UC Irvine

UC Irvine Previously Published Works

Title

Sub-zero and residence times of multiple cryogen spurts

Permalink

https://escholarship.org/uc/item/6np1b7gx

Authors

Ramirez-San-Juan, JC Aguilar, G Tuqan, A et al.

Publication Date

2004

Copyright Information

This work is made available under the terms of a Creative Commons Attribution License, available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

2

SUB-ZERO AND RESIDENCE TIMES OF MULTIPLE CRYOGEN SPURTS

Julio C. Ramirez-San-Juan, Guillermo Aguilar, Alia Tuqan, Kristen M. Kelly, and J. Stuart Nelson

Beckman Laser Institute, UC, Irvine, CA

²Department of Mechanical Engineering, UC, Riverside, CA

Background and Objectives: Cryogen spray cooling (CSC) is used to minimize epidermal damage during various laser dermatologic surgeries. The objective of this study was to measure the time the surface of a human skin model remains below $0^{\circ}C$ (sub-zero time, $t_{\rm s}$) and $-26^{\circ}C$ (residence time, $t_{\rm r}$) as well as the minimum surface temperature $(T_{\rm min})$ and the time at which $T_{\rm min}$ occurs $(t_{\rm Tmin})$ during the application of a continuous and multiple cryogen spurts (MCS).

Study Design/Materials and Methods: An epoxy human skin model was used to measure $t_{\rm s},\,t_{\rm r},\,T_{\rm min},\,$ and $t_{\rm Tmin}$ for four sequences: one continuous spurt and three MCS sequences, all adding to a total cryogen-delivery time ($\Delta t_{\rm T}$) of 40 milliseconds. The MCS sequences consisted of two-20, four-10, and eight-5 milliseconds spurts, respectively, with a constant delay (d) of 10 milliseconds in between spurts and a constant nozzle-to-sprayed surface distance of 31 mm.

Results: For the MCS sequences, $t_{\rm s}$ increases up to 100% with respect to that of a continuous 40 milliseconds spurt. In all experiments, however, $t_{\rm r}$ was zero, since the surface temperature was never below $-26^{\circ}{\rm C}$.

Conclusions: In MCS sequences, t_s increases consistently with respect to that of a continuous spurt of the same duration (40 milliseconds). If not properly controlled, this situation could increase the risk of epidermal freezing damage.