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ABSTRACT OF THE DISSERTATION

Predicting growth optimization strategies with
metabolic/expression models

by

Joanne K. Liu

Doctor of Philosophy in Bioinformatics and Systems Biology

University of California, San Diego, 2017

Professor Karsten Zengler, Chair
Professor Nathan Lewis, Co-Chair

Systems biology strives to understand complex multi-component biological

processes and capture knowledge of their function through models. With metabolic

and gene expression models (ME-models), we can mathematically and simultane-

ously represent the majority of these processes, including transcription, transla-

tion, and metabolism. This enables us to compute the molecular constituents of a

cell as a function of genetic and environmental parameters. ME-models represent

an improvement in current capabilities to predict phenotypes, as demonstrated

xvi



by the reconstruction and validation of a ME-model for the acetogen Clostridium

ljungdahlii. C. ljungdahlii can grow autotrophically on carbon monoxide (CO),

and/or carbon dioxide + hydrogen (CO2+H2) and fix these gases into multicarbon

organics, an ability that can be redirected to produce biocommodities. The C.

ljungdahlii ME-model was able to improve growth rate predictions, identify previ-

ously unknown secretion products, and compute the transcriptome of C. ljungdahlii

accurately.

ME-models offer the opportunity to systematically explore the interface

between protein and function. First, perturbations of tRNA co-expression in ME-

models revealed unique organization solutions to two different selective pressures:

Optimization of growth through minimal co-expression of tRNAs, and efficiency

of resources through optimal grouping of tRNAs. Second, because of the incor-

poration of protein translocation and membrane function, a ME-model was able

to recapitulate acetate production during glucose consumption due to membrane

overcrowding. Third, a ME-model highlighted how variations in nickel availability

impacts metalloproteins, thereby controlling growth and secretion rates of fermen-

tation products. Thus, three features that could constrain the proteome of an

organism - genome architecture, cell structure, and media composition - were suc-

cessfully interrogated using ME-models.

xvii



Chapter 1

Systems biology, metabolism, and

non-metabolic constraints

1.1 Introduction to metabolic and gene expres-

sion models

Although a prokaryote is a single cell, the many intricate components that

enable the organism to function are complex and interconnected. Systems biology

strives to understand the network of these biological processes and capture the

knowledge through models. Constraint-based models of metabolism (M-models)

are one of the few models that reach genome-scale while maintaining molecular

detail and have proven to be effective for predictions of metabolic flux and strain

design [1].

An organism is more than the sum of it’s biochemical reactions. For these

reactions to occur, genes and proteins are necessary to catalyze them. Thus, the

1
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predictive capability of M-models was expanded to include gene expression path-

ways (i.e., ME-model) [2, 3]. With the development of the ME-model, we can

mathematically represent major cellular processes such as macromolecular syn-

thesis, basic transcriptional regulation, and protein translocation. Also included

are accounts for production of transcriptional units (TU), functional RNAs (i.e.,

tRNAs, rRNAs, etc.), proteins, prosthetic groups, and cofactors, as well as the for-

mation and translocation of multimeric complexes. The energetic costs associated

with all aspects of these processes are represented too. With these ME-models,

we can now compute the molecular constitution of cells as a function of genetic

and environmental parameters instead of utilizing experimental data to constrain

the models. The ME-model explicitly predicts transcript and protein abundances,

which allows direct evaluation with quantitative experimental transcriptomics and

proteomics. To date, it has only been possible to perform indirect comparative

analysis between omics data and M-models or to neglect the complexity of the

genotype-phenotype relationship and use omics data as ad hoc constraints for en-

zyme activities [4, 5, 6, 7, 8]. The ME-model approach overcomes this previous

lack of a mechanistic systems-level framework for analyzing a myriad of molecular

components in the context of cellular physiology.

For example, a comparative in silico transcriptomics analysis with the ME-

model of Thermatoga maritima enabled prediction of regulons. With the ME-

model’s unprecedented capacity to investigate the interdependence of cellular pro-

cesses, we were able to predict and validate genes that were differentially regulated

for growth on L-arabinose versus growth on cellobiose in minimal medium and

were able to discover the regulons of the transcription factors (AraR and CelR)
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governing this shift [3]. Furthermore, the Escherichia coli ME-model demonstrated

that accounting for macromolecular costs caused intrinsic limitations that led to

accurate in silico predictions of maximum growth rates, substrate uptake rates,

and secretion rates [9, 10]. Thus, by expanding the numbers of represented cellular

processes, ME-models have significantly broadened the scope and predictability of

microbial systems biology.

1.1.1 Clostridium ljungdahlii

The acetogen Clostridium ljungdahlii has emerged as a potential chassis for

strain designed chemical production for not only can it grow heterotrophically on

a diverse set of sugars, but it can also grow autotrophically on carbon monoxide

(CO), carbon dioxide (CO2) and hydrogen (H2), or a mixture of all three gases

(i.e.,syngas). When grown autotrophically, C. ljungdahlii metabolizes the gases

into multicarbon organics, an ability that can be redirected and engineered to

produce biocommodities from low cost substrates.

To advance towards this goal, a C. ljungdahlii ME-model was reconstructed

and validated. This ME-model, named iJL965-ME, accounts for 965 ORFs that

are responsible for the production of transcriptional units, functional RNAs (e.g.,

tRNAs, rRNAs), prosthetic groups, cofactors, and protein complexes that are nec-

essary for all of the major central metabolic, amino acid, nucleotide, and lipid

biosynthesis pathways. iJL965-ME was able to compute the molecular constitu-

tion (i.e., transcriptome, proteome, and fluxome) of C. ljungdahlii as a function of

genetic and environmental parameters, and was able to do so accurately. The ME-

model recapitulated results from autotrophic and heterotrophic, including growth
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rate, product secretion, and transcriptomics.

1.2 Demonstration of ME-model capabilities

ME-models offer the opportunity to systematically explore the interface

between protein and function. Attempts to creatively constrain the proteome

revealed and corroborated evolutionary strategies to optimize resources. In partic-

ular, three different features of an organism - genome architecture, cell structure,

and media composition - were successfully interrogated using ME-models.

1.2.1 Genome architecture: tRNA operon structure

Translation must be carefully controlled because it requires the highest en-

ergy and resource expenditure of any process in fast-growing cells. The formation

and maintenance of operons, which is a co-regulated cluster of genes that are ex-

pressed on the same RNA transcript, may promote gene expression efficiency in

organisms. Interrogation of tRNA gene location and co-expression revealed that

selective pressures to minimize resource costs extend to the molecular level, affect-

ing even genomic tRNA organization. However, the exact solution for surviving

selection is different between organisms, as highlighted by a comparison between

the E. coli and C. ljungdahlii ME-models.
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1.2.2 Cell structure: Protein translocation and compart-

mentalization

Membranes play a crucial role in cellular functions. They provide a phys-

ical barrier, control trafficking of substances entering and leaving the cell, are a

major determinant of cell ultra-structure, and more. However, membrane- and

location-based processes were not yet reconstructed and integrated into genome-

scale models. The E. coli ME-model, iOL1650-ME, was expanded to include pro-

tein translocation and compartmentalization. The results of the updated E. coli

ME-model, iJL1678-ME, recapitulated in vivo data. Furthermore, iJL1678-ME

was used to support the hypothesis that limited membrane space reduces the res-

piratory capabilities of E coli.

1.2.3 Media composition: Nickel availability

Trace metals are essential for all living organisms, for they are required in

transcription, translation, and metabolism. However, when faced with suboptimal

amounts of metal, not all enzymes will be functional due to a lack of adequate

cofactors. In such a situation, certain functions will be prioritized over others.

This results in a non-linear relationship between nickel availability and growth

rate for C. ljungdahlii grown on CO, and a decrease in acetate production when

nickel-limited C. ljungdahlii was grown on fructose.
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Chapter 2

Accurate prediction of bacterial

phenotypes using the ME-model

framework in Clostridium

ljungdahlii

2.1 Introduction

Acetogens have been investigated as a promising sustainable alternative to

convert waste gases containing CO2, H2, and CO (i.e., syngas) into multi-carbon

commodities like biofuels [1, 2]. The Wood-Ljungdahl pathway (WLP) in Clostrid-

ium ljungdahlii enables the use of either H2 or CO as electron donors with ac-

companied reduction of CO2, thereby making WLP the only known CO2-fixing

pathway coupled to energy conservation [3]. The feasibility of autotrophic growth

8
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was poorly understood for a long time as no ATP was gained at the substrate

level. Knowledge of how a bacterium completely lacking cytochrome-encoding

genes could maintain the proton motive force was lacking. It was then discovered

that the RNF complex couples ferredoxin oxidation, NAD+ reduction and pro-

ton exportation by a novel mechanism called electron bi furcation [4]. To explore

how growth strategies occur, models like constraint-based genome scale models of

metabolism (i.e., M-models) have been useful for gaining insight to possible energy

flux routes [5, 6, 7, 8]. While M-models have enabled much progress in elucidating

cofactor fluxes, critical components of the cell, such as the production of macro-

molecules and the mechanistic utilization of metals, vitamins, and cofactors, are

usually absent in these models thereby limiting in-depth understanding of cellular

life.

So-called metabolic and gene expression models (ME-models) include not

only metabolic reactions, but they also include explicit representations of ma-

jor cellular processes such as macromolecular synthesis and basic transcriptional

regulation, which significantly broadens the scope and predictability of microbial

systems biology [9, 10]. Specifically, the ME-model will: 1) Account for the tran-

scriptional and translational cost of proteins and complex formation; 2) Incorporate

the energetics associated with cofactor dependencies and prosthetic group usage;

3) Quantitatively predict transcript and protein levels; 4) Predict optimal codon

usage for heterologous pathways. With these ME-models, the optimal molecular

constitution of cells can be computed as a function of genetic and environmen-

tal parameters. Since both RNA and protein abundances are explicitly predicted,

cofactor requirements can now be explored.



10

Here, we chose the model acetogen C. ljungdahlii to reconstruct the first

ME-model of a gram-positive bacterium. There are several attractive features that

endorse C. ljungdahlii for as a platform for gaining in-depth knowledge necessary

to better understand acetogens. It is readily cultured in the laboratory in sim-

ple medium, either on a diverse set of five and six carbon sugars, or with CO

or H2 as electron donor. Furthermore, genetic manipulation tools have also been

developed for this organism, so that genes may be knocked out, knocked in, and

over-expressed [11, 12, 13, 14]. Thus, a foundation for potential large-scale produc-

tion of chemicals from CO and CO2 using systems-guided, rational strain design

is currently feasible for C. ljungdahlii.

The completed C. ljungdahlii ME-model, named iJL965-ME, captures all

major central metabolic, amino acid, nucleotide, lipid, major cofactors, and vi-

tamin synthesis pathways as well as pathways to synthesis RNA and protein

molecules necessary to catalyze these reactions. Furthermore, the reconstruc-

tion includes the WLP, with updated cofactors, and its associated mechanisms

for energy conservation. iJL965-ME was used to reveal how protein allocation and

media composition influence metabolic pathways and energy conservation in C.

ljungdahlii, and to accurately predict secretion of acetate, ethanol, and glycerol

during changing carbon.
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2.2 Results

2.2.1 Updating the M-model

An existing genome-scale M-model (iHN637) was updated [5]. By using

recent literature and genome annotations as reference [15, 16, 17, 18, 19], 28 re-

actions were added and four reactions removed from iHN637. The updated M-

model (iJL680) consisted of 43 additional genes and contained updated cofactor

stoichiometry and directionality of redox reactions based on experimental data

(Fig 2.1, Table 2.1).

2.2.2 Reconstructing a C. ljungdahlii ME-model named

iJL965-ME

Following established methods, the gene expression network (i.e., E-matrix)

for C. ljungdahlii was reconstructed [20, 21, 22, 23]. This reconstruction in-

cluded additional 196 protein-coding open reading frames (ORFs), 89 RNA genes,

576 transcription units (TUs) (415 of which were rho-dependent and 29 RNA-

stable), 19 types of rRNA modifications, 17 types of tRNA modifications, 735

protein complexes with updated stoichiometry, 219 modified protein complexes,

and 134 translocated proteins (Supplemental materials). Lastly, the turnover rate

for metabolic enzymes (approximated by the keff constant and a required param-

eter for ME-models) was set to the average turnover rate of all enzymes found

in acetogens in the enzyme database Brenda, 25 s−1 [24]. Coupling constraints

linking macromolecular synthesis costs with reactions were calculated using the

formulation in COBRAme [10, 23]. Relative ratios between and within simula-
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tions reflect biology, as shown within this study. Using the COBRAme framework,

the C. ljungdahlii E-matrix was integrated with iJL680 to create the ME-model,

iJL965-ME. iJL965-ME accounts for all of the major central metabolic pathways

and biomass synthesis pathways as well as transcription, translation, RNA modi-

fications, protein modifications, and translocation reactions necessary to catalyze

these reactions (Fig 2.2). Therefore, iJL965-ME enables the prediction of fer-

mentation profiles, including overflow metabolism, gene expression and usage of

co-factors and metals, which are described in detail below.

2.2.3 Accuracy of predicted growth and yield phenotypes

improves with iJL965-ME

Unlike the M-model, iJL965-ME enabled batch simulations (i.e., maximum

nutrient uptake) and nutrient-limited growth conditions for C. ljungdahlii. Due to

internal constraints on protein production and catalysis, referred to as proteomic

limitations, iJL965-ME growth rate was a non-linear function of the substrate up-

take rate. Thus, optimal carbon uptake rate and maximum growth rate could

be simultaneously predicted, whereas M-models require information of one rate to

predict the other [10]. As a result, we predicted unique growth rate and yield func-

tions for growth with CO, CO2+H2, or fructose (Fig 2.3). In general, M-models for

acetogens could not predict alternative fermentation products other than acetate

without additional constraints on redox fluxes, oxygen uptake, or the objective

function [5, 6, 7]. However, iJL965-ME was able to intrinsically predict changes in

the primary fermentation product over substrate availability for CO and fructose

growth. When protein production approached proteome limitations (exemplified
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by maximum growth rate in silico and stationary phase in vivo), iJL965-ME cor-

rectly predicted a switch from acetate secretion to ethanol secretion (Fig 2.3A, C;

Fig 2.4). Thus, iJL965-ME was able to recapitulate overflow metabolism due to a

combination of excess electrons and proteome limitations.

When the model was forced to produce ethanol (by removing acetate se-

cretion) under growth on CO2+H2, a 0.3% drop in maximum growth rate was

predicted (hence why iJL965-ME never predicts ethanol production in CO2+H2

conditions), and since ethanol was a less oxidized product than acetate, more H2

was required, which increases the ratio of consumed H2:CO2 from 2.1 to 2.5.

The ME-model also predicted substrate-specific growth rates with high ac-

curacy. Due to distinct resource requirements (e.g., proteome) when metabolizing

different substrates, iJL965-ME predicted unique maximum growth rates for indi-

vidual substrates. Unlike the M-model (iJL680), which predicted that glucose and

fructose would have identical growth rates, iJL965-ME correctly predicted slower

growth on glucose than for fructose. iJL965-MEs growth rate predictions were

more accurate (Pearsons r: 0.68 > 0.29; Spearman ρ: 0.60 > 0.091; Fig 2.5A).

Furthermore, iJL965-ME was better at predicting the ratio of maximum acetate

secretion rate to substrate uptake rate than the M-models iHN637 and iJL680 (r:

0.97 > 0.22; Fig 2.5B).

Interestingly, iJL965-ME predicted previously unknown secretion of glyc-

erol (<2.5e-3 mmol*gDW−1*h−1) following acetate and ethanol production dur-

ing growth on xylose or glucose, but not on arginine or pyruvate. According to

the model, glycerol secretion occurred due to proteomic-limitations and overflow

metabolism, as the cell no longer invested the resources necessary to recycle glyc-
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erol, a byproduct of cardiolipin production (Fig 2.5C). In order to verify glycerol

production, we carried out HPLC analysis and measured 0.024±0.012 mM and

0.083±0.018 mM of glycerol of cultures grown on either xylose or glucose, respec-

tively (Fig 2.6).

2.2.4 Predicted gene expression recapitulates in vivo data

One advantage of iJL965-ME is the integration of the optimal RNA and

protein content as part of the biomass composition of C. ljungdahlii, which enables

in silico predictions of transcription and translation through their flux reactions

(mmol*gDW−1*h−1 [10, 23]). To test the accuracy of our model, genes were cat-

egorized by RAST subsystems and summed as per predicted transcription flux

reactions [15]. The model predictions were strongly correlated to RNA-seq data

for C. ljungdahlii grown on CO, CO2+H2, or fructose (r ≥ 0.82, Fig 2.7). At the

highest correlation, all categories fell within the prediction interval of the linear

regression (Fig 2.8A-C).

At the gene level, many genes could be strongly linked to biomass produc-

tion and growth rate (r>0.9, p<0.05*Bonferonni, Fig 2.9). Such genes were not

the same between carbon substrate conditions, with commonly shared growth rate

correlated proteins reduced to rRNA genes and some, but not all, tRNAs (Fig 2.9

callout). Under autotrophic conditions, WLP proteins were correlated more with

substrate availability than growth rate (rCO: 0.983>0.955, rCO2+H2 : 0.996>0.884;

Fig 2.8D, E). In addition, both carbon monoxide dehydrogenase (CODH4) and

5,10-methylenetetrahydrofolate reductase (MTHFR5), essential reactions in the

WLP, were linearly related to CO uptake during growth on CO, while other non-
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WLP redox reactive enzyme activities were correlated with growth rate (Fig 2.10).

Similarly, WLP reactions were linearly linked to CO2 uptake in CO2+H2 condi-

tions, in addition to the linear response of ferredoxin:NADPH hydrogenase to H2,

while non-WLP redox reactions were correlated with growth rate (Fig 2.11).

In heterotrophic conditions, the WLP was more active under nutrient-

limitations than proteomic-limitations, as its activity level was related to acetate

secretion (r = 0.993, p<0.01, Fig 2.8F). The WLP was recapturing CO2 for biomass

production using the reducing power gained by metabolizing fructose. At greater

than 57% of the optimal fructose uptake (Fig 2.8F), the primary provider of oxi-

dized ferredoxin switched from WLP to ferredoxin:NADP reductase (FRNDPR2r)

and acetaldehyde:ferredoxin oxidoreductase (AOR CL) (Fig 2.12). Extraneous re-

ducing power captured by NAD+ from glyceraldehyde-3-phosphate dehydrogenase

(GADP) was removed by producing ethanol (alcohol dehydrogenase; ALCD2x)

(Fig 2.12). These findings are corroborated by a previous report that C. ljung-

dahlii grows mixotrophically, instead of heterotrophically, when presented with

sugar as a carbon source [25].

2.3 Discussion

We showed that the incorporation of the E-matrix into constraint-based

genome-scale models significantly widens the scope of their application, includ-

ing prediction of overflow metabolism and optimal expression levels, as well as

media optimization strategies. Such capabilities proved useful for exploring and

understanding system responses of C. ljungdahlii. The reconstructed C. ljung-
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dahlii ME-model (iJL965-ME) was not only more accurate than the M-model at

predicting growth rates and acetate secretion rates, but was also capable of pre-

dicting secretion of ethanol (H2, as a less effective oxidizing agent than CO, was

an exception) and the novel secretion of glycerol (Fig 2.3, 2.5). Furthermore, in

silico predictions of gene/subsystem expression were highly comparable to in vivo

transcriptomics for three separate conditions, bolstering confidence in predicting

macromolecular responses to environmental changes (Fig 2.8A-C).

As demonstrated in this study, ME-models like iJL965-ME provide a com-

prehensive, genome-scale, systems biology approach that links the environment

and macronutrient metabolism.

2.4 Methods

2.4.1 Bacterial growth conditions

Clostridium ljungdahlii (ATCC 55383) was grown under anaerobic condi-

tions containing PETC medium (ATCC medium 1754) at 37◦C. Fructose cultures

were grown in 125 mL serum bottles containing 100 mL of medium plus 28 mM

fructose, CO in 125 mL serum bottles containing 25 mL of media and bottles were

pressurized once with CO to 18 PSI. Pyruvate, xylose, glucose, and arginine ex-

periments were performed in test tubes containing 10 mL of medium and 30 mM

of carbon source. Medium contained 0.10 mM of NiCl2*6 H2O (i.e., 1x). Growth

was routinely determined by measurement of OD600. Concentrations of fructose,

acetate, ethanol, and glycerol were determined by high-performance liquid chro-

matography (Waters) as previously described [26]. Detection was performed by
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UV absorption at 410 nm.

2.4.2 RNA isolation, removal of rRNA and library prepa-

ration of CO-grown cells

All experiments were performed using two biological replicates. Cell pel-

lets were collected by centrifugation at room temperature for 5 mins at 5000 rcf.

Growth medium was removed and cell pellets were snap frozen immediately in

liquid nitrogen, then kept at -80◦C. Cell lysates were prepared by grinding the

pellets in liquid nitrogen. The lysates were cleared by maximum speed centrifu-

gation at 4◦C. To stabilize RNA, 500 µl of Trizole reagent (Thermo Fisher Sci-

entific) was added to 50-100 µl of cleared cell lysates, vortex mixed and stored

at -80◦C. The samples were brought to room temperature and 140 µl of chloro-

form was added to each tube, vortex mixed and centrifuged at maximum speed

at 4◦C for 10 mins. The aqueous fraction was isolated and total RNA was ex-

tracted using the RNeasy mini kit (Qiagen), the volume was brought to 900 µl

using RLT, 600 µl of 95% ethanol was added and mixed in order to bind the RNA.

The RNeasy protocol was then followed as recommended by the manufacturer to

isolate pure RNA. The ribosomal RNA (rRNA) was depleted using the Ribo-Zero

rRNA Removal kit (Epicentre). Strand-specific RNA-seq libraries were prepared

using the Stranded RNA-seq Kit (Kapa Biosystems). The libraries were paired-end

sequenced with Illumina HiSeq 4000. The sequencing reads were mapped to the

C. ljungdahlii genome NC 014328 with Bowtie2. FeatureCounts was used to esti-

mate reads per gene. DESeq2 was used to determine differentially expressed genes.

RNA-seq values were FPKM-normalized. Reads were deposited to BioSample as
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SAMN07391098.

2.4.3 Revision of M-model

A previously published M-model, iHN637, was updated to remove obsolete

metabolic reactions and to add new reactions to reflect current literature [18, 19,

21]. The C. ljungdahlii genome was reannotated using RAST and PROKKA to

account for the most recent information and methods in functional annotations [17,

15]. If both start and end sites of ORFs matched that of the original annotation but

the functions did not, the new function was also considered during reconstruction of

both M- and ME-models. Flux Balance Analysis simulations [27] were carried out

as described previously using COBRApy [28]. All M-model simulations maximized

growth through the biomass objective function [29].

2.4.4 Reconstructing the ME-model

Bidirectional hits and functional overlaps (using RAST annotations) be-

tween Escherichia coli, Bacilllus subtilis, and C. ljungdahlii, as well as manual

curation of the published annotation, and genome annotations obtained by RAST

and PROKKA were used to identify potential E-matrix proteins [17, 16, 15]. Using

E. coli [9, 10, 20] and B. subtilis [15] as reference and the method established by

Thiele et al. [20] to fill in missing knowledge, template reactions for the following

functions were reconstructed: essential rRNA and tRNA modifications, transcrip-

tion, translation, translocation, a single bilayer membrane constraint, and Fe-S

cluster formation. Transcription units (TU) were predicted using the method es-

tablished by Lerman et al. [22] and rho independent TUs were predicted using
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ARNold [30]. The gene-protein-reactions in iHN673 were converted into protein

complexes and updated using Uniprot and PDB annotations as well as functional

similarity to E. coli and B. subtilis proteins [31, 32]. The modeled protein com-

plexes not only contained updated stoichiometry, but also included protein modi-

fications. COBRAme was used to comprise this information into a cohesive model

[23]. A complete list of proteins, protein complexes, template reactions, and pa-

rameters can be found in supplemental materials.

2.4.5 Analyzing the ME-model

Using SoPlex and cobrapy, growth rate was optimized using the binary search

function, as described in COBRAme [23, 28, 33]. All analysis was carried out us-

ing python in Jupyter Notebooks, and visualization was provided by matplotlib

[34, 35]. Scipy and statsmodels were used for statistical analysis [36, 37]. The

code for confidence intervals was taken from [38]. All error bars were 1 standard

deviation. In comparing in vivo data to in silico data, RNA-seq reads from C.

ljungdahlii grown on fructose [5], CO2+H2 [5], and CO (SAMN07391098) that

correspond to 965 modeled ORFs were summed and logged.

2.5 Figures and tables
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Figure 2.1: Comparing predicted growth rates of iHN637 to iJL680, the
updated C. ljungdahlii M-model. Queried substrates and uptake rates are
the same from table 1 in [5]

.
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Figure 2.2: Visual representation of the ME-model reconstruction work-
flow. The E-matrix reconstruction accounted for transcription, translation, and
translocation as well as associated reactions to produce functional enzymes. Inte-
gration of the E-matrix (colored arrows) with the M-model (grey arrows) resulted
in the ME-model.
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(A)                                                               (B)

Figure 2.4: Measured growth curves, substrate uptake, and products for
CO and fructose conditions. Growth curves (OD600, black line) and HPLC
measured molecules were plotted against hours for (A) CO and (B) fructose as
carbon source.
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sets of predicted growth rates, from iJL680 and iJL965-ME, were plotted against in
vivo measured growth rates for six substrates (+- std, n=3). Linear regressions and
95% confidence intervals were represented by dashed lines and shaded areas, respec-
tively. In iJL680, carbon atom uptake was constrained to 30 mmol*gDW−1*h−1,
while in iJL965-ME, the optimal carbon uptake was constrained by inherent pro-
teome limitations. r and p represent Pearson’s correlation and p-value. (B) Pre-
dicted maximum acetate secretion rate (Ac; mmol*gDW−1*h−1) to substrate up-
take rate (SUR; mmol*gDW−1*h−1) was plotted against measured averaged values.
(C) Predicted pathway mechanism for observed glycerol in spent media. Glycerol
was a byproduct of cell membrane formation during cardiolipin production. While
the cell was carbon-limited, glycerol was recycled into biomass using the green
pathway. When the cell was proteome-limited, C. ljungdahlii secreted glycerol
(purple arrow). Abbreviations: 1 = phosphatidylglycerol (n-C14:0), 2 = cardi-
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GLYCDx = glycerol dehydrogenase, DHAK = dihydroxyacetone kinase.
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Figure 2.7: Pearson r correlation between categorized and summed pre-
dicted transcriptomics. The Pearson r correlation between categorized and
summed predicted transcription flux reactions and RNA-seq data was calculated
for discrete substrate uptake rates that ranged from maximum to low uptake rates
(n > 30, 0 unfeasible). Relative substrate uptake rate for CO, CO2+H2, and
fructose was plotted against the Pearson r.
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Figure 2.8: Predicted and experimental gene expression. Categorized
by RAST subsystem and summed, predicted gene expression (transcription flux
reactions) was compared to RNA-seq data for C. ljungdahlii grown on (A) CO,
(B) CO2+H2, and (C) fructose. Linear regressions, 95% confidence intervals of the
regression, and 95% prediction intervals are represented by lines, dark shaded areas,
and light shaded areas respectively. Scatter plots shown are for the highest Pearson
r between predicted and experimental data. Normalized total transcription flux
(mmol*gDW−1*h−1) of the Wood-Ljungdahl pathway was plotted against carbon
substrate uptake rate for (D) CO, (E) CO2+H2, and (F) fructose, Pearson r reflects
correlation with growth rate.



28

Figure 2.9: Genes highly correlated with growth rate. Genes that were
highly correlated with growth rate more so than substrate uptake rate (r > 0.9,
p-val < 0.05*Bonferonni) were identified, and overlap of genes between the three
substrate conditions were plotted in a venn diagram. In the call-out of gene func-
tions shared in all three conditions, the black line indicates that these genes were
in the same operon.
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Figure 2.10: Predicted high flux-carrying redox reactions on CO-growth.
Fluxes were plotted against CO uptake rate for reactions involving (A) ferredoxin,
(B) NAD+, and (C) NADP+. High flux was defined as the absolute sum of flux
across the nutrient spectrum greater than 40 mmol*gDW−1*h−1. Abbreviations:
FDH8 = ferredoxin dehydrogenase, CODH ACS = carbon monoxide dehydro-
genase, FRNDPR2r = ferredoxin:NADP reductase, POR = pyruvate synthase,
RNF = ferredoxin:NAD oxidoreductase, = 5,10-methylenetetrahydrofolate reduc-
tase (ferredoxin), AOR CL = acetaldehyde:ferredoxin oxidoreductase, CODH4 =
carbon monoxide dehydrogenase, GLUDy = Glutamate dehydrogenase (NADP),
ACALDy = acetaldehyde dehydrogenase, MTHFD = methylenetetrahydrofolate
dehydrogenase (NADP).
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Figure 2.11: Predicted high flux-carrying redox reactions on CO2+H2-
growth. Fluxes were plotted against CO2 uptake rate for reactions involving (A)
ferredoxin, (B) NAD+, and (C) NADP+. High flux was defined as the absolute sum
of flux across the nutrient spectrum greater than 40 mmol*gDW−1*h−1. Abbrevi-
ations: FDH8 = ferredoxin dehydrogenase, CODH ACS = carbon monoxide dehy-
drogenase, FRNDPR2r = ferredoxin:NADP reductase, POR = pyruvate synthase,
RNF = ferredoxin:NAD oxidoreductase, = 5,10-methylenetetrahydrofolate reduc-
tase (ferredoxin), AOR CL = acetaldehyde:ferredoxin oxidoreductase, GLUDy
= Glutamate dehydrogenase (NADP), ACALDy = acetaldehyde dehydrogenase,
MTHFD = methylenetetrahydrofolate dehydrogenase (NADP), HYDFDN2r =
ferredoxin NADPH linked hydrogenase.
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Figure 2.12: Predicted high flux-carrying redox reactions on fructose-
growth. Fluxes were plotted against fructose uptake rate for reactions in-
volving (A) ferredoxin, (B) NAD+, and (C) NADP+. High flux was de-
fined as the absolute sum of flux across the nutrient spectrum greater than
40 mmol*gDW−1*h−1. Abbreviations: FDH8 = ferredoxin dehydrogenase,
CODH ACS = carbon monoxide dehydrogenase, FRNDPR2r = ferredoxin:NADP
reductase, POR = pyruvate synthase, RNF = ferredoxin:NAD oxidoreductase,
= 5,10-methylenetetrahydrofolate reductase (ferredoxin), AOR CL = acetalde-
hyde:ferredoxin oxidoreductase, GLUDy = Glutamate dehydrogenase (NADP),
ACALDy = acetaldehyde dehydrogenase, MTHFD = methylenetetrahydrofolate
dehydrogenase (NADP), GAPD = glyceraldehyde-3-phosphate dehydrogenase,
PGCD = phosphoglycerate dehydrogenase.
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Table 2.1: Names of reactions added or removed from iHN657 to pro-
duce iJL680. See BiGG [39] for more details on individual reactions.

New Removed
ACALDy ACALD
BMOCOS BTDD-RRx
BMOGDS FDH7
BTDD-RRy HYDFDi
CCGt HYDFDNr
CPMPS
DADt
DAPAL
DHORD-NAD
FDH8
FHL
FMNRx2
GLCt3
GLYCLTDx
GLYCTt
LIPATPT
LIPOt2
LTHRK
METabc
MOCOS
MOGDS
MPTAT
MPTS
PGLYCP
PNTOt
THRt2
TMDPK
ZN2t
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ban Marcellin. Arginine deiminase pathway provides ATP and boosts growth
of the gas-fermenting acetogen Clostridium autoethanogenum. Metabolic En-
gineering, 41:202–211, 2017.

[8] M. Ahsanul Islam, Karsten Zengler, Elizabeth A. Edwards, Radhakrishnan
Mahadevan, Gregory Stephanopoulos, D. Horsman, S. J. Jones, M. A. Marra,
N. Lewis, S. Rahmanian, J. Kang, D. Hyduke, B. Palsson, N. Ivanova, N. Kyr-
pides, B. Department Of, R. U. H. T. Cell Biology, Y. I. Wolf, R. L. Tatusov,
F. Sabathe, L. Doucette-Stamm, P. Soucaille, M. J. Daly, G. N. Bennett, E. V.
Koonin, and D. R. Smith. Investigating Moorella thermoacetica metabolism
with a genome-scale constraint-based metabolic model. Integr. Biol., 7(8):
869–882, 2015.

[9] Joanne K Liu, Edward J O’Brien, Joshua A Lerman, Karsten Zengler, Bern-
hard O Palsson, and Adam M Feist. Reconstruction and modeling protein
translocation and compartmentalization in Escherichia coli at the genome-
scale. BMC Systems Biology, 8(1):110, 2014.

[10] E. J. O’Brien, J. A. Lerman, R. L. Chang, D. R. Hyduke, and B. O. Palsson.
Genome-scale models of metabolism and gene expression extend and refine
growth phenotype prediction. Molecular Systems Biology, 9(1):693–693, 2014.

[11] John T. Heap, Sarah A. Kuehne, Muhammad Ehsaan, Stephen T. Cartman,
Clare M. Cooksley, Jamie C. Scott, and Nigel P. Minton. The ClosTron: Mu-
tagenesis in Clostridium refined and streamlined. Journal of Microbiological
Methods, 80(1):49–55, 2010.



35

[12] Ching Leang, Toshiyuki Ueki, Kelly P Nevin, and Derek R Lovley. A ge-
netic system for Clostridium ljungdahlii: a chassis for autotrophic production
of biocommodities and a model homoacetogen. Applied and environmental
microbiology, 79(4):1102–9, 2013.

[13] Areen Banerjee, Ching Leang, Toshiyuki Ueki, Kelly P Nevin, and Derek R
Lovley. Lactose-inducible system for metabolic engineering of Clostridium
ljungdahlii. Applied and environmental microbiology, 80(8):2410–6, 2014.

[14] Nigel P. Minton, Muhammad Ehsaan, Christopher M. Humphreys, Gareth T.
Little, Jonathan Baker, Anne M. Henstra, Fungmin Liew, Michelle L. Kelly,
Lili Sheng, Katrin Schwarz, and Ying Zhang. A roadmap for gene system
development in Clostridium. Anaerobe, 41:104–112, 2016.

[15] Scott A Becker, Bernhard Ø Palsson, Aaron A Best, Matthew DeJongh, Ter-
rence Disz, Robert A Edwards, Kevin Formsma, Svetlana Gerdes, Elizabeth M
Glass, Michael Kubal, Folker Meyer, Gary J Olsen, Robert Olson, Andrei L
Osterman, Ross A Overbeek, Leslie K McNeil, Daniel Paarmann, Tobias
Paczian, Bruce Parrello, Gordon D Pusch, Claudia Reich, Rick Stevens, Olga
Vassieva, Veronika Vonstein, Andreas Wilke, and Olga Zagnitko. The RAST
Server: Rapid Annotations using Subsystems Technology. BMC Microbiology,
5(1):8, 2005.

[16] Michael Köpke, Claudia Held, Sandra Hujer, Heiko Liesegang, Arnim Wiezer,
Antje Wollherr, Armin Ehrenreich, Wolfgang Liebl, Gerhard Gottschalk, and
Peter Dürre. Clostridium ljungdahlii represents a microbial production plat-
form based on syngas. Proceedings of the National Academy of Sciences of the
United States of America, 107(29):13087–92, 2010.

[17] T. Seemann. Prokka: rapid prokaryotic genome annotation. Bioinformatics,
30(14):2068–2069, 2014.

[18] Johanna Mock, Yanning Zheng, Alexander P. Mueller, San Ly, Loan Tran,
Simon Segovia, Shilpa Nagaraju, Michael Köpke, Peter Dürre, and Rudolf K.
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Chapter 3

Exploring the evolutionary

significance of tRNA operon

structure using metabolic and

gene expression models

3.1 Introduction

An operon is a co-regulated cluster of genes that are expressed on the same

RNA transcript. These genomic features arise through a variety of means, includ-

ing horizontal gene transfer that places a gene under another gene’s promoter,

horizontal gene transfer of whole operons, deletion of intervening sequences, and

genome rearrangement [1]. Though the presence of an operon may be a random

event, selection pressures can drive the maintenance of operons. For example, po-

39
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tential benefits bestowed by an operon onto the host organism include a reduction

in regulation costs [2], diminished stochastic gene expression through synchronic-

ity of protein ratios [3, 4], and insurance that all functional steps in a pathway

are produced [5]. Such theories hint at an evolutionary optimization problem to

promote efficiency in gene expression.

In order to optimize cellular efficiency, translation must be carefully con-

trolled because it requires the highest energy and resource expenditure of any

process in fast-growing cells. Since the available tRNA pool could be rate-limiting

during protein translation [6], close correspondence between codon usage and the

available tRNA pool, often quantified through the tRNA adaptation index (tAI)

[7], must be maintained efficiently. Even though tRNA co-expression explained E.

coli’s tRNA profile better than tRNA gene copy number (widely recognized as a

correlated estimate for tRNA profile [8, 9, 10]), relatively few papers have inves-

tigated the influence of operons on tRNA expression levels [11, 12]. Yet rRNA

and tRNA genes can often be found on the same operon, and 23.8% of all tRNA

genes from prokaryotic genomes sequenced by 2014 were found to be located in

an operon with another tRNA gene [12]. Such evidence implies that evolutionary

pressures may also shape genomic tRNA structure.

Constraint-based modeling offers a biophysically-based approach to esti-

mate tRNA concentrations and usage. In particular, constraint-based metabolic

and gene expression models (i.e., ME-models) are well-suited for examining poten-

tial insights into operon structure. The scope of predictions that ME-models cover

are extensive; these models account for transcription, tRNA charging, transla-

tion, and metabolic reactions. Additionally, ME-models incorporate the underlying
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genome architecture through transcriptional units that account for co-expression

of genes. ME-models have been used to successfully recapitulate several levels

of phenotypes, from growth rates to pathway expression levels, and even undis-

covered operons [13, 14, 15]. As of writing, only E. coli and C. ljungdahlii have

completed ME-models that use the COBRAme framework, which allowed compar-

isons of model perturbations with the knowledge that the constraints within the

models (e.g., coupling constraints) were similarly formulated [16, 17].

Using the two available COBRAme-based ME-models, one for Escherichia

coli and one for Clostridium ljungdhalii [16, 17], we examined the systematic im-

portance of tRNA co-expression. We validated the two models for the purposes of

this study and examined the tRNA operon structures, thereby identifying unique

tRNA operon solutions to two different selective pressures. One solution led to

optimization of phenotype through fragmenting operons and the other solution to

optimized efficiency through optimal grouping of tRNAs.

3.2 Results and Discussion

3.2.1 tRNA operon structure: Fragmentation versus mod-

ularity

Examination of tRNA-containing operons organization in two bacteria, the

fast-growing generalist E. coli and the slower-growing homoacetogen C. ljungdahlii,

revealed two different strategies (Fig 3.1 & 3.2) [18]. These two strategies will

be referred to as fragmentation, where tRNA organization leads to both a high

number of singly-transcribed tRNA genes and a minimization of co-transcribed
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tRNA species, and modularization, which is the tendency towards polycistronic

tRNA genes.

In E. coli, 23% of tRNA genes could be transcribed monocistronically, and

37% could be expressed as polycistronic transcripts that lack other tRNA genes.

When considering unique tRNA species by anticodon, the number of single tran-

scripts that can be uniquely expressed increased to 54%, and for tRNA species by

amino acid (AA), 56%. Furthermore, E. coli appeared to favor less tRNA genes

per transcript and did not have an operon containing more than seven tRNAs,

while the highest number of unique tRNA species per operon was four. Thus, E.

coli displays a fragmentation strategy for its tRNA operon structure (blue bars,

Fig 3.3).

In case of C. ljungdahlii, the analysis revealed that only 8.4% of tRNA genes

could be expressed monocistronically and 26% could be expressed as polycistronic

transcripts lacking other tRNA genes. Looking at tRNA species, only 32% of

tRNAs by anticodon and 34% of tRNAs by AA were capable of being uniquely

expressed on a single transcript. Thus, C. ljungdahlii had the majority of its tRNA

species co-transcribed with another tRNA type, and C. ljungdahlii could express

fifteen tRNAs, including the only tRNA-his gene, on a single transcript. The bias

towards polycistronic tRNA genes means that C. ljungdahlii prefers modularization

in comparison to E. coli (green bars, Fig 3.3).
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3.2.2 Predicted tRNA charging amino acid usage is con-

sistent with amino acid requirements

AA compositions predicted by the E. coli ME-model (iLE1678-ME) and

the C. ljungdahlii ME-model (iJL965-ME) were compared against in vivo data.

AA composition was calculated from transcriptomic data using RNA-seq (FPKM)

data from E. coli batch-grown on glucose, glycerol, xylose, and acetate and C.

ljungdahlii batch-grown on fructose, CO and CO2+H2 as a proxy for protein count.

Only proteins reconstructed in the ME-models were considered. For each substrate

condition, the ME-models were simulated at maximum growth rate (which was

calculated when substrate availability was greater than what can be consumed,

and considered to be equivalent to in vivo batch growth), half of the maximum

substrate uptake rate, and minimal substrate availability (i.e., tenth of maximum

substrate uptake rate). Predicted AA compositions were calculated from tRNA

charging reactions (mmol*gDW−1*h−1) which reflects the exact AA requirements

of the in silico cell.

The predicted and measured AA compositions were highly comparable

(R2 ≥ 0.964 for all batch-growth conditions in both models; Fig 3.4, 3.5). The

high correlation between in silico and in vivo values continued to hold true for

tRNA molecule concentrations (uM) and calculated AA composition from protein

expression (ribosome profiling, RPKM) in E. coli, both of which were more ap-

propriate comparisons for in silico tRNA expression and tRNA charging reactions

(Fig 3.6, 3.7). With these validations for AA composition and our knowledge of

the genome architecture, we have confidence in the output of translation and the
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underlying structure of transcription in the ME-models for batch conditions.

The goodness of fit decreased when in vivo batch-grown cells were com-

pared to in silico growth on half of the maximum substrate uptake rate and min-

imal substrate availability. Thereby iLE1678-ME and iJL965-ME demonstrated

their capability to predict variable AA compositions dependent on substrate avail-

ability. Furthermore, expression values from in silico minimal and half substrate

availability were able to explain tRNA molecule concentrations in low growth rate

(0.4 h−1) better than in silico maximum growth rate could (Fig 3.6). Although the

higher correlations imply that ME-models continue to be accurate at lower growth

rates, the actual influence of growth rate on tRNA pools is currently inconclusive

and requires more investigation [8, 11].

Despite the lack of evidence to support conclusions from non-optimal growth

rates, ME-models still provide an opportunity to specifically examine the effects

of varying tRNA operon structure.

3.2.3 Optimized tRNA operon structure meets tRNA abun-

dance requirements

To examine whether tRNA gene location and co-transcription influences the

cell, 1000 models with all tRNAs randomly shuffled into another tRNA’s location,

henceforth referred to as Monte-Carlo (MC) tRNA location models, were built for

E. coli and C. ljungdahlii each. The MC tRNA location models were then sim-

ulated with validated substrates (glucose, glycerol, xylose, and acetate for E. coli

and fructose, CO, and CO2+H2 for C. ljungdahlii) at maximum growth rate, half

of the maximum substrate uptake rate, and minimal substrate uptake (Fig 3.8).
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With this setup, we can examine whether the two organisms’ different tRNA orga-

nization strategies, fragmentation and modularization, promote optimization for

translational purposes under particular growth conditions.

Shuffling tRNA order and location has a dramatic effect on tRNA expres-

sion, as the range of AA-categorized tRNA (tRNA-AA) expression can vary dras-

tically in relation to other tRNA-AA molecules (Fig 3.9). When tRNA-AA ex-

pressions of the MC tRNA location models were compared against the original

models’ (iLE1678-ME and iJL965-ME which contain published genome architec-

tures), tRNA expression was revealed to be minimized. Both iLE1678-ME and

iJL965-ME performed better than the median MC tRNA location model because

they expressed less total tRNA for a significant number of tRNA-AA molecules (p

< 0.02 for all maximum growth rate conditions; Fig 3.9, Table 3.1, 3.2). Thus, the

original tRNA operon structures led to reduced cost of tRNA expression.

In contrast to the flux ranges of tRNA expression, the AA composition

of the cell, as represented by tRNA charging reactions, remains relatively con-

stant. Regardless, iLE1678-ME and iJL965-ME revealed that the published tRNA

operon structures also promoted utilization of tRNA usage (i.e., tRNA charg-

ing reactions) at maximum growth rate. For a significant number of tRNA-AA

molecules, iLE1678-ME and iJL965-ME used more tRNA in tRNA charging reac-

tions than the median MC tRNA location model (p < 0.05 for all conditions but

two; Fig 3.9, Table 3.1, 3.2). E. coli on acetate and C. ljungdahlii on fructose

were the exceptions, as tRNA expression was minimized, but tRNA usage was not

maximized (Table 3.1, 3.2). Thus, the original tRNA operon structures generally

led to increased tRNA usage.
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If tRNA expression could be likened to capital costs and tRNA usage to

operating costs, then E. coli and C. ljungdahlii have minimized capital costs by

optimizing expression of necessary tRNAs. The operating costs have likewise been

maximized, even though tRNA operon structure does not influence operating costs

as strongly as it does capital costs, as seen through the lack of fluctuation in tRNA

usage and the non-optimal tRNA usage in acetate-grown iLE1678-ME. Together,

these observations suggest that the cells partly control their capital expenses at

maximum growth rate though tRNA operon structure.

At least half of the tRNA-AA molecules in the original models have both

lower expression and higher usage than the median MC tRNA location model

(i.e., tRNA-AA optimization) at maximum growth in multiple substrate conditions

(Fig 3.9, Table 3.3, 3.4). However, E. coli and C. ljungdahlii did not optimize the

same tRNA-AA molecules, with only F, G, K, M, and Y being shared between

the two models, thereby showing that optimized tRNA-AA molecules may differ

by organism.

Both iLE1678-ME and iJL965-ME displayed less efficient tRNA expression

and tRNA charging usage as growth rate dropped from maximum, and they were

no longer efficient at minimum growth rate (Table 3.1, 3.2) with the exception of

CO2+H2, implying that tRNA operon structures have been optimized for growth

when nutrients were abundant. The number of optimized tRNA-AA molecules also

decreased with growth rate (Table 3.3, 3.4). E. coli on xylose and C. ljungdahlii

stood out as retaining the most optimized number of tRNA-AA molecules with 9

AAs and 7 AAs respectively. Perhaps this optimization of tRNA-AA molecules

for lower growth rate inducing substrates (grglucose = 0.92 vs grxylose = 0.87; grCO
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= 0.38 vs grCO2+H2 = 0.31) hints at an evolutionary process that ensured contin-

ued resource efficiency in less desirable conditions once preferred substrates are

depleted.

3.2.4 Positive selection for high tRNA efficiency

Despite a trend towards minimization in capital expenses, iLE1678-ME

(E. coli) performed at an average in total tRNA efficiency, as measured by the

total tRNA usage to total tRNA expression ratio, compared to the MC tRNA

location models (Fig 3.10e). Its maximum growth rate was also average (Fig 3.10g).

However, when the range of tRNA efficiency values and growth rates of the MC

tRNA location models were compared against C. ljungdahlii’s ranges, E. coli has

evolved to minimize the potential error around tRNA efficiency, rRNA expression,

and growth rate (Fig 3.10). Fragmentation of the operon structure ensured that

regardless of tRNA order or location, potential phenotypes cannot deviate too far

from the original value (Fig 3.10a, b), which may reflect a history of tRNA genes

being regularly added and subtracted from the genome to reach its current, optimal

state [19, 12].

The only non-random gene locations in tRNA-containing operons were oc-

cupied by rRNA genes, which refers to the set of 16S, 5S, and 23S rRNAs. In

iLE1678-ME, all seven rRNA gene sets were co-expressed with tRNA genes, and

rRNA expression was driven, in part, by the need for the associated tRNA genes.

All three of the tRNAs with anticodon UGC, which codes for tRNA-ala, were on

a polycistronic transcript with an rRNA gene set (Fig 3.1). Since alanine was the

most required AA, iLE1678-ME subsequently expressed a significant amount of
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rRNA genes at maximum growth rate (Fig 3.10f, 3.11). The selective maximiza-

tion of rRNA expression points at growth rate optimization in E. coli, as ribosome

amount is linearly correlated to growth rate [20].

While E. coli has been optimized for output, particularly rRNA produc-

tion, C. ljungdahlii seemed to be focused on minimizing capital expenditures,

as demonstrated by the significantly high tRNA efficiency in iJL965-ME which

remained high even as growth rate dropped (Fig 3.12), while both growth rate

and rRNA expression were average compared to the MC tRNA location models

(Fig 3.10). However, average rRNA expression may also point to efficient resource

usage. Unlike rRNA arrangement in E. coli, seven of iJL965-ME’s nine rRNA gene

sets were co-expressed with tRNAs. Furthermore, C. ljungdahlii does not associate

a specific tRNA species with rRNA, which allowed C. ljungdahlii the ability to fine

tune its rRNA need by expressing operons with the necessary amount of tRNAs

per species, thereby minimizing resources spent on producing more rRNA, while

E. coli has evolved so that an abundant amount of rRNA is available for maxi-

mum growth rate. Finally, unlike E. coli’s tight range of values, shuffling of tRNA

locations would lead to drastic changes in tRNA efficiency, rRNA expression, and

growth rate. Thus, in contrast to E. coli’s fragmentation, modularization in C.

ljungdahlii sacrificed growth rate for tRNA efficiency and resource frugality.

Although tRNA efficiency, rRNA expression, and growth rate were not

correlated (R2 ≤ 0.176, Fig 3.10a-d), there were operon structures that resulted

in higher growth rates. This may not be so important for E. coli, since its

range of potential growth rates was limited, and the payoff between tRNA effi-

ciency and growth rate was low (slope of the upper soft boundary, mE.coli=0.010;
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Fig 3.10b). C. ljungdahlii could potentially improve growth rate by 1.5% solely

through tRNA operon rearrangement, but the majority of organizations were less

efficient (Fig 3.10d), which means that the organism will grow faster at a cost to

translational efficiency (mC.ljungdahlii = 0.016; Fig 3.10d).

3.2.5 Does tRNA operon structure reflect K/r strategists?

Fragmentation and modularization may hint at a deeper understanding of

the differences between K- and r-strategists, where K-strategists are typically as-

sociated with slow growth due to limitations by density-dependent controls, and

r-strategists with fast growth (Note: K and r strategists can be differentiated by

their maximum specific growth rate under conditions with excess substrate (i.e.,

batch growth) [21]). C. ljungdahlii, as a K-strategist (max in silico growth rate

on fructose is 0.57 h*−1), evolved to maximize efficiency of resources at the tRNA

operon structure level. Thus, C. ljungdahlii matches cost to need, which may pro-

vide C. ljungdahlii with a slight edge over competitors when nutrients are limiting

for the ecological community. E. coli, an r-strategist (max in silico growth rate on

glucose is 0.92 h*−1), has evolved to always perform near optimum in regards to its

tRNA operon structure, and rRNA expression, which is tied to tRNA expression,

is maximized. Furthermore, E. coli’s fractured tRNA-containing operon structure

may allow E. coli to quickly match tRNA-demands specific to available substrates,

as E. coli is a generalist that consumes multiple carbon sources. Thus, E. coli has

optimized its output, which may allow it to persist in an ecological community

through rapid growth.
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3.3 Conclusions

Although ME-models currently lack other factors that affect tRNA amounts

(e.g., regulation, proximity to the origin of replication, leading verses lagging

strand, individualized aminoacyl-synthase turnovers [11]), ME-models account for

genome architecture (gathered from publicly available databases), transcription,

tRNA charging, and translation (validated through a combination of ’omics and

Northern blot data), which allowed us the ability to interrogate the importance

of tRNA operon structure for two organisms, E. coli and C. ljungdahlii. Exami-

nation of these two organisms’ operon structures revealed two different strategies:

Fragmentation in E. coli and modularization in C. ljungdahlii. Using iLE1678-ME

(E. coli) and iJL965-ME (C. ljungdahlii) as a basis, 1000 models with randomly

shuffled tRNA locations for each organism were built. Predictions from these MC

tRNA location models compared to those from iLE1678-ME or iJL965-ME showed

that tRNA operon structure was optimized for tRNA abundance requirements. In

iLE1678-ME, the tRNA operon structure also lead to high rRNA expression, while

in iJL965-ME, tRNA efficiency was optimized. these conclusions regarding opti-

mization primarily hold strong for batch growth conditions, which implies that

tRNA operon structure is a nonrandom result of selective pressures for maximiz-

ing growth rate.
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3.4 Methods

3.4.1 In silico modeling

iLE1678-ME was obtained from [16], while iJL965-ME was available in lab

and described in chapter 2. While no changes were made to iLE1678-ME, iJL965-

ME was updated so that tRNAs were associated to specific codons based on their

anticodons using figure 1 from [7]. Codons that were not covered from the initial

changes described above were covered by assigning all tRNAs associated to the

coded AA.

COBRAme formulated ME-models do not have a tRNA to rRNA con-

straint, unlike previous ME-models [16]. However, an additional rRNA-to-tRNA

constraint had to be added to iLE1678-ME. This is because iLE1678-ME rRNA

production was internally constrained by the tRNAs associated to their operons,

otherwise all of the MC tRNA location models obtained growth rates over 0.97.

The severe difference in phenotypes made iLE1678-ME uncomparable to the MC

tRNA location models, so an upper bound constraint was placed on the three

operons that initally contained rRNA+tRNA-ala that limited their expression to

the highest expressed tRNA-AA.

3.4.2 Model building

Transcription unit structures were downloaded from [16, 18]. Transcription

units that contained tRNA genes were identified in E. coli and C. ljungdahlii.

The exact stoichiometries for the complete transcription of each individual tRNA

molecule were calculated using the COBRAme function
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add transcription reaction [16]. These stoichiometries by tRNA were subtracted

from each respective operon transcription reaction, so that the left-over reaction

accounted for non-tRNA genes and intergenic regions [22]. All tRNA locations in

the ”left-over reactions” were assigned a number. To incorporate a new tRNA,

an ordered list of tRNA genes were randomly shuffled using Python’s ”random”

package (seed set to 86519), and the stoichiometries of the new tRNA gene were

then added into the ”left-over reaction”. In total, 2000 such models were built,

1000 for each species.

3.4.3 Analysis

All analysis was performed using Python 2.7 in Jupyter notebooks, and

visualization provided by Matplotlib [23, 24]. Both ME-models were solved using

qminos with precision set to 1e-15 [15]. To obtain maximum growth rate, carbon

substrate lower bound was set to -1000 per model. To get lower growth rates, the

substrate uptake rate from the maximum growth rate solution was then multiplied

by either 0.5 or 0.1. RNA-seq data were obtained from [25, 17, 26], ribosome

profiling data were obtained from [27], and tRNA molecule concentrations were

obtained from [8]. All statistical analysis were performed using [28].

Flux variable analysis on transcriptional units revealed that the exact ex-

pression and usage per tRNA could vary while other reactions remained the same

[22]. However, when tRNA expression and usage were summed by AA, all of the

different results from flux variable analysis led to the same results, hence why

tRNA-AA is the lowest level of expression considered.

The soft upper boundaries in Fig 3.10b, c were calculated by splitting the
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range of tRNA efficiency values into intervals of 30, finding the highest growth rate

value for each value, then fitting the best fit line through these points.

3.5 Figures and tables
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Figure 3.1: Organization of E. coli’s tRNA-containing operons. Tran-
scription units are those as published in COBRAme [16]. Red genes are tRNAs,
blue genes are rRNAs, and white genes are CDS. Box sizes and spacing between
boxes represent relative bp distances. Green lines indicate alternate transcription
unit start and stop sites.
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Figure 3.1 (continued): Organization of E. coli’s tRNA-containing
operons.
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Figure 3.2: Organization of C. ljungdahlii’s tRNA-containing operons.
Transcription units were obtained from BioCyc on March 22, 2017 [18]. Red genes
are tRNAs, blue genes are rRNAs, and white genes are CDS. Box sizes and spacing
between boxes represent relative bp distances.
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(a)                                                  (b)                                                  (c)                                                  (d)

Figure 3.3: Distribution of tRNAs by operon in E. coli and C. ljung-
dahlii. Bar graphs show operon count by (a) the number of genes per operon,
(b) the number of tRNAs per operon, (c) the number of unique anticodons as
represented by tRNAs per operon, and (d) the number of unique amino acids as
represented by tRNAs per operon for E. coli (blue) and C. ljungdahlii (green). All
potential operons, including alternative start and end sites, are included.
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(a)   glucose                                      (b)   glycerol                                      (c)   xylose

(d)   fructose                                     (e)   CO                                                (f)   CO2+H2

Figure 3.4: Comparing in silico and in vivo AA composition for E. coli
and C. ljungdahlii. In vivo AA compositions were calculated using RNA-seq,
harvested mid-log phase from batch-grown cells, as a proxy for protein count. In
silico AA compositions were the sum of AA-categorized tRNA charging reactions
(mmol*gDW*−1*h−1) at maximum growth rate (red), half of the maximum sub-
strate uptake (green), and minimum (i.e., tenth) of the maximum substrate uptake
rate (blue) on glucose, glycerol, or xylose for E. coli (top row) and fructose, CO,
or CO2+H2 for C. ljungdahlii (bottom row). Values are relative to the most AA
required, which is alanine for E. coli and lysine for C. ljungdahlii.
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Figure 3.5: Comparing in vivo and in silico AA composition for E. coli
grown on acetate. In vivo AA composition was calculated using RNA-seq [25],
harvested mid-log phase from batch-grown cells, as a proxy for count of proteins
that were also modeled in iLE1678-ME. In silico AA composition was calculated
from summed tRNA charging reactions at maximum growth rate (red) and half of
the maximum glucose uptake (green). Values are relative to the most used AA,
alanine.
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(a)                                                                                  (b)

Figure 3.6: Comparing in vivo and in silico tRNA expression for E.
coli. In vivo tRNA amounts was taken from maximum growth rate from [8]
(Table 5), while in silico results were calculated from tRNA charging and tRNA
expression reactions at maximum growth rate (red), half of the maximum glucose
uptake (green), and one tenth of the maximum glucose uptake rate (blue). R2

values from linear regressions between in vivo measurements from growth rates of
0.4, 0.7, 1.07, 1.6, and 2.5 and in silico predictions were plotted in (b).
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Figure 3.7: Comparing in vivo and in silico AA composition for E. coli.
In vivo AA composition was calculated from Ribo-seq using batch-grown mapped
reads for protein-coding genes that are represented in the corresponding ME-model
[27]. In silico aa composition was calculated from summed tRNA charging reac-
tions at maximum growth rate (red), half of the maximum glucose uptake (green),
and one tenth of the maximum glucose uptake rate (blue). Values are relative to
the most used AA, which is alanine for E. coli.
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Figure 3.8: Diagram of the Monte-Carlo method for tRNA location
shuffling. Red boxes represent tRNA genes, blue boxes represent rRNA genes,
and grey boxes represent open reading frames. Operon diagram is not to scale for
gene size and distance.
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Figure 3.9: Comparing tRNA expression and tRNA charging fluxes
against the original models’. AA-categorized in silico tRNA expression
(mmol*gDW−1) and tRNA charging fluxes (mmol*gDW−1) from the MC tRNA
location models were plotted as box-plots, and red dots indicate the original mod-
els’ predictions. E. coli was batch simulated on (a) glucose, (b) glycerol, and (c)
xylose, and C. ljungdahlii on (d) fructose, (e) CO, and (f) CO2+H2. P values are
from binomal tests of whether the original models give rise to lower expression
levels or higher tRNA usage than the median values from the MC tRNA location
models. Asterisks indicate tRNAs by AA that had both less than average tRNA
expression and greater than average tRNA usage.
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Figure 3.10(next page): Comparing efficiencies and growth rates from
the MC tRNA location models as a percentage of the original models’.
All results are from batch simulations on different substrates, with E. coli data
coming from glucose, glycerol, or xylose conditions (n=3000), and C. ljungdahlii
from fructose, CO, or CO2+H2 conditions (n=3000). (a & c) rRNA expression
(
∑

rRNA mmol*gDW−1) was plotted against protein:tRNA (
∑

tRNA charging
mmol*gDW−1:

∑
tRNA mmol*gDW−1). (b & d) Growth rate (h−1) was plotted

against protein:tRNA, and soft upper boundaries (red dashed line) were found.
Red dots represent the original models’ averaged results. R2 values are from linear
regressions. A histograph of each dataset is displayed opposite to its axis in (a-
d). Cumulative density functions (cdf) calculated from the histographs in (a-d)
were plotted against (e) protein:tRNA, (f) rRNA expression, and (g) growth rate.
Dotted lines indicate the probability of obtaining a value less than the original
models’ prediction for E. coli (blue) and C. ljungdahlii (green).
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Figure 3.11: Cumulative density functions of tRNA efficiency, rRNA
expression, and growth rate for E. coli grown on glucose, glycerol, and
xylose from the MC tRNA location models. Cumulative density functions
(cdf) of tRNA efficiency (

∑
tRNA charging reaction fluxes:

∑
tRNA expression

fluxes), rRNA expression (mmol*gDW−1), and growth rate (h−1) for E. coli grown
on glucose (left column), glycerol (middle column), and xylose (right column) from
the MC tRNA location models. Dotted lines indicate the probability of obtaining
a value less than the original model’s when grown at maximum growth rate (red),
half of the maximum substrate uptake (green), and one tenth of the maximum
substrate uptake rate (blue).
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Figure 3.12: Cumulative density functions of tRNA efficiency, rRNA
expression, and growth rate for C. ljungdahlii grown on fructose, CO,
and CO2+H2 from the MC tRNA location models. Cumulative density
functions (cdf) of tRNA efficiency (

∑
tRNA charging reaction fluxes:

∑
tRNA ex-

pression fluxes), rRNA expression (mmol*gDW−1), and growth rate (h−1) for C.
ljungdahlii grown on fructose (left column), CO (middle column), and CO2+H2

(right column) from the MC tRNA location models. Dotted lines indicate the
probability of obtaining a value less than the original model’s when grown at max-
imum growth rate (red), half of the maximum substrate uptake (green), and one
tenth of the maximum substrate uptake rate (blue).
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Figure 3.13: Cumulative density functions of tRNA efficiency, rRNA
expression, and growth rate for E. coli grown on acetate from the MC
tRNA location models. Dotted lines indicate the probability of obtaining a
value less than the original model’s when grown at maximum growth rate (red)
and half of the maximum substrate uptake (green).
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Table 3.1: Efficient tRNA expression and tRNA usage in E. coli. P values
of binomal tests on whether the original models gives rise to lower tRNA expression
levels or higher tRNA charging reactions by AA compared to the median values
from the MC tRNA location models.

Substrate Growth rate tRNA expression tRNA charging
Glucose Max 0.0026 <0.0001
Glucose Half 0.0118 0.0026
Glucose Min 0.2632 0.8238
Glycerol Max 0.0026 0.0414
Glycerol Half 0.0118 0.2632
Glycerol Min 0.2632 0.8238
Xylose Max 0.0026 <0.0001
Xylose Half 0.0118 0.0414
Xylose Min 0.1153 0.8238
Acetate Max 0.0026 <0.0001
Acetate Half 0.0414 0.0118



70

Table 3.2: Efficient tRNA expression and tRNA usage in C. ljungdahlii.
P values of binomal tests on whether the original models gives rise to lower tRNA
expression levels or higher tRNA charging reactions by AA compared to the median
values from the MC tRNA location models.

Substrate Growth rate tRNA expression tRNA charging
Fructose Max 0.0118 0.1153
Fructose Half 0.0118 0.5034
Fructose Min 0.8238 0.0414

CO Max 0.0118 0.0118
CO Half 0.5034 0.0414
CO Min 0.5034 0.0414

CO2+H2 Max 0.0118 0.0118
CO2+H2 Half 0.0118 0.0414
CO2+H2 Min 0.0414 0.0414
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Table 3.3: Optimized tRNA-AA molecules in E. coli. AAs that the original
models both express lower tRNA amounts and use more than the median MC
tRNA location model for three carbon substrates and availability. Common amino
acids by substrate, growth rate, or all conditions were identified. When similar
analysis was done on acetate for E. coli, maximum growth rate has no optimized
tRNA-AA molecules, while at half growth rate, optimized tRNA-AA molecules are
related to A, E, D, G, F, H, K, L, N, P, S, T, V, and Y.

Growth rate Glucose Glycerol Xylose Intersection
Max A, E, D,

G, F, H, K,
M, L, N, P,
S, T, W, V,
Y

A, E, D, G,
F, K, M,
N, S, T, W,
V, Y

A, C, E, D,
G, F, H, K,
M, L, N, P,
S, T, W, V,
Y

A, E, D, G,
F, K, M, N,
S, T, W, V,
Y

Half A, E, D,
G, F, H, K,
M, L, N, P,
S, T, W, V,
Y

E, D, G, H,
L, P, S, W,
V

A, E, D,
G, F, H, K,
M, N, P, S,
T, V, Y

E, D, G, H,
P, S, V

Min Y, P, K, T,
V

A, G, F, K,
N, P, T, V,
Y

A, G, F, K,
N, P, T, V,
Y

Y, P, K, T,
V

Intersection Y, P, K, T,
V

G, V A, G, F, K,
N, P, T, V,
Y

V
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Table 3.4: Optimized tRNA-AA molecules in C. ljungdahlii. AAs that the
original models both express lower tRNA amounts and use more than the median
MC tRNA location model for three carbon substrates and availability. Common
amino acids by substrate, growth rate, or all conditions were identified.

Growth rate Fructose CO CO2+H2 Intersection
Max C, G, F, I,

H, K, M,
L, Q, R, Y

C, G, F, H,
K, M, L,
Q, R, T,
W, Y

C, G, F, H,
K, M, L,
Q, R, T,
W, Y

C, G, F, H,
K, M, L, Q,
R, Y

Half G, F, H, K,
M, L, Q, R,
Y

C, E, M, L,
Q, P, W

E, G, F, H,
K, M, L,
Q, P, R, Y

Q, M, L

Min C, E, M, L,
Q, P, W

C, E, M, L,
Q, W, V

C, E, F, K,
M, L, Q, P,
R, T, Y

Q, M, C, E,
L

Intersection Q, M, L Q, C, M, L,
W

F, K, M, L,
Q, R, Y

Q, M, L
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[4] Pablo A. Nuñez, Héctor Romero, Marisa D. Farber, and Eduardo P.C. Rocha.
Natural Selection for Operons Depends on Genome Size. Genome Biology and
Evolution, 5(11):2242–2254, 2013.

[5] Alon Zaslaver, Avi Mayo, Michal Ronen, and Uri Alon. Optimal gene partition
into operons correlates with gene functional order. Physical Biology, 3(3):183–
189, 2006.

[6] Charles G Kurland. Major codon preference: theme and variations. Genetics



74

Evol. Biol. J. Mol. Evol. Gene Nature (London) Mol. Microbiol. J. Mol. Evol.
Yeast Lloyd, A. T. and Sharp, P. M, 167140(230):378–39797, 1993.

[7] Mario dos Reis, Renos Savva, and Lorenz Wernisch. Solving the riddle of
codon usage preferences: a test for translational selection. Nucleic acids re-
search, 32(17):5036–44, 2004.

[8] Hengjiang Dong, Lars Nilsson, and Charles G. Kurland. Co-variation of tRNA
Abundance and Codon Usage in Escherichia coli at Different Growth Rates.
Journal of Molecular Biology, 260(5):649–663, 1996.

[9] S Kanaya, Y Yamada, Y Kudo, and T Ikemura. Studies of codon usage and
tRNA genes of 18 unicellular organisms and quantification of Bacillus subtilis
tRNAs: gene expression level and species-specific diversity of codon usage
based on multivariate analysis. Gene, 238(1):143–55, 1999.

[10] Michael J McDonald, Chih-Hung Chou, Krishna B S Swamy, Hsien-Da Huang,
and Jun-Yi Leu. The evolutionary dynamics of tRNA-gene copy number and
codon-use in E. coli . BMC evolutionary biology, 15:163, 2015.

[11] David H Ardell and Leif A Kirsebom. The Genomic Pattern of tDNA Operon
Expression in E. coli . PLoS Computational Biology, 1(1):e12, 2005.

[12] Naama Wald and Hanah Margalit. Auxiliary tRNAs: large-scale analysis of
tRNA genes reveals patterns of tRNA repertoire dynamics. Nucleic acids
research, 42(10):6552–66, 2014.

[13] Joshua A. Lerman, Daniel R. Hyduke, Haythem Latif, Vasiliy A. Port-
noy, Nathan E. Lewis, Jeffrey D. Orth, Alexandra C. Schrimpe-Rutledge,
Richard D. Smith, Joshua N. Adkins, Karsten Zengler, and Bernhard O. Pals-
son. In silico method for modelling metabolism and gene product expression
at genome scale. Nature Communications, 3:929, 2012.

[14] Edward J O’Brien, Joshua A Lerman, Roger L Chang, Daniel R Hyduke, and
Bernhard Ø Palsson. Genome-scale models of metabolism and gene expression
extend and refine growth phenotype prediction. Molecular systems biology, 9:
693, 2013.



75

[15] Laurence Yang, Ding Ma, Ali Ebrahim, Colton J. Lloyd, Michael A. Saunders,
and Bernhard O. Palsson. solveME: fast and reliable solution of nonlinear ME
models. BMC Bioinformatics, 17(391), 2016.

[16] Colton J Lloyd, Ali Ebrahim, Laurence Yang, Zachary Andrew King, Edward
Catoiu, Edward J O’Brien, Joanne K Liu, and Bernhard O Palsson. CO-
BRAme: A Computational Framework for Building and Manipulating Models
of Metabolism and Gene Expression. bioRxiv, 2017.

[17] Joanne Liu, Colton Lloyd, Mahmoud Al Bassam, Ali Ebrahim, Jinu Kim,
Connor Olsen, and Karsten Zengler. Predicting proteome allocation, over-
flow metabolism, and metal requirements in Clostridium ljungdahlii . To be
submitted, 2017.

[18] Ron Caspi, Richard Billington, Luciana Ferrer, Hartmut Foerster, Carol A.
Fulcher, Ingrid M. Keseler, Anamika Kothari, Markus Krummenacker,
Mario Latendresse, Lukas A. Mueller, Quang Ong, Suzanne Paley, Pallavi
Subhraveti, Daniel S. Weaver, and Peter D. Karp. The MetaCyc database
of metabolic pathways and enzymes and the BioCyc collection of path-
way/genome databases. Nucleic Acids Research, 44(D1):D471–D480, 2016.

[19] Mike Withers, Lorenz Wernisch, and Mario dos Reis. Archaeology and evolu-
tion of transfer RNA genes in the Escherichia coli genome. RNA (New York,
N.Y.), 12(6):933–42, 2006.

[20] Matthew Scott, Carl W. Gunderson, Eduard M. Mateescu, Zhongge Zhang,
and Terence Hwa. Interdependence of Cell Growth and Gene Expression:
Origins and Consequences. Science, 330(6007):1099–1102, 2010.

[21] John H. Andrews and Robin F. Harris. r- and K-Selection and Microbial
Ecology. pages 99–147. Springer, Boston, MA, 1986.

[22] Ali Ebrahim, Joshua A Lerman, Bernhard O Palsson, and Daniel R Hyduke.
COBRApy: COnstraints-Based Reconstruction and Analysis for Python.
BMC Systems Biology, 7(1):74, 2013.

[23] John D. Hunter. Matplotlib: A 2D Graphics Environment. Computing in



76

Science & Engineering, 9(3):90–95, 2007.
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Chapter 4

Reconstructing and modeling

protein translocation and

compartmentalization in

Escherichia coli

4.1 Introduction

Compartmentalization provided by membranes is essential for life. Com-

partmentalization allows unique internal microenvironments, permits harvestable

energy gradients, provides organizational structure, protects the cell, and more.

Membranes also represent significant physical barriers. Thus, cells have evolved

pathways that allow molecule transport between compartments. As a gram-negative

bacterium, Escherichia coli has two membranes: An inner, tightly regulated mem-

77
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brane and an outer, more porous membrane (see [1, 2] for review). In order to

achieve desired membrane functions, E. coli has evolved a system to translocate

protein into their appropriate locations.

There is a wealth of scientific information on protein translocation pro-

cesses, but holistic studies on their system-wide effects are lacking. Such genome-

wide studies are important as protein translocation enables key cellular functions.

These functions need to be put into context of all other cellular functions to un-

derstand their energetic requirements, general interactions and balance with the

rest of the cell. To do so, one must take a systems approach, where comprehensive

molecular processes and interactions are reconstructed into a self-consistent and

computable format. A couple of recently published studies have taken steps in this

direction. In a comprehensive approach to cellular processes, the recent whole-cell

model of Mycoplasma genitalium incorporates a SecA+Sec translocase pathway

into one of its protein formation modules [3]. In this model, translation is uncou-

pled from translocation, even though the two processes can happen concurrently

[4]. Furthermore, protein translocation rates are not calculated de novo but are

instead based on user-inputted gene expression levels and energy-carrier metabo-

lite concentrations (calculated prior from a separate module). Thus, set expression

levels of protein translocases operate as a constraint on other processes; for exam-

ple, metabolism uptake is dependent on the number of transporters. Additionally,

membrane lipid formation is driven by a biomass objective function [3], whereas

a computation based on a cell’s surface area might be more appropriate. In an-

other study, a larger effort was focused on the genome-scale reconstruction of the

protein secretion pathway in Saccharomyces cerevisiae [5]. This model of protein
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secretion is stand-alone’ and is not integrated with additional cellular processes.

It can be used as a scaffold on which omics data (e.g., RNA-seq) can be overlaid

to estimate effects of protein abundance and metabolic costs of translocation on

the cell. Although these models contain some detail about protein translocation,

both are reliant on expression data input and are not dependent on the demands

of cellular events. Finally, another notable model incorporated membrane space

into a genome-scale model of E. coli to demonstrate that while the membrane

may cap certain fluxes, leading to simultaneous respiration and fermentation at

high growth rates, metabolic demands drive the membrane proteome. Although

this model lacks the process of protein translocation and has only four integral

proteins, it demonstrated that the consequence of protein translocation, namely

compartment formation, truly constrains cellular events [6].

A recent genome-scale model of metabolism and gene-expression of E. coli,

called a ME-model [7] or specifically, the retroactively named iOL1650-ME model

(following a previous naming convention [8]), affords us the opportunity to inte-

grate protein translocation seamlessly with cellular processes. Although iOL1650-

ME describes the synthesis of all the proteins in the proteome, the proteins are not

compartmentalized. In this work, we significantly expanded the validated iOL1650-

ME model [7] to include a comprehensive reconstruction of protein translocation

pathways. The expanded iOL1650-ME includes a reconstruction of lipoprotein

biogenesis, the incorporation of four distinct protein compartments (cytoplasm,

periplasm, the inner and the outer membrane), published enzymatic rates of the

translocases and diffusion rates of outer membrane porins, and a membrane con-

straint based on cell morphology all integrated into one reconstruction. The ex-
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panded model, hereafter referred to as iJL1678-ME, allows for de novo prediction

of enzyme abundances and their cellular location as well as the constraining effects

of membrane production. We apply iJL1678-ME to show how it is predictive of

compartmentalized cellular content for validation, describe its utility and limita-

tions, and show how it can be applied to examine a broadened scope of applications

including targeted inhibition of proteins.

4.2 Results and Discussion

All proteins in E. coli are synthesized in the cytoplasm, but over 20% of E.

coli ’s protein-coding open reading frame (pORF) are annotated to encode protein

with non-cytoplasmic functions, and an estimated 15% of cellular protein mass is

in the cell envelope [9, 10]. These proteins are assisted by translocase complexes

to get to their cellular destinations. Depending on their final location and bio-

chemical properties, the translocation route taken for a particular protein involves

one of three integral inner membrane translocases (Sec, Tat, and YidC) and per-

haps an outer membrane translocase (LolB and Bam) (see [1, 11] for review). The

most-studied and ubiquitous translocase is the Sec complex [12]. The channel-

forming Sec protein has two chaperone pathways that converge on it. One, the

SRP/Sec pathway, brings nascent peptides to the Sec complex and primarily uses

the kinetic energy of translation to drive protein integration into the inner mem-

brane [4, 13, 14]. Sometimes, the mediator YidC binds to Sec complex to enhance

proper membrane integration, but on its own, YidC is an insertase that translo-

cates a couple of essential proteins [15, 16, 17]. Alternatively, proteins moving to
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the periplasm and beyond, generally follow the SecB/Sec pathway which uses an

ATPase, SecA, to thread chaperoned, unfolded proteins through the Sec complex

and into the periplasm [18, 19, 20, 21]. Furthermore, non-cytoplasmic, folded pro-

teins which often containing cofactors, take the Tat translocase, a dynamic protein

complex that recruits TatA subunits to adjust its channel size appropriately and is

driven by an electrochemical gradient [22, 23, 24]. To get to the outer membrane,

proteins must first cross the inner membrane, then take one of the two pathways:

Lol and Bam. The Lol pathway excises lipoproteins from the inner membrane

and incorporate them into the outer membrane [25, 26]. In the Bam pathway,

unfolded β-barrels are chaperoned in the periplasm, typically by SurA [27, 28], to

the Bam complex, which facilitates their proper insertion into the outer membrane

[29]. Alterations to these pathways exist, but these five translocation pathways are

thought of as canonical pathways [25, 30]. All this information enables a bottom-up

reconstruction of the protein translocation network in E. coli.

4.2.1 Reconstruction of protein translocation processes and

their incorporation into iOL1650-ME

A bottom-up procedure to reconstruct the network of protein translocation

and lipoprotein biogenesis within a genome-scale model of metabolism and gene-

expression in E. coli [7] was developed (Fig 4.1A). The result of implementing this

procedure was a biochemically, genetically, and genomically structured network

[31] that enabled the analysis of the molecular effects of protein translocation in

context of other networks using constraint-based analysis methods. The network

reconstruction procedure involved five major phases.
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Reconstruction of protein translocation pathways

Through an extensive literature search, the SecB/Sec, SRP/Sec, Tat, Lol,

Bam, and YidC insertion translocation pathways were identified for inclusion into

the reconstruction (Fig 4.1B) (see [1, 11] for review). Three additional pathways

were also included, based on case studies demonstrating that the SRP/Sec pathway

occasionally requires assistance from YidC and/or SecA to have properly formed

integral proteins [25, 30, 32]. In addition to protein translocation, lipoprotein

biogenesis pathways were reconstructed, as lipoproteins are located in membranes

and are essential through their structural and functional uses (Methods) [33, 34,

35]. In the end, 27 pORFs and one RNA gene, which together form 16 protein

complexes, were added to the model to enable protein translocation (Additional

file 1 Tables 1 & 2). Furthermore, based on the sequence of events in each of

these pathways, a set of mechanistic reactions (i.e., template reactions [36]) were

developed that could be applied to and individualized for every pORF.

Compartmentalization

The incorporation of protein translocation pathways requires proteins to

have defined compartmentalization. First, two new compartments, inner and outer

membranes, were added to the three existing compartments in iOL1650-ME (cy-

toplasm, periplasm, and extra-cellular) [7]. Using the protein databases EchoLo-

cation [37], Uniprot [38], and Ecocyc [39] as well as the bioinformatic programs

PSORTb [40] and TMHMM [41], the 1,568 pORFs included in the reconstruc-

tion were assigned to compartments (Fig 4.1C). pORFs with a transmembrane

component or a lipid membrane anchor were assigned to either the inner or outer
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membrane; otherwise, pORFs were either cytoplasmic or periplasmic. Proteins

composed of multiple pORFs were assigned to the compartment of its components

(Additional file 1 Table 2), but if any of its pORFs was in a membrane then the

entire complex was assigned to that membrane, with the outer membrane taking

precedent over the inner(e.g., AcrAB-TolC multidrug efflux system is assigned to

the outer membrane). For example, ATP synthase has pORFs located in the in-

ner membrane (AtpB, AtpC, AtpE, AtpF) and cytoplasm (AtpA, AtpD, AtpG,

AtpH), but the synthase itself is assigned to the inner membrane so that it may

interact with metabolites in both the cytoplasm and periplasm.

The compartment assignment resulted in 71% of pORFs being assigned to

the cytoplasm, 21% to the inner membrane, 6% to the periplasm, and 2% to the

outer membrane.

Assigning translocated proteins to pathways

Protein translocation reactions were formulated for each pORF. Using a

set of rules based on experimental data, protein location, and physical properties

(Additional file 1 Table 3), non-cytoplasmic annotated pORFs were assigned to

translocation pathways (Fig 4.1D). The developed template reactions allowed for

the methodological creation of each pORF’s translocation reactions and their sub-

sequent incorporation into the reconstruction. Additional pathway development

steps included determining the amount of ATP hydrolyzed by SecA for each pORF

(i.e., 1 ATP per v25 amino acids) [42], assigning 23 pORFs to lipoprotein biogen-

esis [37], and calculating the number of TatA’s needed for each Tat-translocated

pORF [23] (Additional file 1 Table 1, Fig 4.2). Published translocase kcat values
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were associated with appropriate proteins in the translocation pathways. These

values [43, 44, 45, 46, 47] were incorporated into the model through coupling con-

straints [36, 48], which account for turnover rates by linking gene expression to

metabolism through the dependence of reaction fluxes on enzyme concentration

(Fig 4.1D) [35]. Additionally, outer membrane porins were represented to behave

as passive-diffusion channels [2] in the reconstruction. Instead of identical turnover

rates for all outer membrane porins in the cell, incorporation of porin-specific cou-

pling constraints allowed the model to account for individualized solute diffusion

rates based on effective porin radius, hydrodynamic solute radius, membrane thick-

ness, and growth rate (see Additional file 1 Table 4 for list of solutes, which are

also exchange metabolites). This formulation represents the cross-sectional area a

solute can pass through and distance a solute had to travel to reach the periplasm

[49]. Without these coupling constraint updates, the model was unable to predict

accurate translocase levels (Fig 4.3).

Incorporating cell-size and membrane constraints

Cell envelope production was fundamentally changed to reflect the cell’s

shape and composition more accurately. The previously-developed iOL1650-ME

accounts for production of kdo 2 lipid IV, phospholipids, and murein through

growth rate dependent demands scaled to cell size [7]. These demands were identi-

fied as key areas for improvement to a more mechanistic description in iJL1678-ME.

Changes to the model included adding murein recycling, a lipoprotein demand, and

a membrane spatial constraint. The peptidoglycan layer protects the cell from lysis

by providing a physical structure, and it also dynamically renews its components
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by using enzymes located in all compartments of the cell (see [50] for review).

To reflect this renewal process, AmpG permease transports anhydro-muropeptides

to equal 45% of the murein demand, which causes a murein recycling loop [51].

Lipoproteins are also important for structural integrity, and the number of lipopro-

teins that have been estimated in a cell, 7x105, is a significant amount of mass

[10], so a growth-rate scalable lipoprotein demand, using Braun’s lipoprotein [52],

was added. Finally, because there are inner and outer membrane compartments,

membrane demands and composition can be more explicitly described with the

genome-scale model. Membrane surface area, which is a function of growth rate,

is required to be occupied completely by proteins and lipids (see Methods). The

surface area of integral proteins was calculated from their mass, except for lipopro-

teins which were set to the approximate cross-sectional area of their lipid moieties

(Additional file 1 Table 5) [10, 23, 53]. The rest of the outer membrane outer

leaflet is filled in with kdo 2 lipid IV while the other three membrane leaflets are

occupied by a mixed composition of phospholipids (see Methods for mathematical

formulation of the membrane constraint) [54, 55]. This novel membrane constraint

not only allows a variable membrane proteome, but it also ensures that the cell is

completely covered by two membranes.

Updating model parameters

Two model parameters were updated to reflect the new reconstruction con-

tent. The growth-associated maintenance (GAM) was updated from 35 to 34.98

ATP mmol *gDW−1 to account for the ATP spent translocating proteins out of

the cytoplasm, which is small compared to the cell’s total energy production but
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expensive per non-cytoplasmic protein (0.02 for translocating 2.3x10−3 protein

mmol*gDW−1, or 85.7 ATP for each non-cytoplasmic protein) . Also, the out-

of-scope protein proportion of proteome, a parameter introduced in iOL1650-ME

to account for proteins expressed in vivo but actively utilized by the network re-

construction [7, 56], was changed. As iJL1678-ME includes more pORFs, this

parameter’s value had to be reduced by the expressed mass of new protein con-

tent. Thus, the out-of-scope protein proportion was changed from 0.45 to 0.36 to

reflect iJL1678-ME’s increased comprehensiveness. Taken in whole, the improved

network reconstruction demonstrated that there is enough scientific literature to

accurately reconstruct protein translocation in a genome-scale model. As a result

of having this reconstruction, it was possible to compute physiological aspects of

the cell envelope, which converges to a fully comprehensive in silico model of E.

coli.

4.2.2 Proteomic shifts highlight the significance of new

content in iJL1678-ME

iOL1650-ME and iJL1678-ME enable quantitative predictions of genome-

scale proteome abundances. Instead of requiring input expression data, these mod-

els calculate the proteins necessary to maximize growth rate through a metabolism-

centered network. However, not only does iJL1678-ME contain more reconstructed

content, but it also has a reformulated cell envelope representation that requires

more membrane production, phospholipid variety, and murein recycling. To demon-

strate the difference between the two ME-models, the computed protein expression

fluxes in glucose M9 minimal media were compared (Fig 4.4, in silico media com-
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position given in Additional file 1 Table 6). Although the majority of pORFs

(1475) were approximately the same in both model simulations, 32 of the genes

were differentially expressed, and a number of proteins were uniquely expressed

(Fig 4.4A). Clearly, accommodating protein translocation has a systemic effect on

the computed proteome.

Looking first at pORFs expressed in both models, the largest outlying sub-

group is the cell membrane and envelope related proteins. This differential expres-

sion was due to the addition of murein recycling, which increases overall murein

production (145%) and associated ATP expenditure (140%, which is 2.3% of all

ATP production in iJL1678-ME). It has been previously reported that murein recy-

cling can come to a significant cost to the cell [51]. As for carbohydrate metabolism,

the porin coupling constraint forced iJL1678-ME to consider the slower diffusion

rate of acetate verses gaseous molecules; thus, iJL1678-ME utilized acetate over-

flow (i.e., fermentation) pathways less than iOL1650-ME. Not only was its acetate

secretion less (1.5 verses 8.1 mmol*gDW−1*h−1), but it also downregulated two

genes involved in small carbon molecule metabolism (eutD and purT). Instead,

iJL1678-ME adjusted its energy production pathways so that more of its ATP

was generated through oxidative phosphorylation. As a consequence, expression

of TCA cycle proteins and succinate dehydrogenase was greater. Finally, the col-

lective increase in protein expression due to the expanded scope of iJL1678-ME

led to greater expression of transcription, vitamin B12 transporters, and nucleotide

metabolism proteins.

When examining the uniquely expressed genes, 65 genes were unique to

iJL1678-ME (Fig 4.4B), and 6 to iOL1650-ME. Of the uniquely expressed pORFs
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in iJL1678-ME, 42% were reconstructed in this paper and thus not contained in

iOL1650-ME. The rest were due to murein recycling, more phospholipid variety (as

part of the membrane constraint), and an increase in oxidative phosphorylation,

which in turn required heme metabolism. As for the uniquely expressed proteins

in iOL1650-ME, these proteins were due to isozymes employed (e.g., AcnA verses

AcnB in iJL1678-ME).

In summary, the increased scope of modeled genes in iJL1678-ME caused

a notable change in protein expression levels, and these shifts can be directly

attributed to model updates and constraints derived from biochemical knowledge

available in literature. The resulting proteomic content was examined further.

4.2.3 In silico computations recapitulate in vivo data

To estimate the accuracy of the iJL1678-ME in silico proteome, glucose M9

minimal media simulation results were compared to experimental data (Additional

file 1 Table 6). Unlike iOL1650-ME, iJL1678-ME calculates a compartment-specific

proteome with absolute protein levels. Although this ability may be especially use-

ful in studying the membrane proteome, an area plagued by hardship due to its

hydrophobic and amphiphilic nature, it has also created difficulty in comprehen-

sively evaluating iJL1678-ME’s results. Even though the correlation between the

transcriptome and proteome is poor on a protein-to-transcript level [57, 58], RNA-

seq is a robust currently-available omic data-source which covers genome-scale ex-

pression in all compartments. Assuming that discrepancies in transcript-to-protein

ratios are reduced through averaging, RNA-seq data (GEO accessions: GSE48324

[59] and GSE55367 [60]) was assumed as a one-to-one proxy for protein levels. Pro-
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tein masses were calculated from amino acid sequences and normalized by relative

fractional proteome mass. Once a comprehensive quantitative proteomics dataset

is available, it will be important to validate that the same functional groups are

under-predicted.

Since the network reconstruction expanded the scope of iOL1650-ME, we

sought to validate the new features of the genome-scale model. The computed mass

of all proteins associated with a translocation pathway (color labeled in Fig 4.1B) as

a fraction of total cellular protein mass is largely similar to in vivo data (Fig 4.5A,

Fig 4.6). The most notable outlier is the Tat pathway. The difference between

in silico and in vivo expression may be due to the fact that a TatBC complex

forms multiple channels to simultaneously translocate substrates [61, 62], but in

iJL1678-ME model, each TatBC complex translocates a single substrate at any

point in time. To explore the possibility of a different representation for TatBC,

the mass of TatBC was adjusted by four-fold (the maximum demonstrated number

of bound precursor proteins) and this improved the in vivo to in silico correlation

(R2=0.897 to 0.925, p-value=0.014 to 0.009), which hints at the possibility TatBC

commonly forms multiple channels per complex in vivo. These results demonstrate

that bottom-up reconstruction approaches and constraint-based modeling can esti-

mate relative protein levels when incorporated with turnover rates and metabolic

demands and serves as validation of the reconstructed content (see Fig 4.3 for

translocation without kcat).

iJL1678-ME’s ability to accurately compute protein amounts extends to

compartmentalization, which is enabled due to protein translocation (Fig 4.5B).

Simulation results predict that the mass of cytoplasmic proteins constitute approx-
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imately 79% of the proteome, while the inner membrane protein masses are 10%,

periplasmic 1.0%, and outer membrane 10%. Calculating these same values for in

vivo measurements gave 76.6%, 10.6%, 4.9%, and 7.9%, respectively. In a com-

plementary analysis, iJL1678-ME estimated outer membrane protein values closer

to published numbers than in vivo (RNA-seq) data’s approximation of the outer

membrane proteome. The in silico protein numbers reflect experimental published

amounts at 7.2x105 lipoproteins verses 7x105 and 1.5x105 porins verses 2x105 [10],

which implies that the RNA-to-protein ratio is not one-to-one for outer membrane

proteins. As there are less proteins in the non-cytosolic compartments, the aver-

aging effect of large groups is less effective, which may explain the discrepancy.

Where do the similarities and differences between the computed and mea-

sured compartment-specific protein mass arise? To answer this question, the pro-

tein masses were broken down into smaller subgroups, as labeled in iJO1366 which

used EcoCyc and GO annotations [39, 63]. All 1,568 pORFs were categorized by

functional annotation as opposed to a gene-by-gene comparison, with the assump-

tion that a larger sample size would reduce the discrepancies between protein and

RNA abundances. A comparison between computational predictions and experi-

mental data was performed using linear regression of log-log values with zero values

being removed from further calculations (Fig 4.7). A normal probability plot of

the standardized residuals of the initial model (Fig 4.8) revealed that while most

points could be described by a normal distribution, five points describing lowly-

expressed functions in iJL1678-ME were out of range (Fig 4.7A). These five points

were separated for further analysis while the reduced set of points was refitted,

resulting in a more accurate linear model (Fig 4.7B).
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Due to their departure from normalcy, the five outliers in Fig 4.7A were ex-

amined to identify reasons for modeled discrepancies. The five points covered genes

involved with inorganic ions, cofactor and prosthetic groups, protein maturation,

and metabolite transportation. Not only is the available knowledge of metal ion

and cofactor requirements sparse [64], but the model demands the incorporation

of only the most necessary groups into proteins. As result, expression of inorganic

ion, cofactor, and prosthetic related pORFs are low. Similarly, protein maturation

pORFs are required for proper inclusion of ions and groups; they also assist mis-

folded proteins, whose possibility are not computed in optimal situations. Lastly,

iJL1678-ME predicts a lower periplasmic mass for small metabolite transportation

as compared to in vivo data. Closer examination of this functional group revealed

that the model has severely decreased the diversity of ABC transporters to five

protein species. However, E. coli produces multiple species of ABC transporters in

preparation for environmental changes [65]. This readiness to consume a variety of

substrates improves the cell’s overall fitness, but when confronted with glucose as

the sole carbon substrate, the varied over-expression limited the predicted optimal

growth rate, according to iJL1678-ME.

4.2.4 Applications predict the effect of molecular pertur-

bations

Genome-scale models of metabolism have enjoyed many successes in eluci-

dating interactions, metabolic engineering, drug targeting, and more. Up to this

point in time, perturbations in genome-scale models are often focused on gene

knockouts and constraining a particular reaction to a bound [66]. iJL1678-ME
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can be used to provide new insights which cannot be currently be achieved with

existing models; that is, iJL1678-ME can be used to estimate the detailed effects

of molecular processes and physical parameters and on a much broader scale. This

ability of iJL1678-ME will be demonstrated through two examples: Membrane

crowding and Sec pathway inhibition.

Assessing the consequences of membrane crowding

Molecular crowding in the finite space of cells limits metabolic activity

[6, 67]. Such crowding constraints are found both in the volume of the cell (also

called packing’ constraints) as well as the surface area of its membranes. iOL1650-

ME, and consequently iJL1678-ME, implicitly considers volume crowding effects

because density is constrained based on the overall growth rate [7]. Limited surface

area in the membranes are thought to constrain major aspects of metabolism and

physiology; for example, it may force E. coli to employ a mixture of respiration and

fermentation to maximize growth rate [6, 68]. Thus, as part of the reconstruction

process, a constraint on the fraction of protein in the membranes was incorporated

into iJL1678-ME. This membrane constraint is mechanistic and imposed on a

genome-scale, thereby representing a unique opportunity for a detailed assessment

of the consequences of limited membrane space. The results of restricting the total

surface area of integral membrane proteins in the model are described.

Computations of growth optimization were performed with constraints on

the protein-to-lipid surface area ratios in both the inner and outer membranes.

These computations revealed that the maximum growth rate was achieved when

the fraction of membrane surface area occupied by protein was 42% and 25% for the
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inner membrane and outer membrane, respectively. Furthermore, over- and under-

production of membrane proteins did not affect the maximum growth rate with

the same severity. The uneven slopes from the apex at 42% and 25% indicates

that over-expression of membrane proteins may be less taxing on growth rate

than under-expression, suggesting that it may in the cell’s favor to over-produce

membrane proteins than under-produce (Fig 4.9A).

As the inner membrane contains a diverse set of proteins that are important

for metabolism, iJL1678-ME was used to examine the effects of spatial limitations

on the inner membrane proteome. Although oxidative phosphorylation is much

more efficient than alternate energy producing pathways, E. coli at high growth-

rates and in excess glucose also employs fermentation pathways [69]. The electron

transport system (ETS) is embedded in the membrane, and limited membrane

space for the ETS may be why E. coli resorts to the mixed energy-production

strategy [6]. iOL1650-ME, on the other hand, predicted that such a phenomenon

occurs based on the trade-off between ATP generation and protein production

costs [7].

In iJL1678-ME, acetate secretion has been almost eliminated compared to

iOL1650-ME (8.1 to 1.5 mmol*gDW−1*h−1), due to the porin constraint. Differ-

ences in diffusion rates for each metabolite allowed the model to recognize that

gases diffuse faster than solubilized carbon molecules, and complete metabolism

of a carbon source becomes a better investment. However, fermentation returned

when the inner membrane protein surface area decreased below 50%, as demon-

strated by the increased secretion of acetate (Fig 4.9B). Within these regions of

constraining protein-occupied surface area, the cell model produced less oxidative
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phosphorylation products, which includes the ETS, instead of glucose PTS per-

meases and transporters for continued and increased glucose uptake, as previously

hypothesized (Fig 4.9B & C) [6]. At extremely low surface areas allocated to

proteins (≤10%), there was not enough room to accommodate NADH dehydroge-

nase in the membrane. Instead, alternate dehydrogenases were expressed. Thus,

to maximize growth rate, iJL1678-ME choses to increase fermentation rates with

decreased membrane space.

Once membrane space permits complete metabolism of glucose influx at

50% protein-occupied surface area, fermentation pathways are no longer heavily

employed which improves metabolic efficiency, hence the drop in in glucose uptake

and increase oxygen uptake (Fig 4.9B). However, beyond 50%, iJL1678-ME makes

a trade-off between producing more ETS, an expensive investment, to alternative

proteins (Fig 4.9C). This shift in protein expression to accommodate the trade-off

of ETS may play out similarly for proteins not required for metabolism, protein

translocation, or metabolite transport but are essential for other processes (e.g.,

expression of flagella for locomotion).

Where do in vivo cells fall along this scan across inner membrane occu-

pancy? The calculated in vivo surface area of 28.5%, based on RNA-seq data,

puts a cell below optimal membrane occupancy. Within this range of in vivo sur-

face area, the increased acetate secretion hints that membrane space constraints

may indeed be why cells employ combinatorial energy production pathways at

maximum growth rates, as Zhuang et al. had hypothesized [6]. Furthermore, oxy-

gen uptake drops severely when the protein surface area approaches the in vivo

value of 28.5% (17 mmol*gDW−1*h−1 which is close to the measured values of
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15 mmol*gDW−1*h−1 [70] and 18 mmol*gDW−1*h−1 [71]). This finding implies

that a finite inner membrane protein surface area can limit the oxygen uptake and

usage rate, thereby lowering the growth rate to less than the maximum potential.

Perturbations in network performance by changing enzymatic efficiency

The Sec pathway is a key pharmaceutical target due to its ubiquity and

essentiality. For example, SecA is particularly attractive since it does not have a

human homologue, and a recent non-cellular assay for SecA activity was developed

specifically for drug discovery [72]. However, effects of decreased Sec translocase

activity on a cell are largely unknown. While reactions in metabolic models can

be capped to mimic protein inhibition, iJL1678-ME takes this ability further by

targeting enzymatic efficiencies, similar to the effects of drugs. Thus, the impact

of inhibiting Sec translocation on overall cellular phenotype was analyzed with

iJL1678-ME by targeting key enzymes. SecA is the energy driver for the SecB/Sec

pathway, and the ribosome is the energy driver for the SRP pathway. Together,

these two pathways meet at SecYEGDF (Fig 4.1B). Due to their importance, these

three proteins were inhibited.

When the kcat values of SecA, SecYEGDF, and the ribosome were re-

duced in a step-wise manner, growth rate was affected differently in each situ-

ation (Fig 4.10A). The relationship between ribosome inhibition and growth rate

is nearly linear. SecA and SecYEGDF, on the other hand, behave in a hyper-

bolic manner. Thus, unlike ribosome, the activity of SecA or SecYEGDF must be

nearly eliminated (i.e., SecA<2.5%, SecYEGDF<5%) to reduce the growth rate

by half. A closer look at these extremely low enzymatic rates reveals that the in
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silico membrane proteome was dominated by SecYEGDF. Therefore, membrane

occupancy was capped at 50%, as done by Zhuang et al [6], to determine whether

spatial limitations may change the overall behavior to Sec pathway perturbations.

The inhibition simulations were repeated, showing that ribosome was not affected

by membrane limitations, while effects were observed when SecA and SecYEGDF’s

turnover rates dropped below two amino acids per second (Fig 4.11). However, re-

gardless of membrane space, both SecA and SecYEGDF must be severely inhibited

to significantly decrease growth rate. This example of targeting Sec translocation

shows that iJL1678-ME can be used to discover cellular effects of selected per-

turbations. Other molecular behaviors, like combinatorial drug effects, may find

similar answers through iJL1678-ME. For example, simultaneously targeting the

two chaperone pathways for SecYEGDF, namely SecA and ribosome, is not a

synergistic approach, and SecA must still be targeted for complete inhibition to

significantly lower the growth rate (Fig 4.10B).

4.3 Conclusions

Taken in whole, iJL1678-ME stoichiometrically represents the wealth of

knowledge known for protein translocation of E. coli in an integrated and com-

putable format. For the first time, a bottom-up stoichiometric reconstruction

(with turnover rates) predicted protein levels without expression data as inputs

and imposed constraints. Furthermore, the ability to explicitly model protein

translocation and compartmentalization of proteins is a significant advancement

for genome-scale models, as it alleviates the need for fixed demands for the newly
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reconstructed content. In combination with the membrane constraint, proteomic

predictions represent a milestone for constraint-based modeling. As an example,

iJL1678-ME could be utilized for designing fine-tuned engineered strains by identi-

fying how the membrane proteome may react to overexpression of non-cytoplasmic

proteins and for determining ways to counteract undesired effects through selec-

tive gene manipulation. Through exploration of modeled membrane formation

contextualized within protein translocation and metabolism, iJL1678-ME demon-

strated that bottom-up systems-biology can be used to predict and analyze cellular

physiology, thereby providing an opportunity to assist and supplement research on

fundamentally challenging areas which may otherwise be difficult to study.

Improvements in iJL1678-ME are likely to come through further experimen-

tal evidence. For example, more elucidation is required on the exact stoichiometry

of TatA proteins per substrate and complex before such information can be in-

corporated into iJL1678-ME. Other ME-model based reconstructions may include

a module to simulate plasmid induction and subsequent protein secretion. Fi-

nally, iJL1678-ME’s predictive capabilities could be improved by incorporating

data types such as ribosome profiling, quantitative proteomics, and additional kcat

values. In conclusion, ME-models with compartmentalization and membrane con-

straints open exciting new avenues for the use of genome-scale models to interpret

biological functions, to form the basis for strain designs, and understand infectious

disease.
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4.4 Methods

4.4.1 Reconstruction

A metabolism and gene expression model of E. coli, retroactively named

here iOL1650-ME following an established convention [8], was used as the starting

basis on which protein translocation reconstruction was built upon [7].

Literature review led to identification of five main translocation pathways

plus three alternate assisting proteins. These pathways were developed into tem-

plate reactions to which each of iJL1678-ME’s pORFs could be applied to (see

”Simplifed templates for translocation pathways” below).

Based on subcellular location annotations in Echolocation, EcoCyc and

Uniprot (discrepancies and unknowns settled through PSORTb and TMHMM),

all pORFs and protein complexes were assigned to one of four compartments: Cy-

tosol, inner membrane, periplasm, and outer membrane [9, 37, 38, 39, 40]. The

inner and outer membrane compartments are new additions to iOL1650-ME. New

genes were also added to allow protein translocation and lipoprotein biogenesis.

Reactions in iOL1650-ME were modified so that all proteins are compartmental-

ized. Furthermore, reactions were curated to ensure that reactions account for

physical barrier membranes present. For example, if a reaction involves metabo-

lites located in the cytoplasm and the periplasm, an inner membrane protein must

be present for the reaction to occur.

Proteins with known experimental evidence were assigned to their respec-

tive translocase pathways. Based on these known peptides and current hypotheses,

a set of rules was developed so that proteins without an experimentally-validated
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pathway could be assigned to one. These rules were established primarily by an-

notated subcellular location and secondarily by the type of protein (Additional

file 1 Table 1). However, each pathway operates at its own speed. iOL1650-ME’s

coupling constraints offer a solution for this problem, as the coupling constraints

put limits on fluxes by linking reactions to enzyme degradation and the catalytic

rate kcat [7]. Using this established constraint, turnover rates were applied to the

translocase pathways to improve the model’s ability to predict the membrane pro-

teome (see Fig 4.3 for translocation without kcat). Key proteins of each pathway

had calculated turnover rates, and these kcat values were applied to all other en-

zymes in the pathway that have an interaction with that enzyme. The turnover

rates of SecA, LolCDE, Bam, and Tat were all known from literature while the

turnover rate for the SRP pathway was assumed to be equal to ribosome translation

because of co-translational translocation [43, 44, 45, 46, 47]. For Tat-translocated

proteins, a best fit polynomial equation for the number of TatA’s verses average

channel diameter was used to calculate the number of TatA’s required for each [23].

Protein diameter was calculated by multiplying molecular weight by 1.21 to get

volume and assuming a sphere shape [53]. Values were rounded up to the nearest

integer.

Lipoprotein biogenesis was also determined to be relevant, and thus was

included in the reconstruction process. The model has the flexibility to choose

fatty acids from any available phospholipid. The proteins are modified by Lgt,

Lsp, and Lnt to become lipoproteins.

Murein demand was adapted from the original iOL1650-ME model. How-

ever, since it is known that 45% of murein is recycled, the model is forced to utilize
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the muropeptide transporter (AmpG), which has been implicated in the process

of murein recycling [51], so that the flux of transported murein peptides is 45% of

the murein demand (0.01389 mmol*gDW−1).

Simplified templates for translocation pathways

SRP/Sec pathway

Ribosome-nascent chain + SRP + GTP + FtsY-GTP + Sec complex →

Ribosome-nascent chain-Sec complex (translation) + SRP + FtsY + 2GDP + 2Pi

→

Protein (inner membrane) + Ribosome + Sec complex

SecB/Sec pathway

Peptide (cytosol) + SecB + SecA +Sec complex + 1 ATP/25 aa → Peptide

(periplasm) + SecB+ SecA + Sec complex + (1ADP + 1Pi)/25 aa

YidC insertion

Ribosome-nascent chain + SRP + YidC→ Protein (inner membrane) + Ribosome

+ SRP + YidC

Tat pathway

Peptide (cytosol) + Tat chaperone + TatBC + (1+)TatA → Protein (cytosol) +

TatBC + (1+)TatA

Lol pathway
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Lipoprotein (inner membrane) + LolCDE + LolA + ATP →

Lipoprotein-LolA (periplasm) + LolCDE + ADP + Pi + LolB →

Lipoprotein (outer membrane) + LolB + LolA

Bam pathway

Peptide (periplasm) + SurA + Bam complex →

Peptide (outer membrane) + SurA + Bam complex

Simplified template reactions for lipoprotein biogenesis

Peptide (inner membrane) + Lgt + pg →

Prolipoprotein + g3p + Lgt + LspA →

Apolipoprotein + LspA+ amide linked fatty acid + Lnt → Lipoprotein + apg +

Lnt

4.4.2 Outer membrane porins

As many as 2x105 porins have been determined to be in the outer mem-

brane [10]. Thus, to accurately account for these pathways, the outer membrane

porins were coupled with diffusion rates [49, 73, 74]. In iJL1678-ME, the kcat values

of the outer membrane porins are individualized for every combination of solute

and porin, producing unique reactions reflecting effective diffusion rates based on

diameters of solute and porin (Additional file 1 Table 4). To calculate the con-

centration difference between the extra-cellular environment and the periplasm,

only porins with calculated effective diameters remained in the model (Table 4.1).

The diameters for all possible solutes were calculated using MarvinSketch assum-
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ing (1) the solutes were suspended in water (solvent radius: 1.4 Å) and (2) the

solvent accessible surface area was a sphere, MarvinSketch 6.1.0, 2013, ChemAxon

(http://www.chemaxon.com). With all the values known and inputted, this leaves

the concentration difference between the extracellular (Ce) and periplasm (Cp),

Ce-Cp, as the sole variable. Using an initial batch culture simulation in glucose

M9 minimal media with the assumption Cp << Ce, the total flux of metabolite

passage through outer membrane porins was calculated. Using iJL1678-ME’s flux

results of outer membrane trafficking, the known number of porins (2x105 per cell)

[10], the solute diffusion rate through porins, and the porin constrain equations, a

series of simulations with varying total solute concentration differences were run to

estimate the approximate difference to such that number of porins produced equals

the experimental value [75]. This concentration difference, 6.5x10−4 was incorpo-

rated into the porin diffusion rates as the default value, which may be adjusted by

the user.

Formulation for diffusion rates through outer membrane porins

Variable definitions

P Permeability coefficient

D Free diffusion coefficient

d Thickness of the membrane

ao total cross-sectional areas of all pores

A Total area of the outer membrane

V Rate of diffusion of solutes across the outer membrane

Ce Concentration of the extra-cellular solutes
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Cp Concentration of periplasmic solutes

R Gas constant

T Temperature

NA Avogadro’s number

n Dynamic viscosity

r Radius of Solute

R Radius of pore

g Growth rate

Theoretical permeability coefficient

Ptheory = D
d
∗ ao
A
∗ a
ao

Ficks first law

V = P ∗ A ∗ (Ce − Cp)

Renkin equation

a
ao

=
(
1− r

R

)2 ∗ (1− 2.104 ∗ r
R

+ 2.09 ∗
(
r
R

)3 − 0.95 ∗
(
r
R

)5)
Stokes-Einstein

D = R∗T
NA∗6∗n∗π∗r

Flux of solute through porins of type i

Vsolute =
Vi∗T∗R3∗

(
1−2.104∗ r

R
+2.09∗( rR)

3
−0.95∗( rR

5)
)
∗(Ce−Cp)

6∗n∗r∗d∗g∗1200

4.4.3 Updating parameters

In order to determine how much more cellular mass iJL1678-ME explicitly

accounts for, RNA-seq was first assumed to be a one-to-one proxy for protein

expression levels, and in this dataset, the new pORFs and outer membrane proteins
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summed to 9.5% of all proteomic mass. As a comparison point, the outer membrane

protein mass (i.e., lipoproteins and porins) was experimentally derived to be 7.4%

of total proteomic mass [10]. Supplementing 7.4% with the estimated mass of

protein translocases and lipoprotein biogenesis proteins from RNA-seq (as there

were no experimental protein estimates available in literature) summed to 9.2% of

total proteomic mass, which is similar to 9.5%.

The GAM (growth associated maintenance) was updated to account for

the amount of ATP used in protein translocation. The ATP flux used in protein

translocation by SecA and LolCDE was calculated and subtracted from the GAM

value established in iOL1650-ME, reducing it from 35 to 34.98.

4.4.4 Membrane constraints

The combined surface area (SA) of membrane proteins, phospholipids (PE is

phosphatidylethanolamine, PG is phosphatidylglycerol, and CLPN is cardiolipin),

and lipopolysaccharides (LPS) must equal the total surface area of a cell (equation

1) times four membrane leaflets (equation 2) [55, 76]. The surface area of each

membrane molecule was determined by its classification (Additional file 1 Table

5). If the molecule was a protein, the protein was assumed to extend through the

lipid bilayer and occupy twice the amount of calculated surface area. An additional

constraint was imposed so that phospholipid composition would better reflect the

diversity of known membranes (equation 3).

(1) SA(µ) = 0.456π ∗ 2
µ∗ln(2)

3 ∗
(

3.9 ∗ 2
µ∗ln(2)

3 − 0.456 ∗ 2
µ∗ln(2)

3

)
+(

0.912π ∗ 2
µ∗ln(2)

3

)2
(2) 4 ∗ SA(µ) = Σi∈proteinsSAof membrane proteini + ΣSAof LPS+
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ΣSAof phospholipids

(3) ΣSAof phospholipids = 77%∗ΣSAPE+18%∗ΣSAPG+5%∗ΣSACLPN

Additional constraints in the iJL1678-ME include a variable maximum cap

on protein surface area and the option to force the model to produce nonfunctional

membrane protein.

This cell envelope demand for LPS and lipids originally appearing in iOL1650-

ME was removed, which makes the production of these two types of molecules a

function of growth rate, protein production, and membrane size. Membrane size

was taken to growth-rate dependent as formulated by O’Brien et al (see [7] sup-

plemental materials).

4.4.5 Analyzing the model

The model was run using batch simulations, as described by O’Brien et

al using resources of the National Energy Research Scientific Computing Center,

which is supported by the Office of Science of the U.S. Department of Energy under

Contract No. DE-AC0205CH11231 [7]. For all analyses performed, the in silico

media composition was M9 and an excess of glucose (4 g*L−1) (Additional file 1

Table 6).

Since membrane proteomics is difficult to study; it is even more difficult to

obtain absolute numbers comparing relative ratios of protein amounts. Therefore,

RNA-seq was used as an in vivo proxy for comparison (GEO accessions: GSE48324

[59] and GSE55367 [60]). A 1:1 ratio of protein expression levels to RNA-seq levels

(FPKM normalized to overall expression) was assumed. Mass was calculated based

on the atomic mass of the primary protein structure multiplied by the flux of
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protein being produced. In comparing in vivo data to in silico data, mass was

summed up by compartment location, functional annotation, or both (Additional

file 1 Table 2). Error bars are 1 standard deviation from two RNAseq runs.

The mass of compartmentalized functional annotations between in vivo and

in silico data was compared on a log-log basis. A simple linear regression model

was calculated between the two datasets. The standardized residuals (residual i /

standard deviation of residual i) of the in silico data was plotted against a rankit

score (expected values of the order statistics if the sample is normally distributed),

creating a normal probability plot. A line passing through the first and third

quartiles revealed points that deviated from a normal distribution (i.e., deviated

from the quartile line). These points were removed from the dataset for further

analysis and the simple linear regression model was recalculated for the reduced

dataset.

4.4.6 Protein inhibition

To adjust the turnover rate of SecA, the coupling constraint was modified so

that it would reflect numbers lower than the published value of 4.0 s−1 [44]. Simi-

larly, all coupling constraints involved with SecYEGDF or ribosome were multiple

by fractions to lower enzyme efficiencies. To limit membrane inner membrane pro-

tein surface area, the variable maximum cap (included as part of the membrane

constraint formulation) was set to 0.5.
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4.5 Figures and tables

Figure 4.1(next page): Workflow utilized and resulting network for re-
constructing protein translocation in E. coli. (A) An outline of the workflow
used to reconstruct the protein translocation network in E. coli. At each step, var-
ious sources of data were used as inputs to the workflow. The resulting general
network, compartmentalized content, and pathway breakdown are shown in greater
detail to the right. (B) A diagram of the translocation pathways included in the
reconstruction: SRP/Sec, SecB/Sec, Tat, YidC, Lol, Bam pathways, and three
alternatives (dashed lines). Proteins that allow translocation are labeled in white
while translocated protein types are labeled in black. Lipoprotein biogenesis is
not depicted. (C) Model-simulated pORFs were assigned to one of four compart-
ments. The numbers denote how many of the 1,568 proteins will end up in each
compartment. (D) Each non-cytosolic pORF was assigned to a translocation path-
way. Numbers in white are how many pORFs require that translocation-associated
protein. The model also underwent several other updates, including the addition
of known turnover rates that are denoted by black numbers.
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Figure 4.2: Calculation of the number of TatA proteins required for each
translocated protein. Using data from [23], the diameter of the channel formed
by TatA proteins was plotted to determine how many TatAs are required to trans-
port a Tat-translocated protein. The estimated width of each Tat-translocated
protein was calculated from their molecular weight, assuming a spherical shape
[53]. The resulting value was plugged into the trendline equation. The number of
required TatA proteins was rounded up to the nearest integer and inserted into
the Tat-pathway template reactions.
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Figure 4.3: In silico protein expression of translocase pathways before
the addition of enzyme turnover rates. A bar graph showing simulation
results (green) of translocase pathway protein levels from iJL1678-ME without
translocase turnover rates and measured in vivo expression levels (blue) using
RNA-seq as a proxy for protein production (R2=0.047, p-val=0.73). Results were
taken from glucose M9 minimal media conditions.
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Figure 4.4: Proteome expression comparison between iOL1650-ME and
iJL1678-ME. The difference that the protein translocation reconstruction brings
to iOL1650-ME is compared through computed protein expression in glucose M9
minimal media conditions. (A) Protein translation flux between iJL1678-ME and
iOL1650-ME. The majority of pORF expression (94%) are approximately the same
in both model simulations, but 4% are uniquely expressed in iJL1678-ME, and
0.8% is uniquely expressed in iOL1650-ME (points along the -inf line). 1.5% of
the proteins are differentially expressed, the majority of which are expressed to a
greater extent in iJL1678-ME than in iOL1650-ME, but two proteins involved in
small carbon metabolism (EutD and PurT) are expressed lower. (B) Histograms
detailing the functional annotations of the uniquely expressed genes within the two
models.
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Figure 4.5: Comparison of in silico predicted protein masses verses in
vivo measurements for reconstructed content specific to iJL1678-ME.
Bar graphs showing simulation results (pink) of protein levels from the recon-
structed iJL1678-ME verses measured in vivo expression levels (blue) using aver-
aged RNA-seq as a proxy for protein production. Results were taken from glucose
M9 minimal media conditions. (A) Translocase protein levels. (B) Percentage of
protein mass in each of the four compartments.
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Figure 4.7: Analysis of in silico predicted protein masses verses in vivo
measurements. Predicted (in silico ) versus measured (in vivo) protein masses
that were reconstructed in iJL1678-ME were categorized by function and com-
partment. Subgroups with zero values were removed from further calculations.
(A) The linear model between in silico and in vivo protein mass predictions (p-
value=6.6x10−3). The outliers had standardized residues that fell outside of the
normal distribution curve as formed by the other points (Fig 4.8). (B) The out-
liers were removed, and the linear model between in silico and in vivo protein mass
predictions was recalculated (p-value=6.6x10−6).
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Figure 4.9(next page): Effects of constraining the amount of membrane
surface area that may be occupied by protein. Shown here is a scatterplot
comparing the effects of controlled protein occupancy in the membranes. (A) The
effects of constraining the protein surface area in the inner and outer membranes.
The apex of growth rate occurs at 0.42 fractional area for protein occupancy for the
inner membrane and 0.25 for the outer membrane. The growth rate decreases more
rapidly if membranes protein were under-produced verses over-produced. (B) Ac-
etate secretion, glucose uptake, and oxygen uptake fluxes when constraining inner
membrane protein surface area. The gray solid bar represents the calculated in vivo
surface area (+/- one standard deviation), and the dashed line represents the op-
timal inner membrane surface area occupancy. (C) Mass of the electron transport
system complexes and glucose transporters when constraining inner membrane
protein surface area.
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Figure 4.10: Effects of inhibiting SecA on growth rate. (A) A scatterplot
showing the effects of decreasing enzyme efficiency of several key enzymes involved
in Sec translocation (ATPase SecA, the channel SecYEGDF, and ribosome) have on
growth rate. The growth rate was predicted by decreasing turnover rate (i.e., kcat)
of SecA, SecYEGDF, and ribosome and optimizing for growth rate. Simulations
were performed with an upper limit of 0.5 of the membrane protein surface area
occupancy. (B) The effects of simultaneously inhibiting SecA and ribosome.
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shown since the membrane constraint does not affect simulation results.
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Table 4.1: Outer membrane porin effective diameters

Porin Effective diameter Reference
ompA 1.0 nm Sugawara and Nikaido 1991
ompC 0.54 nm Nikaido and Rosenberg 1982
ompF 0.58 nm Nikaido and Rosenberg 1982
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Chapter 5

Effects of micronutrients on

growth

5.1 Introduction

Trace metals are essential for all living organisms, for they are required

for catalytic processes essential to energy conservation, metabolism, replication,

and maintenance. Yet metals pose a unique challenge in constraint-based mod-

els of metabolism (i.e., M-models) as they are neither produced nor consumed

biochemically [1]; instead, metals in M-models are generally treated as a lumped

sum in the biomass objective function rather than be integrated into the network

[2]. In M-models, metal availability and growth rate are linearly correlated even

though there is contrary experimental evidence [3]. In iHN637, the Clostridium

ljungdahlii M-model, seven of ten metals (Ca2+, Cu2+, Mg2+, Mn2+, Mo2+, Ni2+,

Zn2+ + Co2+, Fe2+, Na+) could only be imported or exported (in addition to their

inclusion in the biomass objective function, which represents the total composi-
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tion of the cell [4, 2], and only Co2+ was predicted to participate in flux-carrying

reactions that were not a transport reaction or biomass production. Thus, most

metal ions were not associated to the reactions they help catalyze. This represents

a general fact for M-models [2].

The next generation of constraint-based genome-scale models change this

paradigm. Metabolic and gene expression models (ME-models) cover the proc-

cesses of transcription, translation, and metabolism, which can also include pro-

tein modifications. Protein modifications can account for the presence of metals

in biochemical reactions and thus enable predictions of the optimal distribution of

resources in response to limited metal availability. Therefore, ME-models provide

a robust, genome-wide approach to define how transition metals affect an organ-

isms functional network, which addresses the articulated need to bridge chemistry

and biology in a coherent and systematic way [1, 5]. The detailed representation

of cofactors and prosthetic groups will enable us to manipulate the cofactor de-

pendency of heterologous pathways to maximize energy conservation, subsequently

optimizing chemical production by C. ljungdahlii.

For acetogens like C. ljungahlii, understanding the role of trace metals is

particularly important, as metals are crucial for the Wood-Ljungdahl pathway

(WLP), responsible for C. ljungdahlii’s autotrophic growth, and more [5, 6]. In-

sights into such requirements provide an opportunity to rationally manipulate the

WLP and other pathways for improved biotechnological outcomes [7]. Here, we

focus on two metals: Nickel, which is a required ion in the WLP protein carbon

monoxide dehydrogenase:Acetyl-CoA synthase, and zinc, an essential metal for

organisms across all domains of life [8, 9]. The C. ljungdahlii ME-model, iJL965-
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ME, predicted that nickel and zinc, essential metals for C. ljungdahlii, would affect

the systematic network differently, as one metal is involved with a single pathway

and the other with multiple processes. Results regarding nickel availability were

examined in vivo as well.

5.2 Results

5.2.1 Nickel controls phenotype through Wood-Ljungdahl

activity

iJL965-MEs only nickel-containing proteins, CODH4 and carbon monoxide

dehydrogenase:Acetyl-CoA synthase (CODH ACS), are part of the WLP, which

afforded the possibility of controlling this pathway through changes in media com-

position both in silico and in vivo. Due to C. ljungdahliis reliance on WLP for

autotrophic growth, nickel was predicted to be essential for CO-growth. Although

true essentiality could not be tested due to trace nickel in the media, the amount

of additional nickel (added as multiples of 0.10 mM) significantly influenced in vivo

growth rate in a quadratic fashion as predicted (Fig 5.1A). According to iJL965-

ME, the non-linear effects of nickel limitations were caused by an uneven distri-

bution of metal resources between CODH ACS and CODH4, resulting in different

rates of decreasing protein activity (Fig 5.1B). In turn, the other reactions in WLP

were correlated to either CODH ACS, like MTHFR5 and methyltetrahydrofolate

corrinoid/iron-sulfur protein methyltransferase (METR), or CODH4 (Fig 5.2). Fi-

nally, iJL965-ME predicted that while nickel availability affected growth rate, pro-

tein activity, and acetate and ethanol yield, the acetate-to-ethanol production rate
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would not change. The acetate:ethanol production rate ratio remained constant at

1.4 for different nickel concentrations (Fig 5.3A). HPLC measurements confirmed

that acetate:ethanol production rate was unchanged with a ratio of 1.48±0.34

(Fig 5.3E), regardless of the nickel concentrations used (0x, 1x, and 5x [10x ex-

cluded due to carbon depletion], Fig 5.3D).

iJL965-ME predicted that nickel limitations would have different effects on

fructose-grown cells. Removal of nickel was not predicted to affect growth rate

or fructose uptake significantly (4gr=98%, 4fructose=99%, Fig 5.4A). However,

there was no CODH ACS or METR activity under nickel depletion, which reduced

the WLP activity (Table 5.1) and eliminated acetate secretion. Instead, the model

predicted that only ethanol secretion would occur (Fig 5.4B, C). To test this pre-

diction, C. ljungdahlii was grown either without added nickel (0x) or with high

nickel concentrations (10x). Both cultures consumed the same amount of fruc-

tose (p=0.26) and produced identical amounts of ethanol (p=0.95), but exhibited

different growth rates (p=0.062) and final concentrations of acetate (p=2.2e-4)

(Fig 5.4D-G). Increased acetate secretion rate (p=0.016, Fig 5.5A) and final ac-

etate concentrations in the 10x condition were due to the nickel-stimulated WLP

consuming more CO2.

5.2.2 Zinc affects multiple cellular processes

Unlike nickel, which was incorporated into two proteins, zinc was a cofac-

tor for twenty four proteins in iJL965-ME. Since these proteins were required for

multiple processes, zinc was a predicted essential metal for C. ljungdahlii in both

autotrophic and heterotrophic growth conditions (Fig 5.6A, B). Despite decreases



135

in growth rate, ethanol secretion rate was predicted to increase when zinc was

limiting (Fig 5.6C, D).

Zinc-containing proteins were grouped by their biochemical activities; four-

teen proteins catalyzed metabolic reactions, seven were involved in translation and

protein formation, and three were involved in transcription. As zinc availability de-

creased, the activities of these proteins also decreased (Fig 5.7), but not at the same

rates. While the decreasing rate of transcription stayed constant, zinc-containing

proteins related to metabolism decreased at a faster rate than zinc-containing pro-

teins in translation until the two processes were nearly equal in protein activity

(zn uptakeCO = 62%, zn uptakefrutose = 70%), after which point they decreased

at the same rate (Fig 5.7).

Zinc-containing proteins were involved in four flux-carrying metabolic reac-

tions in CO conditions, three in fructose conditions (Fig 5.8). These reactions were

dihydroorotase (DHORTS), the first step in the pyrimidine biosynthetic pathway,

histidinol dehydrogenase (HISTD), the last metabolic step to produce histidine,

acetyl-CoA carboxylase (ACCOAC), the first step towards fatty acid synthesis,

and glycerol dehydrogenase (GLYCDx), which breaks down glycerol so that it can

eventually enter glycolysis or gluconeogensis. The last reaction was predicted to

be active in CO conditions, but not fructose. While all four reactions were af-

fected by zinc-limitations, the most affected was ACCOAC (decreasing rate, i.e.,

shadow price = -0.017, while the other reactions had rates <-0.001), at least until

zinc uptake reached 62% in CO conditions and 70% in fructose conditions. This

single reaction was why the metabolic activity of zinc-containing proteins initially

decreased faster than translation and transcription (Fig 5.7).
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By initially decreasing flux through ACCOAC, iJL965-ME first sacrificed

fatty acid production for other functions. However, due to iJL965-ME’s mem-

brane constraint, the amount of lipids that could be removed was limited. The

protein-to-lipid ratio of membrane surface area (SA) increased until the constraint

(protein:lipid SA ≤ 1:1) was reached, which occurred at 62% of zinc uptake in CO-

growth conditions and 70% in fructose-growth conditions (Fig 5.9, see Methods in

chapters 4 & 2 for more details on the constraint). After decreasing the maxi-

mum amount of lipid production allowed, iJL965-ME predicted that the lack of

zinc would cut equally into protein production and metabolic reactions and would

decrease growth rate faster (shadow price, Fig 5.9).

5.3 Discussion

Through iJL965-ME, the intersection of trace metals and metabolism under

both autotrophic and heterotrophic (i.e., mixotrophic) conditions was examined

in more depth.

The potential of controlling WLP activity through media composition was

explored. Although the lack of CODH ACS activity (achieved by removing nickel

from the media) may not cease WLP activity entirely, it may stop acetate pro-

duction (as in vivo nickel depletion results suggest), leading to ethanol production

as the main fermentation end product (Fig 5.4). However, the discrepancy be-

tween in silico and in vivo growth rates of nickel-depleted cells grown on fructose

implied that WLP was more important than predicted for maximizing growth in

mixotrophic conditions (Fig 5.4). In contrast, nickel was essential for CO-growth,
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but had no effect on the acetate:ethanol ratio (Fig 5.1).

Although some studies have investigated zinc-limitation in prokaryotic or-

ganisms, proper understanding of the effects of zinc-depletion are hindered by

prokaryotes’ effective mechanisms to increase uptake and leach zinc from unlikely

sources like glass [10]. Using ME-models, the potential systems effects of zinc-

depletion were also examined for future follow-ups. Unlike nickel, zinc was integral

to metabolism, translation, and transcription, thereby making the metal essential

for C. ljungdahlii in all nutrient conditions. Interestingly, iJL965-ME predicted

that the first affected processes would involve membrane restructuring. Under

zinc-limitations, the zinc uptake regulator (Zur) induces expression of membrane

proteins, including high-affinity zinc ABC transporters, to encourage zinc transport

in and out of the cell [10, 11, 12]. Furthermore, transcriptomic analysis of zinc-

deprived Escherichia coli cells also highlighted that b1193, a membrane-bound

transglycosylase E involved in murein hydrolysis, was significantly upregulated

[10]. Together, the in vivo observations of increased membrane protein and cell

wall hydrolysis expression and in silico observations of decreased lipid production

indicates that zinc-depletion may affect prokaryotic membrane composition and

size in a manner yet to be studied.

The combination of metabolism, multi-omics predictions, and cofactor in-

tegration in iJL965-ME is an important milestone for a holistic understanding of

metals in metabolism. Although nickel and zinc were the only trace metals to be

investigated here, iJL965-ME invites further studies elucidating specific effects of

concurrent metal limitations and genetic perturbations. The ME-model represents

an inclusive method that unites analysis and integration of multiple data types.
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5.4 Methods

For reconstruction, usage, and analysis of iJL965-ME, see Methods from

chapter 2.

5.4.1 Bacterial growth conditions

Clostridium ljungdahlii (ATCC 55383) was grown under anaerobic condi-

tions containing PETC medium (ATCC medium 1754) at 37◦C. Fructose cultures

were grown in 125 mL serum bottles containing 100 mL of medium plus 28 mM

fructose, CO in 125 mL serum bottles containing 25 mL of media and bottles were

pressurized once with CO to 18 PSI. Medium contained 0.10 mM of NiCl2*6 H2O

(i.e., 1x). For testing the effect of nickel, final concentrations of 0 mM (0x), 0.50

mM (5x) and 1.0 mM (10x) of nickel was added to the media from an anoxic stock

solution before autoclaving. Growth was routinely determined by measurement of

OD600. Concentrations of fructose, acetate, ethanol, and glycerol were determined

by high-performance liquid chromatography (Waters) as previously described [13].

Detection was performed by UV absorption at 410 nm.
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5.5 Figures and tables
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Figure 5.1: Effects of nickel availability on CO-grown C. ljungdahlii.
(A) Maximum predicted growth rate was plotted against relative nickel uptake
(line), and in vivo maximum growth rate verses the concentration of added nickel
was plotted on the opposite axes (dot, ±std, n=3). (B) Predicted protein activity
of the nickel-containing enzymes, carbon monoxide dehydrogenase (CODH4) and
carbon monoxide dehydrogenase:acetyl-CoA synthase (CODH ACS), was plotted
against relative nickel uptake.
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Figure 5.2: Heatmap of Pearson correlations of WLP reaction fluxes
over nickel availability of CO-grown cells and clustered by Euclidean
distance. Abbreviations: MTHFR5 = 5,10-methylenetetrahydrofolate reductase,
METR = methyltetrahydrofolate corrinoid/iron-sulfur protein methyltransferase,
CODH ACS = carbon monoxide dehydrogenase:acetyl-CoA synthease, FDH8 =
formate dehydrogenase, CODH4 = carbon monoxide dehydrogenase, MTHFC =
methenyltetrahydrofolate cyclohydrolase, MTHFB = methylentetrahydrofolate de-
hydrogenase.
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Figure 5.3: Predicted and measured acetate and ethanol secretion rates
of CO-grown C. ljungdahlii with varying nickel availability. (A) Predicted
maximum acetate and maximum ethanol secretion rates as well as the acetate-to-
ethanol ratio were plotted against relative maximum constrained nickel uptake.
Bar graphs of measured (B) maximum ethanol secretion rates, (C) maximum ac-
etate secretion rates, (D) total carbon from final concentration of acetate and
ethanol at t = 116 h, and (E) acetate-to-ethanol ratio were plotted for 4 different
concentrations of added nickel (± std, n=3). Horizontal lines indicate significant
differences.
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Figure 5.4: Effects of nickel availability on fructose-grown C. ljungdahlii.
(A) Predicted growth rate and protein activity of CODH ACS were plotted against
relative nickel uptake (mmol*gDW−1*h−1). (B) Predicted ethanol (EtOH) secre-
tion at optimal nickel uptake (WT) and no available nickel (-Ni2+) were plotted
against relative fructose uptake (mmol*gDW−1*h−1). (C) Predicted acetate (Ac)
secretion at optimal nickel uptake and no available nickel were plotted against rela-
tive fructose uptake (mmol*gDW−1*h−1). Measured (D) growth rate, (E) fructose
consumption, (F) final ethanol concentration, and (G) final acetate concentration
of fructose-grown C. ljungdahlii without added nickel and with ten times the con-
centration of nickel were plotted (±std, n=3). Gray asterisk indicates difference
significance is p=0.06, and three black asterisk indicates significance of p<0.001.
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Figure 5.5: Measured secretion rates of acetate and ethanol of fructose-
grown C. ljungdahlii with and without nickel. Bar graphs of measured (A)
maximum acetate (Ac) secretion rates and (B) maximum ethanol (EtOH) secretion
rates of fructose-grown C. ljungdahlii without added nickel (0x) and concentrated
nickel (10x) (±std, n=3). Black asterisk indicates significance of p<0.05.
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Figure 5.6: Predicted growth rates and ethanol secretion rates under
zinc limitations. Relative zinc uptake was plotted against growth rate (h−1) for
both (A) CO growth conditions and (B) fructose growth conditions. Relative zinc
uptake was also plotted against ethanol secretion for (C) CO growth conditions
and (D) fructose growth conditions.
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(A)   CO

(B)   Fructose

%

Figure 5.7: Predicted protein activity levels grouped by transcription,
translation, or metabolic under zinc limitations. All twenty four proteins
that required zinc were categorized by their associated reactions into transcription,
translation, or metabolism. The percentage of maximum zinc uptake was plotted
against protein activity for each process for (A) CO growth conditions and (B)
fructose growth conditions. Abbreviations: HISTD = histidinol dehydrogenase,
DHORTS = dihydroorotase, GLYCDx = glycerol dehydrogenase, ACCOAC =
acetyl-CoA carboxylase.
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(A)  CO          (B)  Fructose

Figure 5.8: Predicted protein activity levels of zinc-required metabolic
enzymes under zinc limitations. Relative zinc uptake was plotted against
activities of the four metabolic reactions dependent on zinc for biochemical activity
for (A) CO growth conditions and (B) fructose growth conditions.
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Figure 5.9: The ratio of protein membrane surface area to total mem-
brane surface area changes as zinc availability decreases. The graph also
shows the corresponding shadow price of how much Zn uptake effects the maximum
growth rate.
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Chapter 6

Conclusions

6.1 Summary

Metabolic and gene expression models (ME-models) represent a milestone

in our ability to mechanistically describe the link between genotype and pheno-

type. By identifying the genome-scale metabolic capabilities of an organism and

systematically associating macromolecules required to enable such activity, we have

provided a unified approach to model simultaneously molecular and cellular phe-

notypes based on the systematic needs of the organism. Due to the wide scope

of predictions enabled, ME-models also provide a framework to concurrently an-

alyze multiple data types, from transcriptomics to growth rates, as demonstrated

through the reconstruction and validation of a Clostridium ljungdahlii ME-model

named iJL965-ME. With iJL965-ME, we established that a ME-model predicted

growth rate and acetate secretion rates more accurately than an M-model of the

same organism. Additionally, a ME-model was able to simulate intrinsically the

production of both known (ethanol) and novel (glycerol) products, which an M-
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model could not do without ad hoc constraints defined by the model user. Finally,

due to the incorporation of gene expression, ME-models were also able to predict

the required RNA and protein abundances for optimal growth rate, which were

comparable to RNA-seq data for C. ljungdahlii.

Because the capabilities of a ME-model are extensive, a variety of features

can be interrogated using the ME-model framework. Here, three levels of cell

organization were examined.

First, simulated shuffled tRNA locations and co-expressions suggested that

genome architecture may be under selection to satisfy the growth conditions of

the organism. While tRNA operon structures have evolved to minimize expres-

sion costs and maximize usage, optimized tRNAs by amino acid differ between

E. coli and C. ljungdahlii. Furthermore, by examining tRNA-containing oper-

ons in these organisms, two strategies were identified and defined: fragmentation

(the minimization of co-expressed tRNAs) and modularization (the co-expression

of the majority of tRNAs). Due to fragmentation, E. coli was able to produce

near-optimal values for rRNA expression, tRNA efficiency, and growth rate re-

gardless of tRNA location, while the specific tRNA arrangement in C. ljungdahlii

was optimized for tRNA efficiency, which implies that at the gene level, E. coli has

maximized its output and C. ljungdahlii has maximized its resources.

Second, reconstruction of protein translocation and compartmentalization

in the E. coli ME-model emphasized the impact of membrane formation. Not

only did growth rate drop significantly due to the inclusion of translocation, but

constraining the protein membrane space to measured levels recapitulated acetate

production during growth on glucose.
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Third, controlling nickel and zinc availability highlighted how metallopro-

teins drive performance in C. ljungdahlii. Corroboration between in silico and in

vivo nickel limitations revealed that unmetabolized micronutrients, like metal ions,

can strongly influence growth rate and product secretion rates dependent on other

nutrients, like carbon source.

Because of the E-matrix, genome-scale constraint-based models can account

for transcription units, proteins, and cofactors. Without ME-models, the three

analyses described above would not have been possible. Thus, ME-models have

significantly broadened the scope of microbial systems biology to not only examine

evolutionary implications at the molecular level but also identify potential media

combinations for cellular phenotypes.

6.2 Future possibilities

Although ME-models have been reported in several publications, they are

still a newly developed technology and have not been robustly tested by the scien-

tific community. As of writing, ME-models have been validated using experimental

measurements (including gene knockouts, RNA-seq, ribosome profiling, proteomics

of the cytoplasm, tRNA profiles, consumption and production rates, and growth

rates) with accurate results [1, 2, 3]. However, no study has simultaneously com-

pared multiple large-scale datasets (e.g., transcriptomics, ribosome profiling, pro-

teomics, fluxomics, and metabolomics at once) from a single organism to the direct

in silico equivalents. Such a study would be be insightful for understanding the

whole cell organism and highlighting areas for further research.
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A recurring issue with ME-models that continually arises is the keff param-

eter, which represents the average turnover rate of a metabolic enzyme [4]. The

keff is set to 65 s−1 in E. coli and 25 s−1 in C. ljungdahlii. However, not all proteins

operate at the average rate. For example, in in vitro conditions, enzymes in the

Wood-Ljungdahl pathway could be four-fold more reactive than 25 s−1 [5]. Such

vast differences in potential enzyme activities hinder our ability to fully under-

stand the systems response to both environmental and genetic cues, since we may

under- or over-predict protein requirements and metabolic fluxes for certain path-

ways. Such a case may have happened in 4, when iJL1678-ME under-estimated

the expression of inorganic ion, cofactor, and prosthetic related proteins. Defined

universal speeds, perhaps normalized to average turnover rate, for key individual

proteins or pathways may mitigate turnover rate problems from being carried over

into future ME-models.

In addition to inaccurate turnover rates, the incorrect predictions of inor-

ganic ion, cofactor, and prosthetic related proteins may be due to the lack of fully

integrated gene regulatory pathways. Although incorporated feedback loops would

compound the number of variables that need to be solved, a simple binary check

of media composition availability before solving may be the next step in modeling

regulation in ME-models. Not only could the expression of certain transcription

units be turned on or off in response to the environment, but the turnover rates of

transporter enzymes could be singularly adjusted to match the needs of the organ-

ism (e.g., if zinc availability was below a defined threshold, the zinc transporter’s

maximum uptake rate would increase in association with the expression of efficient

zinc-binding proteins as defined by a pre-check algorithm) [6].
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Many regulatory elements involve proteins in the membrane that sense

molecules in either the external or internal environment. However, the current

iteration of protein compartmentalization does not make a distinction between the

inner and outer leaflets of the lipid bilayer, nor does the specific location of a protein

make a difference for functional activity, even though the distance of a ribosome

from an available mRNA changes the total time required for protein production.

Thus, compartmentalization could be improved to account for subcellular orga-

nization like clustering of proteins or membrane nanodomains [7, 8], in addition

to molecular overcrowding, which will provide insight into space usage for efficient

function. Understanding these constraints will have both evolutionary implications

as well as impacts on strain designs that require protein over-expression.

ME-models were used to explore genome architecture constraints on tRNA

expression, but further understanding of the evolution of tRNA-containing tran-

scription units could be obtained using constraint-based approaches that do not

require ME-model reconstructions. The approach requires two sets of data, tRNA

transcription units and the cell’s amino acid composition (potentially identified

through RNA-seq), and returns maximum possible tRNA efficiency (Fig 6.1). This

model formulation could be applied to a variety of organisms, which will enhance

our ability to trace the lineage of tRNA co-expression evolution and optimization.

Thus, with this potential to compare a large number of tRNA operon structures

from across the tree of life, we have the opportunity to further define or identify

new strategies for tRNA organization.
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Figure 6.1: A constraint-based approach to modeling tRNA operon structure.

6.2.1 Broader implications

ME-models serve as a theoretical baseline to understand the phenotypic re-

sponse to environmental and genetic perturbations. Because we account for both

RNA and protein abundances, both minute (e.g., fluxes in gene expression) and

coarse-grain (e.g., growth rate) responses can be predicted. As a result, the poten-

tial applications of the ME-model extend to multiple fields. Since ME-models can

simulate gene knock-outs and knock-ins, they can be applied readily to metabolic

engineering tasks. Furthermore, ME-models can be used to eliminate undesirable

media combinations specific to the strain being used. ME-models will also be useful

for deeper understanding of interactions between organism and ecological commu-

nity, because ME-models can simulate proteomic responses to changes in niche
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composition. The niche in question is not limited to environmental studies, but

may also come from the medical field, since mechanistic modeling of pathogenicity

through incorporation of secretion systems can be achieved. The possibilities for

ME-model usage extend far beyond what is listed here, but what is certain is that

ME-models open exciting new avenues to interpret and predict biological functions

for strong societal benefits.
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Thauer. Energy Conservation Associated with Ethanol Formation from H2 and
CO2 in Clostridium autoethanogenum Involving Electron Bifurcation. Journal
of Bacteriology, 197(18):2965–2980, 2015.

[6] Wolfgang Maret. Zinc Biochemistry: From a Single Zinc Enzyme to a Key
Element of Life. Advances in Nutrition: An International Review Journal, 4
(1):82–91, 2013.

[7] Jan Spitzer and Bert Poolman. How crowded is the prokaryotic cytoplasm?
FEBS Letters, 587(14):2094–2098, 2013.

[8] Yuanqing Ma, Elizabeth Hinde, and Katharina Gaus. Nanodomains in biolog-
ical membranes. Essays In Biochemistry, 57:93–107, 2015.


	Signature Page
	Dedication
	Epigraph
	Table of Contents
	List of Figures
	List of Tables
	List of Supplementary Files
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Systems biology, metabolism, and non-metabolic constraints
	Introduction to metabolic and gene expression models
	Clostridium ljungdahlii

	Demonstration of ME-model capabilities
	Genome architecture: tRNA operon structure
	Cell structure: Protein translocation and compartmentalization
	Media composition: Nickel availability

	References

	Accurate prediction of bacterial phenotypes using the ME-model framework in Clostridium ljungdahlii
	Introduction
	Results
	Updating the M-model
	Reconstructing a C. ljungdahlii ME-model named iJL965-ME
	Accuracy of predicted growth and yield phenotypes improves with iJL965-ME
	Predicted gene expression recapitulates in vivo data

	Discussion
	Methods
	Bacterial growth conditions
	RNA isolation, removal of rRNA and library preparation of CO-grown cells
	Revision of M-model
	Reconstructing the ME-model
	Analyzing the ME-model

	Figures and tables
	Acknowledgements
	References

	Exploring the evolutionary significance of tRNA operon structure using metabolic and gene expression models
	Introduction
	Results and Discussion
	tRNA operon structure: Fragmentation versus modularity
	Predicted tRNA charging amino acid usage is consistent with amino acid requirements
	Optimized tRNA operon structure meets tRNA abundance requirements
	Positive selection for high tRNA efficiency
	Does tRNA operon structure reflect K/r strategists?

	Conclusions
	Methods
	In silico modeling
	Model building
	Analysis

	Figures and tables
	Acknowledgments
	References

	Reconstructing and modeling protein translocation and compartmentalization in Escherichia coli
	Introduction
	Results and Discussion
	Reconstruction of protein translocation processes and their incorporation into iOL1650-ME
	Proteomic shifts highlight the significance of new content in iJL1678-ME
	In silico computations recapitulate in vivo data
	Applications predict the effect of molecular perturbations

	Conclusions
	Methods
	Reconstruction
	Outer membrane porins
	Updating parameters
	Membrane constraints
	Analyzing the model
	Protein inhibition

	Figures and tables
	Acknowledgments
	References

	Effects of micronutrients on growth
	Introduction
	Results
	Nickel controls phenotype through Wood-Ljungdahl activity
	Zinc affects multiple cellular processes

	Discussion
	Methods
	Bacterial growth conditions

	Figures and tables
	Acknowledgments
	References

	Conclusions
	Summary
	Future possibilities
	Broader implications

	References




