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ABSTRACT OF THE DISSERTATION 

 

Towards Genomics-Informed Biodiversity Conservation: Case Studies on Environmental DNA, 

Fin Whales and Bobcats Genomics and the Distribution of Fitness Effects 

 

by 

 

Meixi Lin 

Doctor of Philosophy in Biology 

University of California, Los Angeles, 2022 

Professor Kirk Edward Lohmueller, Co-Chair 

Professor Robert Wayne, Co-Chair 

 

Global biodiversity is declining at an alarming rate. Genetics approaches have been invaluable 

for conservation practices across scales, from identifying impacts of inbreeding in endangered 

species to mapping global biodiversity patterns. The rapid development of next-generation 

sequencing technologies and computational advances further enabled genomics-informed 

biodiversity conservation in the 21st century. Compared with a handful of genetic markers that 

could only be acquired in relatively high-quality genetic materials, genomics approaches 

generate data with whole genome coverage and allow analyses on environmental DNA (eDNA). 

Here I demonstrate the applications of genomics in biodiversity conservation in four case studies 

that encompass a wide spectrum of genetic material types, from eDNA to whole genome 

sequencing, and a wide spectrum of topics, from population genetics to landscape ecology. In the 
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first chapter, I analyzed the landscape biodiversity pattern derived from eDNA metabarcoding 

using surface soil samples collected across California. Combining eDNA with environmental 

predictors, including remote sensing data, have capacity to model biodiversity at landscape 

scales and to create new biodiversity baselines that span the tree of life. In the second chapter, I 

analyzed the population genomics pattern in a pair of fin whale (Balaenoptera physalus) 

populations with contrasting demographic trajectories and whaling pressures. I was able to detect 

the severity of whaling in the Eastern North Pacific population and found that even low levels of 

migration are crucial to the sustenance of the small and isolated Gulf of California population. In 

the third chapter, I extended the single-species population genomics to a comparative framework 

and evaluated the extent of the Distribution of Fitness Effects variation in eight animal species 

with diverse phylogenetic relationships. I found that the DFE is more similar in more closely 

related species. In the appendix chapter, I provided another example of how genomics could aid 

conservation by describing a de novo genome assembly of the bobcat (Lynx rufus), an indicator 

species for landscape connectivity. 

Overall, this dissertation illustrates the promise and prospect of including genomics in 

conservation biology through four case studies.  
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GCA_022079265.1 is GCF_022079265.1. The GenBank organelle genome assembly for the 

mitochondrial genome is CM039064.1. Assembly scripts and other data for the analyses 

presented can be found at the following GitHub repository: 

https://www.github.com/ccgproject/ccgp_assembly. The scripts for genome assembly 

comparisons can be found at the following GitHub repository: 

https://github.com/meixilin/ccgp_bobcat_joh. 
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Chapter 1: Landscape Analyses Using eDNA Metabarcoding and Earth 

Observation Predict Community Biodiversity in California 

Originally published in Ecological Applications 

Supplementary materials available online from Ecological Applications: 

https://onlinelibrary.wiley.com/doi/10.1002/eap.2379 

Abstract 

Ecosystems globally are under threat from ongoing anthropogenic environmental change. 

Effective conservation management requires more thorough biodiversity surveys that can reveal 

system-level patterns and that can be applied rapidly across space and time. Using modern 

ecological models and community science, we integrate environmental DNA and Earth 

observations to produce a time snapshot of regional biodiversity patterns and provide multi-

scalar community-level characterization. We collected 278 samples in spring 2017 from coastal, 

shrub, and lowland forest sites in California, a complex ecosystem and biodiversity hotspot. We 

recovered 16,118 taxonomic entries from eDNA analyses and compiled associated traditional 

observations and environmental data to assess how well they predicted alpha, beta, and zeta 

diversity. We found that local habitat classification was diagnostic of community composition 

and distinct communities and organisms in different kingdoms are predicted by different 

environmental variables. Nonetheless, gradient forest models of 915 families recovered by 

eDNA analysis and using BIOCLIM variables, Sentinel-2 satellite data, human impact, and 

topographical features as predictors, explained 35% of the variance in community turnover. 

Elevation, sand percentage, and photosynthetic activities (NDVI32) were the top predictors. In 

addition to this signal of environmental filtering, we found a positive relationship between 

environmentally predicted families and their numbers of biotic interactions, suggesting 
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environmental change could have a disproportionate effect on community networks. Together, 

these analyses show that coupling eDNA with environmental predictors including remote 

sensing data has capacity to test proposed Essential Biodiversity Variables and create new 

landscape biodiversity baselines that span the tree of life. 

 

Key words: environmental DNA; citizen science; ecological modeling; gradient forest; remote 

sensing; community ecology; beta diversity; zeta diversity; biomonitoring 
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Introduction 

Species are being rapidly lost worldwide (Pimm et al. 2014, Ceballos et al. 2015, Díaz et 

al. 2019) with many key habitats that harbor high biodiversity (Myers et al. 2000) threatened by 

climate change and environmental degradation. The scientific community needs rapid 

bioinventory tools to provide critical baseline biodiversity data with minimal cost and effort that 

can be applied globally (Bush et al. 2017). Essential Biodiversity Variables (EBVs; Pereira et al. 

2013) are a minimal set of measurements needed to support multi-purpose, long-term planning at 

various scales. Example EBVs include community composition, genetic composition, and 

ecosystem structure, which can be extrapolated from in situ and remote sensing observations. 

Scaling up from in situ biological measures to enable system-wide projections remains 

challenging (Pereira et al. 2013). Bioinventories remain often taxonomically or spatiotemporally 

restricted because technical feasibility limits large scale monitoring (Cristescu 2014), and thus, 

very few studies attempt to assess the complex composition of the total biotic environment 

(Karimi et al. 2018, George et al. 2019) that could provide unbiased EBVs needed to aid 

systems-level biodiversity conservation. 

Technology-assisted citizen and community science (CCS) is a growing means to obtain 

in situ biodiversity observations to complement those made by taxonomic experts, and CCS 

observations from photographs and sounds have already eclipsed other biomonitoring data 

records such as physical collections (Theobald et al. 2015, Kobori et al. 2016). However, most 

CCS observations favor diurnal macroscopic species and often omit cryptic and microbial taxa 

(Theobald et al. 2015). In response, our program, CALeDNA (by the University of California 

Conservation Genomics Consortium; CALeDNA 2021), and several other fledging programs, 

have focused on giving community scientists the capacity to sample environmental DNA 
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(eDNA) from their surroundings (Biggs et al. 2015, Miralles et al. 2016, Meyer et al. 2021), 

which can be probed for nearly any taxonomic group using multi-locus metabarcoding methods 

(Bohmann et al. 2014, Deiner et al. 2016, Thompson et al. 2017, Franklin et al. 2019). 

Multi-locus metabarcoding of eDNA from surface soil and sediment retains a record of 

taxa recently present in the local area, including bacteria and archaea, often-overlooked 

meiofauna, protozoans, non-vascular plants, algae, and fungi in addition to the vertebrate and 

vascular plant communities that are easier to observe directly. These methods are increasing in 

accuracy as reference DNA sequence databases grow and informatic tools improve, and are 

decreasing in cost as library preparation and sequencing technology become less expensive. 

Community-powered eDNA surveys can be coupled with remote sensing measures of ecosystem 

properties to model community composition, generate EBVs and advance ecological theories 

about how community diversity is regulated by biotic and abiotic traits (Yamasaki et al. 2017). 

On the ground and space-based technologies yield increasingly copious and accessible abiotic 

data (Pettorelli et al. 2014, Schimel et al. 2019) on land cover, topography, soil property (Hengl 

et al. 2017), bioclimate (Fick and Hijmans 2017), human impact (WCS and CIESIN 2005), and 

vegetation (e.g., Sentinel-2; European Space Agency), which can be used to model eDNA 

biodiversity changes across landscapes (Crowther et al. 2019, van den Hoogen et al. 2019). 

Biotic-abiotic interactions among soil properties (e.g., pH and nutrient availabilities), climate, 

plant coverage, and habitat type have been shown to affect soil alpha and beta diversity in 

different taxonomic groups (Fierer and Jackson 2006, Ranjard et al. 2013, George et al. 2019, 

White et al. 2020) from tropical mountains to temperate ecosystems (Thompson et al. 2017, 

Karimi et al. 2018, Montagna et al. 2018, Peters et al. 2019). However, these studies have largely 

focused on a single habitat, region, or phylogenetic clade with few exceptions, notably, a 
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national-scale soil eDNA survey in England showed that animal and microbial richness 

responded to different environment factors but beta-diversity trends were shared across 

taxonomic groups (George et al. 2019). 

Our study attempts to use multi-locus metabarcoding from CCS-collected eDNA in a 

biodiversity-ecological response model that spans kingdoms and habitats of California. Similar 

to other biodiversity hotspots, we expect discontinuous environmental clines and high endemism 

(Myers et al. 2000, Thompson et al. 2017) to be apparent in eDNA community patterns. Our 

objectives are threefold. First, we identify the taxonomic occurrence patterns recovered in eDNA 

surveys and assess their reliability and concordance with traditional observations. Second, we 

assess the relationship of eDNA alpha, beta, and zeta diversity to environmental measures to 

determine how the environment filters species richness and community composition. Third, we 

apply joint-species gradient forest and ecological co-occurrence network modeling to generate a 

community turnover map of the entire state of California and characterize the taxonomic families 

that are found to be most sensitive to environmental filtering. These analyses reveal the abiotic 

and biotic variables that are the most predictive of community composition patterns and provide 

a framework for using CCS-generated eDNA with remote sensing to refine static maps of 

ecological delineations and provide effective EBVs. 

 

Methods 

Sampling design 

Volunteers for CALeDNA sampled biodiversity from a wide variety of habitats, 

including coast, shrub, and lowland forest sites across the state of California using target 

sampling and eDNA metabarcoding. Sample location metadata were collected by a smartphone 



 6 

webform made in Kobo Toolbox and included a photograph (http://kobotoolbox.org/). Surface 

samples were collected by filling three 2-mL tubes with substrate from <2 cm depth, each 30 cm 

apart. Samples were frozen at −80°C immediately upon their return to CALeDNA headquarters 

at UC Los Angeles. 

To minimize the potential effect of seasonal variations in eDNA profiles, we selected 

samples from March 2017 to June 2017, with two-thirds of samples collected in April. We 

classified the predominant biome using photographs and a variety of geolocation data. We 

selected 100 samples from each of three transect types, coast, shrub/scrub (abbreviated as 

“shrub”), and forest, that covered the broadest latitudinal range possible. Samples with 

ambiguous metadata were removed, resulting in a total of 278 samples (98 coast, 89 shrub, and 

91 forest) used in subsequent analyses (Table 1.1; Data S1.1). 

Compilation of environmental variables  

We assembled environmental variables across six main categories: location, habitat, 

bioclimate, soil properties, topography and vegetation (including surface reflectance properties) 

variables (Supplemental Methods; Figures S1.1, S1.2; Data S1.1). Uncertainty layers were 

downloaded if available as well (Figure S1.3). All raster layers were aligned and projected to a 

unified 100 x 100 m grid from Google Earth Engine (Coordinate Reference System for this 

project: ESPG 4326, WGS84). Layers were stacked and clipped to California’s extent, and used 

for point extraction. For coastal sites outside of the raster’s geographical coverage, values were 

extracted by the closest point available in 0.5 km radius or assigned an “NA” value if not 

available. All computation and analyses were performed in R version 3.5.3 (R Core Team 2019). 

Raster operations were performed using R package raster (v. 2.8-19; Hijmans 2019).  
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Considering that many environmental variables are correlated, we evaluated the 

Pearson’s correlation coefficient of the 56 numerical environmental variables and hierarchically 

clustered the variables according to the coefficients into variable groups using R functions cor, 

hclust and cutree. To reduce collinearity and improve interpretability in community modeling, 

we created a “reduced” set of 33 numerical environmental variables that had an R2 < 0.8 (Table 

1.1; Figures S1.1, S1.2) for downstream analysis.  

DNA extraction, amplification and sequencing 

DNA extraction, amplification and sequencing followed Curd et al. 2019. Briefly, three 

250 mg biological replicate soil samples from each site were fully homogenized and pooled per 

site. DNA was extracted using QIAGEN DNeasy PowerSoil Kit (Qiagen, Valencia, CA, USA) 

according to the manufacturer's instructions. Negative controls were included in every batch of 

12-18 extractions. DNA was amplified by polymerase chain reaction (PCR), using primers for 

five barcode regions: 16S (515F and 806R; Caporaso et al. 2012), 18S (Euk_1391f and EukBr; 

Amaral-Zettler et al. 2009), CO1 (mlCOIintF and Fol-degen-rev; Yu et al. 2012, Leray et al. 

2013), fungal ITS1 (“FITS”; ITS5 and 5.8S; White et al. 1990, Epp et al. 2012), and plant ITS2 

(“PITS”; ITS-S2F and ITS-S3R; Gu et al. 2013). Primer sequences and thermocycling profiles 

can be found in Tables S1.1 and S1.2. All PCR amplifications were performed in triplicate and 

with additional PCR negative controls. Triplicate positive amplifications confirmed by gel 

electrophoresis, were pooled by sample and barcode to equimolar levels, indexed and sequenced 

on an Illumina MiSeq v6 platform for 2x300 bp reads (QB3-Berkeley FGL) with a target 

sequencing depth of 50,000 reads/sample/metabarcode (Supplemental Methods). Five of the 278 

sites were processed as biological replicates by different technicians to inspect taxonomic 

variation in independent DNA extraction and technical processing.  



 8 

Bioinformatics and data processing 

We used default settings in the Anacapa Toolkit (Curd et al. 2019) for multi-locus 

sequence data processing and taxonomy assignment. In brief, quality control of raw sequences 

was performed using Cutadapt (Martin 2011) and FastX-Toolkit (Gordon et al. 2010), and 

inference of Amplicon Sequence Variants (ASVs) was made with DADA2 (Callahan et al. 

2016). Taxonomy assignment was made on each ASV using Bowtie2 (Langmead and Salzberg 

2012) and the Bayesian Lowest Common Ancestor algorithm (BLCA; Gao et al. 2017) on 

custom metabarcode-specific reference databases that were created using Creating Reference 

libraries Using eXisting tools (CRUX; Curd et al. 2019). Taxonomy assignments with a 

bootstrap confidence cutoff score over 0.6 were kept for each ASV. ASVs with the exact same 

inferred LCA passing confidence filter were summed into one “taxonomic entry” as the 

species/phylotype/MOTU equivalent in this study (Supplemental Methods). 

To informatically control for contamination, we further removed all singleton or 

doubleton taxa, and removed taxa that occurred in more than two reads in all blank samples, 

from subsequent analyses. To prepare data for alpha and beta diversity analyses requiring 

rarefaction, we performed rarefaction in 10 replicates and took the mean using the 

custom_rarefaction function in the R package ranacapa (v. 0.1.0; Text S1.1; Table S1.3; 

Kandlikar et al. 2018). Reads with no assignment were not removed before rarefaction. We also 

estimated concordance between biological replicates (Text S1.2).  

Comparison of eDNA taxonomic output with traditional surveys 

To compare the eDNA taxonomic results to traditional surveys, we compared eDNA 

results to the curated species inventory of the University of California Natural Reserve System 

(UCNRS), which records Chordata, Arthropoda, and Streptophyta. We counted how many taxon 
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records were shared or unique to eDNA results or traditional records at classification levels of 

order, family and genus combining all reserves and within each reserve. 

We developed a metric of traditional observation score (TOS) in eDNA taxonomic 

assignment. TOS uses all observation and collection records in the Global Biodiversity 

Information Facility (GBIF) database from a broad region centered on California to score 

whether the taxon assignment of an eDNA ASV has been observed. A TOS > 0 suggests there is 

support for the assignment of an ASV based on its presence in the TOS region (Supplemental 

Methods).  

Community alpha, beta and zeta diversity relationships with environmental variables 

We used the rarefied dataset for alpha and beta diversity analyses to control for variations 

in read depth. Alpha diversity was calculated using Observed and Shannon’s Diversity Index in 

the R package vegan (v. 2.5-2; Oksanen et al. 2018). These two measures weigh relative 

sequence abundance differently. Shannon’s Index penalizes rare sequences compared to the 

Observed Index (Calderón‐Sanou et al. 2020). We evaluated relationships of alpha diversity 

measures using the Kruskal-Wallis Test for categorical environmental variables, and individual 

linear models and partial least squares models for numerical variables (Supplemental Methods, 

Text S1.3).  

Beta diversity was visualized by plotting sample relative abundance of the top ten phyla 

for metabarcodes 16S, 18S, and CO1, and top ten classes for PITS and FITS. Composition 

profiles were analyzed using unconstrained ordination to reveal turnover across sites. We 

calculated the binary Jaccard dissimilarity distance to only consider presence-absence patterns 

given eDNA relative abundance can be influenced by stochastic processes of DNA shedding, 

deposition, and decay. We performed principal coordinate analysis (PCoA; function ordinate), 
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permutational multivariate ANOVA analysis (PERMANOVA; function adonis), and tested for 

the assumption of homogeneity of dispersion (function betadisp) in the R packages phyloseq (v. 

1.24.2; McMurdie and Holmes 2013) and vegan. We also partitioned the data by the four 

categories in the majorhab variable (aquatic; herbaceous; shrub and tree dominated habitats) and 

performed PCoA and PERMANOVA analyses within each major habitat. Additionally, we 

tested for the effects on community turnover of coastal sites and spatial correlation (Text S1.4). 

Post hoc explanation of the ordination axes was performed by fitting the reduced set of 

numerical variables (Table 1.1) onto the PCoA result using functions envfit and ordisurf in the R 

package vegan (Supplemental Methods).  

Zeta diversity was used to measure the fraction of unique categories of organisms held in 

common among nearby sets of communities, which unlike beta diversity, considers the 

composition of metacommunities composed of more than two sites. We set cluster size to four 

nearby sites, calculated and scaled zeta four diversity (ζ4) using the R package ZETADIV (v. 

1.1.1; Latombe et al. 2018). We tested the likelihood of two model forms of the relationship 

between zeta diversity and sample numbers (zeta decline). Based on prior analyses (Hui et al. 

2014), declines which follow a power-law of the form ζN = ζ1N−b, or an exponential of the form 

ζN = ζ1eb(N−1), were associated with a niche differentiation or stochastic process of community 

assembly, respectively (Supplemental Methods). Scaled ζ4 diversity values were then plotted on 

a map of California using the R package Leaflet (v. 2.0.2; Cheng et al. 2018). Environmental 

factor groups were made by binning environmental variables according to their categories (Table 

1.1). We used generalized linear models (GLM) to determine the variation in ζ4 diversity 

attributed to either geographic distance or an environmental factor group.  
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Gradient forest modeling and ecological network analysis to predict and interpret community 

turnover across California  

We used the gradient forest classification model in the R package gradientForest (v. 0.1-

17; Ellis et al. 2012) to test which environmental variables best explained eDNA-detected 

community turnover patterns across California using all 272 sites without any missing metadata 

collected from three transects (six out of 278 sites excluded due to missing metadata). We chose 

to perform predictive modeling on beta diversity because it is less affected by molecular 

artefacts, such as PCR errors or tag-jumps, or variations in bioinformatics pipelines, and more 

likely to reflect ecologically meaningful community composition patterns compared to alpha 

diversity, which is more sensitive to eDNA processing strategies (Calderón‐Sanou et al. 2020, 

Shirazi et al. 2020) and does not require the clustering of sites that zeta diversity does. Due to 

large variation in the coastal sites, we also performed additional analyses excluding all coastal 

sites using the same methods described below. The gradient forest model was built with the 

reduced set of 33 numerical environmental variables (Table 1.1). We fit a classification-tree 

based gradient forest model using default settings to the eDNA-derived biological matrix, but 

increased the number of trees to 2000 per family to increase the stability of the model (Breiman 

2001). To assess model robustness, we repeated the gradient forest model 20 times. To assess 

model power and reliability, we randomized the predictor matrix 100 times and ran the model 

with the same settings (Bay et al. 2018; Supplemental Methods).  

To visualize the community turnover gradient forest model over space, we used the input 

of all 33 environmental variables from 100 m x 100 m grids in the extent of California without 

extrapolation (Pitcher et al. 2011). We used the top three principal components from the 

transformed environmental variables and visualized them by red, green and blue (RGB) bands 
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(Ellis et al. 2012). To differentiate model performance from the high-dimensional nature of the 

environmental variable matrix and provide prediction uncertainty estimates, we scaled the 

environmental variables and performed the same PCA and visualization procedure without using 

the model (“uninformed map”) and performed a mantel test and a monotonic regression between 

the biological matrix and either the uninformed map or gradient forest informed map. We also 

estimated which area contained more uncertainty by mapping the sites in gradient forest 

informed map to the biological matrix using a Procrustes rotation and evaluated the residuals 

(Ellis et al. 2012; Supplemental Methods). 

To explore the biotic interactions underlying the gradient forest patterns, results for each 

metabarcode were summarized by family, filtered on read depth and frequency and used in 

ecological co-occurrence network analysis using the R package SpiecEasi (v. 0.1.4; Kurtz et al. 

2015) for cross domain analysis that incorporates all five metabarcodes into one complex 

network (see Tipton et al. 2018). Topological parameters were determined in Cytoscape (v. 

3.6.1; Shannon et al. 2003) using the NetworkAnalyzer tool. To observe the relationship between 

network degrees and the prediction R2 of each family from gradient forest, an ordinary least 

squares (OLS) linear regression model was made using the lm function in R and interactions 

were visualized with R package Interactions (v. 1.1.1; Long 2019). To evaluate the co-

occurrence and gradient forest predictor patterns in a phylogenetic framework, the 915 families 

used in the gradient forest modeling were mapped onto the Open Tree of Life 

(tree.opentreeoflife.org) and a synthetic tree was generated using synthesis release v12.3. 

Datasets were mapped next to the phylogeny tips using the Interactive Tree of Life 

(https://itol.embl.de/).  
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Results 

eDNA metabarcoding recovered taxonomic entries across 86 phyla  

The 278 selected samples from coast, shrub, and forest areas across California (Figure 

1.1A) were sequenced with five metabarcodes. Each metabarcode recovered their target groups 

as expected (Figure 1.1C; Table S1.1), with 16S amplifying Bacteria and Archaea, 18S and CO1 

broadly amplifying eukaryotes including Animalia, Chromista, Fungi, Protozoa and some 

Plantae, ITS1  amplifying Fungi (‘FITS’) from Ascomycota, Basidiomycota and other phyla, and 

the ITS2 region amplifying plants (‘PITS’) across both Chlorophyta and Streptophyta.  

Sequencing the 278 samples, five repeated “biological replicate” samples, and 23 

negative controls as PCR blanks or extraction blanks amounted to 75,830,796 reads for the five 

metabarcoding loci and averaged 54,554 reads per sample per metabarcode. After several steps 

of quality control, taxonomic assignment and sequence decontamination, a total of 16,157,425 

reads were assigned to 16,118 unique taxonomic entries, i.e. best taxonomic hypotheses (Data 

S1.2). The median assigned read depth was 7,717 (Figure S1.4) and mean taxa identified was 

778 per sample. Assignments spanned 86 phyla with most reads and taxonomic entries being 

assigned to Proteobacteria, Ascomycota and Basidiomycota (Figure 1.1B, 1.1C). Despite fairly 

deep sequencing, stringent sample filtration and validation on eDNA result concordance were 

necessary to meet sufficiency metrics practiced by the metabarcoding community (Goldberg et 

al. 2016, Taberlet et al. 2018; Text S1.2; Figure S1.5; Data S1.3). Sequence rarefaction for 

diversity analyses that require even read depth across samples was able to be set near the taxon 

accumulation curve asymptote, suggesting we did not undersample during sequencing, although 

we did have to remove a small number of sample sites to meet the depth requirement (Text S1.1; 

Figures S1.6, S1.7; Table S1.3). 
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Comparison with traditional surveys: eDNA results partially overlap with traditional 

observations  

Our first objective to assess the concordance between eDNA surveys and traditional 

observations initially utilized the UC Natural Reserve System curated species list of 

Streptophyta, Arthropoda and Chordata made by traditional surveys. Forty-four Streptophyta 

families were only found in eDNA, 77 were only in traditional observations, 65 were recovered 

from both methods. We found that 110 Arthropoda families were only recovered from eDNA, 

139 were only in traditional observations, and 16 were recovered from both methods. No 

Chordata families were jointly recovered from both methods, since our metabarcoding markers 

did not specifically target Chordata. Evaluating concordance at order, family, and genus levels, 

we determined that family was the classification level that could be best validated by traditional 

observation at our UCNRS sample sites (Data S1.4).  

To further evaluate eDNA and traditional observation concordance without relying on 

restricted local surveys, we assigned a Traditional Observation Score (TOS) for eDNA taxon 

entries using the GBIF records from Western North America and the Eastern Pacific which 

represent hypotheses of correct matches if eDNA entries overlap with the region specific GBIF 

records. Only taxonomic entries resolved to at least the level of order were assigned a TOS, 

hence 1700 eDNA entries were omitted. Results showed only 5.6% of eDNA entries had an 

adjusted TOS of 0 (no GBIF support for assignment), and 50.0% of entries had an adjusted TOS 

of 1 (strong GBIF support for assignment; Data S1.5). Partial concordance was found in the 

remaining entries. No relationship was found between TOS and the frequency at which a taxon 

was found in eDNA samples (Pearson’s R2=0.004; P< 1e-5), suggesting the TOS is not heavily 

biased toward common or ubiquitous taxa. As with the UCNRS comparison, the TOS was 
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highest at the family level, so we selected family level classification for downstream gradient 

forest and network analyses. 

Beta and zeta diversity are structured by minor habitat and vegetation variables  

We examined relationships of alpha, beta and zeta diversity to environmental measures as 

our second objective. Alpha diversity varies at the local scale and across the terrestrial-marine 

interface (Figure S1.8), with high spatial stratification among loc (reported location names) and 

minorhab (minor habitat) variables for all metabarcodes besides CO1 (Figure S1.9), and 

stratification for the clust variable (neighboring cluster of sites within a radius of 0.5 km derived 

from GPS record) in Shannon Index for 16S and FITS (Data S1.6), indicating bacterial and 

fungal alpha diversity are locally constrained in California. Post-hoc Dunn tests of categorical 

groups (Figures S1.10 – S1.13; Data S1.6), as well as individual linear regressions (Data S1.7) 

and partial least squares models (Data S1.8) of observed richness and Shannon’s diversity 

indices with numerical environmental observations showed alpha diversity is predicted by many 

environmental variables and is most strongly predicted in fungi (FITS; Text S1.3; Figure S1.14; 

Data S1.6 – S1.8). 

Similarly, beta diversity patterns exhibited variations by habitat characteristics and were 

structured by environmental filtering. We found visually apparent differences in dominant taxa 

by habitat grouping (Figure S1.15). In community dissimilarity analyses, beta diversity was 

significantly different across major habitat groups despite many overlapping sites in the 

ordination plots (PERMANOVA; Figures 1.2A, 1.2B, S1.16 – S1.19; Data S1.9). In particular, 

samples from aquatic environments were more dispersed in the ordination (Figure 1.2A, 1.2B). 

Beta dispersion also showed significant heterogeneity of multivariate dispersion (variance) 
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within groups for all metabarcode and category combinations except loc, majorhab, transect, and 

clust for the PITS metabarcode (Data S1.9).  

Further investigation into beta diversity patterns revealed that minor habitat (minorhab) 

composition within each of the four major habitats contributed strongly to dissimilarity in all 

markers (PERMANOVA, adjusted P < 0.01; Figures 1.2C, S1.20; Data S1.10). Jaccard 

dissimilarity PCoA revealed finer-scale habitat partitions for some, but not all, minor habitat 

categories, suggesting eDNA may be useful to complement minor habitat classifications as 

distinct management units (McKnight et al. 2007). For example, within aquatic major habitat, 

many of the marine nearshore categories overlapped, while marine and freshwater (lacustrine 

and riverine) sites separated (Figures 1.2C, S1.20). Patterns of environmental filtering remained 

after exclusion of coastal sites and spatial correlation effects (Text S1.4; Figures S1.21, S1.22; 

Data S1.11, S1.12). For numerical variables, post hoc explanation of the ordination axes showed 

that photosynthetic activities (NDVI32 and greenness) were most highly correlated with 16S, 

18S and FITS (Table 1.2; Figure S1.23; Data S1.13). Soil organic carbon content (orcdrc) was 

most highly correlated with CO1, and Isothermality (bio3) was most highly correlated with PITS 

(Table 1.2).  

Zeta diversity describes the degree of overlap in the number of unique categories of 

organisms held in common between N sites or communities (ζN) (Figure S1.24A), which as N 

increases captures more variation due to turnover. This framework allows for an assessment in 

trends in regional scale turnover of relatively common organisms which are less biased towards 

the presence of rare, or spuriously detected taxa (Hui et al. 2018). Environmental factor groups 

explained 1 to 32% of the observed variation in ζ diversity (Table 1.3). Vegetation variables 

were among the top predictors for 18S, CO1, FITS and PITS datasets, with the highest variance 
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explained at 32% for the FITS dataset. Variables related to small-scale location describe minimal 

variation (< 1%) in ζ4 diversity for communities (Table 1.3). To better understand the likeliest 

processes associated with the spatial assembly of communities, two models of zeta diversity 

decline were tested using the power law model and the exponential model. The power law model 

was found to be a better fit for more than 83% communities described in all but the PITS 

metabarcode results, 31% of which followed the exponential model, suggesting lower spatial 

autocorrelation in plant and algal communities (Figure S1.24; Data S1.14). 

Gradient forest models map high resolution biodiversity turnover in California 

Our third objective used gradient forest and ecological co-occurrence network modeling 

to map and characterize the taxonomic families that are predicted by the environment. Our 

gradient forest model included 272 sites x 915 eDNA-derived families as a response variable 

matrix and 272 sites x 33 environmental variables as a predictor matrix (Data S1.15). The 

gradient forest model explained 35% of variation in the biotic matrix, and all 915 families were 

able to be effectively modeled (i.e. had an R2 > 0) with high stability across 20 replicated runs 

(Average R2 = 0.349 ± 0.0004; Average families effectively modeled = 915 ± 0; Data S1.16). 

Using a permutation approach, we confirmed the mean overall R2 and number of families with 

positive R2 for true observations were significantly higher than all the permuted runs (Figure 

S1.25). Many of the most responsive families were from marine aquatic sites, and some of these 

were low in observation frequency (Figures 1.3B, S1.26).  

Gradient forest provides information on the rate of community turnover along 

environmental gradients (Ellis et al. 2012). We plotted the relative density of splits and 

cumulative importance for environmental variables. Within the top three environmental 

variables, we found nonlinear community changes. For elevation, rapid community turnover 
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(high splits density) occurred at 0 m and above 1,000 m (Figure 1.3C, 1.3D). For sand 

percentage, important splits were mainly distributed at 23%, 43% and 74% sand (local maxima 

with the highest density; Figure 1.3C, 1.3D), which have similarity to the soil texture triangle in 

the USDA system (Groenendyk et al. 2015). For photosynthetic activities (NDVI32), important 

splits were mainly distributed along -0.16, 0.05, and 0.28 (scale: -1 to 1; Figure 1.3C, 1.3D).  

Our map of California biodiversity resembled EPA North America Level II and 

California Level III Ecoregion maps (U.S. Environmental Protection Agency 2010, 2012), which 

were created with different input data and methods (Figure 1.4C – 1.4E). For example, in the 

gradient forest map (Figure 1.4A), the majority of central and southwestern CA community type 

(red) corresponded to Mediterranean California (Figure 1.4C, pale green, Level II 11.1.), 

characterized by medium photosynthetic activities (NDVI32), lower elevation (elev), and higher 

precipitation seasonality (bio15).  

We assessed the model prediction robustness and prediction uncertainties by regenerating 

our community turnover map of California without using any information obtained from eDNA 

surveys (Figure 1.4B), and the resulting map neither resembled California published maps such 

as the EPA North America Level II Ecoregion map (U.S. Environmental Protection Agency 

2010, Omernik and Griffith 2014; Figure 1.4C) nor did it separate regions as sharply as the 

eDNA-informed map (Figure 1.4A). This purely physical approach of community turnover 

mapping showed adding eDNA improves gradient forest informed mapping by a 1.4% reduction 

in stress performance statistics and a 5.6% increase in Mantel correlation R2 (Figure S1.27). We 

quantified the prediction uncertainties at each site by Procrustes rotation errors and found that 

predictions for coastal sites harbor more deviation from real eDNA communities (Dunn test, P < 

0.001; Figure S1.28). We also were curious how robust our map was when coastal sites were 
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removed, since several of the most predicted families were marine, and found that we could still 

explain 30% of the variation in the biotic matrix (Text S1.5; Figure S1.29).  

Biotic co-occurrence has a weak positive relationship with gradient forest predictability  

To characterize the biotic relationships of families across the spectrum of their 

predictability in the gradient forest models, which indicates environmental filtering (Horner-

Devine et al. 2007), we modeled the relationship between each family’s ecological co-occurrence 

network degrees and their predictor R2 using an OLS linear model. Co-occurrence patterns 

reflect biotic niche processes that maintain biodiversity patterns which theoretically hold no 

expected relationship with abiotic environmental filtering. A family-level co-occurrence network 

produced 916 edges connecting 290 nodes (families) out of the total 304 families that met 

minimum frequency thresholds for analysis (Figure 1.5A; Data S1.17). In the OLS linear model, 

interaction effects of site frequency were also considered. Model results showed a modest 

positive relationship (Adj R2= 0.22) between the number of edges and R2 for families, indicating 

the families determined by gradient forest to be under more environmental filtering (higher R2) 

were also the families most integrated in ecological networks based on their numbers of degrees. 

However, the interaction between frequency in sites and network degrees was also significant 

(P<0.02; Figure 1.5B). In a phylogenetic analysis of these patterns, we observed that families 

with high network degrees and high gradient forest predictor values were widely distributed 

across clades and kingdoms, but most frequent in the clades containing the class Flavobacteriia 

and the SAR supergroup (Stramenopiles, Alveolates and Rhizaria; Figure 1.5C), suggesting 

ecological networks containing these families might have the lowest resilience under abiotic 

change. 
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Discussion 

Species observations by the public will continue to outpace both field collections and on-

the-ground observations made by scientists (Theobald et al. 2015). With eDNA as a CCS tool 

(Biggs et al. 2015, Miralles et al. 2016, Larson et al. 2020), broader taxonomic inventories and 

assessments from minimally invasive environmental collections can be accomplished. Soils and 

sediments used in this study, collected by CCS volunteers, had an average of 778 taxonomic 

lineages identified in each DNA sample, and were easily obtained from a broad area within a 

seasonal snapshot. Co-analysis of eDNA from these collections and readily available 

environmental data provides predictor values for hundreds of families that evade traditional 

observations. 

Our first objective concerning the concordance between eDNA results and traditional 

observations revealed relatively low overlap with UCNRS surveys, despite high support by 

GBIF traditional observation score, which suggests eDNA CCS surveys complement but do not 

replace traditional surveys. Ongoing efforts to sequence species and build a global taxonomic 

biodiversity reference database in the next decade (e.g., the Earth BioGenome Project, Lewin et 

al. 2018; the Centre for Biodiversity Genomics, Hobern 2020) are positioned to ameliorate 

shortcomings of current DNA reference sequences. Emerging alternatives to metabarcoding may 

additionally help mitigate detection bias currently in favor of small body size in eDNA studies 

(Figure 1.1; Data S1.4, S1.5). For example, DNA capture approaches to target larger organisms 

(Seeber et al. 2019) may improve detection of large-bodied species, but these are not yet as cost-

effective for CCS as multi-locus metabarcoding. Another challenge is that different DNA 

extractions from the same soil or sediment sample exhibit heterogeneity (Text S1.2; Data S1.3). 

We are examining stability and stochasticity of taxonomic profiles under varied sample 
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processing (Castro et al. in review) and DNA library preparation steps (Shirazi et al. 2020) in 

response to calls for research about these potential biases (Prosser 2010, Goldberg et al. 2016). In 

this study we used several standard approaches for reducing these biases.  

Our second aim to test predictors of alpha, beta, and zeta diversity revealed that most 

environmental categories can significantly partition samples according to taxonomic composition 

(Figures 1.2, S1.15 – S1.20; Data S1.6 – S1.13), suggesting that surface communities are largely 

filtered by ecological rather than neutral processes (Bahram et al. 2018). These patterns remained 

significant after exclusion of coastal sites and location effects (Figures S1.21, S1.22; Data S1.11, 

S1.12). However, we found substantial overlap in community composition ordinations, as has 

been shown in the global Earth Microbiome Project (Thompson et al. 2017) and regional soil 

biodiversity ordination plots (George et al. 2019; Figure 1.2A, 1.2B; Data S1.9). In our 

ordinations, groups separated from each other when fine-scale categories are used, such as minor 

habitat within partitioned major habitat, suggesting a large amount of community partitioning is 

harbored within major habitats categories (Figure S1.20). We found prokaryotic diversity was 

particularly diagnostic of minor habitats in ordinations (Figures 1.2C, S1.20). We propose 

eDNA-based composition could be EBVs for planning management units such as minor habitat 

delineations and for detecting ecotones (Jetz et al. 2019).  

Environmental variables (Tables 1.2 and 1.3) can have power to predict general biotic 

patterns and can illuminate possible drivers of community turnover (Figure S1.23) because they 

can readily be compared across studies (Omernik and Griffith 2014). For example, 

photosynthetic activities (NDVI32/greenness) had the highest correlation with the observed 

fungal alpha diversity pattern and beta diversity structure in bacteria (16S), eukaryotes (18S) and 

fungi (FITS) in the envfit analyses (Table 1.2; Figure S1.23). We note indices of photosynthetic 
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activity have not been included as part of most microbiome studies (Karimi et al. 2018, Bahram 

et al. 2018, George et al. 2019) so their importance is still being discovered. For the subset of 

studies we found that had included NDVI as a predictor, it was observed to be important in 

modulating soil fungal and herbivore nematodes communities (Timling et al. 2014, Delgado-

Baquerizo et al. 2016, Yang et al. 2017, van den Hoogen et al. 2019). Isothermality (bio3) has 

strong positive associations with PITS beta diversity turnover, suggesting inland arid California 

regions with low isothermality display nestedness in the biodiversity encompassed by these 

markers, as has been shown with plants in Australia (Gibson et al. 2012) and in South American 

seasonally dry forests (Silva and Souza 2018). Organic carbon (orcdrc) was strongly associated 

with CO1 community turnover, which mirrors associations reported in soil meiofaunal 

communities, particularly nematodes (Jackson et al. 2019). Overall, zeta diversity largely 

supports the envfit results, although zeta diversity had poorer explanatory power for 16S 

patterns, which can be attributed to its greater sensitivity to common groups (Table 1.3; Simons 

et al. 2019) such as the nearly ubiquitous taxa in Proteobacteria.  

Previous efforts have successfully integrated abiotic environmental data and models with 

traditional observational records such as herbarium specimens (Baldwin et al. 2017) to produce 

maps used to conserve threatened species (Jenkins et al. 2015), assess deforestation (Zarnetske et 

al. 2019) and evaluate species richness and endemism (Baldwin et al. 2017). However, remotely 

sensed variables such as from the Sentinel-2 instrument and local-scale eDNA observations of 

taxonomy biodiversity enable community mapping at a grid size finer than 5 km (Jenkins et al. 

2013, 2015, Pimm et al. 2014, Baldwin et al. 2017, Zarnetske et al. 2019), which aligns better 

with in situ biodiversity (e.g., Wang et al. 2018). Our objective to project community 

composition across California’s landscape achieved a higher resolution than currently available 
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statewide maps (Figure 1.4). Elevation (elev), sand percentage (sndppt), photosynthetic activities 

(NDVI32) and mean temperature in the wettest quarter (bio8) were the among the most 

important predictors (Figure 1.3A) and all of these variables had been proposed to be prominent 

drivers in community structures worldwide. For example, sand percentage, an inverse of clay 

percentage, is known to explain differences in plant community guilds (Cornelius et al. 1991), 

correlates with presence of halophytes (Lee et al. 2016, Moreno et al. 2018) and influences 

microbial community structures (Sessitsch et al. 2001, Ehrlich et al. 2015).  

Space, flight, tower and drone-based remote sensing information are becoming 

increasingly available and accessible (Pettorelli et al. 2014). By providing more direct, spatially 

continuous measures of plant functional diversity and ecosystem functioning at regional 

(Schneider et al. 2017, Durán et al. 2019) to global scales (Schimel et al. 2019, Schneider et al. 

2020), we expect that future analyses will uncover new important environmental predictors and 

develop prediction maps on species richness (alpha diversity) or community turnover at higher 

dimensions (zeta diversity), expanding on the beta diversity map presented here. eDNA 

composition could potentially be better predicted with more remote sensing and in situ 

bioinventory data from different spatial and temporal scales with improved gradient forest R2 

from what we achieved at R2 = 0.35 and decreased prediction uncertainties. Bayesian 

hierarchical modeling and artificial neural networks are also receiving increasing attention for 

community modeling with more application potentials for improved spatial-temporal 

biodiversity predictions with associated uncertainty estimates (Hefley and Hooten 2016, Nieto‐

Lugilde et al. 2018, Pollock et al. 2020). We are looking forward to applying Bayesian 

hierarchical models in future CALeDNA meta-analyses. 
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Finally, we suggest eDNA ecological network analyses should be leveraged so that the 

biotic interaction dependence can be contrasted with dependence or sensitivity to the abiotic 

environment. Our work shows a weak but positive relationship between the number of degrees a 

family has and its propensity for environmental filtering based on gradient forest predictability. 

This positive relationship persists across phylogenetic groups (Figure 1.5). Other studies focused 

on a single kingdom have obtained similar conclusions, such as in microbial variation in an 

altitudinal gradient in the Atacama Desert, Chile (Mandakovic et al. 2018).  

Conclusion 

In conclusion, we demonstrate the emerging potential of coupling CCS observations and 

eDNA data from samples that CCS volunteers collect in combination with remote sensing and 

ecological modeling to assess community-environment interactions and ultimately map 

community turnover. We provide one of the most comprehensive surveys of terrestrial 

biodiversity across three domains of life over a large, environmentally diverse state. We show 

the predictive and explanatory power of environmental variables on alpha, beta, and zeta 

diversity across highly diverse regions and at local geographic scales. The beta diversity map for 

California, as a continuous surface of community turnover, shares many similar boundaries to 

the standard US Ecoregion maps, but with nuanced detail. Computationally intensive and 

artificial intelligence driven models are producing maps for mitigating the challenges of global 

change (Harfouche et al. 2019, Pollock et al. 2020). Our approach contributes to the development 

of strategies to model living systems which could be directly used as Essential Biodiversity 

Variables for tracking biodiversity change, advancing ecological understanding, and managing 

ecosystems. 
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Tables 

Table 1.1 

Table 1.1. List of the categorical and a reduced set of numerical variables used in the diversity 

analysis and gradient forest modeling. For a complete list of variables, detailed description and 

data URL, refer to Data S1.1. 

Variable Category Description and definition 
Categorical variables 
loc Location Name of places visited reported by volunteers 
clust Location Neighboring cluster of sites within a radius of 0.5 km derived from 

GPS record 
ecoregion Habitat EPA Level III Ecoregions of California (Conterminous United 

States) 
majorhab Habitat Major habitat type classified according to California Wildlife 

Habitat Relationships System 
minorhab Habitat Minor habitat type classified according to California Wildlife 

Habitat Relationships System 
transect Habitat Original classification of the predominant biome type 

(coast/coastal, shrub/ShrubScrub, and forest) 
NLCD Habitat USGS national land cover classification 2011 
SoS Soil 

Properties 
Volunteers’ classification of substrate type (Sediment, Soil, Sand) 

taxousda Soil 
Properties 

Predicted most probable class in USDA soil taxonomy 

Reduced set of numerical variables 
Longitude Location Longitude of sample sites 
hfp Habitat Global human footprint index 
bio1 BioClim Annual Mean Temperature 
bio2 BioClim Mean Diurnal Range (Mean of monthly (max temp - min temp)) 
bio3 BioClim Isothermality (BIO2/BIO7) (* 100) 
bio4 BioClim Temperature Seasonality (standard deviation *100) 
bio5 BioClim Max Temperature of Warmest Month 
bio6 BioClim Min Temperature of Coldest Month 
bio8 BioClim Mean Temperature of Wettest Quarter 
bio14 BioClim Precipitation of Driest Month 
bio15 BioClim Precipitation Seasonality (Coefficient of Variation) 
phihox Soil 

Properties 
Soil pH x 10 in H2O at depth 0.00 m 

orcdrc Soil 
Properties 

Soil organic carbon content (fine earth fraction) in g / kg at depth 
0.00 m 

cecsol Soil 
Properties 

Cation exchange capacity of soil in cmolc / kg at depth 0.00 m 
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sndppt Soil 
Properties 

Sand content (50 to 2000 µm) mass fraction in % at depth 0.00 m 

bldfie Soil 
Properties 

Bulk density (fine earth) in kg / m3 at depth 0.00 m 

ntot Soil 
Properties 

Weight percentage of total nitrogen at depth 0.00 m 

elev Topography Elevation of sample sites 
Slope Topography The rate of change of elevation for each digital elevation model 

(DEM) cell 
aspect Topography The direction of the maximum rate of change in the z-value from 

each cell in a raster surface 
CTI Topography Compound Topographic Index 
DAH Topography Diurnal Anisotropic Heating 
B1 Vegetation Sentinel-2 spectral band 1 (Wavelength: 443.9nm (S2A) / 442.3nm 

(S2B); Description: Aerosols) 
B4 Vegetation Sentinel-2 spectral band 4 (Wavelength: 664.5nm (S2A) / 665nm 

(S2B); Description: Red) 
B6 Vegetation Sentinel-2 spectral band 6 (Wavelength: 740.2nm (S2A) / 739.1nm 

(S2B); Description: Red Edge 2) 
B9 Vegetation Sentinel-2 spectral band 9 (Wavelength: 945nm (S2A) / 943.2nm 

(S2B); Description: Water vapor) 
B10 Vegetation Sentinel-2 spectral band 10 (Wavelength: 1373.5nm (S2A) / 

1376.9nm (S2B); Description: Cirrus) 
B11 Vegetation Sentinel-2 spectral band 11 (Wavelength: 1613.7nm (S2A) / 

1610.4nm (S2B); Description: SWIR 1) 
NDVI32 Vegetation Normalized Difference Vegetation Index in 32 days period 
NBRT Vegetation Normalized Burn Ratio Thermal index in 32 days period 
greenness Vegetation Annual Greenest Pixel in the year of 2017 
imprv Habitat Percent of the pixel covered by developed impervious surface 
ptrcv Habitat Percent of the pixel covered by tree canopy 
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Table 1.2 

Table 1.2. Post hoc fitting of environmental variables on PCoA ordination (Envfit) for each 

metabarcode. Here, we present the three significant (P < 0.001) environmental variables with the 

highest correlation coefficient. The significance of the correlation was tested by 1999 

permutations. For a complete result of all variables, please refer to Data S1.13. The direction of 

changes is included in Figure S1.23. 

Metabarcode 1st variable R2 2nd variable R2 3rd variable R2 
16S NDVI32 0.49 greenness 0.47 B1 0.42 
18S NDVI32 0.51 greenness 0.49 B1 0.43 
CO1 orcdrc 0.41 ptrcv 0.36 NBRT 0.33 
FITS greenness 0.52 B1 0.5 orcdrc 0.46 
PITS bio3 0.21 sndppt 0.2 B11 0.13 
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Table 1.3  

Table 1.3. Variation in ζ4 (zeta) diversity attributed to geographic separation distance between 

site clusters (VarDistance) versus variation in an environmental factor group between the same 

site clusters (VarFactor). Within each metabarcode, factor groups were ordered from lowest to 

highest contributions to variations in zeta diversity. Communities were defined at family levels.  

Metabarcode FactorGroup NumSamples VarFactor VarDistance VarUnknown 
16S Location 184 0.00% 0.29% 99.70% 
16S Topography 184 0.94% 0.17% 98.90% 
16S Habitat 156 1.33% 0.00% 98.70% 
16S Vegetation 169 5.92% 0.00% 94.10% 
16S BioClim 184 7.17% 0.00% 92.20% 
16S Soil Properties 180 9.21% 0.00% 90.70% 
18S Location 184 0.14% 0.00% 99.90% 
18S Habitat 156 5.49% 0.00% 94.50% 
18S Topography 184 7.15% 0.00% 92.80% 
18S BioClim 184 7.30% 0.00% 92.70% 
18S Soil Properties 180 15.30% 0.00% 84.70% 
18S Vegetation 169 18.50% 0.00% 81.50% 
CO1 Location 184 0.11% 0.22% 99.60% 
CO1 Habitat 156 1.86% 0.00% 98.10% 
CO1 Topography 184 3.30% 0.46% 96.20% 
CO1 BioClim 184 12.00% 0.00% 88.00% 
CO1 Vegetation 169 18.20% 0.31% 81.10% 
CO1 Soil Properties 180 18.60% 0.00% 81.30% 
FITS Topography 184 0.69% 0.55% 98.70% 
FITS Location 184 0.93% 0.38% 98.20% 
FITS Habitat 156 2.24% 0.37% 97.10% 
FITS BioClim 184 18.50% 0.00% 80.40% 
FITS Soil Properties 180 22.40% 0.00% 77.50% 
FITS Vegetation 169 32.40% 1.05% 66.40% 
PITS Location 184 0.03% 0.00% 100.00% 
PITS BioClim 184 1.30% 0.00% 98.70% 
PITS Habitat 156 2.16% 0.00% 97.80% 
PITS Topography 184 2.98% 0.03% 96.90% 
PITS Soil Properties 180 4.23% 0.00% 95.70% 
PITS Vegetation 169 9.00% 0.00% 91.00% 
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Figures 

Figure 1.1 

 

Figure 1.1. Map of 278 sites included in this study and illustration of taxonomic entries 

recovered with five metabarcodes. (A) Study area (gray shade) is defined within the State of 

California, United States. Sample sites are colored by three transect designations: coast (red), 

forest (green) and shrub (blue). Size of the points corresponds to the number of samples taken in 

the same area. Shape of the points represents areas within (circles) and outside (triangles) of the 

University of California’s Natural Reserve System (UCNRS, yellow shade, area size not to scale 

for visibility). (B) Read abundance is grouped by the phylum they belong to after taxonomy 

assignment and decontamination for five metabarcodes targeting Bacteria and Archaea (16S), 
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Eukaryota (18S), Metazoa (CO1), Fungi (FITS) and Viridiplantae (PITS). Only the most 

abundant 10 phyla are plotted for each metabarcode. All other phyla are summarized in the 

“Other” category. (C) Heatmap shows each metabarcode’s taxonomic specificity. The results 

from each metabarcode (16S, 18S, CO1, FITS, PITS) are represented from inner to outer rings 

(gray arrow). Lighter blue in one cell represents more taxonomic entries were recovered by that 

metabarcode for that phylum, gray color represents no entries. Phyla are indicated on the 

periphery. Background color of each pie wedge denotes the superkingdom (Red: Archaea, Blue: 

Eukaryota, Green: Bacteria, No background: Unknown) to which the phyla belonged at the time 

of taxonomy assignment (taxonomy file downloaded from NCBI on January 19, 2018). For 

eukaryotic phyla, kingdoms are marked by different line types in an orange outline: Fungi 

(solid), Metazoa (dashed) and Viridiplantae (dotted).  
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Figure 1.2 

 

Figure 1.2. Beta diversity plots based on Jaccard dissimilarity. The first two principal 

coordinates are plotted with percentage of variance explained included in axis label. We show 

selected Principal Coordinate Analysis (PCoA) plots from (A) 16S and (B) 18S for major habitat. 

Each point stands for a sample site. (C) Example PCoA plots based on Jaccard dissimilarity with 

samples grouped by minor habitat and plotted within aquatic major habitat for 16S metabarcode. 

Some minor habitat groups separate while others overlap, and patterns of compositional 

similarity (overlap) are different for different metabarcodes (Figure S1.20).  
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Figure 1.3 
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Figure 1.3. Gradient forest result for filtered CALeDNA dataset. (A) Ranked overall importance 

for 33 environmental predictors. (B) Ranked goodness-of-fit (1 - Relative Error rates) for the top 

30 families (response variables). (C) and (D) show the community turnover along the three most 

important environmental gradients: elevation, sand percentage and photosynthetic activity proxy 

(NDVI32). (C) The gray histogram shows binned split importance at each gradient. Kernel 

density of splits (black lines), of observed predictor values (red lines) and of splits standardized 

by observation density (blue lines) are overlaid. The horizontal dashed line indicates where the 

ratio is 1. Each curve integrates to the importance of the predictor. (D) The line shows 

cumulative importance distributions of splits improvement scaled by R2 weighted importance 

and standardized by density of observations, averaged over all families.  
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Figure 1.4 

 

Figure 1.4. Gradient forest predicted community turnover map in California. (A) Map of 

transformed environmental variables following gradient forest predictions of biodiversity 

turnover from eDNA results compared with (B) uninformed, standardized environmental 

variables and (C-E) current major ecoregion maps in California. The map shows the first three 

principal dimensions of (A) biologically predicted or (B) uninformed community compositions 

with an RGB color palette with 100 m resolution. The biplot of the first two PCs of the 

transformed environment space with (inset A) or without (inset B) biological information 

provides a color key for the compositional variation (n = 50,000). Similar colors approximate 

similar community in the transformed environmental space. The gray crosses denote the input 
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eDNA sites (n = 272). Vectors denote the direction and magnitude of the eight most important 

environmental correlates. (C-E) Selected major ecoregions maps are provided for comparisons 

with (A) the gradient forest map. (C) EPA Level II Ecoregions of North America (U.S. 

Environmental Protection Agency 2010). (D) EPA Level III Ecoregions of California (U.S. 

Environmental Protection Agency 2012). (E) USDA Ecoregion Sections in California (USDA 

Forest Service 2007).  
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Figure 1.5 

 

Figure 1.5. eDNA-based ecological co-occurrence network and relationship with gradient forest 

model goodness-of-fit R2. (A) 369 families (as nodes) are included in the network and 290 of 

those have at least one edge connecting them to another node. Dark blue and black nodes 

represent families with R2 predictor values >0.4. The size of the node is scaled to the number of 

network degrees. (B) OLS linear regression and quantile-quantile plot showing the interaction 

between network sum of degrees and frequency of taxa in sample sites with the dependent 

variable of gradient forest Family goodness-of-fit R2. There were 304 families included as joint 

observations in gradient forest and network results. The adjusted R2 = 0.22, network sum 

estimate = 0.01 (t-value=5.44; p = 0.00), frequency in sites estimate = 0.00 (t-value = 0.18; p = 

0.86), and interaction between network sum and frequency in sites = 0.00 (t-value = -2.38; p = 

0.02). (C) Phylogenetic tree made with the Open Tree of Life targeting input families as tips. 

Heatmap labels correspond to the range of gradient forest R2 (0.078-0.913) from yellow to dark 

green (inner circle), and to the range of network degrees (0-48) from yellow to purple (outer 

circle). Families too rare to be included in the network analysis (in fewer than 28 sites) are not 

colored in heatmaps. Arrows indicate the following clades: brown = fungi, mustard = 

Enterobacteriaceae, blue = Flavobacteriia, green = Streptophyta, red = SAR supergroup.  

!"#
$%

&'

!"#
$%

&'

0.00

0.25

0.50

0.75

0 10 20 30 40 50

Network_Sum
Fa
m
ily
_R
2 Freq_in_sites

+ 1 SD

Mean

 1 SD

3 2 1 0 1 2 3

3
2

1
0

1
2

3

t Quantiles

St
ud

en
tiz

ed
 R

es
id

ua
ls

(g
flm

lm
)

732

3

t QuantilesSt
ud

en
tiz

ed
 R

es
id

ua
ls

Frequency in sites

Network Sum (degrees)
Fa

m
ily

 R
2

B CA

 < 0.2 0.2-0.4 0.4-0.6 >0.6Gradient Forest R2 



 37 

References 

Amaral-Zettler, L. A., E. A. McCliment, H. W. Ducklow, and S. M. Huse. 2009. A Method for 

Studying Protistan Diversity Using Massively Parallel Sequencing of V9 Hypervariable 

Regions of Small-Subunit Ribosomal RNA Genes. PLOS ONE 4:e6372. 

Bahram, M., F. Hildebrand, S. K. Forslund, J. L. Anderson, N. A. Soudzilovskaia, et al. 2018. 

Structure and function of the global topsoil microbiome. Nature 560:233–237. 

Baldwin, B. G., A. H. Thornhill, W. A. Freyman, D. D. Ackerly, M. M. Kling, et al. 2017. 

Species richness and endemism in the native flora of California. American Journal of 

Botany 104:487–501. 

Bay, R. A., R. J. Harrigan, V. L. Underwood, H. L. Gibbs, T. B. Smith, and K. Ruegg. 2018. 

Genomic signals of selection predict climate-driven population declines in a migratory 

bird. Science 359:83–86. 

Biggs, J., N. Ewald, A. Valentini, C. Gaboriaud, T. Dejean, et al. 2015. Using eDNA to develop 

a national citizen science-based monitoring programme for the great crested newt 

(Triturus cristatus). Biological Conservation 183:19–28. 

Bohmann, K., A. Evans, M. T. P. Gilbert, G. R. Carvalho, S. Creer, et al. 2014. Environmental 

DNA for wildlife biology and biodiversity monitoring. Trends in Ecology & Evolution 

29:358–367. 

Breiman, L. 2001. Statistical Modeling: The Two Cultures (with comments and a rejoinder by 

the author). Statistical Science 16:199–231. 

Bush, A., R. Sollmann, A. Wilting, K. Bohmann, B. Cole, et al. 2017. Connecting Earth 

observation to high-throughput biodiversity data. Nature Ecology & Evolution 1:0176. 



 38 

Calderón‐Sanou, I., T. Münkemüller, F. Boyer, L. Zinger, and W. Thuiller. 2020. From 

environmental DNA sequences to ecological conclusions: How strong is the influence of 

methodological choices? Journal of Biogeography 47:193–206. 

Callahan, B. J., P. J. McMurdie, M. J. Rosen, A. W. Han, A. J. A. Johnson, and S. P. Holmes. 

2016. DADA2: High-resolution sample inference from Illumina amplicon data. Nature 

Methods 13:581–583. 

Caporaso, J. G., C. L. Lauber, W. A. Walters, D. Berg-Lyons, J. Huntley, et al. 2012. Ultra-high-

throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. 

The ISME Journal 6:1621–1624. 

Castro, L. R., A. M. Lagos, B. Shapiro, R. S. Meyer, S. Shirazi, et al. in review. Metabarcoding 

meiofauna biodiversity assessment in four beaches of Northern Colombia: Effects of 

sampling protocols and primer choice. in review. 

Ceballos, G., P. R. Ehrlich, A. D. Barnosky, A. García, R. M. Pringle, and T. M. Palmer. 2015. 

Accelerated modern human–induced species losses: Entering the sixth mass extinction. 

Science advances 1:e1400253. 

Cheng, J., B. Karambelkar, and Y. Xie. 2018. leaflet: Create Interactive Web Maps with the 

JavaScript “Leaflet” Library. https://CRAN.R-project.org/package=leaflet 

Cornelius, J. M., P. R. Kemp, J. A. Ludwig, and G. L. Cunningham. 1991. The distribution of 

vascular plant species and guilds in space and time along a desert gradient. Journal of 

Vegetation Science 2:59–72. 

Cristescu, M. E. 2014. From barcoding single individuals to metabarcoding biological 

communities: towards an integrative approach to the study of global biodiversity. Trends 

in Ecology & Evolution 29:566–571. 



 39 

Crowther, T. W., J. van den Hoogen, J. Wan, M. A. Mayes, A. D. Keiser, et al. 2019. The global 

soil community and its influence on biogeochemistry. Science 365:eaav0550. 

Curd, E. E., Z. Gold, G. S. Kandlikar, J. Gomer, M. Ogden, et al. 2019. Anacapa Toolkit : an 

environmental DNA toolkit for processing multilocus metabarcode datasets. Methods in 

Ecology and Evolution:2041–210X.13214. 

Deiner, K., E. A. Fronhofer, E. Mächler, J.-C. Walser, and F. Altermatt. 2016. Environmental 

DNA reveals that rivers are conveyer belts of biodiversity information. Nature 

Communications 7:12544. 

Delgado-Baquerizo, M., F. T. Maestre, P. B. Reich, T. C. Jeffries, J. J. Gaitan, et al. 2016. 

Microbial diversity drives multifunctionality in terrestrial ecosystems. Nature 

Communications 7:1–8. 

Díaz, S., J. Settele, E. S. Brondízio, H. T. Ngo, J. Agard, et al. 2019. Pervasive human-driven 

decline of life on Earth points to the need for transformative change. Science 

366:eaax3100. 

Durán, S. M., R. E. Martin, S. Díaz, B. S. Maitner, Y. Malhi, et al. 2019. Informing trait-based 

ecology by assessing remotely sensed functional diversity across a broad tropical 

temperature gradient. Science Advances 5:eaaw8114. 

Ehrlich, R., S. Schulz, M. Schloter, and Y. Steinberger. 2015. Effect of slope orientation on 

microbial community composition in different particle size fractions from soils obtained 

from desert ecosystems. Biology and Fertility of Soils 51:507–510. 

Ellis, N., S. J. Smith, and C. R. Pitcher. 2012. Gradient forests: calculating importance gradients 

on physical predictors. Ecology 93:156–168. 



 40 

Epp, L. S., S. Boessenkool, E. P. Bellemain, J. Haile, A. Esposito, et al. 2012. New 

environmental metabarcodes for analysing soil DNA: potential for studying past and 

present ecosystems. Molecular Ecology 21:1821–1833. 

Fick, S. E., and R. J. Hijmans. 2017. WorldClim 2: new 1-km spatial resolution climate surfaces 

for global land areas. International Journal of Climatology 37:4302–4315. 

Fierer, N., and R. B. Jackson. 2006. The diversity and biogeography of soil bacterial 

communities. Proceedings of the National Academy of Sciences 103:626–631. 

Franklin, T. W., K. S. McKelvey, J. D. Golding, D. H. Mason, J. C. Dysthe, et al. 2019. Using 

environmental DNA methods to improve winter surveys for rare carnivores: DNA from 

snow and improved noninvasive techniques. Biological Conservation 229:50–58. 

Gao, X., H. Lin, K. Revanna, and Q. Dong. 2017. A Bayesian taxonomic classification method 

for 16S rRNA gene sequences with improved species-level accuracy. BMC 

Bioinformatics 18:247. 

George, P. B. L., D. Lallias, S. Creer, F. M. Seaton, J. G. Kenny, et al. 2019. Divergent national-

scale trends of microbial and animal biodiversity revealed across diverse temperate soil 

ecosystems. Nature Communications 10:1107. 

Gibson, N., R. Meissner, A. S. Markey, and W. A. Thompson. 2012. Patterns of plant diversity 

in ironstone ranges in arid south western Australia. Journal of Arid Environments 77:25–

31. 

Goldberg, C. S., C. R. Turner, K. Deiner, K. E. Klymus, P. F. Thomsen, et al. 2016. Critical 

considerations for the application of environmental DNA methods to detect aquatic 

species. Methods in Ecology and Evolution:1299–1307. 



 41 

Gordon, A., G. Hannon, and others. 2010. Fastx-toolkit. FASTQ/A short-reads preprocessing 

tools (unpublished) http://hannonlab. cshl. edu/fastx_toolkit 5. 

Groenendyk, D. G., T. P. A. Ferré, K. R. Thorp, and A. K. Rice. 2015. Hydrologic-Process-

Based Soil Texture Classifications for Improved Visualization of Landscape Function. 

PLOS ONE 10:e0131299. 

Gu, W., J. Song, Y. Cao, Q. Sun, H. Yao, et al. 2013. Application of the ITS2 Region for 

Barcoding Medicinal Plants of Selaginellaceae in Pteridophyta. PLOS ONE 8:e67818. 

Harfouche, A. L., D. A. Jacobson, D. Kainer, J. C. Romero, A. H. Harfouche, et al. 2019. 

Accelerating Climate Resilient Plant Breeding by Applying Next-Generation Artificial 

Intelligence. Trends in Biotechnology 37:1217–1235. 

Hefley, T. J., and M. B. Hooten. 2016. Hierarchical Species Distribution Models. Current 

Landscape Ecology Reports 1:87–97. 

Hengl, T., J. M. de Jesus, G. B. M. Heuvelink, M. R. Gonzalez, M. Kilibarda, et al. 2017. 

SoilGrids250m: Global gridded soil information based on machine learning. PLOS ONE 

12:e0169748. 

Hijmans, R. J. 2019. raster: Geographic Data Analysis and Modeling. https://CRAN.R-

project.org/package=raster 

Hobern, D. G. 2020. BIOSCAN: DNA Barcoding to accelerate taxonomy and biogeography for 

conservation and sustainability. Genome. 

van den Hoogen, J., S. Geisen, D. Routh, H. Ferris, W. Traunspurger, et al. 2019. Soil nematode 

abundance and functional group composition at a global scale. Nature 572:194–198. 



 42 

Horner-Devine, M. C., J. M. Silver, M. A. Leibold, B. J. M. Bohannan, R. K. Colwell, et al. 

2007. A Comparison of Taxon Co-Occurrence Patterns for Macro- and Microorganisms. 

Ecology 88:1345–1353. 

Hui, C., M. A. McGeoch, A. E. S. Harrison, and E. J. L. Bronstein. 2014. Zeta Diversity as a 

Concept and Metric That Unifies Incidence-Based Biodiversity Patterns. The American 

Naturalist 184:684–694. 

Hui, C., W. Vermeulen, and G. Durrheim. 2018. Quantifying multiple-site compositional 

turnover in an Afrotemperate forest, using zeta diversity. Forest Ecosystems 5:15. 

Jackson, L. E., T. M. Bowles, H. Ferris, A. J. Margenot, A. Hollander, et al. 2019. Plant and soil 

microfaunal biodiversity across the borders between arable and forest ecosystems in a 

Mediterranean landscape. Applied Soil Ecology 136:122–138. 

Jenkins, C. N., S. L. Pimm, and L. N. Joppa. 2013. Global patterns of terrestrial vertebrate 

diversity and conservation. Proceedings of the National Academy of Sciences 

110:E2602–E2610. 

Jenkins, C. N., K. S. Van Houtan, S. L. Pimm, and J. O. Sexton. 2015. US protected lands 

mismatch biodiversity priorities. Proceedings of the National Academy of Sciences 

112:5081–5086. 

Jetz, W., M. A. McGeoch, R. Guralnick, S. Ferrier, J. Beck, et al. 2019. Essential biodiversity 

variables for mapping and monitoring species populations. Nature Ecology & Evolution 

3:539–551. 

Kandlikar, G. S., Z. J. Gold, M. C. Cowen, R. S. Meyer, A. C. Freise, et al. 2018. ranacapa: An R 

package and Shiny web app to explore environmental DNA data with exploratory 

statistics and interactive visualizations. F1000Research 7:1734. 



 43 

Karimi, B., S. Terrat, S. Dequiedt, N. P. A. Saby, W. Horrigue, et al. 2018. Biogeography of soil 

bacteria and archaea across France. Science Advances 4:eaat1808. 

Kobori, H., J. L. Dickinson, I. Washitani, R. Sakurai, T. Amano, et al. 2016. Citizen science: a 

new approach to advance ecology, education, and conservation. Ecological Research 

31:1–19. 

Kurtz, Z. D., C. L. Müller, E. R. Miraldi, D. R. Littman, M. J. Blaser, and R. A. Bonneau. 2015. 

Sparse and Compositionally Robust Inference of Microbial Ecological Networks. PLOS 

Computational Biology 11:e1004226. 

Langmead, B., and S. L. Salzberg. 2012. Fast gapped-read alignment with Bowtie 2. Nature 

Methods 9:357–359. 

Larson, E. R., B. M. Graham, R. Achury, J. J. Coon, M. K. Daniels, et al. 2020. From eDNA to 

citizen science: emerging tools for the early detection of invasive species. Frontiers in 

Ecology and the Environment 18:194–202. 

Latombe, G., M. A. McGeoch, D. A. Nipperess, and C. Hui. 2018. zetadiv: functions to compute 

compositional turnover using ζ diversity. https://cran.r-project.org/package=zetadiv 

Lee, J.-S., J.-W. Kim, S. H. Lee, H.-H. Myeong, J.-Y. Lee, and J. S. Cho. 2016. Zonation and 

soil factors of salt marsh halophyte communities. Journal of Ecology and Environment 

40:4. 

Leray, M., J. Y. Yang, C. P. Meyer, S. C. Mills, N. Agudelo, et al. 2013. A new versatile primer 

set targeting a short fragment of the mitochondrial COI region for metabarcoding 

metazoan diversity: application for characterizing coral reef fish gut contents. Frontiers in 

Zoology 10:34. 



 44 

Lewin, H. A., G. E. Robinson, W. J. Kress, W. J. Baker, J. Coddington, et al. 2018. Earth 

BioGenome Project: Sequencing life for the future of life. Proceedings of the National 

Academy of Sciences:201720115. 

Long, J. A. 2019. interactions: Comprehensive, User-Friendly Toolkit for Probing Interactions. 

https://cran.r-project.org/package=interactions 

Mandakovic, D., C. Rojas, J. Maldonado, M. Latorre, D. Travisany, et al. 2018. Structure and co-

occurrence patterns in microbial communities under acute environmental stress reveal 

ecological factors fostering resilience. Scientific Reports 8:1–12. 

Martin, M. 2011. Cutadapt removes adapter sequences from high-throughput sequencing reads. 

EMBnet. journal 17:10–12. 

McMurdie, P. J., and S. Holmes. 2013. phyloseq: An R Package for Reproducible Interactive 

Analysis and Graphics of Microbiome Census Data. PLOS ONE 8:e61217. 

Meyer, R. S., M. Munguia Ramos, M. Lin, T.M. Schweizer, Z. Gold, et al. 2021. The 

CALeDNA program: Citizen scientists and researchers inventory California’s 

biodiversity. California Agriculture 75 (1): 20–32. 

Miralles, L., E. Dopico, F. Devlo-Delva, and E. Garcia-Vazquez. 2016. Controlling populations 

of invasive pygmy mussel (Xenostrobus securis) through citizen science and 

environmental DNA. Marine Pollution Bulletin 110:127–132. 

Montagna, M., A. Berruti, V. Bianciotto, P. Cremonesi, R. Giannico, et al. 2018. Differential 

biodiversity responses between kingdoms (plants, fungi, bacteria and metazoa) along an 

Alpine succession gradient. Molecular Ecology 27:3671–3685. 



 45 

Moreno, J., A. Terrones, A. Juan, and M. Á. Alonso. 2018. Halophytic plant community patterns 

in Mediterranean saltmarshes: shedding light on the connection between abiotic factors 

and the distribution of halophytes. Plant and Soil 430:185–204. 

Myers, N., R. A. Mittermeier, C. G. Mittermeier, G. A. B. da Fonseca, and J. Kent. 2000. 

Biodiversity hotspots for conservation priorities. Nature 403:853–858. 

Nieto‐Lugilde, D., K. C. Maguire, J. L. Blois, J. W. Williams, and M. C. Fitzpatrick. 2018. 

Multiresponse algorithms for community-level modelling: Review of theory, 

applications, and comparison to species distribution models. Methods in Ecology and 

Evolution 9:834–848. 

Oksanen, J., F. G. Blanchet, M. Friendly, R. Kindt, P. Legendre, et al. 2018. vegan: Community 

Ecology Package. https://CRAN.R-project.org/package=vegan 

Omernik, J. M., and G. E. Griffith. 2014. Ecoregions of the Conterminous United States: 

Evolution of a Hierarchical Spatial Framework. Environmental Management 54:1249–

1266. 

Pereira, H. M., S. Ferrier, M. Walters, G. N. Geller, R. H. G. Jongman, et al. 2013. Essential 

Biodiversity Variables. Science 339:277–278. 

Peters, M. K., A. Hemp, T. Appelhans, J. N. Becker, C. Behler, et al. 2019. Climate–land-use 

interactions shape tropical mountain biodiversity and ecosystem functions. Nature 

568:88–92. 

Pettorelli, N., K. Safi, and W. Turner. 2014. Satellite remote sensing, biodiversity research and 

conservation of the future. Phil. Trans. R. Soc. B 369:20130190. 

Pimm, S. L., C. N. Jenkins, R. Abell, T. M. Brooks, J. L. Gittleman, et al. 2014. The biodiversity 

of species and their rates of extinction, distribution, and protection. Science 344:1246752. 



 46 

Pitcher, C. R., N. Ellis, and S. J. Smith. 2011. Example analysis of biodiversity survey data with 

R package gradientForest:16. http://gradientforest.r-forge.r-project.org/biodiversity-

survey.pdf 

Pollock, L. J., L. M. J. O’Connor, K. Mokany, D. F. Rosauer, M. V. Talluto, and W. Thuiller. 

2020. Protecting Biodiversity (in All Its Complexity): New Models and Methods. Trends 

in Ecology & Evolution:S0169534720302305. 

Prosser, J. I. 2010. Replicate or lie. Environmental Microbiology 12:1806–1810. 

R Core Team. 2019. R: A Language and Environment for Statistical Computing. R Foundation 

for Statistical Computing, Vienna, Austria. 

Ranjard, L., S. Dequiedt, N. Chemidlin Prévost-Bouré, J. Thioulouse, N. P. A. Saby, et al. 2013. 

Turnover of soil bacterial diversity driven by wide-scale environmental heterogeneity. 

Nature Communications 4:1–10. 

Schimel, D., F. D. Schneider, and JPL Carbon and Ecosystem Participants. 2019. Flux towers in 

the sky: global ecology from space. New Phytologist 224:570–584. 

Schneider, F. D., A. A. Ferraz, S. Hancock, L. I. Duncanson, R. O. Dubayah, et al. 2020. 

Towards mapping the diversity of canopy structure from space with GEDI. 

Environmental Research Letters. 

Schneider, F. D., F. Morsdorf, B. Schmid, O. L. Petchey, A. Hueni, et al. 2017. Mapping 

functional diversity from remotely sensed morphological and physiological forest traits. 

Nature Communications 8:1441. 

Seeber, P. A., G. K. McEwen, U. Löber, D. W. Förster, M. L. East, et al. 2019. Terrestrial 

mammal surveillance using hybridization capture of environmental DNA from African 

waterholes. Molecular Ecology Resources 19:1486–1496. 



 47 

Sessitsch, A., A. Weilharter, M. H. Gerzabek, H. Kirchmann, and E. Kandeler. 2001. Microbial 

Population Structures in Soil Particle Size Fractions of a Long-Term Fertilizer Field 

Experiment. Applied and Environmental Microbiology 67:4215–4224. 

Shannon, P., A. Markiel, O. Ozier, N. S. Baliga, J. T. Wang, et al. 2003. Cytoscape: a software 

environment for integrated models of biomolecular interaction networks. Genome 

research 13:2498–2504. 

Shirazi, S., R. Meyer, and B. Shapiro. 2020. PCR replication in environmental DNA 

metabarcoding. preprint, Authorea. 

Silva, A. C., and A. F. Souza. 2018. Aridity drives plant biogeographical sub regions in the 

Caatinga, the largest tropical dry forest and woodland block in South America. PLOS 

ONE 13:e0196130. 

Simons, A. L., R. Mazor, E. D. Stein, and S. Nuzhdin. 2019. Using alpha, beta, and zeta diversity 

in describing the health of stream-based benthic macroinvertebrate communities. 

Ecological Applications 29:e01896. 

Taberlet, P., A. Bonin, L. Zinger, and E. Coissac. 2018. Environmental DNA: For Biodiversity 

Research and Monitoring. Oxford University Press. 

Theobald, E. J., A. K. Ettinger, H. K. Burgess, L. B. DeBey, N. R. Schmidt, et al. 2015. Global 

change and local solutions: Tapping the unrealized potential of citizen science for 

biodiversity research. Biological Conservation 181:236–244. 

Thompson, L. R., J. G. Sanders, D. McDonald, A. Amir, J. Ladau, et al. 2017. A communal 

catalogue reveals Earth’s multiscale microbial diversity. Nature 551:457. 



 48 

Timling, I., D. A. Walker, C. Nusbaum, N. J. Lennon, and D. L. Taylor. 2014. Rich and cold: 

diversity, distribution and drivers of fungal communities in patterned-ground ecosystems 

of the North American Arctic. Molecular Ecology 23:3258–3272. 

Tipton, L., C. L. Müller, Z. D. Kurtz, L. Huang, E. Kleerup, et al. 2018. Fungi stabilize 

connectivity in the lung and skin microbial ecosystems. Microbiome 6:12. 

U.S. Environmental Protection Agency. 2010. NA_CEC_Eco_Level2. U.S. EPA Office of 

Research and Development (ORD) - National Health and Environmental Effects 

Research Laboratory (NHEERL), Corvallis, OR. 

ftp://ftp.epa.gov/wed/ecoregions/cec_na/NA_CEC_Eco_Level2.zip 

U.S. Environmental Protection Agency. 2012. Level III Ecoregions of California. U.S. EPA 

Office of Research and Development (ORD) - National Health and Environmental 

Effects Research Laboratory (NHEERL), Corvallis, OR. 

ftp://newftp.epa.gov/EPADataCommons/ORD/Ecoregions/ca/ca_eco_l3.zip 

USDA Forest Service. 2007. USDA Ecoregion Sections, California. USDA Forest Service - 

Pacific Southwest Region - Remote Sensing Lab. 

https://databasin.org/datasets/81a3a809a2ae4c099f2e495c0b2ecc91 

Wang, R., J. A. Gamon, J. Cavender‐Bares, P. A. Townsend, and A. I. Zygielbaum. 2018. The 

spatial sensitivity of the spectral diversity–biodiversity relationship: an experimental test 

in a prairie grassland. Ecological Applications 28:541–556. 

Wildlife Conservation Society and Center for International Earth Science Information Network, 

Columbia University. 2005. Last of the Wild Project, Version 2, 2005 (LWP-2): Global 

Human Footprint Dataset (Geographic). Palisades, NY: NASA Socioeconomic Data and 

Applications Center (SEDAC). https://doi.org/10.7927/H4M61H5F. 



 49 

White, H. J., L. León‐Sánchez, V. J. Burton, E. K. Cameron, T. Caruso, et al. 2020. Methods and 

approaches to advance soil macroecology. Global Ecology and Biogeography 29:1674–

1690. 

White, T. J., T. Bruns, S. Lee, J. Taylor, and others. 1990. Amplification and direct sequencing 

of fungal ribosomal RNA genes for phylogenetics. PCR protocols: a guide to methods 

and applications 18:315–322. 

Yamasaki, E., F. Altermatt, J. Cavender-Bares, M. C. Schuman, D. Zuppinger-Dingley, et al. 

2017. Genomics meets remote sensing in global change studies: monitoring and 

predicting phenology, evolution and biodiversity. Current Opinion in Environmental 

Sustainability 29:177–186. 

Yang, T., J. M. Adams, Y. Shi, J. He, X. Jing, et al. 2017. Soil fungal diversity in natural 

grasslands of the Tibetan Plateau: associations with plant diversity and productivity. New 

Phytologist 215:756–765. 

Yu, D. W., Y. Ji, B. C. Emerson, X. Wang, C. Ye, et al. 2012. Biodiversity soup: metabarcoding 

of arthropods for rapid biodiversity assessment and biomonitoring: Biodiversity soup. 

Methods in Ecology and Evolution 3:613–623. 

Zarnetske, P. L., Q. D. Read, S. Record, K. D. Gaddis, S. Pau, et al. 2019. Towards connecting 

biodiversity and geodiversity across scales with satellite remote sensing. Global Ecology 

and Biogeography 28:548–556. 

  



 50 

Chapter 2: The Genomic Footprint of Whaling and Isolation in Fin Whale 

Populations 

In preparation for submission to Nature Communications 
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Chapter2_Supplementary_Information.pdf 

Abstract 

Twentieth century industrial whaling pushed several species to the brink of extinction. 

Fin whales (Balaenoptera physalus) were the most impacted with over 75,000 individuals 

harvested in the North Pacific. However, a small, resident population in the Gulf of California 

was not targeted by whaling. Here we analyzed 50 whole-genome sequences from the Eastern 

North Pacific and Gulf of California fin whale populations to investigate their demographic 

history and the genomic effects of natural and human-induced bottlenecks. We show that the two 

populations diverged between 16,000 and 25,000 years ago, after which the Eastern North 

Pacific population expanded and then suffered a dramatic 99% reduction in effective population 

size during the recent whaling period. In contrast, the Gulf of California population remained 

small and highly isolated throughout this period, receiving less than one migrant per generation. 

However, this extremely low level of migration has been crucial for maintaining its viability, 

despite an increased genetic load caused by isolation. Our genomic analysis demonstrates that 

the magnitude and time of recent anthropogenic population bottlenecks can be assessed using 

contemporary samples, exposes the severity of whaling, emphasizes the importance of migration, 

and demonstrates the use of genome-based analyses and simulations to inform conservation 

strategies. 
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Introduction 

Due to increasing recent human impacts, many vertebrate species have experienced 

drastic population declines and now persist as small and fragmented populations1–3. Small 

populations are at higher risk of population declines due to stochastic environmental and genetic 

factors4–6. Both anthropogenic and naturally occurring population declines reduce genetic 

diversity, increase inbreeding and genetic load due to the stronger action of genetic drift which 

diminish the long-term survival and adaptive potential of populations7,8. However, the impact of 

these processes depends on the often unknown population-specific demographic histories and 

life history traits. For example, gene flow as low as one effective migrant per generation may 

counteract genetic drift and reduce the frequency of deleterious variation9–11, but might also 

reduce metapopulation genetic variation12, or introduce strongly deleterious alleles13. Therefore, 

uncovering population history and determining how detrimental genetic patterns arise in 

declining populations are challenging questions, but the answers are critical to developing 

effective conservation strategies14. 

Industrial whaling during the 20th century is arguably one of the most disruptive 

ecological events caused by humans15, which decimated all great whale species and drove many 

of them to the brink of extinction16,17. Estimating the decline of whale populations is crucial to 

evaluate the full impact of whaling and design appropriate recovery policies, not only on whale 

abundance but on entire ecosystems15,17,18. However, quantifying the magnitude of known recent 

population declines in endangered vertebrate species from contemporary samples has proven 

difficult because the estimates based on genetic diversity capture long-term effective sizes rather 

than recent demographic events19,20. Additionally, the long life-span and generation time of 

whales complicate the inference of recent population size changes21 because less generation 



 53 

turnover occurs in a given amount of time. Due to these challenges, previous genetic studies 

using contemporary samples have only indirectly estimated the impact of whaling, determining 

that historical abundance from whaling records and recent ecological studies are orders of 

magnitude lower than those based on the diversity of a few mitochondrial or nuclear markers 17–

24, suggesting a slower recovery of whale populations after the end of whaling. Therefore, a 

direct estimation of the time and magnitude of the whaling bottleneck is still lacking for most 

whale populations. The analysis of whole-genome data can provide results with more power and 

resolution to detect recent demographic changes25.  

The fin whale (Balaenoptera physalus) is the second largest whale and the one most 

impacted by industrial whaling world-wide. In the North Pacific alone, more than 75,500 fin 

whales were harvested26. However, fin whales in the Gulf of California, Mexico, were not 

targeted by whalers. Nevertheless, their population has been small with limited gene flow for 

thousands of years27,28. In contrast, the Eastern North Pacific population was large, 

interconnected, and overexploited29, though the population along the U.S. west coast has shown 

evidence of growth at 3% per year since the 1990’s30. Here we provide one of the first direct 

large-scale genome-wide demographic reconstruction of whaling in a previously large 

population, in comparison to a never-whaled but small and isolated population. We analyze and 

model the whole-genome diversity of these fin whale populations having contrasting 

demographic histories to identify the genetic and evolutionary impacts of population reductions 

in large, long-lived marine mammals. Understanding the complex interaction between 

demographic and evolutionary factors shaping the genetic diversity in whale populations is key 

to improving their conservation, especially given current and future whaling threats from some 

countries and the challenges of climate change and human inputs to marine ecosystems17. 
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Evaluating the genomic consequences of contrasting population reductions in threatened 

populations make our results relevant for the conservation of other small and endangered 

populations. 

Results 

Sampling, population structure and differentiation 

To assess the genome-wide impact of human-induced and natural bottlenecks on fin 

whale populations, we generated high coverage (mean average 27x) whole genome resequencing 

data from 50 samples of free-ranging individuals collected between 1995 and 2017 (Figure 2.1A; 

Table S2.1). Thirty individuals are from regions that survived intensive whaling pressure in the 

Eastern North Pacific (ENP), along the coasts of California (CA; N = 9), Oregon (OR; N = 4), 

Washington (WA; N = 2), British Columbia (BC; N = 3) and Alaska (AK; N = 12). Additionally, 

we included 20 individuals from a naturally small population in the Gulf of California, Mexico 

(GOC), that has maintained a low population size between 300-600 individuals for thousands of 

years and avoided the impacts of whaling28,29,31. 

The sequences were aligned, genotyped, annotated and filtered using the minke whale 

genome as a reference (BalAcu1.0). Principal component analysis (PCA) separated the ENP and 

GOC individuals on PC1 with tight clustering of the GOC samples (Figure 2.1B). A wider 

dispersion pattern is observed for the ENP samples, with the Alaska samples remaining relatively 

clustered, suggesting some degree of differentiation of this northern population from those to the 

south (Figure S2.1). Admixture analysis of all the samples supports a K = 2 partition of ENP and 

GOC samples (Figures 2.1C, S2.2). We identified one ~50% admixed individual from each 

population (ENPCA09 and GOC010) and a small admixture fraction from GOC in the ENP 

population (Figure 2.1B, 2.1C). Additional admixture analysis of only ENP samples supports a K 
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= 1 partition of this population (Figure S2.3). FST values are higher between the GOC and ENP 

(FST = 0.073, P = 0.001) than between all locations within the ENP (FST = 0-0.008; Table S2.2). 

Assuming the highest FST of 0.008 observed within ENP, this substructure would at most inflate 

effective population size (Ne) estimates by 0.8% (Alter et al. 2007). Also, a phylogenetic 

analysis separated both populations into different clades, with the nodes within the ENP clade 

showing no bootstrap support. The two admixed individuals clustered with ENP but showed 

early divergence (Figure S2.4). These results indicate there are two main populations in our 

sample, one off the Pacific coast and the other in the Gulf of California, consistent with previous 

microsatellite and mitochondrial data28,31. In addition, our findings confirm the strong isolation 

of the geographically distinct Gulf population28,32, whereas weak population substructure was 

observed in the eastern North Pacific. 

Genome-wide patterns of variation and runs of homozygosity 

We explored the genome-wide diversity patterns of fin whale populations by calculating 

average genome-wide heterozygosity and per-site heterozygosity in nonoverlapping 1-Mb 

windows. In GOC individuals we found patterns of reduced variation, with an average 1.13 

heterozygotes per kb (het/kb) and an increased proportion of genomic regions with low 

heterozygosity (46% of windows contain < 1 het/kb). In contrast, the ENP population had much 

higher diversity (1.76 het/kb; two-tailed Mann-Whitney U [MWU] test P = 1.15E-10; Figure 

2.2A) and few regions of low heterozygosity (12% of windows with < 1 het/kb; Figures 2.2B, 

S2.5, S2.6). These genome-wide results imply contrasting demographic histories of long-term 

small and large population size in the Gulf and North Pacific, respectively28. Compared with 

other marine mammals that have experienced different levels of population contractions, such as 

the diminutive vaquita in the Gulf of California33,34 (0.1 het/kb), abundant minke whale35 (0.6 
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het/kb) and endangered blue whale36 (2.1 het/kb), the GOC fin whales have maintained moderate 

genome-wide patterns of variation (Figure 2.2A), suggesting that evolutionary mechanisms such 

as migration have maintained genetic diversity. However, the GOC population has an enriched 

number of 1-Mb windows with null or very low heterozygosity (0-0.1 het/kb) compared with 

more endangered mysticete species such as the North Atlantic right whale and blue whale 

(Figure S2.7), indicating that populations of these endangered species were historically larger 

than the Gulf of California fin whale population and a reassessment towards a more threatened 

status of the GOC population is needed.  

To characterize the history of inbreeding events, we identified runs of homozygosity 

(ROH), which are genomic stretches within an individual that are assumed to be identical by 

descent, using two model-based methods37,38 (Figure S2.8). Long ROH ( ≥ 5 Mb) typically result 

from recent close inbreeding whereas shorter ROH indicate either older inbreeding or older 

reductions in population size39. Overall, GOC individuals contained considerably more ROH 

segments than ENP individuals (two-tailed MWU test P = 9.42E-08), but most of the ROH were 

of short (0.1 – 1 Mb) or intermediate (1 – 5 Mb) length (Figure 2.2A). Long ROH were present 

in all GOC individuals, except the admixed sample GOC010, and only in three ENP individuals. 

Nevertheless, they comprise a small fraction of total ROH length in both populations 

(𝐹!"#$%& = 0.4 − 3.1%). To further explore the timing of inbreeding, we estimated the average 

time at which two homologous haplotypes could coalesce within our ROH categories for each 

population, assuming a recombination rate of 1 cM/Mb40. For short ROH, haplotypes coalesced 

on average approximately 145 and 250 generations ago in GOC and ENP, respectively, whereas 

for intermediate ROH the average haplotype coalescent time was 28 and 30 generations ago. 

These findings suggest a lack of recent inbreeding in both populations (Figures 2.2A, S2.9). 
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However, the higher number and longer ROH observed in the GOC fin whales (Figures 2.2A, 

S2.8, S2.9), together with the high proportion of their genome contained in ROH larger than 

1Mb ( 𝐹!"#$'&(GOC) = 17.5 − 23.4%; Table S2.3), indicate that genomic segments in this 

population share a more recent common ancestor than they do in the Pacific population. Finally, 

we determined the relatedness between individuals in both populations and found significantly 

higher average kinship coefficient among GOC individuals (0.054) than in the ENP population 

(0.0032; two-tailed MWU test P < 2.2E-16), indicating greater identity-by-descent in the GOC, 

which further demonstrate higher inbreeding levels in this population (Figure S2.10A). We 

divided the ENP into location groups to account for larger geographical coverage and continued 

to observe significantly higher kinship in the GOC (Figure S2.10B, S2.10C). In summary, these 

results reflect the greater historical isolation and small population size of the GOC27 and a lack of 

recent inbreeding in both populations. 

Demographic reconstruction of whaling, divergence and gene flow  

We reconstructed the demographic history of fin whale populations using the site 

frequency spectrum (SFS) to assess the impact of whaling in the Eastern North Pacific 

population and to determine the demographic events that have shaped the genomic diversity of 

the Gulf of California population. First, using the SFS from each population, we tested different 

single-population effective size (Ne) change models, employing coalescent41 (fastsimcoal2) and 

diffusion approximation42 (∂a∂i) methods. We assumed a generation time of 25.9 years43 and a 

mutation rate of 2.77E-08 mutation/bp/generation35, and tested several nested models with 

increasing numbers of size-change epochs (Figure S2.11). Both inference methods provided 

concordant findings and ∂a∂i results are shown throughout the text, except when noted (see 

Tables S2.4 – S2.6, for fastsimcoal2 results and all 95% confidence interval [CI] values). Our 
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demographic analyses show that a 3-epoch model was the best fit for the ENP population 

(Figures 2.3A, 2.3B, S2.12A; Tables S2.4, S2.5) and revealed an expansion starting ~115 

thousand years ago (kya; 4,424 generations), from an ancestral Ne of 16,479 to 23,913. This was 

followed by a severe decline only 26 (one generation ago for fastsimcoal2 estimate; 95% CI: 0 – 

2) or 52 years before present (two generations ago for ∂a∂i estimate; 95% CI: 1.82 – 2.19) to a 

current 𝑁*= 305 individuals (95% CI: 0 – 1183; Figure 2.3A, 2.3B; Table S2.6), representing an 

approximately 99% reduction. To further verify the timing and size of this recent population 

reduction, we implemented a grid search (Figure S2.13; Supplemental Methods and 

Supplemental Results), performed additional inference runs varying the time for the whaling 

reduction (Tables S2.4, S2.6), used different optimization methods (Table S2.7), confirmed our 

power to detect such recent decline using coalescent SFS simulations under this model (Figure 

S2.14), and ran supplementary inferences under a SFS without filtering on genotype calls to 

avoid bias against rare alleles (Tables S2.8, S2.9; Supplemental Methods and Supplemental 

Discussion). These additional analyses demonstrated that our findings reflect a drastic recent 

reduction one or two generations ago. Since the average collection year for samples from this 

population was 2006 (Table S2.1), the estimated times of the reduction correspond to the years 

1954 to 1980, coinciding with the most intense whaling period this population suffered between 

1940 and 198026,29.  

For the Gulf of California population, none of the inferred SFS for the single-population 

models had a good fit to the data (Figure S2.12B). Additionally, the models with the best 

likelihood did not show convergence or concordant parameter estimation between inference 

methods (Tables S2.4 – S2.6), which can indicate an overparameterization of the models 

(Supplemental Results). Therefore, we inferred the demographic history of the Gulf whales using 
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a two-population model (described below) because they have shown to contain more information 

than single-population models and improve demographic inference44. 

The time of divergence and migration rates between both populations were estimated by 

testing several two-population models based on the joint SFS between ENP and GOC (Figures 

S2.15, S2.16; Table S2.4). The model of an ancestral size change before the populations 

diverged fits our data well (Figures 2.3C, S2.16; Table S2.4), is consistent among inference 

methods (Tables S2.10, S2.11) and is biologically feasible, therefore it was chosen as our best 

model (Supplemental Results). This model predicted that before the populations separated, the 

ancestral population expanded from ~16,000 effective individuals to ~25,000, more than 100 kya 

(4,322 generations). Then, the populations split between 16 and 25 kya (616 and 960 

generations, ∂a∂i and fastsimcoal2 estimates, respectively). Thereafter, the ENP population 

remained at Ne = 17,386 until it recently crashed due to whaling, as shown by the single-

population model. By contrast, the GOC effective population size remained small after the 

divergence at Ne = 114. The model also inferred asymmetrical gene flow, with higher migration 

rate from the Pacific into the Gulf population (3.42E-03; fraction of individuals that are 

migrants) than in the opposite direction (9.24E-05; Table S2.10). However, when scaled by the 

receiving population’s effective size, these rates represent a long-term effective migration of 0.39 

immigrants per generation into the Gulf and 1.61 into the Pacific population (Figure 2.3C).  

To test if unsampled (ghost) populations contributed to migration into the GOC, we ran 

additional two-population models incorporating feasible ghost populations, the South Pacific and 

the western North Pacific (WNP). The ghost western North Pacific had a higher log-likelihood 

(Table S2.12) but did not considerably increase the total migration into the Gulf of California 

(the migration rate and effective migration from the ghost WNP into the GOC were 2.09E-04 
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and 0.01, respectively; Figure S2.17; Table S2.13), demonstrating that migration from ghost 

populations into the GOC is negligible and do not affect our estimates. However, ghost 

population models revealed that the divergence between the ancestral ENP and ghost WNP 

populations match the expansion observed in both the single-population ENP and two-population 

models, around 4,300 generations ago (Supplemental Discussion; Figures 2.3A, 2.3C, S2.17; 

Tables S2.6, S2.10, S2.13).  

Our results suggest the GOC population was founded at the end of the Wisconsin 

glaciation during the Last Glacial Maximum45 and remained small and highly isolated since then, 

receiving < 1 migrant per generation (Figure 2.3C). These findings are substantially different 

from estimates based on mitochondrial and microsatellite loci that predicted more recent 

divergence times, ~2,300 or 9,300 years before present (123 or 360 generations ago, 

respectively) and ~1 migrant per generation28,31 (see Supplemental Discussion). Therefore, our 

results emphasize the greater resolution of whole genome resequencing data for demographic 

inference empowered by the sheer availability of independent genealogies sampled20 compared 

with only a handful of microsatellite loci28 and a maternally inherited non-recombining marker. 

Patterns of deleterious variation and genetic load 

Our demographic inference analysis suggests a historically large population size and a 

recent contraction for the ENP population and a high degree of isolation for the GOC population. 

To assess how these demographic trajectories have impacted fitness, we examined variants in 

coding regions, which are more likely to have functional impacts. The derived alleles were 

classified into four mutation types: synonymous, tolerated nonsynonymous (SIFT score ≥ 0.05), 

deleterious nonsynonymous (SIFT score < 0.05), and loss-of-function (LOF; identified using 

snpEff, details in Methods). The synonymous and tolerated nonsynonymous mutations serve as a 
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proxy for neutral variants whereas the deleterious nonsynonymous and LOF mutations are 

proxies for putatively deleterious variants46. Since the dominance for variants in natural 

populations is poorly quantified, we assumed two extreme scenarios. Specifically, dominance of 

all variants is fully recessive (h = 0), or fully additive (h = 0.5). 

For all four mutation types, heterozygosity is significantly depleted and homozygosity is 

significantly elevated in the GOC population (MWU tests P = 2.9E-12 in all comparisons; Table 

S2.14), consistent with reduced genome-wide heterozygosity and small population size. The 

number of homozygous derived deleterious nonsynonymous genotypes per individual was on 

average 39.68% higher in the GOC (2079) compared to the ENP population (1488). Similarly, 

the number of homozygous derived LOF genotypes was on average 28.98% higher in the Gulf 

(140) compared with the Pacific population (108; Figure 2.4A). Assuming that these deleterious 

mutations are also at least partially recessive, this increased homozygosity in the GOC is 

predicted to result in reduced fitness47. 

When deleterious mutations act in an additive manner, the genetic load is determined by 

counts of derived alleles per genome. We found that the ENP and GOC populations showed a 

similar number of derived neutral alleles as expected48 (Table S2.14). For the putatively 

deleterious class of mutations, only nonsynonymous alleles showed a significant 2.03% elevation 

in the GOC population (GOC average = 5983, ENP average = 5864, MWU test P = 1.20E-07), 

whereas the number of LOF alleles were similar in the two populations (P = 0.87; Figure 2.4B). 

Assuming that these nonsynonymous alleles are slightly deleterious, the small population size of 

the GOC population likely decreased the efficacy of selection compared to the larger ENP 

population, allowing the persistence of deleterious variants in the Gulf. By contrast, the similar 

number of LOF alleles indicates that, in spite of the GOC population’s small size, purifying 
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selection has remained effective at eliminating the most deleterious mutations. Overall, these 

results imply a slight increase in the genetic load in the GOC population if deleterious mutations 

are additive.  

Finally, we computed the RXY (relative accumulation of derived alleles) and R2XY (relative 

accumulation of derived homozygotes) statistics that compares the expected number of the 

derived alleles or homozygotes occurring only in one population49 (Figure 2.4C). Among the 

four mutation types, only the deleterious nonsynonymous alleles showed a relative accumulation 

of derived alleles in GOC (RGOC/ENP = 1.04, Z-score P = 0.02), similar to the allele counts pattern 

(Figure 2.4B). However, the R2XY was significantly elevated for all mutation types in the GOC 

population (Z-score P < 0.001 for all comparisons), consistent with their higher homozygosity 

values in GOC (Figure 2.4A). We repeated these analyses using snpEff’s mutation impact 

categories (i.e., high, moderate and low) to rule out software bias (see Methods), and found 

similar results (Figure S2.18). In summary, these results suggest an increase in genetic load in 

the GOC population, both due to a shift towards higher homozygosity among all protein-coding 

variants, as well as an overall accumulation of putatively deleterious nonsynonymous alleles 

compared to the ENP population. However, the magnitude of the effect on fitness is unclear, 

given uncertainties about the selection and dominance coefficients of these mutations47. 

Simulations of deleterious variation and genetic load 

To further explore how fin whale demographic history and the recent whaling-induced 

decline has shaped patterns of deleterious variation and accumulation of genetic load, we ran 

forward-in-time genetic simulations using SLiM v.3.3.250. We simulated a 10 Mb chromosomal 

segment with a combination of intergenic, intronic, and exonic regions. Selection coefficients for 

nonsynonymous deleterious mutations were drawn from a distribution estimated from humans51, 
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and dominance coefficients were set such that the most deleterious mutations were highly 

recessive, though nearly neutral mutations were closer to additive (see Methods for details).  

Using this simulation framework, we first investigated the extent to which the recent 

whaling bottleneck may have led to an increase in genetic load in the ENP population. 

Specifically, we simulated under our best-fit ENP demographic model, which includes a 

contraction to Ne =305 two generations ago (Figure 2.3A). After two generations at Ne = 305, we 

did not observe any changes in genetic load, heterozygosity, or levels of inbreeding, as expected 

given the short duration of this decline (Figure 2.5A). To explore how various potential recovery 

scenarios may impact the viability of the ENP population in the future, we continued these 

simulations for an additional 18 generations following the decline, during which we observed 

increasing trends for genetic load and levels of inbreeding, though minimal impacts on genetic 

diversity (Figure 2.5A). To test the impacts of a partial recovery in the ENP, we also ran 

simulations where we increased the effective population size to Ne = 1000 after two generations 

at Ne =305. Here, we observe minimal increases in genetic load and inbreeding, suggesting that 

even a modest recovery would stave off any deleterious genetic effects (Figure 2.5A). In 

conclusion, these results highlight the importance of a prompt recovery for the fin whale to 

minimize deleterious genetic impacts from the whaling bottleneck. 

Our next aim for these simulations was to assess the importance of low levels of 

migration (0.39 effective migrants/gen from ENP to GOC) for maintaining genetic diversity and 

fitness in the small GOC population (Ne = 114) despite long-term isolation (~16 kya). We 

simulated under our best-fit two population demographic model, running simulations that 

included the estimated rates of migration between the ENP and GOC (Figure 2.3C) as well as 

simulations where no migration was allowed. When carrying out simulations that include the 
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empirically inferred rate of migration from ENP to GOC, we observe a 26.7% reduction in 

heterozygosity and increase in FROH > 1Mb from 0 to 0.10 in the GOC population compared to the 

ENP population (Figure 2.5B), in good agreement with the trends from our empirical dataset 

(35.7% empirical reduction; Figure 2.2). Additionally, we find that average genetic load in the 

GOC population is elevated to 7.75% compared to 2.87% in the ENP population (Figure 2.5B). 

However, this increase in genetic load appears to be counteracted by purging of recessive 

strongly deleterious mutations (s < -0.01), which are reduced in frequency by 22.9% in the GOC 

population (Figure S2.19). By contrast, we observe minimal differences in the numbers of 

moderately (-0.01 < s ≤ -0.001) or weakly (-0.001 < s ≤ -0.00001) deleterious alleles per 

individual (Figure S2.19), suggesting that migration has helped keep these mutations from 

drifting to high frequency in the GOC population. In summary, these results suggest that 

isolation and small population size in the GOC may have resulted in a lowered fitness, though 

these fitness reductions have apparently not been substantial enough to impact population 

viability. 

When simulating without migration, we observed far more dramatic changes in the 

genetic composition of the GOC population. Specifically, we found a near-complete loss of 

genetic diversity, higher levels of inbreeding (FROH>1Mb = 0.11), and a substantial increase in 

genetic load to 10.3% in the GOC population (Figure 2.5B). The loss of diversity is also 

confirmed in theoretical calculations (Supplemental Results). This increase in genetic load 

appears to be driven primarily by fixation of moderately deleterious alleles (9.22% gain in the 

isolated GOC population compared with the migration scenario; Figure S2.19). Thus, these 

simulations suggest that, in the absence of migration, the GOC population would have 

experienced a much more substantial increase in genetic load, which may have been substantial 
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enough to drive extinction. In conclusion, these results highlight the importance of low levels of 

migration in maintaining viability in the GOC population over its long period of isolation.  

Discussion 

Detecting recent population bottlenecks in endangered species using estimates of genetic 

diversity in contemporary samples has been challenging19,20, especially in long-lived species with 

long generation times, such as the great whales21,52. Specifically, the influence of changes in 

population size on genetic diversity is slow relative to temporal scale of human-induced events19 

and the overall loss of genetic variation depends on the duration of the bottleneck relative to the 

life history traits53,54 such as life-span and generation time. Although genomic data can improve 

our ability to detect the impact of bottlenecks, studies analyzing whole genome data have failed 

to detect signals of whaling in blue36 and gray whales55, presumably due to small sample sizes. 

Here, we show that using high coverage genome re-sequencing (~27X), sampling a high number 

of individuals (~30 per population) at a single timepoint and SFS-based demographic inference 

approaches, it is possible to identify recent anthropogenic population contractions, such as the 

one imposed by the 20th century whaling on fin whales26,29 (Supplemental Discussion). Besides 

our sampling and methodological approaches, the combination of a high pre-whaling genetic 

variation possessed by the fin whales in the Eastern North Pacific28,31,32,56 together with an 

extreme reduction of two orders of magnitude, even if short, likely caused a deficit in low-

frequency variants in present-day individuals that we were able to detect20 (Figure 2.3B), a 

similar signal also found in the North Atlantic fin whales25. Therefore, our research demonstrates 

that even very recent human-driven population bottlenecks leave a detectable signal in the SFS 

derived from genome-wide data of contemporary individuals, and this signal can be used to 
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identify the demographic and genetic effects of recent anthropogenic exploitation and model 

current and future impacts on populations.  

Despite a 99% decline in effective population size, the Eastern North Pacific fin whales 

have retained most of their pre-whaling genetic diversity (Figures 2.2, 2.5A). They do not exhibit 

a substantial decrease in genome-wide heterozygosity nor an increase in inbreeding or genetic 

load (Figures 2.2, 2.4 and 2.5A). Since genetic diversity declines exponentially with the number 

of generations passed from the contraction, this lagging impact on genetic diversity is likely a 

consequence of the long generation time of fin whales43 (~25.9 yrs) relative to the duration of the 

whaling bottleneck (~70 years) and relatively prompt recovery following the whaling 

moratorium that came into effect in 198530,54,57. The contraction, although severe, only lasted for 

two generations (Supplemental Results). However, other detrimental effects remain alarming. 

The reduction in 99% of pre-whaling effective size has likely had strong ecological 

consequences15,18,58. Additionally, if the ENP population remains small, it may experience a loss 

of adaptive potential to resist future climate change or disease59. Furthermore, this reduced 

condition in the ENP could also imperil the viability of the Gulf of California population by 

further diminishing or completely halting the migration into this population, which our 

simulations have shown can accelerate the accumulation of deleterious load and loss of genetic 

diversity in GOC individuals. Both empirical and simulation findings show that continuing the 

current moratorium and enhancing population size remains essential for fin whale recovery and 

long-term persistence17,26. 

Regarding the Gulf of California fin whale population, our results show that as few as 

0.39 migrants per generation have been sufficient to maintain genetic diversity and fitness in this 

population over ~16,000 years of isolation (Figure 2.5B), whereas migration from unsampled 
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ghost populations are negligible (Supplemental Discussion). By contrast, when omitting 

migration from our simulations, we observe a near-complete loss of genetic diversity and 

substantial increase in levels of inbreeding and genetic load (Figure 2.5B). Thus, these results 

highlight the importance of gene flow for maintaining population viability over long 

evolutionary timescales11,60, even when levels of migration are far lower than the classic rule of 

thumb of ‘one migrant per generation’10. This rule has been widely applied in conservation, 

however it is based on a neutral model that makes numerous simplifying assumptions and does 

not consider deleterious variation12. Here, we combine empirical observations with more realistic 

models including deleterious variation to demonstrate that small populations can be maintained 

by exceedingly low levels of migration, even when modest levels of genetic load may 

accumulate61. These results have important implications for conserving other small and isolated 

populations, where maintaining high levels of migration may not be feasible.  

In addition to migration, population persistence in the GOC also appears to be enabled in 

part by purging of strongly deleterious mutations, as has been shown in other small vertebrate 

populations62,63 including marine mammals34. Specifically, our simulations suggest a 22.9% 

reduction in the frequency of these mutations in the GOC (Figure S2.19) due to its long-term 

small population size, occurring despite the impact of gene flow continually reintroducing these 

mutations13. However, we were unable to detect this purging in our empirical dataset, where we 

observed similar numbers of putatively deleterious loss-of-function (LOF) mutations in the GOC 

and ENP populations (Figure 2.4). This discrepancy could be explained by LOF mutations being 

an imperfect proxy of strongly deleterious variation64,65.  

Here, we have assessed the genomic impacts of both natural and anthropogenic 

bottlenecks on the second-largest mammal. We demonstrate that it is possible to confidently 
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estimate the magnitude and timing of recent human-driven population bottlenecks, and to 

determine the key role that gene flow and purging of deleterious variants play in the persistence 

of small isolated populations by analyzing whole-genome resequencing data from contemporary 

samples together with individual-based simulations. From a conservation perspective, our 

findings expose the severity of whaling and indicate that it is necessary to reassess the recovery 

goals for the ENP fin whales and the regional threatened status of the GOC population, which 

may warrant specific conservation actions to maintain gene flow and avert additional impacts 

from climate change, mortality by entanglement66 or microplastic contamination67. Therefore, 

our study contributes to fulfilling the overdue promise of genomics to conservation biology 

concerning the genetic effects of very recent population reductions caused by anthropogenic 

activities and identifying the evolutionary and ecological processes that promote the viability of 

small populations68. Finally, we demonstrate the importance of using both genomic and 

simulated data to inform the conservation of intensely exploited species. 

Methods 

Samples and sequencing 

Tissue samples from 50 fin whales (Balaenoptera physalus) were collected using a 

standard protocol to obtain skin biopsies from free-ranging cetacean species, which use a small 

stainless-steel biopsy dart deployed from a crossbow or rifle70,71. These samples were collected 

throughout the Eastern North Pacific (ENP; N=30, represented by individuals from the coasts of 

California [9], Oregon [4], Washington [2], British Columbia [3] and Alaska [12]; Table S2.1), 

and the Gulf of California (GOC; N=20, from seven different localities; Bahía de La Paz [3], 

Loreto [6], Bahía de los Angeles [5], Bahía Kino [3], North of Tiburon Island [1], Puerto 

Refugio [1] and out of Bahía Los Frailes [1]). All samples from the Gulf of California were 
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obtained under the appropriate collecting permits issued by the Mexican Wildlife Agency 

(Dirección General de Vida Silvestre, Subsecretaría de Gestión para la Protección Ambiental, 

Secretaría del Medio Ambiente y Recursos Naturales; permit numbers: D0070(2)-0598, 

D00700(2)-14093, D00750-1537 and SGPA/DGVS/-0576). Samples from the Eastern North 

Pacific were collected by the Southwest Fisheries Science Center (California, USA) under US 

Marine Mammal Protection Act permit. DNA from the samples were extracted using the 

QIAGEN Mini Prep Kit (Qiagen; California, USA). The genomic libraries were prepared from 

extracted DNA using the Illumina TruSeq DNA PCR-free standard kit (Illumina; California, 

USA) following the manufacturer instructions. Whole genome sequencing was performed using 

the 150-bp paired-end protocol on Illumina HiSeqX or NovaSeq6000 platforms. Library 

preparation and sequencing were performed in Fulgent genetics’ sequencing core facility 

(Fulgent genetics LLC; California, USA). 

To compare the fin whales’ genomic characteristics within Mysticeti, previously 

generated genomic data from four representative Mysticeti species were downloaded from the 

NCBI Sequence Read Archive: the minke whale (Balaenoptera acutorostrata), the stable and 

abundant rorqual; the humpback whale (Megaptera novaeangliae), the closest relative with fin 

whales; the North Atlantic right whale (Eubalaena glacialis) and the blue whale (Balaenoptera 

musculus), the most endangered baleen whales (Table S2.1). 

Read processing and alignment 

We followed the sequence reads processing and genotyping pipeline adapted from the 

Genome Analysis Toolkit (GATK) Best Practices Guide72 similar to ref.46. Read quality was first 

checked using FastQC v.0.11.873. Illumina adapters were removed from the paired-end sequence 

reads using picard (v.2.20.3) MarkIlluminaAdapters. The adapter-free paired-end reads were 
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aligned against the minke whale (Balaenoptera acutorostrata scammoni) reference genome 

(GCF_000493695.1 [BalAcu1.0]; Scaffold N50: 12,843,668, Downloaded on November 12, 

2019) using BWA-MEM v.0.7.1774. Mapping statistics were generated using QUALIMAP 

v.2.275. We used the minke whale genome as a reference because the available fin whale genome 

assembly is much more fragmented and poorly annotated (GCA_008795845.1; Scaffold N50: 

871,016) and the blue whale genome (GCF_009873245.2) did not have genome annotation in 

2019 (Supplemental Methods; Figure S2.20; Table S2.15). The fin whale and minke whale are in 

the same genus, with a divergence time of approximately 10 million years ago36. The average 

mapping rate of fin whale reads is 99.09± 0.21% (Table S2.1), suggesting that the divergence 

time with minke whales did not impact read alignment. 

Genotype calling and filtration 

Joint genotype calling at all sites (including invariant positions) across the reference 

genome was performed using GATK76 (v.3.8). We removed PCR duplicates from the bam files 

using picard MarkDuplicates. Raw variant calling was performed for each individual using 

GATK’s HaplotypeCaller using the default settings for removing low-quality reads 

(min_mapping_quality_score=20; min_base_quality_score=20). Joint genotype calls for the 50 

fin whales were generated from the raw variants using GATK GenotypeGVCF, excluding 

scaffolds shorter than 1 Mbp. The total scaffold length used for genotyping was 2,324,429,847 

bp, with the excluded scaffolds constitutes only 4.4% of the total genome length (2,431,687,698 

bp). 

Since we do not have a database of known variants, we did not perform base quality 

recalibration (BQSR) or variant quality score recalibration (VQSR). Instead, we performed a 

stringent set of quality and depth filters for the genotype calls, keeping only high-quality biallelic 
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SNPs and monomorphic genotypes (Figure S2.21). Sites that 1) had low Phred score (QUAL < 

30), 2) failed GATK recommended hard filters (QD < 2.0 || FS > 60.0 || MQ < 40.0 || 

MQRankSum < -12.5 || ReadPosRankSum < -8.0 || SOR > 3.0), or 3) fell within repeat regions 

identified by WindowMasker77, RepeatMasker or CpG islands identified by UCSC genome 

browser (total length: 1,247,900,490 bp), were marked as failed filtration (Figure S2.21A). For 

each individual, the sites that passed the above filters were subjected to genotype-level filtration: 

only genotypes with a minimum depth of eight reads and maximum depth of 2.5x mean depth; a 

minimum Phred score of 20 and expected allele balance ( ≥ 0.9 for homozygous reference 

genotypes; ≥ 0.2 & ≤ 0.8 for heterozygous genotypes and ≤ 0.1 for homozygous alternative 

genotypes) were kept. Genotypes failing these filters were converted to missing (Figure S2.21B). 

Afterwards, sites were further filtered if they had more than 20% missing genotypes or more than 

75% heterozygous genotypes (Figure S2.21A). We repeated the genotype calling and filtration 

pipeline with four additional baleen whales included with 50 fin whale samples. The derived 

dataset (“f50b4” in the following text) was only used in the construction of neighbor-joining tree 

and generation of genome-wide heterozygosity comparison. An additional variant dataset 

(“genotype-filter-free” dataset) for the ENP individuals without any genotype-level filters was 

generated and used in confirmatory demographic inference (Supplemental Methods).  

Variant annotations and identification of neutral regions 

We annotated variant sites using two softwares, snpEff v.4.3.178 and SIFT4G v.6.079. We 

used the minke whale genome annotation gtf file to build custom snpEff and SIFT4G databases 

with default settings. We then annotated and predicted the effects of variants with -canon option 

in snpEff and -t option in SIFT4G. The most deleterious effect was selected per site. 
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We used the minke whale as an outgroup to classify the allele ancestral states, and 

considered the sites in the minke whale reference sequence as ancestral. Because the minke 

whale has evolved since the common ancestor with these two populations of fin whales, the 

ancestral alleles identified may not represent the true ancestral state. However, this error is not 

expected to bias the relative comparison of variants between the ENP and GOC fin whales since 

they are equally diverged from the minke whale. To detect the putatively neutral regions for 

demographic modeling, we first extracted sites that passed all filters and are at least at 20 kb 

distance from exons or coding regions and not in CpG islands or repetitive regions. The 

identified regions were aligned to the zebra fish genome, using BLAST v.2.7.180, regions with a 

hit with e-value lower than 1E-10 were further removed, as they could represent conserved 

regions and not evolving neutrally. 397,627,899 sites were defined as neutral. 

Evaluation of population structure 

Population structure analyses were performed using the R package SNPRelate v.1.16.081. 

We selected biallelic sites in the vcf that passed variant filtration criteria and converted them to 

gds format using function snpgdsVCF2GDS. Linkage disequilibrium pruning was implemented 

(snpgdsLDpruning) with an r2 cutoff of 0.2, and a minor allele frequency cutoff of 0.10. A total 

of 30,350 SNPs were kept for PCA, kinship and FST analyses. 

We performed the PCA analysis using the function snpgdsPCA. After observing the 

overall population structure, an additional PCA was performed within ENP individuals to inspect 

variation among locations. The kinship between sample pairs was assessed using PLINK’s 

identity-by-descent method of moments approach (snpgdsIBDMoM). We calculated kinship at 

three different levels: 1) populations (groups: ENP and GOC), 2) sampling locations (groups: 

AK, BC, OR, WA, CA and GOC); and 3) merged middle ENP locations combining samples 
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from BC, WA and OR (groups: AK, MENP and GOC). The two-tailed MWU test was used to 

compare the average kinship coefficients among groups. FST between populations, sampling 

locations and merged ENP locations were calculated using the Weir and Cockerham estimator82, 

with a SNP missing rate at 20% (function snpgdsFst, missing.rate = 0.2). The significance of FST 

was estimated using 999 permutations described in ref.83. Due to the low sample size in BC, OR 

and WA locations, we only estimated the significance of FST between populations and merged 

ENP locations. To determine the potential influence from population substructure within ENP on 

Ne estimates, we calculated the population size inflation factor by 1/(1- FST) (Alter et al. 2007), 

using the highest FST value found in the ENP. 

The LD pruned SNP set was converted to PLINK ped format using function 

seqGDS2VCF in R package SeqArray v.1.26.284 and PLINK v.1.9085. ADMIXTURE86 (v.1.3.0) 

analyses were performed using values of K from two to six, with 10 iterations per K. Mean cross-

validation (CV) error for each K was used to select the best number of ancestral populations (K). 

To further test a substructure in the ENP, additional ADMIXTURE analyses were performed 

within ENP individuals, using values of K from one to six, with the same settings described 

above. A neighbor joining phylogenetic tree was constructed from 32,191 LD pruned SNPs in 

the “f50b4” dataset using function nj in R package ape v.5.387. 1000 bootstraps were performed, 

and the North Atlantic right whale (“EubGla01”) was designated as the outgroup (Figure S2.4). 

Calculation of heterozygosity and identification of runs of homozygosity 

We defined heterozygosity as the number of heterozygous genotypes divided by the total 

number of called genotypes, including monomorphic sites, that passed variant filtration 

standards46. We first calculated the genome-wide heterozygosity for all scaffolds used for 

genotyping. Two-tailed MWU tests were used to evaluate if the genome-wide heterozygosity 
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varied significantly between the ENP and GOC populations. We also calculated the per-site 

heterozygosity in non-overlapping 1 Mb windows across the scaffolds. Windows with more than 

80% missing data were excluded. The missing data in these windows derive from regions that 

failed site filter criteria described above. 

For identifying ROH, we first separated the vcf file for ENP and GOC individuals and 

reestimated allele frequencies within each population. ROH were identified using bcftools roh -

G30 in bcftools v.1.937. Three individuals were excluded from bcftools ROH analyses to avoid 

biasing allele frequency estimations [ENPCA09 and GOC010 due to admixture proportion > 

0.25 (Figure 2.1C); ENPOR12 due to low genotyping rate (Figure S2.21)]. Additional ROH 

analysis was performed using R package RZooRoH v.0.2.338, which can classify ROH segments 

into different age classes. A model with ten classes (9 ROH and 1 non-ROH) and a successive 

rate of three was applied (zoomodel, K=10, base=3). A minor allele frequency cutoff of 0.05 was 

used but no individual was excluded. For both methods, ROH segments less than 100 kb were 

discarded. The rest of the segments were divided in three length categories, short (0.1 Mb ≤ 

ROH < 1 Mb), intermediate (1 Mb ≤ ROH < 5 Mb) and long ( ≥ 5 Mb). The concordance of the 

two methods was confirmed (Figure S2.8) and the output from the RZooRoH analysis is shown 

in the main text. The proportion of genomes with ROH (FROH) was calculated as the total length 

of ROH passing a certain length threshold (e.g. ROH > 100 kb) within an individual divided by 

the total scaffold length used for genotyping (2,324,429,847 bp). We used the two-tailed MWU 

test to compare total number of ROH segments in all length categories obtained in the two 

populations. 

To determine if the inbreeding observed in both fin whale populations were due to recent 

or older events, we estimated the average time at which two haplotypes would coalesce in each 
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of the ROH categories (short, intermediate and long). The length of ROH associated with 

inbreeding decreases reciprocally due to recombination in each generation88–90. This relationship 

can be written as: L = 100/2tr, where L is the mean ROH length (in Mb), the constant 100 

represents large segments belonging to the common ancestor in cM, t is the number of 

generations to the common ancestor and r is the assumed constant recombination rate of 1 

cM/1Mb40,91. Therefore, we calculated how many generations ago two haplotypes shared a 

common ancestor in each of the ROH categories as t=100/2Lr40.  

Projected site frequency spectra 

A vcf file comprising only putatively neutral SNPs was used to obtain the site frequency 

spectrum (SFS) within and between populations. To avoid introducing bias to our demographic 

inferences from known contributing factors, such as uneven read depths92, admixture 

proportions42 and highly related individuals93, six individuals were discarded in SFS projection 

(Low genotype depth: “ENPOR12”; Admixture proportion > 0.25: “ENPCA01”, “ENPCA09”, 

“GOC010”; Kinship > 0.15: “GOC080”, “GOC111”). To avoid uncertainties in ancestral state 

classifications, we computed a folded SFS. This SFS was calculated based on a hypergeometric 

projection implemented using easySFS (https://github.com/isaacovercast/easySFS), which 

minimizes the effects of missing genotypes94 (https://dadi.readthedocs.io/en/latest/user-

guide/manipulating-spectra/#projection). From this projection, an optimal number of haploid 

individuals with a maximized number of SNPs are identified and this number is then used to 

construct the folded SFS. Both the single-population SFS for each population (projected haploid 

size: ENP = 44, GOC = 30; projected number of SNPs: ENP = 3,410,730, GOC = 1,532,968) 

and the joint two-population SFS were generated (projected number of SNPs: ENP-GOC = 

3,418,226). Thereafter, the count of monomorphic sites was calculated and incorporated as 
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follows: for the single-population SFS, monomorphic sites in the neutral regions that were called 

in no less than the number of diploid individuals in the projection were added to the 0-bin 

already calculated by the projection. For the two-population SFS, monomorphic sites were 

computed by counting the number of monomorphic sites that were called in at least 44 haploid 

individuals in the ENP population and at least 30 haploid individuals in the GOC population. 

These sites were added up to the previous 0-0-bin of the projection.  

Demographic history reconstruction 

We utilized the projected neutral SFS generated above to reconstruct the demographic 

history of fin whales surveyed in this study using two methods: ∂a∂i42 (v.2.2.1; Diffusion 

Approximations for Demographic Inference) and fastsimcoal241 (v.2.6; fast sequential Markov 

coalescent simulation).  

To explore a variety of possible demographic scenarios, we first tested the following 

single-population models on the ENP and GOC populations separately (Figure S2.11; Table 

S2.6). All the models are described forward in time. For population size parameters (NANC, NCUR, 

etc.), all values are in units of numbers of diploids. For time parameters (T, TCUR, etc.), all values 

are in units of generations. For the ENP population, we explored two additional 3Epoch models 

fixing the TCUR to two generations (3EpochTcur2) or three generations (3EpochTcur3). 

1. 1Epoch: single epoch model with no population size change. This model provides a “null 

model” that estimates ancestral population size (NANC).  

2. 2Epoch: two epoch model with one size change event, from the ancestral size (NANC) to 

the current size (NCUR) occurring T generations ago.  

3. 3Epoch: three epoch model with two size change events. The first event changed from 

the ancestral size (NANC) to a bottleneck size (NBOT) and lasted for TBOT generations. The 
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second event changed from the bottleneck size (NBOT) to the current size (NCUR) occurring 

TCUR generations ago.  

4. 4Epoch: four epoch model with three size change events. The first event changed from 

the ancestral size (NANC) to a bottleneck size (NBOT) and lasted for TBOT generations. The 

second event changed from the bottleneck size (NBOT) to a recovery size (NREC) and lasted 

for TREC generations. The third event changed from the recovery size (NREC) to the current 

size (NCUR) occurring TCUR generations ago. For the 3Epoch and 4Epoch models, we note 

that despite the population sizes were named as a “bottleneck size” or “recovery size”, we 

did not restrict the direction of size changes (expansion or contraction) for any events. 

Next, we tested the following two-population models (Figure S2.15; Table S2.10) to 

elucidate the divergence time and gene flow in the ENP and GOC populations: 

1. Split-NoMigration: a simple population split model with no migrations. The ancestral 

population (NANC) diverged into the ENP (NENP) and GOC (NGOC) populations occurring 

T generations ago. Two populations remained isolated since then. 

2. Split-SymmetricMigration: an isolation-migration model. The ancestral population 

(NANC) diverged into the ENP (NENP) and GOC (NGOC) populations occurring T 

generations ago. The ENP and GOC populations maintained a symmetric migration rate 

of m. 

3. Split-AsymmetricMigration: another isolation-migration model. This model is similar to 

model 2 (Split-SymmetricMigration), but the ENP and GOC populations were allowed to 

have different values of migration rate, with mENP->GOC measured as the fraction of 

individuals each generation in the GOC population that are new migrants from ENP, and 

vice versa for mGOC->ENP. 
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4. Split-AsymmetricMigration-ENPChangeTw2: this model is based on model 3 (Split-

AsymmetricMigration), but an ENP population size change event to NENP2 is introduced 

after population divergence, with a fixed TW = 2 generations before present. This size 

change event after divergence is used to model the impact of whaling bottleneck. 

5. AncestralSizeChange-Split-AsymmetricMigration: this model is based on model 3 (Split-

AsymmetricMigration), but an ancestral size change event from NANC to NANC2 that lasted 

for TA generations was introduced before population divergence. 

6. AncestralSizeChange-Split-Isolation-AsymmetricMigration: this model is based on 

model 5 (AncestralSizeChange-Split-AsymmetricMigration), but after population 

divergence, an isolation period lasted for TD, during which there is no migration between 

the ENP and GOC populations. Asymmetric migrations between two populations 

occurred TC generations before present. 

7. AncestralSizeChange-Split-AsymmetricMigration-GOCChange: this model is based on 

model 5 (AncestralSizeChange-Split-AsymmetricMigration), but after population 

divergence, the GOC population remained at NGOC for TD generations. The GOC 

population then experienced a size change event from NGOC to NGOC2 that occurred TC 

generations before present. 

To evaluate if unsampled (ghost) populations contribute to the total migration into the 

GOC population, we included two feasible ghost populations into the selected two-population 

model, the South Pacific (SP), which diverged from the North Pacific around 1.8 Mya according 

to mtDNA data31; and the Western North Pacific (WNP) population, which has been suggested 

to breed separately from the ENP29 potentially since the recent Pleistocene’s interglacial 

periods23. For our demographic inference with ∂a∂i, we ran only one ghost model using the same 
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initial parameters as in our chosen model. The initial parameter for the divergence time of ghost 

population was set at the expansion time in the ENP population 3Epoch model, and the size of 

the ghost population was fixed to the size of the ancestral population before divergence to find 

the best parameter space. In contrast, for fastsimcoal2 we constrained the lower and upper 

bounds for the divergence time of the ghost populations based on the previous knowledge 

mentioned above to 35000 ~ 200000 generations ago for the SP population and 100 ~ 10000 

generations ago for the WNP. We also fixed the size of the ghost populations to 30000 haploids, 

approximately the same size of the ancestral population before the divergence. 

Fastsimcoal 

The coalescent simulation approach fastsimcoal2 was employed to infer parameters and 

composite likelihoods for the demographic models specified above, using settings adapted from 

ref.94. Each inference was performed using the Expectation‐Conditional Maximization (ECM) 

algorithm95, using 60 ECM cycles (-L 60), in which each E-step consisted of 1,000,000 

coalescent trees (-n 1000000), computing only the SFS for the minor allele (-m) with the 

following command line. 

fsc26 -t $header.tpl -e $header.est -n 1000000 -m -M -L 60 -q 

The starting parameters were chosen from a uniform distribution with an imposed 

minimum value and flexible upper boundary. The expected SFS under the fastsimcoal2 model 

parameters were compared to the empirical SFS and the multinomial log-likelihood was 

calculated. For single-population and joint populations models, we performed 100 and 50 

replicates of the inference, respectively, to confirm that both parameters and log-likelihoods 

converged and parameters with the maximum log-likelihood were chosen. This difference in the 

number of replicates is due to inference of two-population model parameters is more 
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computationally expensive and time consuming. All estimated size parameters were obtained as 

the number of haploids and converted to diploids, whereas time parameters were inferred as the 

number of generations before present day. To control for inflations in log-likelihood estimates in 

models with more parameters, we performed a likelihood ratio test (LRT) for nested models with 

its more immediate complex model (e.g. 2Epoch vs. 1Epoch, 3Epoch vs. 2Epoch) using the 

equation: –2 * [loglikelihood (simple) – loglikelihood (complex)]. The LRT significance was 

evaluated with a chi-square test (c2) with one or two degrees of freedom, depending on the 

number of parameter differences between models. 

The parameter confidence intervals were obtained using a parametric bootstrap41 

following the simulation functionality described in fastsimcoal2’s manual 

(http://cmpg.unibe.ch/software/fastsimcoal26/man/fastsimcoal26.pdf page. 56). For each model, 

we simulated 100 SNP-based SFS from the best-fit parameters in the observed data with 

approximately 4 million (3,927,079 for ENP single-population models, 3,908,444 for GOC 

single-population models and 3,864,185 for two-population models) non-recombining segments 

of 100 bp, mimicking the same number of observed sites. Parameters were estimated from 20 

random starting conditions for the 100 bootstrapped SFS datasets using the same settings as 

described above for the empirical data. 95% confidence intervals of the best-fit parameters were 

obtained adding and subtracting two standard deviations of the 100 bootstrap estimated 

parameters from the empirical best-fit parameters. 

∂a∂i 

For demographic inference using ∂a∂i94, haploid sample sizes plus 5,15 and 25 were used 

as extrapolation grid points as recommended in ref.42. Lower and upper bounds of model 

parameters were imposed based on prior knowledge of population history, and starting 
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parameters under these boundaries were chosen from previous knowledge or outputs from nested 

runs and permuted with a fold=1. We used the optimize_log function as our optimization 

algorithm, and calculated the multinomial log-likelihood for the expected SFS obtained from 

each optimization. 

Best‐fit parameter sets of each model were scaled using 𝑁+,- calculated by the equation 

𝜃 = 4𝑁+,-𝜇𝐿, where L is the total sequence length of the neutral region (392,707,916 bp for 

ENP single-population models, 390,844,414 bp for GOC single-population models and 

386,418,461 bp for two-population models), 𝜇 is the fin whale mutation rate (2.77E-08 

mutations/generation/bp)35, and 𝜃 is the optimal value of theta for the given model. Population 

size parameters were adjusted by 𝑁+,- into diploids and time parameters were re-scaled by 

2𝑁+,- into generations. The model uncertainty was assessed by estimating 95% confidence 

intervals of the best-fit parameters using a Godambe Information Matrix (GIM) with 

bootstrapped data96. The bootstrapped data was obtained by dividing the genome into fragments 

of 2Mb and generating 1000 bootstrap pseudo-replicate datasets by resampling from those, 

which in total amounts for sampling 2Gb that approximate the length of the reference genome. 

To be conservative, we chose to resample 2Gb instead of 300Mb (the size of the neutral regions 

we analyzed) since using a larger sample size will result in larger confidence intervals. 

One hundred replicates of each model were performed with permuted starting parameters 

to assess convergence of the inferred parameters and composite likelihood. Parameters with the 

maximum log-likelihood among replicates from each model were selected and the expected SFS 

under these parameters was compared with the empirical SFS. LRT was calculated as previously 

described.  
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Additionally, to ensure that the results from the ENP population 3-epoch model were in 

fact reflecting the recent bottleneck caused by whaling, we simulated the SFS under ∂a∂i’s 

inferred demographic scenario using msprime v.0.7.497. The simulated SFS were generated using 

a recombination rate of 1E-8 cross-over events per base pair per generation and a mutation rate 

of 2.77E-8 per base pair per generation35, with 1000 replicates and a chunk size of 2Mb. Visual 

inspection was performed to validate the fit of simulated SFS to the empirical data. We also 

performed ∂a∂i inference on msprime simulated SFS using the same settings for empirical SFS 

and tested if we could obtain similar parameter estimates as the empirical data to confirm that we 

had the power to detect a recent population contraction. 

 To account for the correlations of current population size (NCUR) and time of most recent 

contraction (TCUR), we carried out grid searches to find the range of possible parameter pairs that 

are within two log-likelihood units of the maximum likelihood estimate (MLE; Supplemental 

Methods).  

Model selection 

We determined the models that more likely represent the demographic history of the 

populations using the demographic models without any constraints (i.e., not fixing any of the 

parameters to a certain value). To select the best demographic model, we considered several 

features of our demographic inference results. First, the log-likelihood of the models should be 

the highest given the satisfaction of the following criteria. Second, a good fit of the expected SFS 

to the empirical SFS. Third, the estimated parameter values between the two inference methods 

that we used (i.e., fastsimcoal2 and ∂a∂i) should be consistent, especially the direction of 

population size change (expansion vs contraction). Fourth, the composite likelihood of the top 10 

replicated runs for each model should converge. We consider that a model has good convergence 
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if the log-likelihood difference between the best run and the 10th best run of the model was no 

more than 25 log-likelihood units. Fifth, the model had a significantly better LRT than the more 

parsimonious model and that this LRT significance was consistent in both fastsimcoal2 and ∂a∂i. 

Sixth, the range of the confidence intervals should not be unrealistically large. Models meeting 

the above criteria, were chosen as the ones representing the demographic history of fin whale 

populations. After choosing the best demographic model according to the previous criteria, we 

try to confirm the findings of the chosen unconstrained models by running these models with 

some parameters fixed at different values, specifically the time of the bottleneck for the ENP 

one-population three epoch model and the divergence time for the two-population model. Results 

show that models with fixed parameters have better log-likelihoods and do not significantly 

change the parameter values obtained with the unconstraint models, demonstrating that the 

estimations of the unconstrained models are a good representation of the demographic history. 

Quantifying putatively deleterious variation 

Two lines of evidence were used to quantify relative levels of putatively deleterious 

variation in the ENP and GOC populations. We focused on mutations within protein-coding 

regions, which are more likely to have direct fitness impacts and identified derived alleles within 

four mutation types: synonymous, tolerated nonsynonymous, deleterious nonsynonymous and 

loss-of-function (LOF). The nonsynonymous mutations were classified as putatively tolerated 

(SIFT score ≥ 0.05) or deleterious (SIFT score < 0.05) based on phylogenetic constraints using 

SIFT4G79. The LOF mutations are predicted to eliminate or severely inhibit gene function and 

include splice acceptor, splice donor, start lost and stop gained mutations. LOF mutations were 

identified using the default settings in snpEff78, which utilized the LOF definition in ref.65. We 

normalized for differences in missing data across individuals by the average number of called 
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genotypes. Since the dominance for variants in natural populations is poorly quantified, we 

assumed two extreme scenarios when the dominance of all variants is recessive (h = 0), and the 

fitness is only reduced in homozygous derived genotypes or when variants are additive (h = 0.5), 

and the reduction in fitness is linear to the number of derived alleles. The real-life fitness impact 

probably lies between these two scenarios. We did not assume dominant variants (0.5 < h ≤ 1) 

given that segregating deleterious variations are very unlikely to be dominant47. 

First, two-tailed MWU tests were used to evaluate if the normalized count of derived 

alleles and homozygotes varied significantly between the ENP and GOC populations in these 

four mutation types46. The count of derived putatively deleterious alleles, including the 

deleterious nonsynonymous and LOF alleles, are considered a proxy for additive genetic load, 

while the count of derived homozygotes provides a proxy for recessive load98,99. 

Second, we calculated the relative accumulation of mutations RXY and homozygous 

mutations R2XY for the four mutation types using methods adapted from ref.49. Here we 

designated the GOC population as population 𝑋 and the ENP population as population 𝑌. At 

each polymorphic site 𝑖, we defined 𝑑./  as the count of derived alleles at that site in a sample of 

𝑛./  haploid genomes from population 𝑋 and 𝑑0/  as the count of derived alleles in a sample of 𝑛0/  

haploid genomes from population 𝑌. The expected number of derived mutations observed only 

in population 𝑋 but not in population 𝑌 is defined as: 

𝐿.,,230 =6
/

(𝑑./ /𝑛./ )(1 − 𝑑0/ /𝑛0/ ) 

And the expected number of homozygous derived mutations observed only in 𝑋 but not 

in 𝑌 is defined as: 
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𝐿.,,2304 =6
/

(1 −
2𝑑./ (𝑛./ − 𝑑./ )
𝑛./ (𝑛./ − 1)

)(
2𝑑0/ (𝑛0/ − 𝑑0/ )
𝑛0/ (𝑛0/ − 1)

) 

The ratio statistics is further defined as: 

𝑅.0 = 𝐿.,,230/𝐿0,,23. 

𝑅.04 = 𝐿.,,2304 /𝐿0,,23.4  

The standard errors of 𝑅.0 and 𝑅.04  were estimated from a weighted-block jackknife49. If 

selection has been equally effective and mutation rates remain the same in both populations, the 

𝑅.0 and 𝑅.04  statistics are expected to be 1. 𝑍-score test was used to evaluate the significance of 

the deviation from the null expectation. 

Lastly, we assessed the robustness of the four mutation types across the genome using an 

additional mutation impact scoring system implemented by snpEff. SnpEff classifies variants’ 

impact severity into HIGH, MODERATE, LOW and MODIFIER categories based on their effect 

types. We excluded the MODIFIER category because these mutations are mostly non-protein 

coding. We additionally limited the MODERATE and LOW categories within the gtf identified 

coding sequence (CDS) region to exclude non-protein coding mutations as well. Two-tailed 

MWU tests and 𝑅.0 analyses were performed as described above to evaluate the variation in the 

count of derived alleles and homozygotes (Figure S2.18). For all above analyses, we removed 

the six individuals that were also discarded in the demographic inference.  

Genetic load simulations 

We conducted forward-in-time population genetic simulations using SLiM v.3.3.250. For 

our simulations, we assumed a 10 Mb chromosomal segment with a uniform recombination rate 

of 1E-8 cross-over events per base pair per generation and randomly-generated intergenic, 

intronic, and exonic regions, following ref.100. Within this chromosomal segment, mutations 
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occurred at a rate of 2.77E-8 per base pair per generation35, with deleterious (nonsynonymous) 

mutations occurring only in exonic regions at a ratio of 2.31:1 to neutral (synonymous) 

mutations101. Selection coefficients for deleterious mutations were drawn from a distribution 

estimated from human data51. We assumed an inverse relationship between selection coefficients 

and dominance coefficients, given empirical evidence that strongly deleterious mutations also 

tend to be highly recessive47,102. Specifically, we assumed that strongly deleterious mutations (s 

< -0.01) were fully recessive (h = 0.0), moderately deleterious mutations (-0.01 ≤ s < -0.001) 

were partially recessive (h = 0.1), and weakly deleterious mutations (-0.001 < s ≤ -0.00001) were 

nearly additive (h = 0.4). 

Using this simulation framework, we simulated under our two best-fit demographic 

models, including a single-population model for the ENP population, and a two-population 

divergence model for the ENP and GOC populations (see above for details). For both models, we 

assumed a burn-in duration of 10x the ancestral population size. During the simulation, we kept 

track of several quantities for each simulated population, including mean genetic load (the 

reduction in individual fitness, calculated multiplicatively across sites), mean genome-wide 

heterozygosity, mean inbreeding coefficient (here measured as FROH, where the minimum ROH 

length was 1Mb), and the mean number of strongly deleterious alleles (s < -0.01), moderately 

deleterious alleles ( -0.01 ≤ s < -0.001), and weakly deleterious alleles (-0.001 < s ≤ -0.00001) 

per individual. These quantities were estimated using a sample size of 40 individuals. For all 

simulations, we ran 25 replicates and averaged these quantities across replicates. 
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Figures 

Figure 2.1 

 

Figure 2.1. Population structure and sample origins for the fin whale genomes obtained in this 

study. (A) Thirty skin samples were collected along Eastern North Pacific (ENP) locations near 

Alaska (AK), British Columbia (BC), Washington (WA), Oregon (OR) and California (CA) 

from 1995 to 2017. Twenty samples were collected in seven sites within the Gulf of California 

(GOC) from Bahía de La Paz and Los Frailes in the southern Gulf to Bahía de los Ángeles, 

Puerto Refugio and Bahía Kino around the Midriff islands (Table S2.1). (B) PCA for 50 samples 

are colored by their location origin. The admixed individuals are labelled. (C) Admixture 

analyses supported two ancestral populations (K = 2).  
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Figure 2.2 

 

Figure 2.2. ROH and distribution of heterozygosity across the genome. (A) Points of genome-

wide heterozygosity for each sample are ranked by decreasing heterozygosity from top to 

bottom. Circles at the bottom axis denote heterozygosity in other mammals. Barplots present 

summed lengths of short (0.1 Mb ≤ ROH < 1 Mb) to long (> 5 Mb) ROH per individual (top 

axis). (B) The left panel shows per-site heterozygosity in non-overlapping 1-Mb windows across 

called scaffolds. The genome-wide heterozygosity value is annotated as “Mean het”. The right 
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panel summarizes the distribution of per-window heterozygosity. Individuals with divergent 

demographic histories were selected as an example. ENPAK19 represents the large outbred 

Eastern North Pacific population that recently experienced whaling. ENPCA09 is an admixed 

individual. GOC002 and GOC125 belong to the small, isolated Gulf of California population. 
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Figure 2.3 

 

Figure 2.3. Demographic history inferred for fin whale populations. (A) The historical 

demography of the Eastern North Pacific (ENP) population is best represented by a single-

population 3-epoch model. This model has an initial expansion, occurring around 115 thousand 

years ago (kya; 4,424 generations) followed by an approximately 99% reduction only 26 to 52 

years ago (one or two generations), during the whaling period for this species in the North 

Pacific (red horizontal bar). (B) Fit of the SFS from each demographic model (1- to 4-epoch) 

obtained with ∂a∂i for the ENP population to the SFS from the empirical data (Data). The SFS 

distribution for the 3-epoch model represented in (A) shows the best fit to the data. (C) Two-

population model showing an ancestral effective population size expansion from approximately 

16,000 to 25,000 individuals during the Eemian interglacial period more than 100 kya (between 

the Illinois [gray bar] and Wisconsin [light blue bar] glaciations). The two populations diverged 

around 16 kya, during the Last Glacial Maximum. After the divergence, the ENP population 

remained at around 17,000 individuals, whereas the Gulf of California (GOC) population has 
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remained small at around 114 effective individuals. These populations have maintained low 

levels of asymmetrical gene flow, with higher migration rates going from ENP into GOC (3.42E-

03), than vice-versa (9.24E-05). However, when scaled by the receiving population’s effective 

size, the GOC is only receiving 0.39 effective migrants/generation, while the ENP is getting 1.61 

effective migrants/gen. The black line to the right shows the relative sea level69. 
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Figure 2.4 

 

Figure 2.4. Increase in putatively deleterious variations in the GOC compared to the ENP fin 

whales. (A) The GOC fin whales contain significantly fewer heterozygous and more 

homozygous derived genotypes in all four functional categories of variants. (B) Only putatively 

deleterious nonsynonymous alleles (DEL) are significantly elevated (MWU test P < 0.001; Table 

S2.14) in the GOC compared with the ENP population. The ENP and GOC fin whales contain 

similar numbers of derived neutral alleles (SYN: synonymous and TOL: tolerated 

nonsynonymous), and putatively deleterious loss-of-function (LOF) alleles. In the boxplots, the 

notch indicates the median, and the boxes represent the 25th and 75th percentiles. The whiskers 
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extend to data points no more than 1.5 * IQR (inter-quantile range) from the hinges and the 

points show outliers beyond the whiskers. (C) 𝑅.0 and 𝑅.04  statistics in GOC (X) and ENP (Y) 

populations. 𝑅.0 > 1 (dashed gray line) indicates a relative accumulation of the corresponding 

mutation category in the GOC population. Similarly, 𝑅.04 > 1 indicates relative accumulation of 

homozygous mutations. The 2x standard error based on jackknife distribution is denoted as error 

bar. Significance levels: ns, not significant; * P < 0.01; *** P < 0.001; **** P < 0.0001. 
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Figure 2.5 

 

Figure 2.5. Simulations of heterozygosity, inbreeding coefficient and genetic load. 

Representations of the demographic scenarios under which the simulations were performed are 
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shown at the top. (A) Results for simulations under single-population 3-epoch model for the ENP 

population, including mean heterozygosity, levels of inbreeding (FROH>1Mb), and mean genetic 

load. Each quantity was measured prior to the onset of the whaling bottleneck (pre-bott), after 

two generations at the bottleneck Ne=305 (2 gens), after 20 generations at the bottleneck Ne=305 

(20 gens), and 20 generations following the onset bottleneck where recovery to Ne=1000 

occurred after just two generations at Ne=305 (20 gens w/ recov). In the demographic 

representations, the dashed line indicates the timing of sampling. (B) Results for simulations 

under our chosen two-population model. Each quantity is shown for the ENP and GOC (GOC 

w/mig) populations at the end of the simulation. We also simulated under a no migration 

demographic scenario (GOC w/o mig). Note the much lower heterozygosity, higher inbreeding, 

and higher genetic load in the GOC population in the absence of migration. In the demographic 

representations the sampled population (ENP or GOC) is shown in green or orange, and the 

presence/absence of migration indicated with the black arrows. For all boxplots, the notch 

indicates the median, and the boxes represent the 25th and 75th percentiles. The whiskers extend 

to data points no more than 1.5 * IQR (inter-quantile range) from the hinges and the solid 

squares show outliers beyond the whiskers. Hollow squares denote each simulation’s value. 
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Abstract 

The distribution of fitness effects (DFE) describes the selection coefficients (s) of newly 

arising mutations and fundamentally influences population genetics processes. Despite only been 

inferred in a handful of organisms, the DFE varies across species. However, the extent and 

mechanisms of DFE variation in natural populations have not been systematically investigated 

across species with divergent phylogenetic histories and distinct ecological functions. Here, we 

inferred the DFE in natural populations of eight animals, including human, mice, fin whales, 

vaquitas, wolves, flycatchers, drosophila, and mosquitos. We developed new software, varDFE, 

to facilitate robust and flexible comparisons. We find that the DFE is more similar in more 

closely related species. Additionally, mammals have a higher proportion of strongly deleterious 

mutations and lower proportion of weakly deleterious mutations than insects. Population size is 

strongly correlated with the average impact of new deleterious mutations, but by itself, does not 

explain all the variation in the DFE across species. We next tested several models underlying 

how the DFE may vary across species, including the protein stability model, the mutation 

robustness model, and the Fisher’s Geometric Model (FGM). Of these, the FGM was the most 

supported by the data. This study provides new insights into the long-standing question 

concerning the evolutionary stability of the DFE across species. 
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Introduction 

The distribution of fitness effects (DFE) is a fundamental concept in the study of 

evolutionary genetics. The fitness effect of new mutations (selection coefficient, s) measures 

whether the new mutation is deleterious (s < -1e-5), (nearly) neutral (-1e-5 ≤ s ≤ 0) or beneficial 

(s > 0) to the host. The DFE quantifies the relative proportion of mutations having different 

selection coefficients (Eyre-Walker and Keightley 2007). In addition to its intrinsic values for 

understanding how mutation affects fitness, the DFE plays an important role in shaping genetic 

variation and complex traits in natural populations (Eyre-Walker and Keightley 2007; Chen et al. 

2022). 

Considerable efforts have been put into estimation of the DFE in natural populations 

through comparing neutrally evolving and selected sites in genomics data sets (Keightley and 

Eyre-Walker 2007; Boyko et al. 2008). Until recently, the DFE had been inferred only in several 

model organisms, such as humans (Boyko et al. 2008; Kim et al. 2017), drosophila (Keightley 

and Eyre-Walker 2007; Eyre-Walker and Keightley 2009), and mice (Huber et al. 2017; Zhen et 

al. 2021). The paucity of high-quality whole genome resequencing (WGS) data for other 

organisms, the lack of a computationally efficient approach for DFE inference (Galtier 2016; 

Kim et al. 2017; Tataru et al. 2017), and other confounding factors, such as mutation rate 

estimations, have all prevented extending DFE inference to more species. The recent increase in 

available genomic resources and software for non-model organisms now offers unprecedented 

opportunities to investigate this fundamental question (Bourgeois and Warren 2021; Formenti et 

al. 2022). Currently, the DFE for the nematodes (Gilbert et al. 2022), flycatchers (Bolívar et al. 

2018), nine great apes populations (Castellano et al. 2019), the Hawaiian monk seals (Gaughran 

2021), the Arabidopsis (Hämälä and Tiffin 2020), seven cotton wood species (Liu et al. 2022), 
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three oak species (Liang et al. 2022), and wild tomatoes (Huang et al. 2021) have been inferred. 

These estimates agree that most amino-acid changing mutations are nearly neutral or weakly 

deleterious, whereas beneficial and strongly deleterious mutations are rare (Eyre-Walker and 

Keightley 2007). However, the DFE is variable across species to some extent (Chen et al. 2017; 

Huber et al. 2017).  

Understanding the diversity of mutational effects and correlating DFE with biological 

features of diverse species, is crucial for testing theoretical models of evolution (Huber et al. 

2017; Chen et al. 2022) and has practical implications for conserving endangered species 

(Kyriazis et al. 2021; Wade et al. 2022). Several theoretical models proposed that organism 

complexity and long-term population sizes (Na) are key drivers of DFE evolution but their 

predictions vary (Lourenço et al. 2011; Siegal and Leu 2014). Various definitions of organism 

complexity exist, such as the number of genes (Martin and Lenormand 2006) or unique cell types 

(Valentine et al. 1994; Quake 2022). These metrics, although straightforward, are often hard to 

quantify and sometimes incongruent (Tenaillon et al. 2007). In this study, we define the 

organism complexity as the dimensionality of phenotypic space, in other words, the number of 

genetically uncorrelated phenotypic traits under selection, as outlined in the Fisher’s Geometric 

Model (FGM; Tenaillon et al. 2007; Tenaillon 2014). The protein stability model proposes that 

the distribution of fitness effects at population-scale (2Nas) is the same across species, therefore, 

selection is more effective in larger populations and organism complexity does not impact fitness 

effects. The mutation robustness model postulates that in complex organisms, more highly 

connected networks lead to more robustness, therefore, more complex organisms have fewer 

deleterious mutations. On the contrary, the Fisher’s Geometric Model predicts that as organisms 



 112 

become more complex, random mutations will have larger effect sizes. Therefore, in the FGM, 

more complex organisms will have more deleterious mutations.  

Despite its importance, the extent and mechanisms of DFE variation have rarely been 

surveyed to evaluate competing evolution models or across divergent phylogenetic groups due to 

previous technical challenges to inferring the DFE. Existing single lineage studies inferred DFE 

using various assumptions and methods, making direct comparisons of published DFE less 

tractable. Only the DFE in humans and drosophila were tested against evolution models. 

Humans were found to bear a higher proportion of strongly deleterious mutations than 

drosophila, lending support for the FGM model (Huber et al. 2017; Zhen et al. 2021). A larger 

comparison fitted a gamma distribution of DFE for 62 animal and plant species, and found that 

the shape parameter is less variable in closer related species (Chen et al. 2017), an observation 

also reported in nine great ape species (Castellano et al. 2019). However, mean selection effect 

(E[s]) were not estimated with confidence (Chen et al. 2017). With the increase in genomic 

resource in non-model organisms, a comprehensive comparison has recently become possible. 

Here, we evaluated the extent of DFE variation in eight animal species with diverse 

phylogenetic relationships, life histories, organism complexity and long-term population size to 

test predictions from competing evolutionary genetic models. We implemented our comparative 

workflow in a software varDFE, an extension of ∂a∂i package (Gutenkunst et al. 2009). 

Mammals were found to overall have more strongly deleterious mutations than insects. The 

stability and variation of DFE within and among major evolutionary lineages, although intuitive, 

has not been systematically surveyed prior to our study. When evaluating the DFE with the 

protein stability model, the mutation robustness model and the Fisher’s Geometric Model, the 
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FGM aligned best with our observations, although the protein stability model cannot be 

completely ruled out.  

Results 

varDFE package: scaling up inferences and comparisons of DFE 

To implement a robust but flexible workflow to test DFE variations, we introduce a 

python API varDFE (https://github.com/meixilin/varDFE) based on the ∂a∂i (Gutenkunst et al. 

2009) and Fit∂a∂i (Kim et al. 2017; currently the DFE module in ∂a∂i v.2.1.1) packages. varDFE 

automates DFE inference in four steps using each dataset’s synonymous and nonsynonymous 

site frequency spectra (SFS) as inputs (Figure S3.1). In addition, our package extends the 

functionality of ∂a∂i with ability to explore positive selection coefficients, fit more functional 

forms of the DFE, and automate a grid search for optimal parameter values. Our package also 

provides automatic quality control features, such as plotting, convergence testing, and 

quantifying uncertainty in the estimates by the Fisher’s Information Matrix.  

Polymorphism data from eight animal species 

Taking advantages of the increasing genomic resources in non-model organisms, we 

retrieved high-quality population-level polymorphism dataset for eight animal species. Two 

insect species (mosquitos and drosophila), one bird species (pied flycatchers) and five mammal 

species (arctic wolves, vaquitas, fin whales, mice and humans) were included (Table 3.1). All 

datasets were filtered with the same standard to retain only high-confidence genotype calls and at 

least eight diploid high-quality samples in coding regions (see Methods for details). We tallied 

the number of variants at different minor allele frequencies and generated folded SFS in 

synonymous and nonsynonymous/missense regions (SYN-SFS and MIS-SFS respectively) for 

each species (Figure S3.2).  



 114 

To estimate long-term population size for each species, and control for population history 

and linked selection in the coding regions for downstream DFE inference (Kim et al. 2017; 

Tataru and Bataillon 2019), we inferred demographic parameters from the putatively neutral 

synonymous SFS using the Demog1D_sizechangeFIM component in varDFE package. Overall, 

the most parsimonious two_epoch demographic model based on unmasked SYN-SFS fit well for 

most species except for the mosquito (AC136) dataset (Figure S3.3, Table S3.1). For the AC136 

dataset based on the unmasked SYN-SFS, the three_epoch demographic model improved the fit 

compared to the two_epoch model (three_epoch log-likelihood = -1405.30; two_epoch log-

likelihood = -1684.36) but still did not fit the data well (data to data log-likelihood = -341.32). 

Therefore, we tried masking the singletons in the SYN-SFS and found that the singletons-

masked SYN-SFS provided a dramatic improvement in model fit (∆log-likelihood = -78 for 

masked three_epoch model compared to ∆log-likelihood = -1063.98 for the unmasked 

three_epoch model). All the inferred demographic models are qualitatively consistent with 

previous estimates (Table S3.2). We utilized the best-fit demographic parameters from the 

three_epoch masked model for the AC136 dataset and the two_epoch unmasked model for other 

datasets (Table 3.1) in the downstream analyses of the DFE reported below.  

The eight species we evaluated are distinctive in the potential biological features that 

affect the DFE, such as phylogenetic positions, effective population sizes and life history 

strategies (Table 3.1). The divergence time from human ranged from 900 million years ago 

(Mya) for insects (Peterson et al. 2004) to 40.7 Mya for mice (Kumar and Hedges 1998). The 

long-term population sizes (Na) varied from 6.2E+03 (vaquitas) to 2.77E+06 (drosophila). The 

generation time varied from 0.09 year per generation in mosquitos (Miles et al. 2017) to 25.9 

years in fin whales (Taylor et al. 2007).  
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Mutations are more deleterious in mammals compared with insects 

Conditional on the inferred demography, we estimated the DFE for new nonsynonymous 

mutations for each species. We assumed that the DFE follows a gamma distribution and 

mutations are neutral or deleterious (s < 0). Given that more deleterious mutations segregate in 

lower frequencies and lower numbers compared with neutral mutations, we fitted the gamma 

DFE to the observed differences between the MIS-SFS and the SYN-SFS. Gamma distributions 

provided a good fit to all MIS-SFS (Table 3.2; Figure S3.4).  

On average, mutations are 17 to ~5000 times more deleterious in mammals (n = 5; E[|s|] 

= 1.02E-02 in mice to 7.14E-01 in wolves), compared to insects (n = 2; E[|s|] = 1.38E-04 in 

drosophila, 5.92E-04 in mosquitos; Figure 3.1A). The average mutation effects for pied 

flycatchers, the only bird species included, is similar to insects (E[|s|] = 5.21E-04). Noticeably, 

the scale (β’) parameter for wolves reached the upper boundary during inference for unknown 

reasons (Table S3.3), an observation also found in seals (Gaughran 2021). When excluding E[|s|] 

estimates from only the wolf dataset, mutations are at most ~200 times more deleterious in fin 

whales compared to drosophila.  

When evaluating the shape (α) parameter in the gamma distribution independently, there 

are differences between species groups as well. On average, mammals have lower shape values 

(n = 5; α = 0.11 in wolves to α = 0.21 in mice) compared to insects (n = 2; α = 0.29 in mosquitos 

to α = 0.36 in drosophila). The shape parameter in the flycatcher is similar to insects (α = 0.29). 

The variations in α found in this study are in line with the previous evaluations (Chen et al. 

2017).  

We also observed that mammals have much higher proportions of strongly deleterious 

mutations compared to drosophila, mosquitos and flycatchers. The maximum-likelihood gamma 
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distribution (Figure 3.1B) for each species demonstrated that 22.4% (vaquita) to 47.4% (wolves) 

of mutations in mammals are very strongly deleterious (|s| > 10-2), compared to 0.00% mutations 

in drosophila, 0.07% in mosquitos and 0.03% in flycatchers (Table S3.4). On the other hand, the 

proportions of weakly deleterious mutations (10-5 ≤ |s| < 10-3) are more abundant in drosophila, 

mosquitos and flycatchers (68.37%, 58.09%, 58.72%, respectively), compared to mammals 

(15.99% in wolves to 29.78% in mice). The proportions of neutral to nearly neutral mutations (0 

≤ |s| < 10-5) are similar in all eight species (Figure 3.1B).   

To further test that inferred differences in the DFE are not due to statistical uncertainty as 

a result of having limited data, we compared the DFE estimates for each species to a null model 

where the DFE is constrained to be the same across species (Figure 3.1C). The likelihood ratio 

test (LRT) demonstrated that the model where each species has its own shape and scale 

parameters from the gamma distribution fits the data (MIS-SFS) significantly better than the null 

model (LRT statistics Λ = 14093.69, df = 14, P < 10-16; Figures 3.1C – 3.1E, S3.5).  Therefore, 

the variation of DFE across taxa is statistically supported in our results after controlling for 

demography in each species, consistent with previous estimates (Chen et al. 2017; Huber et al. 

2017). To rule out phylogenetic dependency (Felsenstein 1985), we calculated pairwise LRT 

statistics for all species pairs. The species pairs with lower LRT statistics, in other words, that are 

more likely to share the same DFE, are phylogenetically more closely related (Figure 3.1F). A 

hierarchical clustering of pairwise LRT statistics largely recovered the phylogenetic relationships 

of the eight species as well, with mammals and insects clustered into two distinct lineages by 

their LRT statistics (Figure 3.1F). In summary, phylogenetically close species have a similar 

DFE, with mammals harboring more strongly deleterious and less weakly deleterious variations 

compared with drosophila, mosquitos and flycatchers. 
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Robustness of DFE inference 

To evaluate the robustness of our inference, we sought to test if different functional forms 

of DFE affect the patterns observed above. We used two additional commonly assumed 

distribution functions (Boyko et al. 2008; Kim et al. 2017): 1) a mixture of gamma distribution 

with point mass at neutrality (neugamma); and 2) a log-normal distribution (lognormal). Both 

neugamma and lognormal distributions fit the data similarly well as the gamma distribution 

(Table 3.2; Figures S3.6, S3.7). Comparing the three function forms (gamma, neugamma and 

lognormal) within each dataset, the neugamma distribution had the highest maximum likelihood 

in five datasets (DM100, FH18, BP44, MM16, HS100). Lognormal distribution had the highest 

maximum likelihood in the other three datasets (AC136, CL26, PS24). However, the lognormal 

distribution fit the drosophila (∆LL = -217.82), flycatchers (∆LL = -28.6) and humans (∆LL = -

32.09) datasets much worse than gamma or neugamma distributions. Given that the gamma 

distribution had less parameters than the neugamma distribution and performed more stably 

across datasets compared with the lognormal distribution by achieving the second highest 

maximum likelihood in all datasets except for wolves (Table S3.3), we confirmed that the 

gamma distribution is a good candidate function form for DFE comparisons.  

Overall, average mutation effects remained more deleterious in mammals compared with 

insects and birds (Figures S3.8, S3.9). Mutation effects for vaquitas (PS24) are impacted 

qualitatively by the DFE function assumed. However, only when assuming the DFE follows a 

lognormal distribution, does the average mutation effects for vaquitas become close to that of 

mosquitos (Table 3.2; Figure S3.9). The other mammals, however, still harbor more deleterious 

variation than insects, regardless of the functional form of the DFE assumed. 
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 We also evaluated the potential impacts of demographic model misspecification, given 

that only the mosquito dataset utilized the three_epoch model from SFS with singletons 

removed. Assuming the DFE follows a gamma distribution, we repeated the DFE inference for 

the mosquito dataset using the two_epoch demographic model with full SFS and for the other 

seven datasets, using the three_epoch model with singleton-masked SFS (Table S3.5). The 

average mutation effects and proportion of each mutation categories remain unchanged 

qualitatively (Figures S3.10, S3.11). When assuming two_epoch, full SFS model for all datasets, 

the average mutation effects (E[|s|]) in mosquitos reduced from 5.92E-04 (Figure 3.1A) to 8.60E-

05 (Figure S3.10).  

Overall, our examinations on different functional forms of DFE and demographic model 

specifications further validated the robustness of previous observations in this study. 

Consistently, mutations are more deleterious in the mammal datasets compared to insect and bird 

datasets.  

Multiple biological candidate features are correlated with the DFE 

Having established the robustness of our inference, together with our preliminary 

observations that mutations are more deleterious in mammals compared with insects and birds 

(Figure 3.1A), we tested candidate features that could be correlated with DFE variation. Given 

that parameters for the wolf dataset reached the preset upper boundary with uncertain biological 

significance (Figure 3.1A, 3.1B; Table S3.3), we excluded the wolf dataset in this analysis to rule 

out potential inference artifacts. As the long-term population size (Na) decreased (Figure 3.2A), 

or the divergence time from human lineage decreased (Figure 3.2C), on average, mutations 

become more deleterious in a population (E[|s|]). On the other hand, the generation time (Figure 

3.2B) and mutation rates (Figure 3.2D) are positively correlated with E[|s|]. All candidate 
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features were significantly correlated with E[|s|] (P < 0.05), with the strongest correlations 

observed with long-term population size (𝑅+564  = 0.72, P = 0.0094), and mutation rates (𝑅+564 = 

0.72, P = 0.0097).  

We assumed that mammals are more complex than insects, in other words, having more 

phenotypes under selection, because of their larger genomes, larger number of genes and more 

protein-protein interactions (Huber et al. 2017). Therefore, the divergence times from human, 

generation times and mutation rates tested above could be reflective of an organism’s complexity 

given their correlations with an organism’s phylogenetics placement. Our results are in support 

of the Fisher’s Geometric Model, which predicts that more complex organisms will have more 

deleterious variations. In contrast, the mutation robustness model, which predicts the opposite is 

not supported. However, the candidate features examined for organism complexities and the 

long-term population size are often correlated (Figure S3.12). Therefore, the more deleterious 

mutations found in mammals might also be caused from the usually low population sizes in 

mammals alone, as proposed by the protein stability model.  

Population size is not the sole predictor of fitness effects 

To distinguish the predictions from the protein stability model and the FGM, we 

evaluated the population-scaled mutation effects γ = 2Nas. The protein stability model predicts 

that although the individual mutation effect s varies, the population-scaled mutation effect 2Nas 

is the same across species, while the FGM does not predict this constancy. Assuming the 

population-scaled DFE also follows a gamma distribution, we found that average mutation 

effects are variable across species (Figure 3.3A). The LRT confirmed that the models where each 

species has its own scaled shape and scale parameters (Figures 3.3D, 3.3E, S3.13, S3.14) fit the 

data significantly better than if assuming a constant γ in different species (LRT statistics Λ = 
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59698.1, df = 14, P < 10-16; Figure 3.3C). A hierarchical clustering of pairwise LRT statistics 

again recovered the phylogenetic relationships of the eight species, with insects forming a 

distinct DFE group from the mammals and the flycatcher (Figure S3.14). Interestingly, when 

examining the maximum-likelihood estimates, we no longer observe similar expected mutation 

effects (E[|2Nas|]) within lineages. The average population-scaled mutation effects (E[|2Nas|]) are 

the highest in wolves (1.06E+05), mice (4.22E+03) and mosquitos (2.70E+03). The proportion 

of each type of mutations fluctuated for each species as well (Figure 3.3B; Table S3.6). 

Therefore, although population size is strongly correlated with fitness effects (Figure 3.2), it is 

not the sole predictor for the DFE (Figure 3.3).  

Fisher's Geometric Model explains the DFE variation in eight animal species 

Since population size alone does not account for all the variation in DFE across taxa, we 

evaluated the Fisher’s Geometric Model in more detail. We already found that biological 

candidate features associated with organism complexities are positively correlated with the 

average deleteriousness of mutations in diverse species, which agrees with the FGM predictions 

(Figure 3.2). To directly measure the complexity, we implemented an FGM-based DFE for 

populations at mutation-selection-drift equilibrium (Lourenço et al. 2011, eq.15). When the 

population is under mutation-selection-drift balance, the increase in fitness from beneficial 

mutations should counteract the drift load, i.e. the decrease in fitness caused from fixed 

deleterious mutations, and the population has an equilibrium phenotypic distance (zeq) to the 

fitness optimum. Therefore, this Lourenço DFE relaxed the simplifying assumption made in the 

gamma DFE, where zeq = 0 (Martin and Lenormand 2006), and considered beneficial mutations’ 

impacts. This DFE incorporates long-term population size (Na), mutation pleiotropy (m) and 

scale of mutation effects (σ) as parameters to estimate (see methods for details). The mutation 
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pleiotropy (m) describes the number of phenotypic traits affected by a single mutation and the 

scale (σ) describes the net size of a mutation’s phenotypic effects (Lourenço et al. 2011). Both m 

(Lourenço et al. 2011) and σ (Martin and Lenormand 2006; Huber et al. 2017) could be a direct 

measurement of organism complexity from different perspectives.  

The Lourenço DFE provides an equally good or better fit to the gamma-distribution DFE 

(Figure S3.15; Table S3.3). In addition, the inferred long-term population size from the Lourenço 

DFE is largely in agreement with the Na derived from demographic inference (𝑅+564 = 0.45, P = 

0.042; Figure 3.4A). Both suggested that the populations are likely under mutation-selection-drift 

equilibrium and the FGM-based Lourenço DFE describes their mutation effects well. However, 

in the flycatcher dataset, the inferred Lourenço DFE’s cumulative probability integrated to 1.27 

but not one, suggesting that this DFE function is less accurate for larger m, as pointed out in 

Lourenço et al. 2011. 

We found that mutation effect scale (σ) is reflective of species phylogenetic position, 

with mammals having larger σ compared to insects and birds (Figure 3.4B). The mutation 

pleiotropy (m), however, is not conserved within lineages and tends to increase as σ decreases, 

especially within mammals (Figure 3.4B). The FGM also predicts that as the population size (Na) 

decreases, the proportion of beneficial mutations increases to counteract the increased drift load 

(Lourenço et al. 2011). Smaller populations were found to harbor more beneficial mutations 

(𝑅+564 = 0.74, P = 0.0036; Figure 3.4C) in the Lourenço DFE, confirming this additional FGM 

prediction. Overall, these observations further supported that the Fisher’s Geometric Model is the 

best model to explain the DFE variations we observed.  
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Discussion 

To our knowledge, our study is one of the first to evaluate the long-standing question on 

the evolutionary stability of the DFE across species under a model testing framework. The DFE 

estimates we obtained are consistent with previous studies. We reproduced prior DFE inference 

derived from the same data sets (humans and drosophila: Huber et al. 2017; mice: Zhen et al. 

2021; vaquita: Robinson et al. 2022; Table S3.3). For some species, DFE estimates using 

different datasets are available, and our inference is similar despite variations in methods and 

populations analyzed. In humans, a shape parameter of 0.19 for a gamma DFE inferred in this 

study (Table 3.2) fall into the range of previous studies: from 0.12 ~ 0.16 (Chen et al. 2017), 0.16 

(Castellano et al. 2019), 0.18 ~ 0.21 (Boyko et al. 2008), 0.17 ~ 0.21 (Kim et al. 2017) to 0.2 

(Keightley and Eyre-Walker 2007). In drosophila, our inferred shape parameter of 0.36 is 

consistent with previous reports using different datasets: from 0.35 (Keightley and Eyre-Walker 

2007) to 0.32 ~ 0.41 (Chen et al. 2017). Even in non-model organisms, the DFE inferred for a 

Sweden pied flycatcher population in this study is comparable with a previously inferred scaled 

DFE for an Italian collared flycatcher (F. albicollis) population. We inferred 62.78%, 17.8% and 

19.3% mutations with |Nas| > 10, 1 < |Nas| ≤ 10 and |Nas| ≤ 1, respectively (Table S3.3), similar 

to the 77.8%, 8.9% and 13.3% values inferred in Bolívar et al. (2018). Similar shape parameters 

were obtained for mosquitos (0.32 in Chen et al. 2017, 0.29 in this study). The consistency of 

DFE estimates with literature further confirmed the DFE variation observed across species is 

likely of biological significance.  

Inference of the DFE is challenging and we made several simplifying assumptions. First, 

all mutations are assumed to be additive (h = 0.5) in current DFE inference approaches, such as 

DFE-alpha (Keightley and Eyre-Walker 2007), Fit∂a∂i (Kim et al. 2017) or polyDFE (Tataru et 
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al. 2017; Tataru and Bataillon 2019). However, dominance effects are more complex in wild 

populations (Huber et al. 2018) and are often correlated with a mutation’s selection coefficients 

(Fuller et al. 2019). Incorrect assumptions on dominance likely bias DFE parameter estimates 

(Huang et al. 2021; Wade et al. 2022). New methods that jointly infer h and s through SFS and 

linkage disequilibrium (Ragsdale 2022) or family trios (Barroso and Lohmueller 2021) are 

promising in this regard. We also restricted the DFE inference to nonsynonymous SNP mutations 

in coding regions. Variation of the DFE across species in other mutation types such as 

insertion/deletions (Barton and Zeng 2018) and non-coding regions (Bergman and Kreitman 

2001; Kousathanas et al. 2011) remains to be explored. In addition, GC-biased gene conversions 

(gBGC) likely impact inference of the DFE (Bolívar et al. 2018). Since these biases of 

dominance, mutation types and gBGC are likely impacting all the species we included similarly, 

the comparison on mutation effects is likely unbiased (Huang et al. 2021). Second, several 

parameters required for DFE inference, especially mutation rates (µ) and nonsynonymous to 

synonymous mutation rate ratio (rL), are challenging to estimate by themselves (Figure S3.1). In 

wild populations where only phylogenetic based mutation rates estimates are available, this 

uncertainty can be large. For example, in baleen whales, published mutation rates ranged from 

5.70E-09/bp/gen (Dornburg et al. 2012) to 3.31E-08 (Tollis et al. 2019). This uncertainty is 

variable across species and further investigation is warranted. Lastly, some biological features 

that were associated with DFE variation (Figure 3.2), namely the mutation rates and long-term 

population sizes, were inevitably used to parameterize the DFE inference. Independent proxies 

for complexity such as the number of unique cell types from growing cell atlas efforts (Quake 

2022) could be adopted for future studies. 
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Despite the challenges, we propose that the DFE could be constrained by phylogeny with 

more closely related species having more similar DFE, by demonstrating that mutations are on 

average more deleterious in mammals compared with the two insects and one bird species 

analyzed (Figure 3.1). It is intuitive to assume DFE correlations in related species (Chen et al. 

2017), and several previous studies supported this. High levels of DFE correlation had been 

reported between populations within humans, drosophila and wild tomato (Huang et al. 2021), 

between species within lineages, such as in great apes (Castellano et al. 2019) and cotton wood 

(Liu et al. 2022), although species-specific patterns are also evident. In addition, stark DFE 

differences have been observed between species with early divergences, namely humans and 

drosophila (Keightley and Eyre-Walker 2007; Huber et al. 2017). Experiments in E. coli showed 

that the DFE is largely unchanged during 50,000 generations of evolution (Limdi et al. 2022), 

further supporting our hypothesis that the evolutionary stability of the DFE might have been 

maintained at a larger time-scale. Evaluations of the DFE across diverse groups of animals had 

been conducted, and among-taxa variations were reported (Chen et al. 2017; Galtier and 

Rousselle 2020), similar to our findings. Chen et al. (2017) acknowledged the differences in 

DFE, whereas the uncertainties in the average deleterious effects (E[|s|]) prevented their further 

investigations. However, Galtier and Rousselle (2020) considered this variation a methodological 

artifact. In this study, we compiled high-quality whole-genome based polymorphism data with a 

larger sample size per species, and our results suggest that the DFE may be varying on a 

phylogenetic timescale, and stable within lower taxonomic levels.  

Our findings on the DFE variation and its correlations with phylogeny, population sizes 

and organism complexities have several theoretical and practical implications. In evolutionary 

genetics, quantifying genetic variation, mutational load and the proportion of adaptive evolution 
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in diverse species are of tremendous interest (Galtier and Rousselle 2020; Zhen et al. 2021). We 

emphasize that the Fisher’s Geometric Model remains a powerful framework in evolution. With 

expanding population genomics data sets, more parameters and predictions from the FGM will 

become quantifiable. In conservation biology, genomics-informed simulations are increasingly 

popular to estimate the genetic health of small and fragmented populations (Kyriazis et al. 2021; 

Beichman et al. 2022; Robinson et al. 2022). The relative conservation of the DFE parameters 

within mammals suggest that it is reasonable to assume a human-like DFE parameter in other 

mammalian species when the study species’ DFE parameter has not been inferred. In summary, 

our study provides new insights into the long-standing question concerning the evolutionary 

stability of DFE across species. 

Methods 

Data sets and initial processing  

We compiled high-quality population-level polymorphism datasets from whole genome 

resequencing projects for eight animal species using the following criteria (Figure S3.1): 1) the 

average sequencing depth is at least 15x and genotypes should be called using GATK Best 

Practice Pipeline; 2) for each species, one natural population with no detectable population 

substructure or admixture is included; 3) for each population, at least eight diploid, un-related 

individuals are included; 4) for each dataset, only monomorphic or biallelic SNP sites are 

included. The datasets for drosophila (Huber et al. 2017), vaquitas (Robinson et al. 2021), mice 

(Zhen et al. 2021) and humans (Huber et al. 2017), had been quality controlled previously using 

similar methods described below and not described here.  

For mosquitos (Anopheles gambiae coluzzii), we queried the Ag1000G phase 3 (Ag3) 

release using the python package malariagen-data (v. 0.15.0) on 2021-12-22 (Miles et al. 2017; 
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Consortium et al. 2020) with custom python scripts. We limited our search to a single-species 

An. coluzzii sample set (AG1000G-AO; n = 81) which were collected from breeding sites in 

Luanda, Angola in 2009 (Troco 2012). We first obtained coordinates of canonical transcripts in 

autosomes (2R, 2L, 3R, 3L regions) by identifying the longest transcript of each gene. We 

obtained single nucleotide polymorphism (SNP) calls using the ag3.snp_calls method and 

filtered the sites with the following criteria: 1) the sites should pass 

variant_filter_pass_gamb_colu filters provided by the Ag3 release; 2) the sites should fall into 

canonical CDS regions identified before; 3) the sites should not be in soft-masked or unknown 

regions of the genome (i.e. a/t/c/g/N bases in the genome sequence); 4) the sites should be 

invariant or biallelic. Variants were annotated using the canonical transcripts’ annotations 

provided in ag3.snp_effects. The most deleterious annotation is retained for each variant. Only 

SYNONYMOUS_CODING (SYN) and NON_SYNONYMOUS_CODING (MIS) variants are 

downloaded as variant call format (VCF) files. We performed principal component analyses 

(PCA; function snpgdsPCA) and kinship analyses (function snpgdsIBDKING) for the LD-pruned 

SYN-VCF using the R package SNPRelate v.1.16.0 (Zheng et al. 2012) to evaluate population 

structure as described in Nigenda-Morales et al. (2022). In total, 69 individuals (n = 69) SNP-

only SYN-VCF and MIS-VCF were retained for downstream site frequency spectrum (SFS) 

projection, and 12 individuals were excluded due to high kinship (n = 9; kinship > 0.15) or 

outliers in PCA analyses [n = 3; outliers defined as abs(x - median(x)) > (6 * sd(x)) in PCA].  

For flycatchers (Ficedula hypoleuca), we downloaded filtered SNP-only VCF files for 

four flycatcher species from dryad on 2022-03-24 (Chase et al. 2021a). This dataset derived from 

a study assessing the genomic differentiation landscapes in Ficedula species pairs (Chase et al. 

2021b). In this dataset, hard filter thresholds, repeat region masks and genotype filters (minDP = 
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5, maxDP = 200, minGQ=30) had been applied (Chase et al. 2021a). We lifted the scaffold 

names and positions (CHR and POS fields) from the provided VCF file to the NCBI RefSeq 

chromosome coordinates using custom python scripts (FicAlb1.5; 

https://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/247/815/GCF_000247815.1_FicAlb1.5/ 

GCF_000247815.1_FicAlb1.5_assembly_structure/, accessed 2022-03-26). The lifted REF and 

ALT bases were verified using BioPython and unconcordant sites were removed (0.01%). We 

validated the population structure by performing PCA and kinship analyses described above 

using all LD-pruned SNPs. A custom snpEff (v. 5.1) database for FicAlb1.5 was built from the 

gtf file using default settings. We annotated and predicted the effects of variants using default 

options in snpEff. The most deleterious annotation is retained for each variant. Only 

synonymous_variant (SYN) and missense_variant (MIS) variants in assembled autosomes (chr1 

to chr28) are retained. We additionally masked sites (13.2%) that fall into repeat regions 

identified by WindowMasker (soft-masked bases in RefSeq genome; Morgulis et al. 2006) and 

CpG islands identified by UCSC genome browser (Gardiner-Garden and Frommer 1987). In 

total, SNP-only SYN-VCF and MIS-VCF for nine individuals (n = 9) from the pied flycatcher 

population in mainland Sweden (Nadachowska-Brzyska et al. 2016) were retained for 

downstream SFS projection and no individual was excluded.  

For wolves (Canis lupus), we previously obtained VCF files from the arctic wolf 

population (n = 15) in Canada (Phung et al. 2019; Robinson et al. 2019). Only sites passed 

variant quality filtrations and did not fall in repeat regions or CpG islands were retained for this 

study. Variants were annotated using snpEff v.4.3.1 (Cingolani et al. 2012), based on the dog 

reference genome annotation build CanFam3.1.75 available with snpEff installation. We 

considered sites where all three potential SNPs were annotated as either synonymous_variant 
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(SYN) or missense_variant (MIS) exclusively, and discarded sites with additional types of 

annotations (e.g., splicing sites and protein truncating variants, such as stop-gained variants). We 

estimated kinship and excluded relatives up to 4th degree (e.g. first cousins) using the KING-

robust estimator (Manichaikul et al. 2010) implemented in PLINK (Purcell et al. 2007). In total, 

SNP-only SYN-VCF and MIS-VCF for 14 individuals (n = 14) were retained for downstream 

SFS projection, and one individual (n = 1) was excluded due to high kinship.  

For fin whales (Balaenoptera physalus), we previously obtained VCF files from a 

historically stable population (n = 30) in the Eastern North Pacifics (Nigenda-Morales et al. 

2022). Only sites passed variant quality filtrations and did not fall in repeat regions or CpG 

islands were retained for this study. Variants were annotated using SIFT4G v.6.0 (Vaser et al. 

2016) and snpEff v.4.3.1 (Cingolani et al. 2012). Concordance of variant annotations were 

confirmed across the two software, and the most deleterious annotation derived from SIFT4G is 

used per SNP. We performed PCA and kinship analyses using all LD-pruned SNPs to evaluate 

population structure (Nigenda-Morales et al. 2022). In total, biallelic SNP-only SYN-VCF and 

MIS-VCF for 27 individuals (n = 27) were retained for downstream SFS projection, and three 

individuals were excluded due to admixture with another population (n = 2) or low genotyping 

rate (n = 1).  

Calculation of Site Frequency Spectra and sequence lengths 

We summarized polymorphism data using synonymous and nonsynonymous/missense 

site frequency spectra (SYN-SFS and MIS-SFS, respectively). Here we describe the SFS 

generation procedures for the mosquitos, flycatchers, wolves and fin whales. SFS generation for 

humans (Huber et al. 2017), drosophila (Huber et al. 2017), mice (Zhen et al. 2021) and vaquitas 

(Robinson et al. 2021) utilized similar methods as described below. For mosquitos, flycatchers, 



 129 

wolves and fin whales, each SNP-only SYN-VCF and MIS-VCF file that passed the quality 

control steps described above, were additionally filtered using the following criteria: 1) sites with 

more than 20% missing genotypes are removed; 2) sites with more than 75% heterozygous 

genotypes are removed using GATK (v.3.8) SelectVariants (McKenna et al. 2010) or bcftools 

(v.1.9) filter functions (Li 2011). 

We projected down the sample size and computed folded SYN-SFS and MIS-SFS from 

SYN-VCF and MIS-VCF for each species using a modified easySFS module 

(https://github.com/isaacovercast/easySFS) and make_data_dict_vcf, from_data_dict methods in 

∂a∂i (v.2.1.1) package (Gutenkunst et al. 2009). Computing a folded SFS avoids uncertainties in 

ancestral state classifications. We projected each SFS to the sample size that maximize the 

number of SNPs available to account for the sporadic missing genotypes (Table 3.1). 

To calculate the total synonymous and nonsynonymous sequence lengths (LSYN and LMIS), 

we first obtained the length of coding regions (LCDS) for each species. For mosquitos, fin whales 

and wolves, variants had been called for all sites in the genome. We intersected the coordinates 

of coding regions with the sites that passed filters and had allele counts (INFO/AC) no less than 

the projected SFS sample size in each species’ all-sites VCF (e.g. INFO/AC ≥ 136 for 

mosquitos). For flycatchers, all-sites VCF is not available, we calculated an approximated LCDS 

(11.8Mb) by multiplying the total CDS length (24.6Mb) from gtf file, with the proportion of 

callable sites (76.8%) reported for the autosomes (Table S1 in Chase et al. 2021b), and the 

proportion of SNPs (62.7%) passed the additional filters applied during dataset QC. For all 

species, we then calculated the synonymous and nonsynonymous sequence lengths (LSYN and 

LMIS; LSYN + LMIS = LCDS) from previous estimates of nonsynonymous to synonymous mutation 

rate ratio 𝑟7 =
8!"#
8#$%

= 7!"#
7#$%

. We used an rL of 2.31 for vertebrates (LMIS = 2.31* LSYN; 𝐿&9: =
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4.<'
4.<'='

𝐿>?:), and an rL of 2.85, (LMIS = 2.85 * LSYN; 𝐿&9: =
4.@%

4.@%='
𝐿>?:) for invertebrates (Huber 

et al. 2017). 

varDFE package components 

We developed a robust DFE comparison software, varDFE, as an extension for the ∂a∂i 

and Fit∂a∂i packages. The varDFE package can be installed through pip in any python 

environments (version ≥ 3.10). Our workflow comprises of four main components:  

1. Demog1D_sizechangeFIM: Demographic inference on putatively neutral SFS data. 

2. DFE1D_refspectra: Precomputations of reference SFS database under selection, given 

all possible selection coefficients s and the inferred demographic scenarios in step one.  

3. DFE1D_inferenceFIM: DFE inference on selected SFS data, given the expected DFE 

functional forms and the precomputed reference SFS database in step two. 

4. DFE1D_gridsearch: DFE variation tests through grid search, given the expected DFE 

functional forms and the precomputed reference SFS database in step two.  

We illustrate the usage of varDFE workflow and specific settings used in this study in the 

sections below.  

Demographic inference 

We first inferred demographic parameters from the putatively neutral synonymous SFS 

using the Demog1D_sizechangeFIM component in varDFE package. For each species, we fitted 

three models: 

1. snm: standard neutral model with no population size change. This model estimates 

ancestral population size (Na). 
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2. two_epoch: single population model with one size change event. Ratio of the current 

population size, i.e. the first size change, to ancestral population size (nua) and 

duration of size change (Ta, in units of 2*Na generations) are inferred. 

3. three_epoch: single population model with two size change events. Ratio of the first 

size change population size, to ancestral population size (nua), ratio of the current 

population size, i.e. the second size change, to ancestral population size (nub), and 

duration of two size change events (Ta and Tb) are inferred. 

To account for the uncertainties in genotype calling methods, we also repeated the 

demographic inference by masking the singleton entries in the synonymous SFS. In total, six 

demographic inference runs (three demographic models in SYN-SFS with/without singleton 

masks) for each species were conducted.  

To minimize setting variations across the species we surveyed, we only allowed the 

parameters starting positions to differ according to prior demographic inference for each species, 

i.e. humans, drosophila and mice: Zhen et al. 2021; mosquitos: Miles et al. 2017; flycatchers: 

Nadachowska-Brzyska et al. 2016; fin whales: Nigenda-Morales et al. 2022; vaquitas: Robinson 

et al. 2022. For each run, we run 100 replicates from a permuted starting parameter (fold=1). We 

set extrapolation grid points as sample sizes plus 5, 15 and 25 (Gutenkunst et al. 2009), 

maximum iteration as 100, and performed parameter optimization using the optimize_log 

function based on multinomial log-likelihood calculated from the expected SFS in each iteration. 

We calculated the population-scaled synonymous mutation rate 𝜃:0A, and estimated ancestral 

population size using 𝑁+,- =
8#$%
BC7#$%

, where µ is the exon mutation rates for each species and 

LSYN is the previously estimated synonymous region sequence length.  
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The best-fit parameters with the maximum multinomial log-likelihood in the 100 

replicates were chosen for each run. We evaluated the convergence of the inference across 

replicates with different starting values by calculating the difference in log-likelihood in the 20 

replicates with the highest log-likelihoods. We estimated the best-fit parameters’ uncertainties 

through Fisher’s Information Matrix (FIM, Godambe.FIM_uncert function). To evaluate the 

best-fit parameters in the six runs per species, we plotted each best-fit expected SFS with the 

observed SYN-SFS using ggplot2 v.3.3.2 (Wickham 2016) in R v.3.6.2 (R Core Team 2019).  

For the DFE inference presented in the main text, we chose the three_epoch demographic 

model based on masked SYN-SFS for the mosquito (AC136) dataset because of poor fit for 

alternative inferences (Figure S3.3; Table S3.2). We chose the two_epoch demographic models 

based on unmasked SYN-SFS for all seven other species because of good fit in this most 

parsimonious model. This is a simpler model that fits the data well (Figure S3.3; Table S3.2). 

DFE inference 

Conditional on the inferred demographic scenarios, we estimated the DFE for new 

nonsynonymous mutations based on the MIS-SFS for each species using methods from Fit∂a∂i. 

Briefly, our methods take advantage of the pattern that more deleterious mutations segregate at 

lower frequencies and at lower numbers compared with neutral mutations. Assuming the MIS-

SFS is under selection while the SYN-SFS is putatively neutral, the best DFE parameters should 

fit the differences of MIS-SFS and SYN-SFS in each minor allele frequency bin. Two 

components in the varDFE, DFE1D_refspectra and DFE1D_inferenceFIM, provide flexible 

workflow to estimate both the full and deleterious-only DFE with any given demographic and 

DFE models. To ensure consistency of inference across species, we only allowed species-
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specific settings including demographic parameters, mutation rates (µ), length of 

nonsynonymous region (LMIS), population-scaled mutation rates (θ) to vary across species.  

We first computed and stored the expected SFS for a range of population-scaled selection 

coefficients γ = 2Nas, given the best fit demographic scenarios using the DFE1D_refspectra 

component in varDFE package. Here we calculated the reference spectra given γ but not s, 

because the SFS reflects the effect of selection at population level, which depends on γ = 2Nas 

but not s alone. We implemented a slightly modified Cache1D_mod module, Cache1D_mod2, 

with a method to integrate over continuous positive gamma space. The range of positive gammas 

was set from +1e-5 to +100, with 701 points evenly distributed on the logscale, and negative 

gammas from -10000 to -1e-5, with 901 points evenly distributed on the logscale. The 

extrapolation points (pts_l) were set as [1000,1200,1400]. The reference spectra, from which the 

expected SFS given any γ can be computed, were cached to save time for recalculations and 

improve consistency.  

To infer the deleterious-only DFE, we assumed that the DFE follows a gamma 

distribution and performed the inference using the DFE1D_inferenceFIM component. We wrote 

the DFE for each species as 𝛾~𝐺𝑎𝑚𝑚𝑎(𝛼, 𝛽), where α (α > 0 shape) and β (β > 0; scale) are 

parameters to be inferred. To avoid finding local maxima, for each species, we ran 100 replicates 

from a permuted starting parameter (fold=1) of α = 0.2 and β = 4000, informed from prior DFE 

estimations (Huber et al. 2017). We set parameter upper bounds at αmax = 2.0 and βmax = 1E+6, 

lower bounds at αmin = 1E-3 and βmin = 1E-2, maximum iteration as 100. We calculated 

population-scaled nonsynonymous mutation rate 𝜃&9: = 2.31 × 𝜃:0Afor vertebrates and 𝜃&9: =

2.85 × 𝜃:0A for invertebrates. We performed parameter optimization using the optimize_log 
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function based on Poisson log-likelihood calculated from the expected SFS, generated using the 

integrate method from the precomputed reference spectra, in each iteration.  

The best-fit parameters with the maximum Poisson log-likelihood in the 100 replicates 

were chosen for each run. We evaluated replicates convergence across starting values by 

calculating the difference in log-likelihood in the 20 replicates with the highest log-likelihoods. 

We estimated the best-fit parameters’ uncertainties through Fisher’s Information Matrix (FIM, 

Godambe.FIM_uncert function). Recall that we optimized the gamma distribution parameters for 

the population-scaled selection coefficient γ. To obtain the distribution of s, we unscaled the 

gamma distribution by '
4A&

, therefore, 𝑠~𝐺𝑎𝑚𝑚𝑎(𝛼, 𝛽D), where 𝛽D = E
4A&

 and Na had been 

inferred from demography estimation. 

Average mutation effects E[|s|] for each species were calculated from the best-fit 

parameters given gamma distribution’s property that E[|𝑠|] = αβD. The confidence interval for 

E[|s|] was approximated from the FIM-derived parameter CI, where 𝐸[|𝑠|]F/, = 𝛼F/,𝛽F/,D  and 

𝐸[|𝑠|]F+G = αF+G𝛽F+GD . To compute the proportion of mutations with different values of s in the 

maximum-likelihood gamma distribution, we found the cumulative probability for s ranged in [0, 

1e-5), [1e-5, 1e-4), [1e-4, 1e-3), [1e-3, 1e-2) and [1e-2, 1] using the pgamma function in R. 

The average population-scaled mutation effects (E[|2Nas|]) were calculated as 

E[|2𝑁+𝑠|] = αβ. The cumulative probability for 2Nas ranged in [0,1), [1, 10), [10, 100), [100, 

1000) and [1000, Inf] was calculated using the pgamma function in R as well. 

Likelihood ratio tests to compare s or 2Nas across species 

To test whether the variation of DFE across species was statistically significant at both 

individual (s) and population (2Nas) level, assuming a gamma-distributed DFE, we used the 

DFE1D_gridsearch component in the varDFE package.  
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To test for differences in s across species, we evenly spaced the same 250 grid points in 

biologically meaningful ranges of shape (α = 0.1 ~ 0.5) and scale (β’ = 1E-4 ~ 0.5) parameters. 

We obtained the expected SFS for each α-β’ pair for each species using the integrate method 

from reference spectra, and calculated the Poisson log-likelihood relative to empirical MIS-SFS. 

From 62500 α-β’ pairs, we were able to explore the full Poisson log-likelihood surface for each 

species simultaneously. To obtain the null model where the DFE is constrained to be the same 

across species, we assumed that each species’ SFS are independent of each other given their 

distant phylogenetic divergence. Therefore, the log-likelihood for the null model can be 

calculated by summing the log-likelihood at each α-β’ pair for each species and the MLE can be 

found from within the 62500 α-β’ parameter grids. To formally test whether the shape (α) and 

scale (β’) are different in any x number of species, we adopt the LRT from Huber et al. (2017). 

The LRT was constructed by subtracting the log-likelihood for the alternate model, where each 

species is allowed to have their its own DFE parameters (𝛼'P,𝛼4P, . . . , 𝛼GP,𝛽'Q,𝛽4Q, . . . , 𝛽GQ; df = 2x, in 

our data, 16 parameters to infer) from the log-likelihood for the null model, with two DFE 

parameters inferred (𝛼' = 𝛼4 =. . . = 𝛼G and 𝛽' = 𝛽4 =. . . = 𝛽G; df = 2) given the inferred 

demographic parameters for each species (𝛩?,'Q ,𝛩?,4Q , . . . , 𝛩?,GQ ). Asymptotically, Λ should follow 

a χ2 distribution with df = 2x-2 = 14.  

𝛬 = 	𝐿𝑜𝑔𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑[𝛼' = 𝛼4 =. . . = 𝛼G\ ,𝛽' = 𝛽4 =. . . = 𝛽G] ^𝛩?,'Q ,𝛩?,4Q , . . . , 𝛩?,GQ _

− 𝐿𝑜𝑔𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑(𝛼'P,𝛼4P, . . . , 𝛼GP,𝛽'Q,𝛽4Q, . . . , 𝛽GQ|𝛩?,'Q ,𝛩?,4Q , . . . , 𝛩?,GQ ) 

To provide a phylogenetic independent DFE comparison (Felsenstein 1985), we 

calculated the pairwise LRT in all possible pairs of species. For example, the LRT comparing 

humans (population 1) and drosophila (population 2) DFE can be written as the following. 
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Asymptotically, Λ should follow a χ2 distribution with df = 2x-2 = 2. We hierarchically clustered 

the pairwise LRT statistics using the hclust function in R. 

𝛬 = 	𝐿𝑜𝑔𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑[𝛼' = 𝛼4\ ,𝛽' = 𝛽4] ^𝛩?,'Q ,𝛩?,4Q _ − 𝐿𝑜𝑔𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑(𝛼'P,𝛼4,P𝛽'Q,𝛽4Q|𝛩?,'Q ,𝛩?,4Q ) 

To test the variations of γ = 2Nas for each species, we conducted the grid search by 

evenly spacing the same 250 grid points in biologically meaningful ranges of scaled shape (α = 

0.1 ~ 0.5) and scaled scale (β = 100 ~ 2.5E+4) parameters for population-scaled DFE, and 

repeated the overall and pairwise LRT analyses as outlined above.  

Robustness of the DFE inference 

Functional forms of DFE 

To examine the robustness of our DFE inference, we implemented two additional 

functional forms of the DFE: 1) a mixture distribution with point mass at neutrality combined 

with the remaining mutations having a gamma-distribution of selection coefficients (neugamma), 

and 2) a log-normal distribution (lognormal), assuming the best-fit demographic scenarios using 

the same settings as described above.  

For the neugamma distribution, we write the DFE for each species as 

𝛾~	𝑁𝑒𝑢𝑔𝑎𝑚𝑚𝑎(𝛼, 𝛽, 𝑝). α (α > 0; shape) and β (β > 0; scale) are parameters from a gamma 

distribution, and p (p ≥ 0) is the proportion of neutral mutations (0 ≤ |𝛾| < 10H%). During 

inference, we set the parameter start positions, upper bounds and lower bounds the same as the 

gamma distribution for the α and β parameter. The starting position for p is 0.3, the upper bound 

is pmax = 1, the lower bounds is pmin = 1E-5. 

𝑓(𝛾) = e
𝑝

10H%
+ (1 − 𝑝) ∗ 𝐺𝑎𝑚𝑚𝑎(𝛾|𝛼, 𝛽), 0 ≤ |𝛾| < 10H%

(1 − 𝑝) ∗ 𝐺𝑎𝑚𝑚𝑎(𝛾|𝛼, 𝛽), |𝛾| ≥ 10H%
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To obtain the distribution of s, we unscaled the neugamma distribution by '
4A&

, therefore, 

𝑠~𝑁𝑒𝑢𝑔𝑎𝑚𝑚𝑎(𝛼, 𝛽′, 𝑝), where 𝛽D = E
4A&

 and Na had been inferred from demography 

estimation. Average mutation effects E[|s|] for each species were calculated from the best-fit 

parameters using 𝐸[|𝑠|] = I
4
∗ 10H% + (1 − 𝑝)𝛼𝛽D. 

For the lognormal distribution, we write the DFE for each species as 

𝛾~	𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙(𝜇J, 𝜎4). During inference, we set the starting positions before permutation as 

𝜇J = 1, 𝜎 = 0.1, upper bounds as 𝜇J = 100, 𝜎 = 100, lower bounds as 𝜇J = −100, 𝜎 = 1e-5. 

Since 𝜇J could take a negative value, we used the optimize instead of optimize_log function for 

parameter optimization. To obtain the distribution of s, we unscaled the lognormal distribution, 

therefore, 𝑠~𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙(𝜇JD , 𝜎4), where 𝜇JD = 𝜇J − 𝑙𝑜𝑔(2𝑁+) and Na had been inferred from 

demography estimation. Median mutation effects E[|s|] for each species were calculated using 

𝐸[|𝑠|] = 𝑒𝑥𝑝(𝜇JD). 

Sensitivity to the assumed demographic model 

Since we used different demographic models for different species, we explored whether 

different models or masking singletons affected inferences. To do this, we calculated the 

reference spectra for the mosquito dataset using the two_epoch model with full SFS, and for the 

other seven dataset, using the three_epoch model with singleton-masked SFS. Assuming a 

gamma distributed DFE, we repeated the DFE inference process, using the reference spectra for 

each species either from the two_epoch model with full SFS or the three_epoch model with 

singleton-masked SFS.  
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Investigating mechanisms underlying variation in the DFE across species 

To correlate the candidate explanatory variable (X) with the observed E[|s|], we 

performed linear regressions using the lm function in R. The candidate explanatory variables (X) 

included are 1) long term population size (Na); 2) divergence time in million years from human 

lineage; 3) generation time in years per generation; 4) mutation rates in mutations per bp per 

generation. In general, the regression was specified as	𝑙𝑜𝑔(𝐸[|𝑠|])	~	𝑙𝑜𝑔(𝑋) to normalize the 

data. For divergence time, it is 𝑙𝑜𝑔(𝐸[|𝑠|])	~	𝑙𝑜𝑔(𝑋 + 1). Given that parameters for the wolf 

dataset reached upper boundaries during inference (Figure 3.1A, 3.1B; Table S3.3), we excluded 

the wolf data point, leaving seven species’ DFE for regression. We also evaluated the 

correlations of Na with other candidate explanatory variables using the lm function with the 

following formula: 𝑙𝑜𝑔(𝑋)	~	𝑙𝑜𝑔(𝑁+). 

Fitting the FGM-derived DFE 

To further test whether the FGM can explain the variation in the DFE variations and 

contribution of beneficial mutations to SFS across species, we implemented a functional form of 

the DFE (Lourenço DFE) introduced in Lourenço et al. 2011 eq. 15, which is directly derived 

from FGM assumptions. Briefly, the FGM proposes that populations can be seen as a collection 

of phenotypes (n) under stabilizing selection around a local maxima and complexity (n) is 

defined as the total number of phenotypes under selection. Fitness (w) can be described as a 

Gaussian function of the distance to the optimum (z), 𝑤(𝑧) = 𝑒𝑥𝑝(−𝑧4). Random mutations do 

not impact all phenotypes equally, but will likely affect a subset of m phenotypes with fitness 

effect size r. Here, m is defined as mutation pleiotropy (Lourenço et al. 2011) or effective 

complexity (Martin and Lenormand 2006). Effect size r follows a zero mean Guassian 

distribution with scale σ. When the population is under mutation-selection-drift balance, the 
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increase in fitness from beneficial mutations should counteract the drift load, the decrease in 

fitness caused from deleterious mutations and the population will have an equilibrium 

phenotypic distance (zeq) to the fitness optimum. Therefore, the DFE for the well-adapted 

population (Lourenço et al. 2011; eq.15) is correlated with the mutation pleiotropy (m), scale of 

mutation effects (σ) and long-term population size (Na), 𝛾~𝐿𝑜𝑢𝑟𝑒𝑛ç𝑜(𝑚, σ, 𝑁+). Here 𝛤(. ) is 

the gamma function and 𝐾(. ) is the modified Bessel function of the second kind (Lourenço et al. 

2011).  

𝑓(𝛾) =
2
'HK
4 t𝑁+(|𝛾|)

FH'
4 (1 + 1

𝑁+𝜎4
)𝑒𝑥𝑝(−𝑁+𝛾)

√𝜋𝜎F𝛤(𝑚2)
× 𝐾FH'

4
(𝑁+|𝑠|w1 +

1
𝑁+𝜎4

) 

We inferred the maximum likelihood estimates for the m, σ and Na parameters using the 

DFE1D_inferenceFIM component as described above. Since this DFE also includes beneficial 

mutations, we calculated the expected SFS using the integrate_continuous_pos method 

implemented in varDFE package (Figure S3.16).  
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Tables 

Table 3.1 

Table 3.1. Polymorphism dataset summary. Pop, population. The first two letters denote the 

species name (e.g. DM), the numbers following are the projected SFS sample size (e.g. 100). 

Tgen, generation time per year. µ, mutation rates. Na, long-term effective population size. Tdiv, 

approximated divergence time from humans in million years ago. Demog Model, the 

demographic model used for Na inference.  

Pop Order Scientific 
Name 

Common  
Name 

Tgen µ Na Tdiv Demog 
Model 

AC136 Diptera Anopheles  
coluzzii   

mosquito 0.09 1.50E-09 2.28E+06 900 3epoch,  
masked SFS 

DM100 Diptera Drosophila  
melanogaster 

drosophila 0.10 1.50E-09 2.77E+06 900 2epoch,  
full SFS 

FH18 Passeriformes Ficedula  
hypoleuca  

pied flycatcher 2.00 2.80E-09 2.47E+05 310 2epoch,  
full SFS 

CL26 Carnivora Canis lupus arctic wolf 3.00 5.63E-09 7.41E+04 74.0 2epoch,  
full SFS 

PS24 Artiodactyla Phocoena  
sinus 

vaquita 11.90 5.83E-09 6.27E+03 58.2 2epoch,  
full SFS 

BP44 Artiodactyla Balaenoptera  
physalus 

fin whale 25.90 2.77E-08 1.24E+04 58.2 2epoch,  
full SFS 

MM16 Rodentia Mus musculus mouse 0.33 5.40E-09 2.08E+05 40.7 2epoch,  
full SFS 

HS100 Primates Homo sapiens human 25.00 2.50E-08 7.04E+03 0 2epoch,  
full SFS 
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Table 3.2 

Table 3.2. Mutation fitness effects are variable across species. Function, the functional form of 

DFE. ll_model, the Poisson log-likelihood of the best-fit model. ll_data, the Poisson log-

likelihood of the data. df, the degree of freedom, i.e., the number of parameters estimated. In 

gamma functional form, Parameter1 = shape, Parameter2 = scale. In neugamma, Parameter1 = 

shape, Parameter2 = scale, Parameter3 = proportion of neutral mutations. In lognormal 

functional form, Parameter1 = mean mutation effects, Parameter2 = variance of mutation effects. 

E[|s|], the expected mean (gamma and neugamma) or median (lognormal) fitness effects.  
 

Pop Function ll_model ll_data df Parameter1 Parameter2 Parameter3 E[|s|] 
1 AC136 gamma -485.08 -296.16 2 0.2915 0.0020   5.92E-04 
1 AC136 neugamma -486.78 -296.16 3 0.2866 0.0023 0.0002 6.54E-04 
1 AC136 lognormal -429.52 -296.16 2 -7.9322 5.0464   3.59E-04 
2 DM100 gamma -347.03 -224.90 2 0.3570 0.0004   1.38E-04 
2 DM100 neugamma -343.49 -224.90 3 0.3844 0.0003 0.0110 1.21E-04 
2 DM100 lognormal -561.31 -224.90 2 -9.5317 3.9991   7.25E-05 
3 FH18 gamma -69.27 -41.13 2 0.2862 0.0018   5.21E-04 
3 FH18 neugamma -52.44 -41.13 3 1.1955 0.0001 0.1592 1.07E-04 
3 FH18 lognormal -81.04 -41.13 2 -8.7764 4.3027   1.54E-04 
4 CL26 gamma -81.12 -58.94 2 0.1068 6.6909   7.14E-01 
4 CL26 neugamma -72.86 -58.94 3 0.1577 6.7181 0.1454 9.05E-01 
4 CL26 lognormal -71.40 -58.94 2 -1.3662 15.5870   2.55E-01 
5 PS24 gamma -47.70 -43.95 2 0.1334 0.0984   1.31E-02 
5 PS24 neugamma -47.71 -43.95 3 0.1327 0.1014 0.0005 1.34E-02 
5 PS24 lognormal -47.17 -43.95 2 -8.1588 5.2064   2.86E-04 
6 BP44 gamma -123.16 -98.68 2 0.1425 0.1871   2.67E-02 
6 BP44 neugamma -120.04 -98.68 3 0.3126 0.0352 0.2169 8.63E-03 
6 BP44 lognormal -129.70 -98.68 2 -7.0754 6.5251   8.46E-04 
7 MM16 gamma -54.59 -41.96 2 0.2061 0.0493   1.02E-02 
7 MM16 neugamma -50.07 -41.96 3 0.3888 0.0047 0.0853 1.66E-03 
7 MM16 lognormal -59.66 -41.96 2 -5.5925 6.8391   3.73E-03 
8 HS100 gamma -241.88 -183.69 2 0.1896 0.0725   1.38E-02 
8 HS100 neugamma -215.74 -183.69 3 0.6755 0.0092 0.2731 4.53E-03 
8 HS100 lognormal -273.97 -183.69 2 -6.8572 4.8631   1.05E-03 
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Figures 

Figure 3.1 
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Figure 3.1. Mutations are more deleterious in mammals. Assuming a gamma-distributed DFE, 

(A) the average deleterious mutation effects (E[|s|]) for eight species. From left to right, species 

are increasingly divergent from humans: mosquitos (AC136, red), drosophila (DM100, pink), 

flycatchers (FH18, dark orange), wolves (CL26, khaki), vaquitas (PS24, navy), fin whales 

(BP44, blue), mice (MM16, green) and humans (HS100, turquoise). (B) Proportions of mutations 

with various ranges of |s|. From left to right, mutations ranged from (nearly) neutral (-10-5 < s ≤ 

0) to very strongly deleterious (s ≤ -10-2). Error bars represent FIM derived confidence interval. 

(C-E) The log-likelihood surfaces for the shape (α) and scale (β’) parameters (C) under the 

constrained model where all species have the same parameters or under alternative models 

allowing species’ parameters to vary in representative (D) drosophila and (E) fin whales. For full 

log-likelihood surfaces, see Figure S3.5. Background colors from yellow to red indicate the 

differences of log-likelihood for given parameters to data, with gray backgrounds represent 

∆LL > 1E+6. On each log-likelihood surface, the maximum likelihood estimate (MLE) for the 

null model is overlayed as a gray point. The MLEs for each species are overlayed as triangles 

using the same color code. The wolf dataset (CL26)’s MLE exceeds the grid search range and is 

plotted as a khaki asterisk. (F) Pairwise LRT statistics (Λ) for each species pair are colored on a 

log scale and hierarchically clustered. Darker cells represent more similar DFE estimates in the 

species compared, such as HS100 – MM16, whereas lighter cells represent more variable DFE, 

such as HS100 – DM100. The dendrogram derived from hierarchical clustering is annotated.  
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Figure 3.2 

 

Figure 3.2. Multiple candidate factors are correlated with the expected selection coefficient 

assuming a gamma distributed DFE. The wolf dataset is excluded because parameters reached 

upper boundaries during inference. Each point represents one species, with error bars represent 

confidence interval. The regression result is overlayed as a dashed blue line, with equations, 

adjusted R2, and p-value annotated at top. All axes are in log10 scale. (A) Long-term population 
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size is negatively correlated with deleterious mutation effects (E[|s|]). (B) Generation time is 

positively correlated with E[|s|]. (C) Divergence time with human lineage is negatively 

correlated with E[|s|]. (D) Mutation rate per bp per generation is positively correlated with E[|s|]. 
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Figure 3.3 

 

Figure 3.3. Population-scaled mutation effects (2Nas) are not conserved across species. 

Assuming a gamma-distributed DFE, (A) the average population-scaled deleterious mutation 

effects (E[|2Nas|]) for eight species. (B) Proportions of mutations with various range of |2Nas|. 

From left to right, mutations ranged from (nearly) neutral (-1 < 2Nas ≤ 0) to very strongly 

deleterious (2Nas ≤ -1000). Error bars represent FIM derived confidence interval. (C-E) The log-

likelihood surface for the population level shape (α) and scale (β) parameters (C) under the 

constrained model where all species have the same parameters or under alternative models 

allowing species’ parameters to vary in representative (D) drosophila and (E) fin whales. For full 
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log-likelihood surfaces, see Figure S3.13. Background colors from yellow to red indicate the 

differences of log-likelihood for given parameters to data, with gray backgrounds represent 

∆LL > 1E+6. On each log-likelihood surface, the maximum likelihood estimate (MLE) for the 

null model is overlayed as a gray point. The MLEs for each species are overlayed as triangles 

using the same color code. The wolf dataset (CL26)’s MLE exceeds the grid search range and is 

plotted as a khaki asterisk.  
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Figure 3.4 

 

Figure 3.4. Fitting a Fisher’s Geometric Model derived DFE. (A) The inferred long term 

effective population size (Na) from the DFE (y-axis) is correlated with the effective size inferred 

from genetic variation data using ∂a∂i inference (x-axis). Axes are in log10 scale. (B) The 

estimated scale of mutation effects (σ) and mutation pleiotropy (m) parameters for eight species. 

The mutation pleiotropy for flycatchers (FH18, 1.76) and scale for wolves (CL26, 9.81) exceeded 

axes limit and their values are annotated as numbers. (C) The estimated proportion of beneficial 

mutations (s > 0) is negatively correlated with long-term population size inferred from ∂a∂i. The 

x-axis is in log10 scale. 
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Abstract 

The bobcat (Lynx rufus) is a medium-sized carnivore well adapted to various 

environments and an indicator species for landscape connectivity. It is one of the four species 

within the extant Lynx genus in the family Felidae. Because of its broad geographic distribution 

and central role in food webs, the bobcat is important for conservation. Here we present a high 

quality de novo genome assembly of a male bobcat located in Mendocino County (California, 

USA) as part of the California Conservation Genomics Project (CCGP). The assembly was 

generated using the standard CCGP pipeline from a combination of Omni-C and HiFi 

technologies. The primary assembly comprises 76 scaffolds spanning 2.4 Gb, represented by a 

scaffold N50 of 142 Mb, a contig N50 of 66.2 Mb and a BUSCO completeness score of 95.90%. 

The bobcat genome will be an important resource for the effective management and conservation 

of this species and comparative genomics exploration.  

 

Keywords: California Conservation Genomics Project, CCGP, carnivores, comparative 

genomics, felidae, long-read assembly  
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Introduction  

The bobcat (Lynx rufus) is one of the most adaptable and widespread carnivores in the 

Western Hemisphere (Figure A.1A, Riley et al. 2003; Reding et al. 2012). They prefer rocky 

terrain in brushy forest or chaparral, but are also habitat generalists that can persist in 

anthropogenically altered areas (Figure A.1B, Ahlborn and White 1990). For these reasons, the 

bobcat is an exemplary study species for functional landscape connectivity, urbanization effects, 

and local adaptations (Smith et al. 2020). With a large home range and central role in the food 

web, they are also considered an umbrella species for conserving diverse ecological communities 

(Kozakiewicz et al. 2019).  

The bobcat shares a common ancestor with three other species in the Lynx genus, the 

Canada lynx (Lynx canadensis), the Eurasian lynx (L. lynx) and the Iberian lynx (L. pardinus), 

that diverged approximately 3.2 million years ago (Figure A.1C, Johnson et al. 2006). Currently, 

the genomes for the Canada lynx (GCF_007474595.2; scaffold N50 = 147 Mb) and the Iberian 

lynx (GCA_900661375.1; scaffold N50 = 1.5 Mb) are available on NCBI Genbank (Table 

SA.1). These four lynx species vary greatly in their ecological traits and demographic histories, 

as well as abundance and conservation status (Broderick 2020). Obtaining a high-quality bobcat 

reference genome will enable comparative genomics analyses in this lineage. 

In California, the bobcat is a native mesocarnivore species that is crucial for ecosystem 

health (Ahlborn and White 1990). Regional studies using microsatellite or RADseq (Restriction 

site Associated DNA Sequencing) markers showed that habitat fragmentation, disease 

transmission and rodenticide exposure increasingly pose threats to urban bobcats in southern 

California (Serieys et al. 2015; Fraser et al. 2018; Kozakiewicz et al. 2019). However, studies at 

a broader geographic scale examining the entire genome are still lacking. A bobcat reference 
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genome would expand the genetic toolkit available to wildlife scientists responsible for the 

conservation and management of bobcat, both in California and throughout its native range.  

The California Conservation Genomics Project (CCGP) is generating a genomics 

variation database for hundreds of species with broad statewide distributions to help guide 

conservation of species and ecosystems under anthropogenic changes (Shaffer et al. 2022). As 

one of the study species focused on by the CCGP, here we present a high quality de novo 

genome assembly of the bobcat, with high contiguity, base accuracy and minimal gaps. The 

assembly derives from genomic DNA extracted from fresh whole blood samples taken from a 

male bobcat that was treated at a wildlife rehabilitation facility. With high molecular weight 

DNA, we leveraged the advantages of Omni-C proximity-ligation technologies and PacBio long 

read sequencing to generate a high quality assembly with chromosome-length scaffolds that is 

comparable to, or better than, existing lynx reference genomes (Abascal et al. 2016; Rhie et al. 

2021). The bobcat assembly we present here, has a total length of 2.44 Gb, a scaffold N50 of 142 

Mb and a contig N50 of 66.2 Mb. The bobcat genome will provide reference for high-resolution 

mapping of short read data and genomic variation discovery in ongoing CCGP landscape 

genomics surveys and serve as a useful resource for comparative analyses.  

Methods 

Biological Materials 

Whole blood was sampled from a male bobcat admitted to a wildlife rehabilitation 

facility for treatment of injuries sustained during a vehicle collision. The sample was collected 

under a Memorandum of Understanding with the California Department of Fish and Wildlife per 

CCR Title 14, Section 679. This male bobcat was found near Redwood Valley, Mendocino 

County (GPS: 39.26564 N, 123.15892 W, WGS84), CA, USA. Whole blood samples were 
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drawn in EDTA blood collection tubes, refrigerated overnight, flash-frozen in liquid nitrogen and 

transferred on dry ice to the sequencing facilities within 24 hours of collection. Samples were 

then stored at -80º C until DNA extraction and sequencing. A voucher subsample is stored in the 

CCGP archive at the University of California - Los Angeles at -80º C.  

Nucleic acid library preparation and DNA sequencing 

Pacific Biosciences HiFi library preparation and sequencing 

High molecular weight (HMW) genomic DNA (gDNA) was isolated from whole blood 

preserved in EDTA. Three ml of RBC lysis solution (Qiagen Cat # 158445) was added to 1 ml of 

whole blood and the reaction was incubated at room temperature for 5 minutes (min). The 

sample was centrifuged at 2000 x g for 2 min to pellet white blood cells. The supernatant was 

discarded and 2 ml of lysis buffer containing 10 mM Tris-HCl pH 8.0, 25 mM EDTA, 0.5% 

(w/v) SDS and 100µg/ml Proteinase K was added to the cell pellet. The reaction was incubated 

at room temperature until the solution was homogenous. The lysate was then treated with 

20µg/ml RNase A at 37º C for 30 min and cleaned with equal volumes of phenol/chloroform 

using phase lock gels (Quantabio Cat # 2302830). The DNA was precipitated by adding 0.4X 

volume of 5M ammonium acetate and 3X volume of ice cold ethanol. The DNA pellet was 

washed twice with 70% ethanol and resuspended in an elution buffer (10mM Tris, pH 8.0). 

Purity of gDNA was measured on a NanoDrop 1000 spectrophotometer (Thermo Scientific, 

Waltham, MA, USA) using the 260/280 and 260/230 ratios. The gDNA sample with a 260/280 

ratio between 1.8 to 2.0 and a 260/230 ratio no less than 2.0 was considered pure (Pacific 

Biosciences 2021). The integrity of the HMW gDNA was verified on a Femto pulse system 

(Agilent Technologies, Santa Clara, CA). 



 162 

The HiFi SMRTbell library was constructed using the SMRTbell Express Template Prep 

Kit v2.0 (Pacific Biosciences - PacBio; Menlo Park, CA; Cat. #100-938-900) according to the 

manufacturer’s instructions. This entailed HMW gDNA shearing to a target DNA size 

distribution between 15 – 20 kb. The sheared gDNA was concentrated using 0.45X of AMPure 

PB beads (PacBio, Cat. #100-265-900) for the removal of single-strand overhangs at 37º C for 15 

min, followed by further enzymatic steps of DNA damage repair at 37º C for 30 min, end repair 

and A-tailing at 20º C for 10 min and 65º C for 30 min, ligation of overhang adapter v3 at 20º C 

for 60 min and 65º C for 10 min to inactivate the ligase, then nuclease treated at 37º C for one 

hour. The SMRTbell library was purified and concentrated with 0.45X Ampure PB beads 

(PacBio, Cat. #100-265-900) for size selection using the BluePippin system (Sage Science, 

Beverly, MA; Cat #BLF7510) to collect fragments greater than 9 kb. The 15 – 20 kb average 

HiFi SMRTbell library was sequenced at the University of California - Davis DNA Technologies 

Core (Davis, CA) using three 8M SMRT cells, Sequel II sequencing chemistry 2.0, and 30-hour 

movies each on a PacBio Sequel II sequencer.  

Omni-C library preparation and sequencing 

The Omni-C library was prepared using the DovetailTM Omni-CTM Kit according to the 

manufacturer’s protocol with slight modifications. Briefly, chromatin was fixed in place in the 

nucleus. Fixed chromatin was digested with DNase I then extracted. Chromatin ends were 

repaired and ligated to a biotinylated bridge adapter followed by proximity ligation of adapter 

containing ends. After proximity ligation, crosslinks were reversed and the DNA purified from 

proteins. Purified DNA was treated to remove biotin that was not internal to ligated fragments. A 

sequencing library was generated using the NEB Ultra II DNA Library Prep kit (New England 

Biolabs, Ipswich, MA) with an Illumina compatible y-adaptor. Biotin-containing fragments were 
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then captured using streptavidin beads. The post-capture product was split into two replicates 

prior to PCR enrichment to preserve library complexity with each replicate receiving unique dual 

indices. The library was sequenced at Vincent J. Coates Genomics Sequencing Lab (Berkeley, 

CA) on an Illumina NovaSeq platform (Illumina, San Diego, CA) to generate approximately 100 

million paired end 150-bp reads per GB of genome size. 

Genome assembly  

Nuclear genome assembly 

We assembled the genome of the bobcat following the CCGP assembly protocol Version 

3.0, an improvement from Todd et al. (submitted). The main difference between versions is the 

use of an updated version of the de novo assembler HiFiasm [Version 0.16.1-r375] (Cheng et al. 

2021, see Table A.1 for assembly pipeline and relevant software). The final output corresponds 

to a diploid assembly that consists of two pseudo haplotypes (primary and alternate). The 

primary assembly is more complete and consists of longer phased blocks. The alternate consists 

of haplotigs (contigs of clones with the same haplotype) in heterozygous regions and is not as 

complete and more fragmented. Given the characteristics of the latter, the alternate assembly 

cannot be considered on its own but as a complement of the primary assembly 

(https://lh3.github.io/2021/04/17/concepts-in-phased-assemblies; 

https://www.ncbi.nlm.nih.gov/grc/help/definitions/)  

We removed remnant adapter sequences from the PacBio HiFi dataset using 

HiFiAdapterFilt [Version 1.0] (Sim 2021) and generated the initial diploid assembly with the 

filtered PacBio reads using HiFiasm. Next, we identified sequences corresponding to haplotypic 

duplications and contig overlaps on the primary assembly with purge_dups [Version 1.2.6] 
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(Guan et al. 2020) and transferred them to the alternate assembly. We scaffolded both assemblies 

using the Omni-C data with SALSA [Version 2.2] (Ghurye et al. 2017; 2019). 

The primary assembly was manually curated by generating and analyzing Omni-C 

contact maps and breaking the assembly where major misassemblies were found. No further 

joins were made after this step. To generate the contact maps, we aligned the Omni-C data 

against the corresponding reference with bwa mem [Version 0.7.17-r1188, options -5SP] (Li 

2013), identified ligation junctions, and generated Omni-C pairs using pairtools [Version 0.3.0] 

(Goloborodko et al. 2019). We generated a multi-resolution Omni-C matrix with cooler [Version 

0.8.10] (Abdennur and Mirny 2020) and balanced it with hicExplorer [Version 3.6] (Ramírez et 

al. 2018). We used HiGlass [Version 2.1.11] (Kerpedjiev et al. 2018) and the PretextSuite 

(https://github.com/wtsi-hpag/PretextView; https://github.com/wtsi-hpag/PretextMap; 

https://github.com/wtsi-hpag/PretextSnapshot) to visualize the contact maps.  

We closed the remaining gaps generated during scaffolding with the PacBio HiFi reads 

and YAGCloser [commit 20e2769] (https://github.com/merlyescalona/yagcloser). We then 

checked for contamination using the BlobToolKit Framework [Version 2.3.3] (Challis et al. 

2020). Finally, we trimmed remnants of sequence adaptors and mitochondrial contamination 

based on NCBI contamination screening. 

Mitochondrial genome assembly 

We assembled the mitochondrial genome of the bobcat from the PacBio HiFi reads using 

the reference-guided pipeline MitoHiFi [https://github.com/marcelauliano/MitoHiFi] (Allio et al. 

2020). The mitochondrial sequence of Lynx lynx (MH706704.1) was used as the starting 

reference sequence. After completion of the nuclear genome, we searched for matches of the 

resulting mitochondrial assembly sequence in the nuclear genome assembly using BLAST+ 



 165 

[Version 2.10] (Camacho et al. 2009) and filtered out contigs and scaffolds from the nuclear 

genome with a percentage of sequence identity >99% and size smaller than the mitochondrial 

assembly sequence. 

Genome size estimation and quality assessment 

We generated k-mer counts (k = 21) from the PacBio HiFi reads using meryl [Version 1] 

(https://github.com/marbl/meryl). The generated k-mer database was then used in 

GenomeScope2.0 [Version 2.0] (Ranallo-Benavidez et al. 2020) to estimate genome features 

including sequencing error, genome size, heterozygosity, and repeat content. To obtain general 

contiguity metrics, we ran QUAST [Version 5.0.2] (Gurevich et al. 2013). To evaluate genome 

quality and completeness we used BUSCO [Version 5.0.0] (Simão et al. 2015; Seppey et al. 

2019) with the mammalia database (mammalia_odb10) which contains 9,226 genes. Assessment 

of base level accuracy (QV) and k-mer completeness was performed using the previously 

generated meryl database and merqury (Rhie et al. 2020). We further estimated genome 

assembly accuracy via BUSCO gene set frameshift analysis using the pipeline described in 

Korlach et al. (2017). 

Assembly comparisons 

We compared basic statistics with the other two existing nuclear assemblies and three 

mitochondrial assemblies in the Lynx genus (Figure A.1C). For nuclear assemblies, we 

downloaded the Lynx canadensis genome RefSeq assembly 

(GCF_007474595.2_mLynCan4.pri.v2; accessed on 2021-08-13) and the Lynx pardinus 

assembly (GCA_900661375.1_LYPA1.0; accessed on 2022-02-16). To compare basic statistics 

in the nuclear assemblies, we compiled information from the NCBI Genome Assembly Reports 

and individual publications (Table SA.1, Abascal et al. 2016; Rhie et al. 2021). To standardize 
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the BUSCO scores, we repeated the BUSCO analyses described above for the other assemblies 

(Table SA.2). The divergence time plot was generated using the ggtree package [Version 2.0.4] 

(Yu et al. 2017) in R [Version 3.6.2] (R Core Team 2019). The coverage by scaffold length 

(NGx) plot was generated based on the scaffold lengths in the NCBI Genome Assembly Reports 

for each species using ggplot2 [Version 3.3.2] (Wickham 2016) in R.  

For mitochondrial assemblies, we downloaded the sequences for Genbank accessions: 

CM017348.2 (Lynx canadensis), MH706704.1 (Lynx lynx) and  NC_028319.1 (Lynx pardinus) 

on 2022-02-20. The base compositions and sequence lengths were summarized using biopython 

[Version 1.79] (Cock et al. 2009).  

To count available whole genome assemblies in the Felidae, we queried the NCBI 

Assembly database using the Felidae taxonomy ID on 2022-02-21 

(https://www.ncbi.nlm.nih.gov/assembly/?term=txid9681%5BOrganism%3Aexp%5D). The 

assembly species names were matched to the Felidae taxonomy described in Kitchener et al. 

(2017).  

Results 

Nuclear assembly 

We generated a de novo nuclear genome assembly of the bobcat (mLynRuf1) using 247.6 

million read pairs of Omni-C data and 6.7 million PacBio HiFi reads. The latter yielded ~ 40 fold 

coverage (N50 read length 14,593 bp; minimum read length 45 bp; mean read length 14,504 bp; 

maximum read length of 52,209 bp) based on the final assembled genome size of 2.4 Gb (Figure 

A.2A). Assembly statistics are reported in tabular and graphical form in Table A.2 and Figure 

A.2B, respectively. 
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The primary assembly consists of 76 scaffolds spanning 2.4 Gb with contig N50 of 66.2 

Mb, scaffold N50 of 142.1 Mb, largest contig of 202.7 Mb, and largest scaffold of 239.8 Mb. 

Using BlobToolKit and BLAST+, we identified and removed one contig from the primary 

assembly corresponding to mitochondrial contamination, and seven contigs from the alternate 

assembly, six contigs corresponding to mitochondrial contamination and one contig to an 

arthropod contaminant. The Omni-C contact map suggests that the primary assembly is highly 

contiguous (Figure A.2C). As expected, the alternate assembly, which consists of sequence from 

heterozygous regions, is less contiguous (Figure A.2D). Because the primary assembly is not 

fully phased, we have deposited scaffolds corresponding to the alternate haplotype in addition to 

the primary assembly.  

The final genome size (2.4 Gb) is close to the estimated values from the Genomescope2.0 

k-mer spectra. The k-mer spectrum output shows a bimodal distribution with two major peaks, at 

~ 19- and ~ 38-fold coverage, where peaks correspond to homozygous and heterozygous states 

respectively (Figure A.2A).  

Based on PacBio HiFi reads, we estimated a 0.15% sequencing error rate and 0.59% 

nucleotide heterozygosity rate. The assembly has a BUSCO completeness score of 95.9% using 

the mammalia gene set, a per base quality (QV) of 66, a k-mer completeness of 96.3 and a 

frameshift indel QV of 47.15. 

Mitochondrial assembly 

The mitochondrial genome assembled with MitoHiFi has a final size of 17,097 bp. The 

base composition of the final assembly version is A = 32.43%, C = 26.64%, G = 14.24%, T = 

26.69%, and consists of 22 transfer RNAs and 13 protein coding genes. Within the Lynx genus, 

the mitochondrial genome size is conserved (16,806 bp – 17,097 bp). The mitochondrial base 
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compositions vary little across species as well (A = 32.31% – 32.43%, C = 26.64% – 27.06%, G 

=14.16% – 14.29%, T =26.35% – 26.69%; Table SA.3).  

Discussion 

Here we presented a high-quality bobcat reference genome assembly, with some scaffold 

lengths reaching chromosome levels. The five longest scaffolds in the bobcat assembly have 

almost identical lengths compared with the assigned A1, C1, B1, A2 and C2 chromosomes in the 

Canada lynx assembly (Figure A.1D). This bobcat assembly is highly continuous, complete and 

accurate. With a contig N50 of 66 Mb, scaffold N50 of 142 Mb, total gap length of 2.4 kb and a 

base pair QV of 66, our assembly greatly exceeds the best available standards of a minimum 

contig N50 of 1Mb, scaffold N50 of 10 Mb and QV of 40 proposed by the Vertebrate Genome 

Project (VGP, Rhie et al. 2021).  

Compared with the other two available Lynx assemblies for Canada lynx (LYCA) and 

Iberian lynx, our bobcat assembly (LYRU) is of similar quality to the VGP Canada lynx 

assembly, which also utilized both long-read and short-read sequences (Figure A.1D; Table 

SA.1). We achieved a higher accuracy (QV=66) compared with the Canada lynx assembly 

(QV=36.8), a slightly higher BUSCO completeness score (95.9% for LYRU and 94.4% for 

LYCA; Table SA.2), less total gap length (2.4 kb for LYRU and 2.8 Mb for LYCA) and 

equivalent k-mer completeness (96.3% for LYRU and 96.4% for LYCA). The Canada lynx 

assembly generated chromosome assignments, which are not included in this current bobcat 

assembly release. Both bobcat and Canada lynx genomes were annotated using the NCBI 

Eukaryotic Genome Annotation Pipeline (Table SA.1). BUSCO analysis of gene annotations for 

our bobcat assembly using the carnivora_odb10 lineage dataset showed a 98.5% completeness, 

suggesting a high annotation quality 
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(https://www.ncbi.nlm.nih.gov/genome/annotation_euk/Lynx_rufus/100/). Both bobcat and 

Canada lynx genomes are superior in assembly metrics compared to the Iberian lynx assembly 

that was generated using only short-read sequencing techniques (Figure A.1D). 

This bobcat assembly will provide resources for comparative genomic studies within the 

Lynx lineage, and more broadly the Felidae family. Of the 41 living felid species in eight Felidae 

lineages (Kitchener et al. 2017), 17 species have at least one genome assembly available in 

NCBI (Table SA.4). Assembled genome sizes in the Lynx lineage, measured in total genome 

assembly length, are approximately 2.4 Gb for all three existing assemblies (Table SA.1). At a 

larger scale, the genome sizes in the Felidae family are also conserved (2.30 Gb for Panthera 

leo, GCF_018350215.1 to 2.58 Gb for Panthera pardus, GCF_001857705.1; Table SA.4). The 

assembled Lynx rufus genome size is smaller than the flow cytometry measured size of 2.92 Gb 

for the Lynx lynx (Vinogradov 1998; Gregory 2005), a pattern observed in other species possibly 

caused by the repetitive regions (Elliott and Gregory 2015). Species within the Lynx lineage vary 

in abundance and conservation status, which is reflected in the nucleotide heterozygosity. The 

more abundant bobcat and Canada lynx have 0.59% and 0.19% heterozygosity in their 

assemblies (Rhie et al. 2021), while only 0.01% heterozygosity was reported for the endangered 

Iberian lynx (Abascal et al. 2016).  

In addition to evolutionary studies, the bobcat reference genome will be an essential 

resource for genetics-informed conservation management. Currently, a bobcat hunting ban is in 

place in California until 2025, at which time the Fish and Game Commission must re-evaluate 

the appropriateness of a hunting season based on the best available science (California Assembly 

Bill No.1254, 2019). To support this evaluation, the California Statewide Bobcat Population 

Monitoring project is underway to assess population status (CDFW 2021). The bobcat genome 



 170 

will provide reference for ongoing CCGP whole genome resequencing projects that aim to 

identify statewide Management Units, evaluate genomic health and assess the outcomes of 

various hunting scenarios through genomics-informed simulations. Across its geographic range 

from southern Canada to Mexico (Kelly et al. 2016), researchers have studied bobcats to 

characterize patterns of genetic variation on a continental scale (Reding et al. 2012; Broderick 

2020), and to assess impacts of habitat fragmentation on gene flow (Serieys et al. 2015; Janecka 

et al. 2016), as well as urbanization associated disease and toxins (Fraser et al. 2018; 

Kozakiewicz et al. 2020). The availability of a high-quality genome assembly will further 

advance research topics such as these as well.   

In summary, this highly contiguous, complete, and accurate assembly for bobcat is a part 

of the larger goal of the California Conservation Genomics Project to build the most 

comprehensive conservation genomics dataset known to date. The availability of such high-

quality assemblies will serve as an important tool for both fundamental evolutionary studies and 

conservation applications.  
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Tables 

Table A.1 

Table A.1. Assembly pipeline and software usage. Software citations are listed in the text. 

Assembly Software Version 

Filtering PacBio HiFi 
adapters 

HiFiAdapterFilt 
https://github.com/sheinasim/HiFiAdapterFilt 

Commit 
64d1c7b 

K-mer counting Meryl 1 

Estimation of genome size 
and heterozygosity 

GenomeScope 2 

De novo assembly 
(contiging) 

HiFiasm 0.16.1-r375 

Long read, genome-genome 
alignment 

minimap2 2.16 

Remove low-coverage, 
duplicated contigs 

purge_dups 1.2.6 

Scaffolding 

Omni-C mapping for 
SALSA 

Arima Genomics mapping pipeline 
https://github.com/ArimaGenomics/mapping_pipeline 

Commit 
2e74ea4 

Omni-C Scaffolding SALSA 2 

Gap closing YAGCloser 
https://github.com/merlyescalona/yagcloser 

Commit 
20e2769 

Omni-C Contact map generation 

Short-read alignment bwa 0.7.17-r1188 

SAM/BAM processing samtools 1.11 

SAM/BAM filtering pairtools 0.3.0 

Pairs indexing pairix 0.3.7 

Matrix generation Cooler 0.8.10 

Matrix balancing hicExplorer 3.6 

Contact map visualization HiGlass 2.1.11 

PretextMap 0.1.4 

PretextView 0.1.5 

PretextSnapshot 0.0.3 
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Table A.1. Assembly pipeline and software usage. Software citations are listed in the text (cont.). 

Organelle assembly 

Mitogenome assembly MitoHiFi 2 Commit 
c06ed3e 

Genome quality assessment 

Basic assembly metrics QUAST 5.0.2 

Assembly completeness BUSCO 5.0.0 

Merqury 1 

Contamination screening 

Local alignment tool BLAST+ 2.10 

General contamination 
screening 

BlobToolKit 2.3.3 
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Table A.2 

Table A.2. Sequencing and assembly statistics, and accession numbers. 

BioProjects 
and vouchers 

CCGP NCBI BioProject PRJNA720569 

Genera NCBI BioProject PRJNA765621 

Species NCBI BioProject PRJNA777191 

NCBI BioSample SAMN23391104 

Specimen identification CCGP_SWC_20201006 

Genome 
sequence 

NCBI Genome accessions Primary Alternate 

Assembly accession GCA_022079265.1 GCA_022079275.1 
 Genome sequences JAJSDN000000000 JAJSDO000000000 

Sequencing 
data 

PacBio HiFi 
reads 

 Run 3 PACBIO_SMRT (Sequel II) runs: 6.7 M spots,  
97.2 G bases, 65.5Gb 

 Accession SRR17978068 

 Omni-C 
Illumina reads 

 Run 2 Illumina NovaSeq 6000 runs: 247.6 M spots, 
74.8 G bases, 24.9 Gb 

 Accession SRR17978066-67 

Genome 
assembly 
quality metrics 
 

Assembly identifier (Quality code *) mLynRuf1 (7.8.Q66) 

HiFi Read coverage § 40X 

 Primary  Alternate 

Number of contigs 100 72,828 

Contig N50 (bp) 66,217,191 97,441 

Longest Contigs 202,776,522 1,850,898 

Number of scaffolds 76 68,112 

Scaffold N50 (bp) 142,134,035 107,693 

Largest scaffold 239,891,529 11,854,743 

Size of final assembly (bp) 2,439,256,471 3,320,187,595 

Gaps per Gbp 8 1,420 

Indel QV (Frame shift) 47.15 47.15 
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Base pair QV 66.5 58.25 

Full assembly = 60.19  

k-mer completeness 96.31 88.12 

Full assembly = 99.74  

BUSCO   C S D F M 

completeness 
(mammalia) 
n=9,226 

P‡ 95.90% 95.20% 0.70% 1.20% 2.90% 

A‡ 81.10% 74.60% 6.50% 5.10% 13.80% 

 Organelles  1 Complete mitochondrial sequence CM039064.1 

 
* Assembly quality code x.y.Q derived notation, from Rhie et al. 2021. x = log10[contig NG50]; y = log10[scaffold 
NG50]; Q = Phred base accuracy QV (Quality value). BUSCO Scores. (C)omplete and (S)ingle;  (C)omplete and 
(D)uplicated;  (F)ragmented and (M)issing BUSCO genes. n, number of BUSCO genes in the set/database. bp: base 
pairs                                                     
§ Read coverage has been calculated based on a genome size of 2.4 Gb. 
‡ P(rimary) and (A)lternate assembly values 
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Figures 

Figure A.1 

 

Figure A.1. A bobcat reference genome assembly. A) A bobcat, Lynx rufus (Photo Credit: 

Laurel Serieys). B) Representative habitats for bobcats (Photo Credit: Barry Rowan). C) 

Phylogenetic relationships in the Lynx genus. The IUCN Red List status (EN: Endangered, LC: 

Least Concern) and genome assembly availability (Yes: available on NCBI, No: unavailable on 
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NCBI) are denoted. Divergence time estimates are in units of million years ago (Mya, Johnson et 

al. 2006). D) NGx plot comparing the three available Lynx genome assemblies. This plot shows 

the x fraction of genome assembly that is represented by scaffolds of at least y Mb. The N50 

value is represented by the dashed vertical line. Our bobcat assembly (purple) has similar 

scaffold-level contiguity with the Canada lynx assembly (orange). The Iberian lynx assembly 

(green) has lower scaffold-level contiguity. The names for five longest Canada lynx 

chromosomes are annotated.   
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Figure A.2 

 

Figure A.2. Visual overview of genome assembly metrics. A) K-mer spectra output generated 

from PacBio HiFi data without adapters using GenomeScope2.0. The bimodal pattern observed 

corresponds to a diploid genome. K-mers covered at lower coverage and lower frequency 

correspond to differences between haplotypes, whereas the higher coverage and higher frequency 
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k-mers correspond to the similarities between haplotypes. B) BlobToolKit Snail plot showing a 

graphical representation of the quality metrics presented in Table A.2 for the Lynx rufus primary 

assembly (mLynRuf1). The plot circle represents the full size of the assembly. From the inside-

out, the central plot covers length-related metrics. The red line represents the size of the longest 

scaffold; all other scaffolds are arranged in size-order moving clockwise around the plot and 

drawn in gray starting from the outside of the central plot. Dark and light orange arcs show the 

scaffold N50 and scaffold N90 values. The central light gray spiral shows the cumulative 

scaffold count with a white line at each order of magnitude. White regions in this area reflect the 

proportion of Ns in the assembly. The dark vs. light blue area around it shows mean, maximum 

and minimum GC vs. AT content at 0.1% intervals (Challis et al. 2020). C-D) Omni-C contact 

maps for the primary (2C) and alternate (2D) genome assembly generated with PretextSnapshot. 

Omni-C contact maps translate proximity of genomic regions in 3-D space to contiguous linear 

organization. Each cell in the contact map corresponds to sequencing data supporting the linkage 

(or join) between two of such regions. Scaffolds are separated by black lines and higher density 

corresponds to higher levels of fragmentation. 
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