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Simple Summary: The present study demonstrated that a humanized anti-CEA antibody conjugated
to a near-infrared dye accurately co-localized with luciferase expressing colorectal cancer liver
metastases in an orthotopic mouse model. The present study validates the metastatic tumor targeting
specificity of the anti-CEA antibody.

Abstract: Background: The present study aimed to validate the accuracy of a tumor-specific antibody
to target liver metastases of colorectal cancer. Methods: A humanized anti-CEA antibody conjugated
to a fluorescent dye (M5A-IR800) was tested for targeting human colorectal cancer liver metastases
(CRLMs) expressing luciferase in an orthotopic mouse model. Orthotopic mouse models of CRLMs
were established by implanting fragments of a luciferase-expressing human colorectal cancer cell
line, LS174T, in the liver of nude mice. Mice received 50 µg M5A-IR800 72 h prior to imaging. To
test co-localization, bioluminescence imaging was performed using D-luciferin, which was given
via intraperitoneal injection just prior to imaging. Results: Tumors were able to be visualized non-
invasively through the skin with the luciferase–luciferin signal. Intra-abdominal imaging showed
accurate labeling of CRLMs with M5A-IR800, which co-localized with the luciferase–luciferin signal.
Conclusions: The present results validate the accuracy of a tumor-specific anti-CEA antibody in
targeting liver metastases of colorectal cancer.

Keywords: fluorescence-guided surgery; tumor labeling; bioluminescence; colorectal cancer; liver
metastases; M5A; orthotopic nude mouse model

1. Introduction

For the treatment of metastatic colorectal cancer, complete resection of metastases
is the standard strategy, which can increase clinical remission rates and survival rates.
The liver is the most common metastatic site for colorectal cancer, and it is reported that
approximately 30–50% of all patients will eventually develop liver metastases [1]. The
survival of patients with colorectal liver metastases (CRLMs) has markedly improved,
with a 5-year overall survival rate of 25–40%, due to improvements in imaging modalities,
surgical techniques, systemic chemotherapy, local treatment, and multidisciplinary tumor
board management [2]. However, complete surgical resection of CRLMs is the key element
to achieve remission and improve prognosis [3]. Nevertheless, the intraoperative detection
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of liver metastases can be challenging in many cases as smaller metastases can be difficult
to detect by the naked eye or even by intraoperative ultrasonography. Additionally, some
benign liver lesions can be mistaken for metastases.

As a surgical navigation technology, fluorescence-guided surgery (FGS) has become a
promising tool for the intraoperative detection of many cancers, including CRLMs [4–12].
Additionally, FGS can be used for the identification of anatomy or confirmation of perfu-
sion [13,14]. Recently, preclinical studies have introduced tumor-specific antibodies for
FGS and demonstrated their efficacy in animal models. Tumor-specific FGS for CRLMs
could improve the rate of complete resection and allow the detection of occult lesions [15].

A humanized anti-carcinoembryonic antigen (CEA) antibody conjugated to a near-
infrared 800 nm dye (M5A-IR800) has been shown to target tumors with CEA
expression [16,17]. We have previously reported that M5A-IR800 brightly targeted primary
colorectal cancer and CRLMs in an orthotopic cell line model [18]. This prior experiment
established proof of principle that M5A-IR800 could detect CRLMs. The present study
aimed to demonstrate the co-localization of luciferase expression from the CRLM cells
and M5A-IR800 targeting in an orthotopic nude mouse model of CRLMs to validate the
accuracy of a tumor-specific antibody to visualize liver metastases as the last major step
before clinical use in tumor staging and resection.

2. Materials and Methods
2.1. Mice

Athymic male and female nude mice, 4–6 weeks of age, purchased from the Jackson
Laboratory (Bar Harbor, ME, USA) were used for this study. Mice were housed in a
biosafety room and fed an autoclave diet. Prior to any surgical procedure, mice were
anesthetized with an intraperitoneal injection of 20–25 µL of a solution of xylazine and
ketamine, reconstituted in phosphate-buffered saline (PBS). They received a subcutaneous
injection of buprenorphine reconstituted in PBS (dosage: 0.05 mg/kg) for postoperative
pain control. At the end of the study, mice were anesthetized with isoflurane inhalation and
euthanized by cervical dislocation. All studies were approved by the San Diego Veterans
Administration Medical Center Institutional Animal Care and Use Committee (IACUC)
Animal Use Protocol A17-020 and the University of California San Diego (UCSD) IACUC
Protocol S99001.

2.2. Establishment of Orthotopic CRLM Mouse Models

The human colon cancer cell line LS174T (American Type Culture Collection, Manassas,
VA, USA) was used for this study. Stably transduced LS174T cells expressing the firefly
luciferase gene were generated by lentiviral transfection of the pGL4 Luciferase Reporter
Vector (Promega, Fitchburg, WI, USA). To prepare tumors for implantation, subcutaneous
tumor models were established by injecting LS174T–luciferase cells (1 × 106) reconstituted
in 100 µL of media (Corning Life Sciences, Corning, NY, USA) into the bilateral flanks of
nude mice. When tumor size reached at least 5 mm3, mice were euthanized and the tumors
were excised and cut into 1 mm3 fragments. For orthotopic implantation, a sutureless
surgical orthotopic implantation liver technique was used as previously described [19].
In brief, the abdomen of the mouse was sterilized with a 70% ethanol solution and an
approximately 10 mm vertical incision was made at the upper midline of the abdomen.
The left lobe of the liver was carefully extracted extracorporeally and a 2 mm incision
was made through the liver parenchyma with scissors. A tumor fragment was placed
inside the liver through the incision and the implantation site was gently compressed to
achieve hemostasis. The left lobe of the liver was carefully returned to the abdomen and the
incision was closed with interrupted 6-0 nylon sutures (Ethicon Inc., Somerville, NJ, USA).
Orthotopic mouse models were allowed to grow for 2–3 weeks prior to imaging studies.
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2.3. Antibody Conjugation and Administration

The humanized anti-CEA hT84.66-M5A monoclonal antibody, established by Yazaki et al.,
was used for tumor labeling in this study [10]. M5A was conjugated to the near-infrared (NIR)
dye IRDye800CW NHS Ester (LI-COR Biosciences, Lincoln, NE, USA) as per the manufac-
turer’s instructions [20]. Conjugated antibodies were stored at 4 ◦C. For its administration to
orthotopic mouse models, 50 µg of M5A-IR800 was diluted in PBS for a total injection volume
of 100 µL and administered via the tail vein. Imaging was performed after 72 h.

2.4. Imaging

Two weeks after the establishment of the orthotopic mouse models, non-invasive
imaging of luciferase–luciferin was performed to monitor tumor size using the biolumines-
cence channel of the Pearl Trilogy Small Animal Imaging System (LI-COR, Lincoln, NE,
USA). After receiving appropriate anesthesia, mice received 4.5 mg (1.5 mg per 10 g of body
weight) of D-Luciferin via intraperitoneal injection (Goldbio, St. Louis, MO, USA). Based on
tumor size, six of the mice received M5A-IR800 on the day of luciferase–luciferin imaging.
The remaining three mice waited an additional week to allow greater tumor growth prior
to receiving M5A-IR800. Seventy-two hours after the injection of M5A-IR800, mice again
received a weight-based injection of D-luciferin prior to euthanasia and laparotomy to
allow intra-abdominal imaging. Near-infrared (NIR) and bioluminescence imaging were
performed with the Pearl Trilogy Small Animal Imaging System. NIR imaging was also
performed using the Stryker 1688 Advanced Imaging Modalities (AIM) 4k platform 10 mm
laparoscope (Stryker Corp, Kalamazoo, MI, USA) and the FLARE imaging system (Curadel,
Natick, MA, USA). The mean fluorescence intensity (mFI) of the tumor and the normal liver
in the 800 nm channel of the Pearl Trilogy Small Animal Imaging System were measured in
each mouse and the tumor-to-liver ratio (TLR) was calculated. After imaging the metastatic
tumor, a necropsy was performed. The metastatic tumor, liver, spleen, stomach, pancreas,
cecum, kidney, lung, and ear were collected and imaged with the Pearl Trilogy Small
Animal Imaging System to obtain fluorescence biodistribution data.

2.5. Quantification of Signal Co-Localization

Within the Pearl Trilogy Small Animal Imaging System, analysis circles were drawn
around areas of fluorescence signals to calculate the total area of M5A-IR800 labeling for
each mouse. To calculate the area for the ‘true tumor’, analysis circles were drawn using
the combined bright light and luciferase–luciferin images. Both image layers were used, as
the large tumors often had patchy labeling of luciferase–luciferin (thought possibly due
to tumor necrosis affecting processing of luciferin) while the small tumors were nearly
imperceptible upon bright light exposure alone. A ratio of the areas for the M5A-IR800 and
the ‘true tumor’ were then calculated.

2.6. Immunohistochemistry and Immunofluorescence

Tumor samples were removed en bloc with surrounding tissue at the time of mouse
necropsy. Samples were fixed in formalin for at least 72 h prior to being embedded
in paraffin and sectioned. Hematoxylin and eosin staining was performed per stan-
dard protocols. Immunohistochemistry was performed using the humanized anti-CEA
hT84.66-M5A antibody at a dilution of 1:1000 with secondary goat anti-human horseradish
peroxidase (Southern Biotech, Birmingham, AL, USA) at a dilution of 1:200. Horseradish
peroxidase was visualized by a diaminobenzidine (DAB) chromogenic reaction. Im-
munofluorescence was performed per a standard protocol using Opal fluorophores (Opal
690, PerkinElmer Inc., Waltham, MA, USA) for CEA and then counterstained with 4,6-
diamidino-2-phenylindole dihydrochloride (DAPI) (Sigma-Aldrich, St. Louis, MO, USA)
to visualize the nuclei of cells.
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2.7. Statistical Analysis

Statistical analysis was performed using R software version 2024.04.1+748 (Free Soft-
ware Foundation, Boston, MA, USA). The mFI of the tumors and normal liver were both
normally distributed, thus, a student’s t-test was performed. A p-value of <0.05 was used
as a predetermined cutoff for statistical significance.

3. Results
3.1. Non-Invasive and Intra-Abdominal Imaging of CRLMs Using the Pearl Trilogy Small Animal
Imaging System Demonstrating Co-Localization of the Luciferase-Luciferin and
M5A-IR800 Signals

Non-invasive luciferase–luciferin imaging clearly visualized CRLMs in all mice (Figure 1).
Intra-abdominal luciferase–luciferin imaging and NIR imaging of M5A-IR800 were performed
and showed excellent co-localization of the tumors (Figure 2). In two of the orthotopic models
with advanced tumors (mouse 8 and 9), peritoneal metastases and multiple liver metastases
developed (Figure 2A′,A′′). The average mFI of tumors was 1.644, and the average mFI of the
normal liver was 0.251 (p-value = 0.0008). The tumor-to-liver ratios (TLRs) ranged from 2.72
to 10.99 with an average TLR of 6.52 (standard deviation = 2.71) (Figure 3).
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Figure 2. Intra-abdominal imaging in nude mice of CRLMs derived from LS174T–luciferase cells
with the Pearl Trilogy Small Animal Imaging System 72 h after M5A-IR800 injection in mouse 6,
8, and 9. (A–A′′) Bright light images of CRLMs. (B–B′′) Near-infrared imaging of M5A-IR800.
(C–C′′) Bioluminescence imaging of luciferase–luciferin. (D–D′′) Co-localization of M5A-IR800 and
luciferase–luciferin in all CRLMs and peritoneal metastases.
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Figure 3. Tumor-to-liver ratios at 800 nm fluorescence with the Pearl Trilogy Small Animal Imaging
System 72 h after M5A-IR800 injection in nude mice with CRLMs derived from LS174T–luciferase
cells. SD, standard deviation.

3.2. Quantification of Signal Overlap

Within the Pearl Trilogy Small Animal Imaging System, analysis circles were drawn
around areas of fluorescence signal to calculate the total area of M5A-IR800 labeling for
each mouse (Figure 4A). The same was performed using the combined bright light and
luciferase–luciferin images to determine the area for the ‘true tumor’. The comparative
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values for each mouse are represented in Figure 4B. On average, M5A-IR800 labelling
encompassed 1.05 times more area than the bright light and luciferase–luciferin (range
0.97–1.14) suggesting excellent co-localization.
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3.3. Targeting of Metastases with M5A-IR800 Imaged with the Stryker 1688 Laparoscope

The efficacy of M5A-IR800 in targeting and labeling CRLMs was tested using the
Stryker 1688 laparoscope, a commercially available clinical imaging device. Bright contrast
was seen compared to the surrounding tissues with both the SPY color overlay and SPY
black and white contrast modes of the Stryker 1688 (Figure 5). Metastatic tumors as small
as 1 mm were clearly detected.
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3.4. M5A-IR800 Targeting of CRLMs Imaged with the FLARE Imaging System

The bright labeling of CLRMs was seen with M5A-IR800 compared to the surrounding
liver and other intra-abdominal organs with the FLARE imaging system (Figure 6).
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3.5. Fluorescence Biodistribution of M5A-IR800

After intra-abdominal imaging, necropsy was completed and fluorescence biodistribu-
tion was collected using the Pearl Trilogy Small Animal Imaging System. The absence of
tumor deposits within normal-appearing organs was confirmed using luciferase–luciferin
imaging (Figure 7A). The fluorescence signal of M5A-IR800 was also obtained for each
organ. A minimal signal was seen in all, organs except for the metastatic tumors (Figure 7B).
The average values for all mice are represented in Figure 7C.

3.6. Immunohistochemistry and Immunofluorescence

Hematoxylin and eosin (H&E) staining showed well-to-moderately differentiated ade-
nocarcinoma (Figure 8A). Immunohistochemical and immunofluorescence CEA staining
using the M5A antibody were strongly positive and confined to areas of CRLM adeno-
carcinoma. These results confirm the specific targeting of the M5A-IR800 antibody–dye
conjugate (Figure 8B,C).
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Figure 7. The fluorescence biodistribution of M5A-IR800 in the LS174T–luciferase CRLMs and
various organs with the Pearl Trilogy Small Animal Imaging System. (A) A representative image
of luciferase–luciferin signals confined to known CRLM tumors, confirming the absence of cancer
cells in normal-appearing organs. (B) Minimal fluorescence of M5A-IR800 in any organs except
the tumors. (C) Mean fluorescence intensity (mFI) values of M5A-IR800 in tumors and organs.
Tumor = 1.684 (SD = 0.679), liver = 0.160 (SD = 0.075), spleen = 0.055 (SD = 0.012), stomach = 0.063
(SD = 0.015), cecum = 0.030 (SD = 0.008), pancreas = 0.042 (SD = 0.012), kidney = 0.061 (SD = 0.024),
lung = 0.055 (SD = 0.018), and ear = 0.037 (SD = 0.009). Error bars: standard deviation. Dots: mFI for
individual mice.
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Figure 8. Strong CEA staining of CRLM adenocarcinoma cells using the M5A antibody. (A) H&E
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(B) Immunohistochemical staining of M5A at 2× magnification. (B′) 20× magnification of M5A
staining. (C) M5A immunofluorescence staining (yellow) using Opal 570 at 2× magnification with
DAPI staining (blue), showing strong M5A staining within the adenocarcinoma cells. (C′) 20×
magnification of Opal 570 and DAPI staining.
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4. Discussion

The present study demonstrated the accuracy of CRLM targeting with an anti-CEA
antibody, M5A-IR800, by its co-localization with luciferase–luciferin signals of the cancer
cells in an orthotopic CRLM mouse model. All images demonstrated high resolution
tumor labeling, even in tumors smaller than 1 mm, with both the Pearl and the Stryker
imaging systems.

Luciferase is a class of oxidative enzymes that produces bioluminescence by emitting a
photon. It has been widely used in biotechnology, especially for the imaging and detection
of metastatic cancer in preclinical studies [21]. Evaluating the development of metastases
in animal models has been challenging in the past. However, employing bioluminescence
imaging with luciferase-labeled cancer cells allows for the easy detection and monitoring
of cancer metastases non-invasively and in real time [22]. Luciferase–luciferin imaging has
been used for studies of metastasis and tumor biology in many types of cancer [23,24] and
has been evaluated for its efficacy compared to fluorescence imaging [25].

In the present study, luciferase–luciferin images showed a clearly delineated tumor
edge and acted as the true positive signal against which M5A-IR800 targeting was compared.
Fluorescence images of M5A-IR800, acquired in the NIR 800 nm channel, targeted the CRLM
tumors and co-localized with the bioluminescence signal, demonstrating the accuracy of the
probe. The use of this dual imaging modality with bioluminescence and NIR fluorescence
has the potential to change the standard by which candidate probe testing for use in FGS
is conducted.

Tumor-targeted, fluorescence-guided surgery (FGS) has emerged as a promising tech-
nique for the intraoperative detection and resection of many solid tumors [26–31]. Numer-
ous studies evaluating target molecules have been reported [32–37] and clinical trials on
various cancers are actively ongoing [38]. Among the numerous tumor-specific targets,
CEA is one of the most well studied, as it has shown efficacy in terms of labeling numerous
gastrointestinal solid tumors including colorectal cancer [39]. However, fluorescence sig-
nals may accumulate in the liver or bladder due to their metabolism in the early period
after injection. Fluorescence accumulation in the liver may interfere with the visualization
of the tumor, which becomes challenging in the case of primary liver tumors or CRLMs [17].
In a pilot clinical trial applying M5A for CEA-expressing tumors using PET imaging, false
negative cases were seen and attributed to high signals in the normal liver [40]. Turner et al.
reported the efficacy of using 75 micrograms of PEGylated M5A-IR800 with imaging 96
h after injection to minimize hepatic accumulation [18]. In the present study, by using a
lower dose of M5A-IR800 (50 micrograms), we were able to achieve a lower background
liver signal despite imaging at an earlier timepoint. This was true with all three imaging
platforms: the Pearl system, the Stryker 1688 platform, and the FLARE imaging system.

In the present study, we validated M5A-IR800 for the selective targeting of liver
metastases with the co-localization of bioluminescence and the fluorescence signal of M5A-
IR800 using the Stryker 1688 Advanced Imaging Modalities 4K Platform (a commercially
available clinical imaging device). Although the signal intensity of each mouse was variable,
the SPY Overlay mode clearly demonstrated fluorescence signals throughout the tumor
without background liver signals. The contrast between tumor and normal liver was even
more striking in the SPY contrast mode, though the resolution compared to the Pearl small
animal imaging system was slightly lower. Particularly, in mouse #9, which had advanced
liver metastases as small as 1 mm, each of the metastases were well visualized in the SPY
contrast mode (Figure 5C′′).

There are several limitations of this study. The first is the use of a single human
colorectal cancer cell line. LS174T was selected as it has high levels of CEA expression
compared to other cell lines [41]. LS174T is widely used for colorectal cancer research as the
majority of human colorectal cancers, particularly those with metastatic disease, express
CEA. Additionally, we have previously demonstrated the ability of M5A-IR800 to target a
second colorectal cancer cell line, HT-29 [20]. However, the primary objective of this report
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was to validate prior work with M5A in colorectal cancer and to potentially propose a new
standard by which the preclinical testing of FGS probes can be conducted.

Second, FGS may not be effective for the very early stages of CRLM development.
However, tumor-targeted FGS can still increase the detection rate of small lesions that may
be missed by the naked eye or by preoperative imaging. Third, the progression of tumors
in orthotopic animal models likely does not fully reflect every stage of CRLM development
especially the early stage, as mentioned above. Despite this model relying on the direct
implantation of tumors into the liver, numerous small liver metastases were able to be
generated in the models as seen in Figure 2.

Although the technology of tumor-specific FGS is developing rapidly, the validation
and standardization of protocols are needed for its clinical translation into surgical practice
and, consequently, to improve the oncologic benefits of this strategy. The present study
demonstrates for the first time the power of co-localizing a signal from the liver metastases,
in this case luciferase–luciferin, and the signal from the antibody probe, in this case M5A-
IR800, to demonstrate the accuracy of the antibody’s detection of liver metastases.

5. Conclusions

M5A-IR800 co-localized with luciferase-expressing CRLMs in an orthotopic mouse
model, which confirmed the accuracy of M5A-IR800 metastatic targeting and demonstrated
its promising clinical potential for use in fluorescence-guided surgery.
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