vetted potential
UOWs is 4.3% of D (Table 1). Thus, assuming that all FPs are
initially considered UOWs, the RVU is equal to 0.043 × D/
(0.02 × D + 0.043 × D) = 0.68, which is comparable with the
experimental average of 0.71 computed from the values in
Table 1. This explains why the RVU can be lower than the
performance expected from the algorithmic precision of 0.98,
and even as low as 0.3 as in the case of Los Angeles County
(see Figures SI10 and SI11 for additional details).
Scaling and Transferability of Methodology to Other

Regions. To our knowledge, our workflow is the first method
that identifies potential UOWs at regional (county-level)
spatial scales. The application of our workflow to larger spatial
scales is possible due to the implementation of a deep learning
computer vision algorithm on consistent maps available across
the US, and our novel approaches for generating training
labels, training the neural network, and vetting the results.

Traditional labeling for supervised semantic segmentation
requires precisely labeling each pixel of the object of interest.
This allows accurate identification of the exact boundaries of
the object during training. Since our goal was to identify the
location of the well symbols rather than their exact contour, we
chose to label only the center of each well symbol to alleviate
the burden of manually labeling individual pixels for each well
to significantly speed up the labeling process. Due to the
circular symmetry of the symbol, we generated a mask by
choosing a radius consistent with the well symbol size. Also, we
leveraged the convolutional nature of the U-Net algorithm,
which aggregates the information on neighboring pixels. In this
way the mask at the center of each well includes information
about the surrounding symbol. For this reason we choose to
generate pixel areas with values 1 that are entirely contained
within the well symbols. In this way we were able to rapidly
label 11,046 well symbols across 79 maps in a few days.

We also leveraged the concept of transfer learning, which
refers to the use of previously learned knowledge in a related
task, using it twice in our workflow. First, we use a U-Net
model that is pretrained to classify images from the Imagenet
database.51 This allows us to initialize the model with weights
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trained to extract generic and transferable features such as
edges and shapes from millions of images that is then fine-
tuned to our smaller map-based training set. Second, we
trained our model solely on 79 maps from various regions in
California (including Kern and LA counties), including maps
with a wide variety of color distortions and land cover types,
and used the trained algorithm to detect wells in both
California and Oklahoma. Remarkably, the performance of the
workflow measured by the RVU is higher in Oklahoma than in
California. This shows the success of the transfer learning and
potential extensibility of the method to new areas that the
algorithm was not trained on. Upon visual inspection, we find
the Oklahoma maps were more uniform (i.e, containing less
variation in color palettes and color distortion) in comparison
to the maps in California. Notably,as described above, the
performance in Los Angeles County was poor (30% vetted to
unvetted potential UOWs) likely due to the larger number of
confounding features present in urban areas, such as
roundabouts and cul-desacs. In rural areas the most common
causes of misclassification are numbers and letters containing
circular patterns, like the number “9” and the letter “o”, and
hilltops, denoted by quasi-circular topographic lines.

Additionally, we developed a novel approach to vetting
potential UOWs with a custom script that allowed screening of
hundreds of images in a short time. For each unvetted
potential UOW detected by the computer vision algorithm, the
script displays the relevant part of the map cropped and
enlarged in an interactive window. An operator visually
assesses the detection and confirms or rejects it with a simple
mouse click. Using our script, we are able to vet approximately
1000 potential UOWs in 1 h of manual inspection.

■ ASSOCIATED CONTENT
Data Availability Statement
The model used, and data from the results of this study is
made publicly available through the U.S. Department of
Energys Energy Data Exchange (EDX) at the url 10.18141/
2452768. The geographical coordinates of the potential UOWs
as well as the satellite and field verified UOWs will be part of
the data set, and also can be found in the Supporting
Information and in the Public CATALOG Data Dashboard at
the following url: https://arcgis.netl.doe.gov/portal/apps/
e x p e r i e n c e b u i l d e r / e x p e r i e n c e / ? i d =
845a0643bbc64b0dba52be0016293f74&page=page_3. The
data used as inputs in our workflow are publicly available,
and should be downloaded from the original data sources. The
USGS HTMC maps can be downloaded from the National
Geologic Map Database project webpage https://ngmdb.usgs.
gov/topoview/.31 The official California and Oklahoma and
Osage Nation O&G well databases can be found at https://
www.conservation.ca.gov/calgem/maps/Pages/GISMapping2.
aspx,33 https://gisdata-occokc.opendata.arcgis.com/34 and
https://www.osageminerals.org/35 respectively.
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.est.4c04413.
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exact location from satellite imagery (ZIP)
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including plots and tables (PDF)
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proper equipment, and authorization from local authorities.
Approaching these well sites without proper personal
protective equipment (PPE) may pose significant health and
safety risks. Oil and gas wells can emit hazardous gases
including methane, which is flammable, odorless and colorless,
as well as hydrogen sulfide, which can be fatal even at low
concentrations. Additionally, there may be unstable ground
near the wellhead that may collapse around the wellbore. This
document was prepared as an account of work sponsored by
the United States Government. While this document is
believed to contain correct information, neither the United
States Government nor any agency thereof, nor the Regents of
the University of California, nor any of their employees, makes
any warranty, express or implied, or assumes any legal
responsibility for the accuracy, completeness, or usefulness of
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process, or service by its trade name, trademark, manufacturer,
or otherwise, does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United
States Government or any agency thereof, or the Regents of
the University of California. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof or the
Regents of the University of California.
The authors declare no competing financial interest.
Expansion of our approach to other regions will require
addressing some of the issues described above, including
potentially increasing the size of the training data set,
particularly for urban areas, and exploration of other image
segmentation architectures to improve precision. However, our
demonstration of the methodology for the study areas,
combined with the continental coverage of the HTMC maps
indicates the potential of scaling and transferring our workflow
to other O&G producing regions of the US, and will allow
stakeholders to rapidly identify UOWs in specific areas relevant
to their interests.
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