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Abstract

Medial temporal lobe (MTL) atrophy is a core feature of age-related cognitive decline

and Alzheimer's disease (AD). While regional volumes and thickness are often used

as a proxy for neurodegeneration, they lack the sensitivity to serve as an accurate

diagnostic test and indicate advanced neurodegeneration. Here, we used a submilli-

meter resolution diffusion weighted MRI sequence (ZOOMit) to quantify microstruc-

tural properties of hippocampal subfields in older adults (63–98 years old) using

tensor derived measures: fractional anisotropy (FA) and mean diffusivity (MD). We

demonstrate that the high-resolution sequence, and not a standard resolution

sequence, identifies dissociable profiles for CA1, dentate gyrus (DG), and the collat-

eral sulcus. Using ZOOMit, we show that advanced age is associated with increased

MD of the CA1 and DG as well as decreased FA of the DG. Increased MD of the DG,

reflecting decreased cellular density, mediated the relationship between age and

word list recall. Further, increased MD in the DG, but not DG volume, was linked to

worse spatial pattern separation. Our results demonstrate that ultrahigh-resolution

diffusion imaging enables the detection of microstructural differences in hippocampal

subfield integrity and will lead to novel insights into the mechanisms of age-related

memory loss.

K E YWORD S

aging, dentate gyrus, hippocampus, magnetic resonance imaging, memory

1 | INTRODUCTION

Episodic memory decline and medial temporal lobe (MTL) atrophy are

prominent changes associated with age-related cognitive decline

(Braak & Braak, 1991; Gomez-Isla et al., 1996; Jack et al., 1999; Price

et al., 2001). Early sites of structural atrophy include the hippocampus

(Fox & Freeborough, 1997; Sabuncu et al., 2011), including specific

subfields such as the dentate gyrus (DG; Ohm, 2007; Yassa

et al., 2011, Dillon et al., 2017) and CA1 (Csernansky et al., 2000;

Csernansky et al., 2005), as well as the adjacent entorhinal cortex

(Gomez-Isla et al., 1996). On a cellular level, structural alterations

including reduced neuron count and reduced dendritic arborization

are a core biological phenomenon associated with age-related cogni-

tive decline that signal tissue destabilization (Ohm, 2007; Zarow

et al., 2005). In humans, changes in regional volumes and thickness

are most commonly used as a proxy for large scale structural atrophy
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and neurodegeneration (Márquez & Yassa, 2019), however, they do

not provide any insights regarding microstructural MTL neurodegen-

eration hallmarks like cellular loss nor dendritic arborization. It has

been suggested that the study of volumes lack the specificity to stand

alone as an accurate diagnostic test to distinguish normal aging from

Alzheimer's disease (AD) and usually indicate an advanced stage of

neurodegeneration providing little room for targeted interventional

therapy (Teipel et al., 2013; Frisoni et al., 2010; Whittaker

et al., 2018). Therefore, there is substantial need for sensitive and spe-

cific markers of microstructural atrophy due to aging and aging-

related pathologies. These potential new biomarkers should provide

improved quantification of the microstructural changes that underlie

gross volumetric decline and provide insight into cellular atrophy in

humans.

Measures derived from diffusion weighted MRI (dMRI) are emerg-

ing as strong candidates for novel noninvasive biological markers of

hippocampal tissue microstructural organization (beyond the study of

volumes) in animal studies across pathologies. Changes in tensor-

derived measures in the CA1 and DG subfields of the hippocampus

have been related to several gray matter insults in mouse models of

amyloid accumulation (Whittaker et al., 2018; Daianu et al., 2015),

status epilepticus (Salo et al., 2017), early life stress (Molet

et al., 2016), and hippocampal sclerosis (Crombe et al., 2018), and indi-

cate change on a cellular level. Importantly, dMRI metrics do not

reflect cell-type specificity nor does dMRI currently have the resolu-

tion to observe diffusion at a single-cell level. Instead, dMRI metrics

indicate difference among different types of tissue. Here our use of

the terms microstructure and microstructural properties refer to the

ability of dMRI to measure tissue differences within each voxel.

In humans, the use of dMRI measures as sensitive markers of hip-

pocampal integrity in aging, mild cognitive impairment, and Alzhei-

mer's Disease has been studied, however, has only scarcely been

applied to hippocampal subfields possibly due to image resolution or

the use of whole hippocampus instead of subfield anatomical segmen-

tation (Colon-Perez et al., 2015; Dyrba et al., 2015; Kantarci

et al., 2005; Mak et al., 2017; Muller et al., 2007; Reas et al., 2017).

We have previously shown that the use of ultrahigh resolution dMRI

in humans can uncover in vivo microstructural properties of white

matter that are otherwise impossible to visualize using sequences

with standard image resolutions (Yassa et al., 2010). Thus, it is possi-

ble that the use of ultrahigh resolution dMRI in humans is critical to

uncover new and robust biomarkers of microstructural properties of

gray matter within the MTL and hippocampal subfields that are not

otherwise palpable using standard image resolutions.

In this investigation, we employ a state-of-the-art ultrahigh reso-

lution dMRI sequence (0.67 mm � 0.67 mm � 3 mm) to quantify the

microstructural features in MTL regions in a cohort of older adults

(63–98 years old). Using diffusion tensor derived measures of mean

diffusivity (MD) and fractional anisotropy (FA) we demonstrate the

utility of this sequence by comparing its performance against a stan-

dard diffusion imaging sequence (1.7 mm isotropic). We assessed FA

and MD in two hippocampal subfields (DG and CA1) and quantified

relationships with age and episodic memory function, using a word list

recall test (Rey Auditory Verbal Learning Test; RAVLT) that is often

used to identify age-related memory impairment (Estévez-González

et al., 2003). We also tested whether FA and MD in these subfields

was related to performance on a spatial pattern separation task that is

known to rely on the integrity of the DG (Marr et al. 1971; Yassa

et al. 2011; Reagh et al., 2014). We focused on the DG and CA1 as

they are both critical for episodic memory processes and are known

to be impacted by aging and AD (Burger, 2010; Ianov et al., 2017;

Small et al., 2004; Yassa et al., 2010).

2 | RESULTS

2.1 | Ultrahigh-resolution diffusion MRI detects
subregion-specific gray matter diffusion profiles

We first tested the hypothesis that the ultrahigh resolution dMRI

approach (0.67 � 0.67 � 3 mm3) will reveal microstructural features

of hippocampal subfields and rhinal cortical subregions that would be

otherwise indiscernible using traditional diffusion imaging methods.

We used k-means clustering to compute and label clusters of FA and

MD values from the hippocampus (CA1 and DG), rhinal cortex, and

collateral sulcus (the latter as a control). Using data derived from the

ultrahigh-resolution sequence, we calculated the overlap between the

labels derived from k-means clustering and known anatomical labels

(CA1, DG, rhinal cortex, or sulcus). We obtained a normalized mutual

information (nMI) score of 0.623, indicating a moderate overlap in the

k-means cluster label (Figure 1b) and known anatomical label

(Figure 1a). To determine whether these regions were differentiated

by their FA values, we compared regional FA values CA1, DG, rhinal

cortex, and sulcus using one-way ANOVA. We found a significant dif-

ference across regions (F2,308 = 700.8, p < .0001). Tukey's multiple

comparison test revealed each region contained significantly different

FA values than the other (Figure S1a). Similarly, we compared MD

values in each of the same regions and found a significant difference

across regions (F3,308 = 342.3, p < .0001). Tukey's multiple compari-

sons revealed that each region contained unique MD values except

for MD values of the CA1 and rhinal cortex (adjusted p = 0.99;

Figure S1b). These analyses demonstrate that the MTL regions could

be discerned based on their microstructural properties, agnostic to

their anatomical label.

To determine whether the same information could be gleaned

from traditional whole brain DWI imaging, we repeated the same ana-

lyses as above with 1.7 mm isotropic data acquired during the same

sessions for the same participants. The overlap between the labels

derived from k-means clustering and known anatomical labels resulted

in a nMI score of 0.242 indicating very minimal overlap between

K-means cluster identity (Figure 1d) and known anatomical identity

(Figure 1c). Similarly, we tested weather these regions were differenti-

ated by their FA values. One-way ANOVA revealed a significant

difference between regions (F3,300 = 95.96, p < .0001), however post-

hoc analysis revealed that FA values derived from the CA1 were not

statistically different than FA values of the rhinal cortex (adjusted
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p = .99, Figure S1c). We then compared MD values in each of the

same regions and found significant difference across regions

(F3,304 = 50.71, p < .0001), however, post-hoc analyses revealed that

MD values derived from the CA1 were not statistically different than

MD valued derived from the DG (adjusted p = .93, Figure S1d).

2.2 | Higher MD and lower FA in the DG are
associated with increased age

We then asked if these microstructural properties derived from the

ultrahigh resolution dMRI were associated with increasing age. In

the DG, we found a negative association between age and FA

(Pearson r = �0.47, p < .0001; Figure 2c), as well as positive associ-

ation between age and MD (Pearson r = 0.66, p < .0001;

Figure 2d). In the CA1, we found a significant positive association

between age and MD (Pearson r = 0.52, p < .0001; Figure 2b). The

relationship between age and CA1 FA was not significant (Pearson

r = �0.13, p = .26; Figure 2a).

Importantly, we note that our sample contains a bimodal distri-

bution of age as data were collected from two cohorts (63–86 and

90–98 years old). To ensure that our findings were not driven by

one particular age group, we assessed the difference in the slope of

the relationship between age and the diffusion measures reported

above across the two age groups. As a result, we investigated the

relation between age and DG MD, age and DG FA, and age and

CA1 MD within each age range separately. We found that there

was no difference (Z = �0.96, p = .34) between the slope of the

relation between age and DG MD in the young cohort

(β = 1.50 � 10�6, p = .023) compared to the slope of the relation

in the old cohort (β = 5.73 � 10�6, p = .20). We found no differ-

ence (Z = �0.34, p = .74) between the slope of the relation

between age and DG FA in the young cohort (β = �.00095,

p = .0014) and the slope of the relation between age and DG FA in

F IGURE 1 (a) Shows the FA and MD data for each area of interest: CA1 (in blue), DG (in green), rhinal cortex (in yellow), and sulcus (in black)
derived from the high-resolution DWI sequence. (b) Shows the same data points categorized into four clusters via unsupervised K-means clustering.
We note the large degree of visual overlap (normalized mutual information score = 0.623). (c) Shows the actual FA and MD data plotted for each
area of interest: CA1 (in blue), DG (in green), rhinal cortex (in yellow), and sulcus (in black) derived from the whole brain DWI sequence. (d) Shows
the same data points clustered into four clusters using unsupervised K-means clustering. Here we note the minimal degree of overlap between
the actual data and predicted data identities (normalized mutual information score = 0.242)
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the old cohort (β = �.001386, p = .2834). Similarly, we found no

difference (Z = �0.75, p = 0.45) between the slope of the relation

between age and CA1 MD (β = 8.52 � 10�7, p = .18) compared to

the slope of the relation in the old cohort (β = 4.49 � 10�6,

p = .36). These analyses are further described in Figure S2.

2.3 | Increased DG MD predicts worse
performance on word list delayed recall

Aging is associated with episodic memory decline (Burke &

Barnes, 2006; Levine et al., 2002; Mark & Rugg, 1998). In particular,

the Rey Auditory Verbal Learning Test (RAVLT) delayed recall mea-

sure has been used in the past to assess general hippocampal integrity

with age (Rey, 1964; Estevez-Gonzalez et al., 2003; Jedynak

et al., 2012). We tested the hypothesis that increased DG MD and

decreased FA would predict age-related impairments in RAVLT

delayed recall performance. We found that DG MD (Pearson

r = �0.54, p < .0001; Figure 3a) was a significant predictor of delayed

recall, however, DG FA was borderline (Pearson r = 0.21, p = .064;

Figure 3b). To ensure that these effects are not driven by in-scanner

head motion, we assessed whether average Euclidean distance moved

during the ultrahigh-resolution scan was associated with DG MD and

found the effect to be not significant (Pearson r = 0.16, p = .16;

Figure S3). To ensure that these effects were not driven by DG vol-

ume we asked if DG MD predicted delayed recall performance while

regressing out the effects of DG volume. We found that DG MD

(β = �.393, p = .00025) was associated with delayed recall perfor-

mance accounting for DG volume (β = .32, p = .0021). Although, we

note that DG MD and DG volume are related to one another

(r = 0.45, p < .0001).

To assess the impact of confounding variables such as age and

sex, we used multiple regression with age, sex, and DG MD as predic-

tors and RAVLT delayed recall as the outcome. We found that both

age (β = �.42, p = .00066) and DG MD (β = �.26, p = .030) were

independent predictors of delayed recall. Sex was not a significant

F IGURE 2 (a, b) Shows the results of CA1 structural differences across the age range. (c, d) Show the results of DG structural differences
across the age range. (a) Shows the nonsignificant relation between age and CA1 FA (r = �0.13, p = .26). (b) Shows the positive relation between
age and CA1 MD (r = 0.52, p < .0001). (c) Shows the negative association between age and DG FA (r = �0.47, p < .0001). Finally, (d) shows the
positive relation between age and DG MD (r = 0.66, p < .0001)

630 GRANGER ET AL.



predictor, although the effect was borderline or trending towards sig-

nificance (β = �.15, p = .098). Given the correlated structure across

age, DG MD, and delayed recall performance, we conducted media-

tion analyses in an effort to understand whether changes in DG MD

are a neurobiological mechanism that mediates the relationship

between age and episodic memory performance. We found that DG

MD mediated the relationship between age and RAVLT delayed recall.

The bootstrapped unstandardized indirect effect was �0.069 and the

95% confidence interval ranged from �0.13 to �0.0082. The indirect

effect was statistically significant (p = .029; Figure 4). This result sug-

gests that increased DG MD may serve as a mechanistic biomarker

for age-related episodic memory decline.

2.4 | Higher DG MD predicts worse performance
on a spatial pattern separation task

While the RAVLT can be used to assess general episodic memory and

has been used to index hippocampal function more broadly, the DG is

specifically associated with pattern separation, a neurocomputational

mechanism by the brain reduces overlap across experiences and store

them as unique memories (Marr et al. 1971; Yassa et al. 2011). We

have previously developed a spatial pattern separation task (Reagh

et al., 2014) to assess age-related changes in spatial memory and dem-

onstrated that it engages the hippocampal DG preferentially over

other subfields (Reagh et al., 2018; Reagh & Yassa, 2014). This task

was administered to a subset of the participants in the current study

(n = 53). As in our prior work, the lure discrimination index (LDI) was

used as the principal behavioral outcome measure of interest. We rep-

licated our previous finding of decreased LDI as a function of age

(Pearson r = �0.32, p = .019). We also show that target recognition

(no spatial displacement) is associated with age (Pearson r = �0.31,

p = .022). Next, we tested the relationship between DG MD and LDI

and found that increased DG MD was associated with worse LDI

(Pearson r = �0.39, p = .0051; Figure 5b), but not with target recog-

nition (Pearson r = �0.22, p = .12). We then tested if DG volume was

related to LDI, the relation between DG volume and LDI was not a

statistically significant (r = 0.12, p = .40; Figure 5c). Similar to the

RAVLT analysis, we asked if increased DG MD was a mediator of the

relationship between age and LDI. We found a marginally significant

effect whereby DG MD mediated the relationship between age and

LDI (indirect effect = �0.0026, CI = �0.0063–0.00013, p = .076).

3 | DISCUSSION

There are four major findings of this study. First, we show that the

ultrahigh resolution dMRI sequence outperforms the standard resolu-

tion whole brain dMRI sequence in detecting subtle microstructural

differences between MTL regions. Second, we show that increased

F IGURE 3 Here we report the results of DG MD, FA, and volume predicting delayed recall performance. (a) Shows the significant association
between DG MD and delayed recall performance (r = �0.54, p < .0001). (b) Shows the nonsignificant but trending relation between DG FA and
delayed recall performance (r = 0.21, p = .064)

F IGURE 4 Results of structural equation (mediation) model
shows DG MD is a statistically significant mediator between age and
delayed recall performance (indirect effect = �0.069*, CI = �0.13–
�0.0082). *indicated p < .05, ** indicates p < .01, *** indicates
p < .0001
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age is associated with distinct microstructural changes within the CA1

(increased MD) and DG (decreased FA and increased MD). Third, we

show that increased MD in the DG mediates the relationship between

advanced age and episodic memory impairment. Finally, we provide

evidence that DG MD derived from the ultrahigh-resolution sequence

may offer critical information regarding the role of DG in spatial pat-

tern separation. Overall, the approach described in this article pro-

vides enhanced sensitivity to regional microstructural differences in

the MTL which enhances our ability to elucidate the neural mecha-

nisms of age-related cognitive decline and AD.

We demonstrate that CA1, DG, and surrounding cortex have

unique diffusion profiles and that the discrimination of these profiles

is improved with the use of the ultrahigh resolution dMRI sequence.

Our data-driven approach was able to more accurately cluster unla-

beled FA and MD data points according to their true anatomical labels

in the ultrahigh sequence compared to the standard isotropic resolu-

tion sequence. Interestingly, our evidence suggests that the CA1 and

DG are dissociable based on measures of FA and MD derived from

the ultrahigh-resolution sequence, but not the whole brain sequence.

More specifically, we provide evidence that the CA1 and DG of the

hippocampus contain different FA and MD values such that the CA1

contains greater FA and lesser MD compared to the DG. While direct

histological evidence is needed to validate this claim, it is possible that

the pyramidal cell layer contributes to greater FA in the CA1 as com-

pared to the granule and mossy cells that constitute the DG

(McKiernan et al., 2017; Amaral et al., 2007). Interestingly, the direc-

tionality of these signals is consistent with prior research in animals

(Stolp et al., 2018) suggesting cross-species consistency of these pro-

files and that they might map onto cytoarchitectural and cellular dif-

ferences within these regions (Stolp et al., 2018; Wu & Zhang, 2016).

These analyses serve as a benchmark of the ability of ultrahigh resolu-

tion dMRI to differentiate between hippocampal structure and sur-

rounding cortices using the collateral sulcus as an additional indicator.

Investigations attempting to dissociate hippocampal subfields

based on diffusion profiles have predominantly been done in rodents

and have been to some extent related to histological tissue properties

(Stolp et al., 2018; Wu & Zhang, 2016). In humans, possibly due to

resolution limitation (Colon-Perez et al., 2015), investigations have

mainly studied diffusion properties of the hippocampus as a whole

(Mak et al., 2017; Reas et al., 2017) with only a few studies segment-

ing hippocampal body into either anterior/posterior segments (Fjell

et al., 2019) or along the head and tail (Hong et al., 2010). A few

investigations have probed hippocampal subfield diffusion properties

as they relate to aging and memory processes in vivo, however, these

approaches had not been benchmarked for sensitivity to subfield dif-

ferences (Radhakrishnan et al., 2020; Yassa et al., 2011). However,

one study using data derived from the Human Connectome Project

implemented nonnegative matrix factorization to identify components

or groupings of similar FA and MD values of the MTL (Patel

et al., 2020). Using this method, they were able to identify numerical

partitions of the MTL that contain clusters of similar MD and FA

values; however, it is unclear how the identifiable partitions map onto

known subfields of the hippocampus. Another study using the ADNI

dataset investigated the use of diffusion imaging within subfields to

improve the detection and prediction of AD using MD (as well as vol-

umes) of hippocampal subfields, however they did not report subfield-

specific patterns of association with cognitive performance (Hett

et al., 2019). Our current work is distinct from past contributions in

that it demonstrates clear subfield-specific diffusion feature profiles

and provides evidence for subfield-specific features predictive of

memory performance.

Ultrahigh resolution diffusion imaging has previously been used

to quantify directional anisotropy in specific white matter pathways

(e.g., the perforant path), which was not possible using traditional

approaches (Yassa et al., 2010). In the current investigation we

improved on this method by using the ZOOMit scan procedure which

utilizes inner volume excitation to increase the in-plane resolution

(Blasche et al., 2012) in a limited field of view (in this case positioned

along the hippocampal axis) under the assumption that we might also

be able to detect differences in gray matter microstructure that might

F IGURE 5 In a subset of participants, we tested whether DG MD might also predict performance on a spatial pattern separation task. (a) the
spatial pattern separation task. During incidental encoding, subjects are shown a series of objects placed in different spatial locations on a screen.
Subjects are asked during incidental encoding to rate the images as appearing as “indoor” or “outdoor”. During test, targets or objects appearing
in the same location as encoding are presented as well as lures which present the same objects in slightly different locations. Here subjects are
asked if the object was in a “new location” or “old location”. (b) There is a statistically significant association between DG MD and LDI on the
spatial task (r = �0.39, p = .0051). (c) However, there is not a statistically significant association between DG volume and LDI (r = 0.12, p = .40)
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otherwise not be detectable. Variants of this sequence have primarily

been used for imaging deep small organs including the prostate, spinal

cord, pancreas, and optic nerve (Liney et al., 2015; Saritas et al., 2008;

Seeger et al., 2018; Sim et al., 2020). Interestingly, only a handful of

studies have implemented the ZOOMit sequence in brain tissue and

have provided evidence of distinct advantages over their standard

sequence counterparts. For instance, some evidence shows that the

ZOOMit acquisition applied to BOLD contrast may be superior to

conventional BOLD sequences in detecting hand-motor cortex (Fang

et al., 2020). Additionally, the use of a structural ZOOMit sequence

(paired with EEG) has been shown to facilitate localization of epileptic

foci in patients whose focal cortical dysplasia went previously unde-

tected using standard structural sequences (Aydin et al., 2017). Here,

we demonstrate the utility and feasibility of this approach to identify

hippocampal subfield-level microstructural property profiles, which

was not possible with standard diffusion sequences, and further vali-

date the approach using anatomical a-priori knowledge as well as by

testing associations with hypothesized cognitive outcomes. The rele-

vant main anatomical a priori knowledge used here is that the collat-

eral sulcus would provide a diffusion profile consistent with nontissue

(unrestricted free diffusion profile, hence lower FA and higher MD

compared to tissue samples).

In addition to providing evidence of regionally specific diffusion

properties, we show that increased MD within CA1 and increased

MD and decreased FA in DG are associated with age. In this investiga-

tion, we note that the measures of FA and MD were calculated from

within subject-specific subfield volumes, thus, changes of FA and MD

inherently yield additional information regarding tissue microstructural

organization across the aging spectrum that may supplement gross

volumetric changes. In addition to showing an effect of age, we also

show that DG volume and DG MD are associated with memory per-

formance as assessed by the delayed recall portion of the RAVLT,

relationships that persisted after accounting for age and sex. Addition-

ally, our structural equation modeling analyses suggest that DG MD

mediates the relationship between age and delayed recall perfor-

mance, suggesting a putative mechanism for age-related episodic

memory decline. While the cell type specificity in the interpretation of

greater MD is unclear, this metric captures restricted diffusion and

can generally be thought of as inversely related to “cellularity” or cel-
lular density (Yeh et al., 2014). In other words, a smaller number of

cells results in greater unrestricted diffusion (greater MD). While this

could potentially signify cellular loss in the DG, which is consistent

with the volumetric decline we also observe with age, this interpreta-

tion remains speculative.

The DG is thought to play an important role in the neuro-

computational process known as pattern separation, or the pro-

cess by which similar experiences are encoded using distinct

memory traces (Yassa & Stark, 2011). Recently, we have shown

that spatial pattern separation is compromised in aged-impaired

groups (Reagh et al., 2014). To further probe DG function, we

asked whether DG MD was related to performance on a spatial

pattern separation challenge. Here, we provide evidence that

increased DG MD is associated with impaired spatial pattern

separation performance whereas DG volume was not. Unlike the

RAVLT, pattern separation tasks tend to be specific to DG impair-

ment (Leal and Yassa, 2015), thus this directed test of the rela-

tionship between DG MD and spatial pattern separation

performance provides further specificity. It is important to note

that the diffusion profiles observed and their relationships with

memory measures occur in the absence of clinical dementia as

this is a nondemented sample of older adults. Our results suggest

that microstructural alterations in the DG may be a more sensi-

tive biomarker of age-related memory loss than DG volume or

overall hippocampal volume.

A limitation of this study is the use of tensor derived measures

which are susceptible to partial volume effects and in gray matter can

lead to difficulty in interpretation (Assaf, 2018; Alexander et al., 2007,

Alexander et al., 2011; Jdabdi & Johansen-Berg, 2011). While our

approach employing high in-plane resolution limits the degree of par-

tial volume averaging compared to sequences of standard voxel reso-

lution, the single tensor characterization of DTI is another source of

volume averaging which we did not address with this work. Model-

free reconstruction methods such as NODDI (Zhang et al., 2012) and

ActiveAx (Alexander et al., 2011) have shown promise in alleviating

the limitations of DTI and have successfully detected microstructural

differences associated with amyloidosis (Colon-Perez et al., 2019) and

aging pathology in humans in the hippocampus (Radhakrishnan

et al., 2020; Reas et al., 2017). However, such model free methods

typically require multiple b-shells, which was not the case with our

ZOOMit acquisition. Future work using this ultrahigh resolution

sequence may incorporate several diffusion weightings to probe

microstructural integrity more thoroughly.

In addition, we note that in this investigation there were multiple

differences in scan parameters across the ZOOMit dMRI sequence

and whole brain dMRI sequence and the impact of these differences

were not systematically evaluated. Indeed, the whole brain dMRI

sequence is superior in terms of the number of sampling directions.

Thus, we suggest that the high resolution of the ZOOMit sequence as

well as its acquisition plane along the principal axis of the hippocam-

pus could potentially serve to both limit partial volume effects and

enhance the spatial fitting of ASHS regions to the native diffusion

space. Future work is needed to systematically investigate how differ-

ences in number of nondiffusion weighted images, number of diffu-

sion weighted images, b-value, scan resolution, and acquisition plane

may impact the quantification of hippocampal subfield diffusion pro-

files and their association with age-related cognitive decline. In addi-

tion, we note in this investigation eddy_correct was used rather than

eddy, future research should seek to both preprocess high resolution

data with eddy as well as to implement opposite phase encoding in

order to correct for magnetization induced susceptibility distortions.

Finally, it is possible that slight differences in the alignment of the

ZOOMit FOV during acquisition could have some impact on these

results. While we took measures to mitigate operator differences in

FOV alignment along the hippocampus with standard operator proto-

cols and training we note that this possibility is not completely

excluded.
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In conclusion, we have shown using the ZOOMit ultrahigh resolu-

tion dMRI sequence that hippocampal subfields contain unique and

dissociable diffusion properties. We have shown that these diffusion

properties become compromised with increased age and compro-

mised integrity of the DG may mediate the link between age and

impaired episodic memory function.

4 | METHODS

4.1 | Participants

Participants were recruited from two separate cohorts (Young-Old

and Oldest-Old) at the University of California, Irvine to allow us to

examine a large range of ages from 60–100 for a total sample of

78 participants (54 female, mean age 80.18). Demographic and cogni-

tive performance data of the two cohorts are summarized in Table 1.

Recruitment criteria for the Young-Old (age range 63–86) included

being between the ages of 60 and 86, speak fluent English, had ade-

quate visual and auditory acuity for neuropsychological and comput-

erized testing, good health with no disease(s) expected to interfere

with the study, willing and able to participate for the duration of the

study and in all study procedures including MRI, and had normal cog-

nition defined as a Clinical Dementia Rating of 0 and Mini-Mental

State Examination Score of 27 or higher. All procedures were in accor-

dance with protocols approved by the UC Irvine Institutional Review

Board. Recruitment criteria for the Oldest-Old (age range 93–98) was

largely the same, except for testing visual and auditory acuity and the

MMSE cutoff. Oldest-Old participants were screened for visual and

auditory impairment as part of initial medical screening. We note that

roughly one-third (NINE participants) were diagnosed with Cognitive

Impairment with No Dementia (CIND) and the average MMSE score

for the Oldest-Old was lower than the Young-Old (25.54 compared to

28.15). For reference, we also report scores on the Clinical Dementia

Rating Scale Sum of Boxes (CDR Sum of Boxes). Twelve participants

from the Young-Old cohort did not complete CDR.

4.1.1 | MR image acquisition

All neuroimaging data were acquired on a 3.0 Tesla Siemens Prisma scan-

ner at the Facility for Imaging and Brain Research (FIBER) at the Univer-

sity of California, Irvine. A high-resolution 3D magnetization-prepared

rapid gradient echo (MPRAGE) structural scan (0.8 mm isotropic voxels)

was acquired at the beginning of each session: repetition time

(TR) = 2300 ms, echo time (TE) = 2.38 ms, FOV = 192, 256, 256 mm,

flip angle = 8�. In addition, a T2-weighted high-resolution hippocampal

sequence was acquired: TR/TE = 5000/84 ms, flip angle = 17�,

FOV = 190, 105, 198 mm, voxel size = 0.42 � 0.42 � 2.4 mm3. The

ultrahigh-resolution diffusion sequence was collected as oblique coronal

slices parallel to the principal axis of the hippocampus with the following

parameters: TR/TE = 3500/75 ms, FOV = 180, 71, 66 mm, voxel

size = 0.67 � 0.67 � 3 mm3, bandwidth = 1696 Hx/Px, echo

spacing = 0.69 ms, EPI factor = 40, TX acceleration = 2.0, total approxi-

mate run time = 3 min 42 s. These parameters were optimized by Sie-

men's scanner interface. The sequence consisted of two b = 0 s/mm2

volumes and a total of 60 diffusion weighted volumes acquired as

30 noncollinear directions repeated twice at a b-value of 1000 s/mm2.

This sequence (ZOOMit) utilizes inner volume excitation to reduce the

field of view and in-plane resolution (Blasche et al., 2012). Here we ori-

ented the FOV of the ZOOMit sequence along the long axis of the hip-

pocampus in hopes to more accurately sample MTL tissue. Upon

acquiring the MPRAGE image, trained scanner technicians placed the

bottom edge of the square FOV “ON” or along the hippocampal body

from a sagittal view. The center of the box was then placed over the hip-

pocampus to cover the entire body of the hippocampus. The MPRAGE

was checked to ensure that the FOV covered both the left and right hip-

pocampus in its entirety. In this manner, by orienting the FOV along the

hippocampus, we hope to minimize partial volume effects across regions

given the 3 mm slice thickness projects within hippocampal layers rather

than across hippocampal layers. More information on this protocol as well

as example MPRAGE and T2-weighted images are supplied in Figure S4.

A whole brain diffusion sequence was also acquired with the following

parameters: TR/TE = 3500/102 ms, FOV = 218, 221, 189 mm, voxel

TABLE 1 Participant demographics
Full sample Young-old Oldest-old

N 78 52 26

Sex Female 54

Male 24

Female 38

Male 14

Female 16

Male 10

Age 80.18 ± 10.61

(Range 63.22–98.31)
73.48 ± 5.56

(Range 63.22–86.00)
93.59 ± 1.95

(Range 90–98.31)

Years of education 16.18 ± 2.50 16.58 ± 2.22 15.38 ± 2.87

Cognitive impairmenta 9 CIND 0 CIND 9 CIND

RAVLT delayed recall 9.46 ± 4.26 11.42 ± 3.21 5.54 ± 3.31

Mini mental state exam 27.28 ± 2.45 28.15 ± 1.42 25.54 ± 3.10

Completed SPS task 53 36 17

CDR sum of boxes n = 66

0.12 ± 0.35

Range (0.0–2.0)

n = 40

0.025 ± 0.11

Range (0.0–0.5)

n = 26

0.27 ± 0.51

Range (0.0–2.0)

aCIND–cognitive impairment no dementia.
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size = 1.7 mm isotropic, bandwidth = 1698 Hz/Px, echo spacing

= 0.71 ms, EPI factor = 110, total approximate run time= 8 min and 6 s.

The sequence consisted of 7 b = 0 s/mm2 volumes and two b-values of

1500 s/mm2, 3000 s/mm2 each with 64 diffusion weighted volumes. To

make the ZOOMit and whole brain sequence more comparable, we

removed all volumes where b = 3000 s/mm2 from the whole brain

sequence. All vector orientations were automatically generated by

Siemen's Prisma software.

4.1.2 | Medial temporal lobe subfield segmentation
in native diffusion space

We parsed the subfields of the MTL using T1 and T2-weighted images

and the Automated Segmentation of Hippocampal Subfields (ASHS;

Yushkevich et al., 2014) pipeline to automatically label the T2-weighted

images. This method implements joint label fusion and correcting learn-

ing and is a highly accurate method in automatically deriving hippocam-

pal subfield volumes and cortical subregions in the MTL. Using ASHS,

we calculated the volumes for the following subregions bilaterally in

native T2 space: CA1, CA2, CA3, DG, subiculum, sulcus, BA35, BA36,

and PHC. For all volumetric analyses, volumes were averaged across

hemisphere. To query microstructural differences beyond volume, we

used the ANTSRegistrationSyn program offered by Advanced Normali-

zation Tools (ANTS; Avants et al., 2011; Klein et al., 2009) to warp the

T2 and associated ASHS regions into the first B0 of the partial FOV

ultrahigh-resolution diffusion sequence (Figure S5) as well as the first

B0 of the whole brain diffusion scan. We preprocessed both the high-

resolution sequence and whole brain sequence using eddy_correct. We

quantified motion by calculating the average Euclidian distance in the

linear transformation from each subbrick to the first B0 volume prior to

any motion correction for each dMRI scan.

4.1.3 | Computation of tensor-based metrics

We calculated FA andMDmaps using FSL's DTIfit. Fractional anisotropy

andMDvalues for eachMTL subfield (bilaterally) fromASHS output were

calculated and averaged across hemispheres using AFNIs 3dmaskave

command. This process was completed for both the ultrahigh resolution

dMRI sequence and the whole brain dMRI sequence. For dissociating tis-

sue fromnontissue samples, we compared the sulcus, CA1,DG, and rhinal

cortex (defined as averaging BA35, BA36, ERC, and PHC). One subject

was removed from the MD whole brain analysis and two subjects were

removed from the FAwhole brain analysis as clear outliers.

4.1.4 | Neuropsychological testing

Our primary outcome measure in this investigation was performance

on the Rey Auditory Verbal Learning Memory Test (RAVLT; Rey, 1964)

to measure the acuity of verbal memory. Administration of the RAVLT

consisted of an examiner reading a list of 15 words, after which the

subject was asked to repeat as many words as they could remember

(in any order). This study/test trial was be repeated for a total of five

learning trials (Learning Trials, A1-A5) that were then followed by an

immediate recall of a distractor list (B1), then immediate recall of the

original list of 15 words (Immediate Recall, A6). The subject was then

tested 20 min later (Delayed Recall, A7), followed by a recognition test.

The RAVLT and delayed recall component is a well-established bench-

mark for testing and dissociating normal aging, MDI, and Alzheimer's

Disease (Estevez-Gonzalez et al., 2003; Jedynak et al., 2012).

4.1.5 | Spatial pattern separation task

In a subset of participants (n = 53, Table S1), we administered the spa-

tial pattern separation task (Figure 5a) to probe DG function specifi-

cally. This task has been used previously to assess dentate-gyrus

dependent pattern separation (Reagh et al., 2014). During incidental

encoding, subjects were asked to rate objects as either ‘Indoor’ or

‘Outdoor’ as objects appeared in various positions on the screen. For

the Young-Old cohort, each trial lasted 2.5 s with a 0.5 s ISI. In the

Oldest-Old cohort, each trial was self-paced due to concerns regarding

motor speed. The Oldest-Old cohort was instructed to respond as soon

as they were able. For both cohorts, 160 items were presented during

incidental encoding. During test, 40 target images (objects appearing in

the same location as encoding), 80 lures (same objects in slightly differ-

ent locations), and 40 pseudo-foil images (objects originally presented

in one corner location at study and in another corner location at test)

were presented. Lure images were binned as either large move (low

similarity, 40 images) or small move (high similarity, 40 images).

Pseudo-random images were the only set to appear in the corners of

the screen. During test, participants were asked if the object was in the

“Old Location” or in a “New Location”. We quantified a Lure Discrimi-

nation Index (LDI) for highly similar lure items which measures perfor-

mance on the task accounting for response bias: P(“New
Location”jLure) – P(“New Location”jTarget) and did not consider the

pseudo-foil images in these analyses. This measure is frequently

employed as it not only accounts for response bias but is also sensitive

to changes in aging (Reagh et al., 2018; Reagh et al., 2014; Stark

et al., 2015). Here we chose the high-similarity lure bins under the

assumption that the ability to adjudicate between stimuli with greater

interference (greater similarity) would be more sensitive to aging. We

excluded participants who could not respond to more than 75% of the

test phase of the task. Additionally, all participants who had a negative

LDI were eliminated under the assumption of the response being

entirely driven by response bias or inattention to the task instructions.

Exclusion based on these criteria let to a final subsample of

53 participants.

4.2 | Statistical analysis

Statistical analyses were computed using a mixture of Prism

7, R-Studio Software, and Python. K-means clustering was
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implemented using Python using sklearn.cluster to identify 4 clusters

(selected a priori), with a random state initialization of 0. Normalized

mutual information scores were calculated in Python to compare the

known identities of regions with the clusters identified from K-means.

Regression models were completed using R-Studio Software and stan-

dardized beta coefficients are reported in-text. All correlational ana-

lyses were done using two-tailed tests of Pearson correlation

coefficients. To assess the impact of the bimodal distribution of age

on measures of DG MD and DG volume, we compared the slopes of

DG MD and DG volume using a simple test of slopes. Mediation ana-

lyses were conducted using the mediation package in R, each model

was tested using bias corrected and accelerated (BCa) bootstrapping

with 5000 replications.
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