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Franz Mohling 
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Boulder, Colorado 80302 

and 

Charles Ray Smith* (L P'L 
Universi~y of Wyoming 
Department of Physics 

Laramie) Wyoming 82070 

November 12, 1969 

ABSTRACT 

UCRL-19406 

Recent contributions to the Lee-Yang-Mohling theory of single-

component quantum fluids have enabled us to develop a new' theory of the· 

quantum statistics for a nrulticomponent nonrelativistic system of 

charged and neutral particles in thermal equilibrium. Hith the emphasis 

as much as possible on the physical content of the theory, this paper 

presents the new formulation of quantum statistics \ori thexplici t rules 

for calculating the grand potential and particle and photon momentum 

dIstributions. The present formalism not only simplifies and corrects 

an earlier version, but also it has made possible clear and systematic 

procedures for remoVing many divergencies that occur in the many-body 

theory of fully ionized gases. 



• 

-1- UCRl,..19406 

I. INTRODUCTION 

Recently, Mohling, Ranlliffiao 
1 and Shea developed a simple and 

appealing new master-graph formulation of the quantum statistical 

theory of a real quantum fluid in thermal equilibrium. The derivation 

given in MRS applied to a single-component systenl with short-range 

interactions, and Sees. II-IV of the present paper generalize that 

theory to apply to a multi component system. Our explicit use of the 

electromagnetic and Coulomb potentials means that our development 

2 amounts to a reformulation of the paper by Mohling and Grandy. Here, 

it should be mentioned that tv!G contains an oversight j.n the anlysis of 

the self-energy problem, and two classes of photon self-energy 

structures were accidentally omitted. Hence, in Sec. IV, the necessary 

amendments to MG are made so that the missing self-energy structures 

[called (0,2) and (2,0) structures] can be included. It turns out that 

(0,2) and (2,0) structures have a critical bearing on the calculations 

given in the following paper. In MRS the existence of ('0,2) and (2,0) 

structures is tantamount to high quantum mechanical degeneracy in Bose 

fluids (which occurs at extremely low temperatures); it is interesting 

to note that these structures are important (for photqns) in ionized 

gases at all temperatures . 

It seenlS characteristic of any many-body theory to be plagued. by 

divergencies and spurious results, and the present formalism is not with-

out such features. In the present case our understanding of quantum 

electrodynamiCS allows us to take cognizance of prospective troublesome 

features of the theory. .Th1.1S, from the beginning we address ourselves 
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to the tasks of mass-renormalization, of cancelling the infrared 

divergence and ofsunnning the so-called Coulomb ring diagrams, whereby ~ 

we impose upon our theory the constraint that such problems are to be 

solvable in principle and in practice. Someof these problems can 

be treated by means of a very powerful counterterm technique used 

recently by Tuttle3 in the study of uncharged quanturrl fluids, and 

Sec. V presents the counterterm technique as it relates to the other 

topics in this paper. 

An application of the theory given in the following paper will 

then make explicit use of most of the features of the present development, 

particularly as discussed in Sec. V. 

In the next section we present some background material which 

is important for our subsequent discussion. 

I, , t" 

: t '.. '. ~" 
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II. PRELIMINARY DISCUSSION 

The investigations described herein apply to a volume U of 

charged and neutral particles (\'1i th no internal states) in therrr,al 

equilibrium--periodic boundary conditions are employed, and eventually 

"the infinite-volume limit will be imposed. The system is· considered 

to be multicomponent, and the constituent particles are labeled by 

Greek letters a,~,~,· •. (the symbol r is reserved exclusively for 

photons). All particles are treated as point particles with mass, charge 

and spin (where applicable), but spin~dependent interactions are not 

considered. For most of the subsequent analysis it is not necessary 
\ 

to specify the constituents of the system; however, we assume always 

that photons, electrons and heavy ions are present. We complete the 

definition of our nonrelativistic system by the specification of the 

Hamiltonian. In standard notation, the N-particle Hamiltonian 1s4 

N 
eZi A. )2 + 

N 
Z1Z .e 

2 

[ 1 
(;ei -

I [ H = H" + ,J 
rad 2H. ( 0) c "'1. 2 r .. " 

~J 

1=1 ~ i,J=1 
itj 

(2.1) 

HO + VIr + VIr 
t + V

2r + V2'l 
t + V

2 = 

= Ho + V'l + V2 HO + V . (2.2) 
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" 

In Eq. (t .1) the label i runs over all particle" labels (except photons) 

and all particles of each type. Since photons (and later, quasi~rticles) ," 

are continually annihilated and created, it is desirable to remove the 
w 

dependence of the HamiltOnian on particle number by the use o'f Fock-

space methods. (This also means that the grand canonical ensemble 
I I 

will be employed.) Thus, using the number representation (corresponding 

to the single-particle momentum representation) we write 

H == o 

(2.4) 

(2.5) 

/, 

/ 
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V 
I [ [ t(l a) t t3 

~ 

2 a ~l a (~ ) 2 
af3 
at 7' 

a f3 a f3 
~l ~ '~3 '~4 

(3t7' 

(2.6) 

where the notation )sa includes spin degrees of freedom with each 

momentum state. In Eq. (2.3) ~he sum is over all particles !illS! photons, 

4-and the (undressed) free-particle energy-momentum relations are 

t~~a)2 

2M (0) 
a 

= -tck· 

for particles, 

for photons (a = 7'). 

(2.7) 

In Eq. (2.6) if a and (3 are charged particles then V
2 

is understood to 

be the Coulomb potential·; otherwise, V2 is assumed to be a short-range 

PQtential. 5 

We next introduce the interaction picture by means of the operator 

W(f3) _ 
(3~ 

e 
-(3H 

e , (2.8 ) 

: .,,' 



-6- UCRL-19406 

( KT.) -l, where t3 is K is the Boltzmann constant and T is the 

absolute temperature; then, vIe express the grand partition function 

in terms of this operator and apply to the resulting mathematical 

:expressions the Ursell expansion. If we apply Lee and Yang's 

. 6 ' 
ianalysis of the combinatorial problem we arrive readily at expansions 
I 

in terms of the so-called primary graphs. In the primary graphs the 

line factors (or, equivalently, the I-vertex functions) are 

where E = +1 a . 

t3[9:t _w(O)(~)] 
€ e, 
a 

if a symbolizes a Boson and symbolizes 

a Fermion. A partial summation over I-vertices leads to the replacement 

of the line factor in Eq. (2.9) by the new line factor €aVa(k), where 

(2.10) 

is the free-particle momentum distribution,and the associated graphs 
. . 6 

are called contracted graphs. In Eqs. (2.9) and (2.10) ~ is the partial 

thermodynamic (or chemical) potential for a-type particles, and 

g., = o. If' now Eqs .(2.3) -(2.6) are introduced explicitly into the 

formalism then a new expansion, known as the linked-pair expansion, can 

be derived. 7 Finally, the very complicated analysis in MG, of the 

self-energy structures in the linked-pair expanSion, leads to the 

. master-graph formulation of quantum statisti~6.8 

.' 
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The developments discussed in the preceding paragraph all 

involve the free-particle momentum distribution in an intimate way. 

It is well appreciated that the true momentum distribution for interacting 

particles may deviate considerably from the free-particle momentum 

distribution. Hence, in place of the theory in which one must correct 

6 the free-particle momentum distribution, Lee and Yang' expended 

considerable effort to introduce a theory in terms of new line factors 

which were related more closely to the true momentum distribution. 

Because practical calculations with the resulting theory were d.ifficult 

and cumbersome, the Lee and Yang analysis was still unsatisfactory--

8 
Mohling's formalism also did not eliminate this unattractive feature. 

Mohling, RamaRao, and Sheal realized that the way to avoid 

the undesirable features of the free-particle momentum distribution is 

to avoid this distribution from the beginning--that is, do not sum over 

the I-vertices in the primary graphs. If then the primary graphs, with 

the line factor given by Eq.(2.9), are used as a basis for the linked-

pair expansion, several very desirable features arise: tbe analysis 

of t1:;l.e self-energy problem is enormously simplified, and the ensuing 

integral equations for the new line factors are not only simplified but 

also reduced in number. Of course, the point can be made that the I· 

vertices, being self-energy structures (of a very simple type), might 

best be included in the summation of all self-energy structures--this 

is indeed the case. Because the ensuing MRS formalism is both clear 

and straightforward, it is susceptible to much more penetrating analyses 

than were the other theories. In particular Tuttle) has developed a 

counterterm (or a Hartree-Fock) technique which affords a new and simple 

" :.., 
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scheme for analytically continuing the theory when it is necessary to change 

the region of convergence. Moreover, the counterterm technique can be 

adapted easily to various renormalization programs. This technique can 

be applied readily to the present formalism for fully-ionized gases, 

in which we must develop specialized schemes for mass renormalization; 

for cancelling the electromagnetic infrared divergence and for solving 

the ~ne-particle self-energy problem (see the following paper). 
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i 
III. PRlJIlA....'RY LINKED-PAIR (fl., V) GRAPHS 

In this and the next section we discuss the modifications of MRS 

necessary to adapt that theory to apply to a system of charged as well 

as neutral particles; also, WE: indicate the revisions of MG brought 

about by the developments in MRS. The discussion will be qualitative, 

since most technical detail can be filled in with the aid of NRS and MG. 

Also, in the interest of keeping this paper to a reasonable length, we do 

do not include the generalizations of the diagrammatic rules for primary 

graphs given in MRS. This is especially appropriate since our generalized 

master graphs of Sec. V embrace all of the dia~ams given in MRS and MG, 

and these graphs are the only ones used in practice. 

The linked-pair graphs using line factors based on the 

statistical factor in Eq. (2.9) rather than the free-particle momentum 

distribution in Eq. (2.10) are called primary lillked-pair' (fl.,V) graphs. 

A primary linked-pair (fJ.,V) graph is defined to be a graphical 

structure conSisting of P cluster vertices and P x-vertices 
x 

[corresponding to the statistical factor in Eq. (2.9)] which are 

entirely interconnected by m internal wiggly lines; attached to the 

entire structure are fJ. outgoing external solid lines and V incoming 

external solid lines. The self-energy analysis (in the next section) 

is greatly simplified if we define primary linked-pair (fJ.,V) graphs 

, to have no line factors; thus, the statistical factor in Eq. (2.9) is 

to be associated with the x-vertex. Photon lines representing strictly 

zero momentum are to be excluded from diagrams, since such photons 

correspond to vacuum interactions (and the sum of all such contributions 

can be shoml to be zero). The rules for interconnecting the P + P x 
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vertices and for associating with the graph the appropriate mathematical 

expression can be generalized from the corresponding rules in MRS. 

It is in order, here, to point out that a major error in MG 

originates in the assumption that ~=V for photon lines. This 

assumption implies (incorrectly) that diagrams containing structures with 
I 
only two incoming or only two outgoing photon 1. ines cannot occur. Moreover) 

theself~energy analysis in MG is incomplete since such (0,2) and (2,0) 

self-energy structures have not leen summed. 

In applications of quantum statistics one is interested in 

thermodynamic functions, momentum distributions, pair-correlation 

functions and so forth. In this, paper we concern ourselves only with 

techniques for calculating thermodynamic functions and momentum 

distributions (defined below). Thermodynamic functions can be 

calculated directly from the grand potential by partial differentiation. 

Fbr:example, if f is the grand potential and n' is the volume of the 

system, then the pressure 9J , the average particle number (No)' the 

particle density P, the average energy (E) and the average entropy 

(S) can be calculated as follows: 

!P ;;::: 13-1 d(nf),IOn = f3-lf , ( 3.1) 

13-1 d (~f),IOetx (N' ) = ( 3.2) eX 

(N) If!. :[ (No>/Q -1 
[ilffog

" ( 3.3) .p = 13 
0 0 

.• ,:. > "," , , 

• 
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(E) = G - d(Ur)j2lp 

(8) =o( f3-\r)j2lT ( 3.5) 

where G = <[ (Na)~ is the Gibbs potential. Thus, as far as these 
a 

thermodynamic quantities are concerned, we need concentrate only on the 

calculation of the grand potential. 

The basic definition of the grand potential is 

Uf(f3,~,U) = £n Tr{exp(p(G - H)]} 

where H is the Hamiltonian in Eq. (2.2) and Tr indicates the trace 

in Fock space. The momentum distribution (n (k) a- (which is the 

average number of a-type particles with momentum ls,) is defined by 

t a a 
. (na(~)= Tr(a (]s. ) a(~ ) exp(-ijf) exp(f3(G - H)]} 

:::: _f3-
1

[ '0/'0 wot) lUfl,' 
V 

In terms of primary linked .. pair C!l,v) graphs the grand potential is 

given by 

= L, all di:rrerent primary 

linked-pair (0,0) graphs 

" 
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and the momentum distribution for a-type particles is given by 

all different primary 

(n (k) 
a'" 

linked-pair (1) 1) 

( 3.10) 

where in E~. (3.10) the momentum ka is the momentum preassigned to the 
'" 

external solid lines. One notes that the expression in Eq. (3.10) for 

the momentum distribution for real systems differs significantly from 

the free-particle momentum distribution due to contributions from the 

expression in the brackets. By performing the temperature integrals 

associated with the x-vertices and then summing over all possible 

x-vertices, one can show that E~s. (3.9) and (3.10) reproduce the 

linked-pair expansion of Ml and its generalization in MG. 

The primary linked-pair expansion or the linked-pair expansion 

is neither the logical completion of nor the most powerful form of the 

Lee-Yang formulation of ~"..lantU!!1· statistics. In particular, the Lee-

Yang program needed to be extended so as to include a self-energy 

analysis. Such a self-energy analysis of the theory was formulated· by 

Mohling (M2), the result being the viable master-graph formulation of 
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quantum statistics. The original analysis of the self-energy p:L'ob1em 

by Mohling (M2 and MG) was, unfortunately, extremely complicated. 

Thus, it is ·important that, in the next section, we generalize the 

simpler self-energy analysis of MRS to multi component systems with 

charged particles • 

. ' 

i 

;" , <-. " 
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rv. ANALYSIS OF THE SELF-ENERGY STRUCTURES 

In this section we generalize MRS to a multicomponent system 

of charged and neutral particles and formally sum all self-energy and 

improper structures. It is our purpose to improve the incomplete and 

complicated self-energy analysis in MG, as regards (0,2) and (2,0) 

photon.self-e:nergy structures} Our presentation is qualitative and only 

a minimal amount of formal detail is given; however, we attempt to 

provide a sound basis for the comprehension of the generalized master 

graph theory which evolves from the self-energy analysis. 

In primary linked pair (~,v) graphs, graphical stnlctures 

wh.ich can be removed from a diagram by cutting one or two internal lines 

are called self-energy structures. Self-energy structures are always 

linked-pair ( 1, 1), (0,2) or (2,0) graphs, where we emphasi ze 

again,. that (0,2) and (2,0) structures have only 'photon external lines. 

In linked-pair (~,'V) graphs it is possible to sum all self-energy 

structures and to relegate the effect of the summation of these 

structures. to line factors. We accomplish this sunnna~ion procedure ... 

formally by eliminating all improper graphical structures. 

An improper linked-pair (~,v) graph is one which can be separated 

into two graphs by cutting one internal line, where One of the two. 

subgraphs is itself a (1,1), (0,2), or (2,0) structure. A proper graph is a 

graph which is not improper. We now perform a summation which will I 

result in proper graphs with no self-energy parts (such graphs are 

called irreducible graphs). 

, .~. ~ - ", '.l 

.' 
,. 

I 
.. I 
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Except for a wiggly line the most primitive self-energy 

structure contains precisely one x-vertex and two external lines- ... chains 

of these structures are also self-energy structures. We include x-vertices 

in our program of summing self-energy structures. More aenerally, there occur 

(~,V) self-energy structures with ~ outgoing and V incoming lines 

such that ~ + V = 2. 

~ Conservation of momentum requires that the external 

lines of (1,1) structures have the same momentum and that the ex-

ternal lines of (0,2) or (2,0) (photon) structures have momenta equal in 

magnitude and oppositely dj.rected. 

The fruition of our program of summation .of all self-energy 

structures, or improper parts,will be primary master (~,v) graphs 

[and generalized master (~,v) e:;r~phs in the next section] which 

contain line factors (nstead of sell'-energy parts. While primary master 

(fJ.,V) graphs can be set in one-to-one correspondence, for (~,v)= (I,].), 

wi th the master graphs defined in MG, it will become clear subsequentl" 

that the new treatment of the self-energy'~roblem involves integral equations 

for'these graphs which are simpler and fewer in number. 

We begin our analysis by introducing the quantity L, ~l( t 2 , tl'~Cl) p., v 

which is defined 

L (t t kCl
) == \' 

Il,V 2' 1'- L 
all different primary 

linked-pair (~,v) L-graphs 

( 4.1) 

In Eq. (4.1) the term primary linked pair (~,V) L-graph has been 

introduced, and, since the term L-graph will be used in other contexts, 

, ". ,. ":,/' <. 
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we give here the definition of a. general ( ~, V ) L-gl-aph. 

Corresponding to any given (~,V) graphs, (~,V) i (0,0), we d~fine 

a (~,V) L-graph to be a graph with the same structure and rules as 

the given(~,v) graph with the following exceptions: 

(a) the external lines will be treated diagrannnatically 

likewiggl~ instead of solid, internal lines with 

pre given momenta; 

(b) a temperature Jabel t(t ~~) is assigned to the head 

end of each outgoing external line (if anY)j and 

(c) the integration over the temperature label of any 

vertex to which is attached an incoming external 

line (if any) is not performed. 

On the right-hand side of Eq. (4.1), whenever (0,2) L-graphs have 

both external lines attached to the same vertex then a factor of 

8(t
2 

-t
l

) is to be included in the corresponding term. 

Now, we define the line factor 

LJ.l,V(t2'tl'~Cl) by the equation 

G (t ,tl,kCl ) 
~,V 2 ,., 

in terms of 

( 4.2) 

where the-delta function represents a single internal wiggly line (and. 

the dummy temperature variable is removed in this case) and the presence 
' .. 

of the requires t2 > tl to prevent the occurrence of those 

wiggly line loops which are forbidden in primary linked-pair (~,v) graphs. 
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In Eqs. (4.1) and (4.2) ka is the external momentum (for one of .... 
the lines and ±ka for the other), and always ~ + V = 2 • .... 

'. 
The summation of all self-energy structures, including the.formal 

eliminatiori of all improper graphs, is most efficiently implemented by 

means of integral equations.whose iterations produce precisely all 

primary linked-pair (~;V) graphs. Hence, we introduce 

"~ all different proper primary 

linked-pair (~,V) L-graphs 

Thus, M~,V(t2,tl,~a) represents all possible proper (~,V.) structures 

that can occur between two cluster vertices, .exceptfor a single 

internal wiggly line (which is indeed a proper structure), and this 

structure is taken into account by the delta function term in the 

defini~ion of G~,V(t2,tl,~a) in Eq. (4.2). 

Finally, we complete this summation program by stating a set 

of simple coupled integral equations which interrelate the 

-.", ,;.. • 1. ;"-. ,::- ~':, 

and the L (t2,tl ,ka ): 
J-l.,V .... 

13 

~,/ t 2 , t 1, 1<."') " J ds 

o 

( 4.4) 
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( 4.6) 

For' (~,V)::: (0,2) or (2,0) one can show that GIJ.,V(t2,tl,~a) = 

G (tl , t
2

, _ka ) and M v( t
2

, t
l

, ka ) = M v( t
l

, t
2

, _ka ) • 
'~,v . - ~, -, IJ., -

The preceding swmnation program is most succinctly expressed in 

graphical form by the identification of the G (t
2
,tl ,ka ) as line 

. IJ.,V'" 

·factors.. Then,weachieve the so. called master-graph formulation of 

~." . 

quantum statistics as follows: first, we define master (IJ.,V)L-graphs and 

, 
II L 

00 

:::\ 
L 

all different Pth-order 

P=l master (J..L, V) l;graphs: ka 
'" 

; 

" 
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then, one can verify by iteration that 

( 4.8) 

which serves to relate explicitly all proper linked-pair (~,v) graphs 

(including internal self-energy structures) and primary 

master (~,v) graphs. The rules for primary master (~,v) graphs and 

the procedures for calculating physical quantities from primary master 

(~,v) graphs can be generalized from MRS. In fact, the developments 

. in the next section make it superfluous to enumerate further technical 

aspects of primary master (~,v) graphs. 

This completes our formal development of the primary master graph 

t ,theory. The theory, as it now stands, is still fraught with difficuities 

':which probably can be resolved only by renormalization techniques or 

analytic continuation of the theory. Originally, the ~-transformation was 

developed to overcome these difficulties.8 Unfortunately, the first forrnu-

lation of the A-transformation was not only complicated, but a1so demanding 

of one~, physical intuition. On the basis of the formulation in MRS it 

has been possible to greatly simplify and clarify the A-transformation. 3,lO 

. Thus) in the next section we present a refornrulation of the preceding 

theory • 

. ,'} ',. " 

.~ ! ":. ; 
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V. THE GEl\TERALlZED MASTER GRAPH THEORY 

A very tractable reformulation of the preceding theory is achieved, 

if one rearrangesll the H~iltonian in Eq. (2.2) by the addition and 

subtraction of one-particle operators (as with the Hartree-Fock 

12 °3 method in perturbation theorv). As first observed b~r Tuttle, the 

introduction of such countertermsinto the preceding theorv does not 

affect the form of the theory, except that new vertex functions must 

be included to take account of the contribution of the counterterms 

to the interaction term in the Hamiltonian. Tuttle has also shown 

that the new theory is identical to the so-called A-transformed theory 

of M2; this feature of the theory is indeed satisfactor:r , since a 

simple derivation of the A-transformed theory is now provided and 

various aspecots of the A-transformatiG)Il are thereby clarified. In 

this section we give the revised form of the multi component theory brought 

about by the rearrangement of the Hamiltonian; we also discuss at 

length the selection of the counterterms in the new theory. 

We pegin our analysis by rearranging the Hamiltonian in 

Eq. (2~2),., with the addition and subtraction of a one-particle operator. 

Thus, we introduce the operator 

and add and subtract it in the Hamiltonian: 

. I, 

.. 
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H = HO + V 

= HO + U + v - U 

H' + V - U (5. 3) I --
0 

where 

H' = o (5.4) 

and 

= w (O)(k) + u (k) + S (k) . 
0: '" 0: '" 0: '" 

It is important to realize that in Eqs. (5.1), (5.2) and (5.4) the sums 

range over all particle types (including photons). Thus, 

u (k) and S (k) depend upon the particle type, and this dependence 
0: IV, 0: IV 

. is displayed by means of a subscript, as in Eq. (5.5). In Eq. (5.1)' 

Uconsists of'two parts: a part u (k) 
0:'" 

(discussed below) and apart 

's (k) which is to be chosen specifically to'achieve mass renormalization 
0:'" 

for charged particles.' Thus, we write 



where 

S (k) a-

-22-

( t2k2) D 
2M ' a 

0; 

D == 1 _ M lu (0) 
a a/l'o' 

UCRL-19406 " 

(5.6) 

(5.7) 

and M is the experimentally observed mass (here, a refers to 
a 

charged particles). With Egs. (5.6) and (5.7) we see that for charged 

particles 

, 

which is the correct free-particle energy. 

'The interaction V in the Hamiltonian in . r ' 
Eq. (2.2) co~tainsthe bare mass Ma(O), and thus this portion of,the 

Hamiltonian must also be subjected tomass-renormalization. The mass-

rEmormalization program can be completed if we rewrite V., as 

follows [see Eq. (2.1)]: 

V == V 
., ., M (6) ~ M (l-D )-1 

a a a 

' .. 
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given in Eq. (5.7). Thus, the completion of our mass-
\ 

renorrnalization program requires the simple replacement in Vy of 

M (0) -+ M (l-D ) -1.· Before discussing the fonnal aspects of the 
0: .. 0: 0: 

present theory, we wish to make a few corr~ents on the nature of the other 

counterterm u (k). 
.0: -

First, it is important to stress that the u (k) 
0:-

are 

completely arbitrary: these functions may be discontinuous, temperature 

dependent, volume dependent and so forth. In particular u (k) 
0:'" 

can· 

be a sum of terms, each of which has a different physical meaning. Of 

course, in actual calculations one will try to identify the functions 

u (k) and S (k) with the objectives both to simplify calculations 
CX'" CX"'" 

and to facilitate their physical interpretation. Only in the course of 

definite calculations can mechariisms arise for uniquely ide;ntifying 

and selecting the counterter~s u (k) 
a-

in which anv arbitrariness of u (k) 
v 0: "" 

and 

and 

S (k). Thus, the manner a-
S (k) can be exploited a-

depends inherently upon the system under consideration. For example, 

one recognizes that entirely different rearrangements of the 

Hamiltonian will be useful for the low-temperature degenerate Bose 

system (for which D = 0) and the high-temperature fully j_onized . a 

gas. Since this paper concentrates on systems with electromagnetic 

interactions, it is in order to suggest how counterterms can be used 

in calculations of the properties of such systems. 

First of all,we note that the masses involved in the 

Hamiltonian in Eg. (2.2) are bare masses; thus, as done above, one 

introduces counterterms S6(~) which correctly renormalize the mass. 
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Next, we point out that the theory involves the virtual emission' and 

reabsorption of photons by charged particles (the so-called one-particle 

problem), and these processes lead to predictions of physical as well 

as spurious unphysical effectsj the unph~,rsical contributions. to the 

theory are to be cancelled by S(k). 
a'" 

With regard to the physical 
I 

contributions, we point out that the electro:rragnetic potentials in 

Eqs. (2.4) and (2.5) are divergent for small photon momenta (a 

property known as the infrared divergence), and this feature can lead to 

questions of convergence of the quantum statistical theorYj however, the 

careful summation of infinite series of selected diagrams coupled with 

the density of states factor usually leads to well-defined physical 

quantities. It does not appear that the Coulomb 

problem can be analyzed usefully by means of a procedure based on 

counterterms. In closing these introductory remarks we suggest another 

important application of the counterterm tec~ique: if U is selected 

. to contain all of the si.ngle-particle properties of V and thus V-U 

is made small, then one can interpret H' o as describing quasiparticles 

whose small interaction energy is given by V-U-- this situation is also 

very favorable for the use of perturbation theory. Some of the 

applications of counterterms alluded to above will be made in the 

following paper. 

If the Hamiltonian in Eq. (5.3) is to be used as the basis of 

our quantum statistical theory then one must use in place of the 

interaction representation defined in Eq. (2.8) a modified interaction 

representation defined' by n:eans of the operator 

• !, 

!)'.':".", 
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t3H' 
e 0 

-t3H 
e '''. 
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(5.10) 

Tuttle hB.s shown that the Ursell expansion based on Eq. (5.10) inst,ead 

of Eq. (2.8) does not signUicantly affect the jviRS approach to the, 

self-energy analysis. While it is straightforward to indicate 

systematically the modifications of the theory in the preceding section 

which are incurred by the use of Eqs. (5.3) and (5.10) instead of 

Eqs. (2.2) and (2.8), it is sufficient to concentrate on the more 

useful generalized master (~,v) graph formulation. Thus, we mere~y 

make a few comments on the procedure for arriving at the generalized 

master-graph theory. 

First, we note that the use of Eq. (5.10) instead of Eq. (2.8) 

means that 

everywhere 

the single-particle energy w~(~) in Eq. (5.5) appears 

in place of w (O)(k) of Eq. (2.7)j this replacement 
Q -

occurs also in the x-vertex in Eq. (2.9). Next, we observe that the 

interaction term V-U' in Eq. (5.3) is now used in place of the interaction 

V in Eq. (2.2), and this produces another I-vertex (called a 6-vertex 

by Tuttle ) which is treated diagrammatically like the x-vertex and 

can therefore appear along all lines. 

In most cases one wishes to sum explicitly over all ways of 

inserting x-vertices into diagrams. At first sight this program might 

seem inconsistent with our arguments in Sec. II, where we recommended 

against this summation, since the resulting theory will depend upon 

the free-particle momentum distrHlUtion. But now, as suggested in the 

introductory remarks of this section it may be posslble to choose 
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counterterms so that v-u is small and H' o 

UCRL-19)~o6 

corresponds to realistic 

quasiparticle energies. If U has been thus chosen, then t.he factors 

which result from the summation of x-vertices are the quasi-particle 

momentum distributions v~(r~), "\-'here 

v'Ud = (exp Mwl(k) - g ] - Eo:)";l 
ex '" ex '" a 

, 

and the resulting theory depends upon the \I'(k) 
0:-

related to the true momentum distributions. The 

which are closely 

\I'(k) ex can be incor-

poratedin a new vertex function for the 6-vertex and new cluster 

vertex functions, called i,;eneralized vertex functions (see Fig. I and 

Appendix B). 

Finally, we apply the self-energy analysis of Sec. IV and 

note that 6-vertices are self-energy structures and therefore will 

,< ..... 

be included in the summation of all (1,1) self-energy structures. But now, if 

to, 

we useEq. (5.11), then all x-vertices will be summed. However, our discussion 

in Sec. II, as it, relates to LY and M2, impJies that the summation of I-vertices 

before the self-energy analysis is ill-advised, since in M2 the use 

of contracted graphs (as opposed to primary graphs) led to a very 

complicated self-energy analysis. However, some of the intricacy of that 

analysis can be traced to the identification of two kinds of line factors 

(statistical and dynamical) which appear in several combinations in seJf-

energy structures. 

" 

, 
, ! 
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Although the initial simplification (in MRS) of the self­

energy analysis was achj.eved by the use of primary graphs, on the 

basis of the simplicity and clarity of the nei,r treatment in MR.S, it 

is now realized that the summation of I-vertices does not necessarily 

impose complicatj.ons on any subsequent self-energy analysis. Here, the 

effects of the summation of x-vertices are relegated to vertex 

functions (instead of to line factors), and the self-ener~1 analysis 

of Sec. IV can therefore be adopted. 

After the preceding remarks it should be clear that the self­

energy analysis for the present contracted linked-pair (~)v) graphs 

will result.in a master-graph theory that is diagrammatically 'similar 

to the one discussed in Sec. IV. Of course, the self-energ-y summations 

now include D.-vertices and new integral equations as .Tell as ' 

mathematical expressions for the diagrammatic symbols are required. 

The new master graphs, called generalized master (Ill") graphs 13 (and 

defined in Appendix A)l follow the same rules as the primary master graphs 

except generalized master graphs involve generalized cluster vertex 

functions (given in Appendix B) and new line factors. Thus, it 

remains for us to present the integral equations for the line factors 

of the 'generalized master graph theory; it will be seen that these 

integrtill equations provide one very general scheme 'for selecting 

counterterms. 

The basic line factors for generalized master graphs are 

defined 
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(5~12) 

is defined below. Next, we define the functions 

(5.13) 

where 

~.~ [all different 

master (f.L, V) 

genera~i zed]. 

L-graphs 

k
a 

..... 

(5.14) 

The integral equations for the line factors defined in Eq. (5.12) are 

now defined on the basis of the following equations: 

.f 1, 1 (t2 , \,li,"') = f~ ds 

o 

(5.15) 

'., 
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.to 2( t, t , kO) ::: 0 
, 2 1 - 0,7 

~ . . I ds [ § 0, 2( t 2, s,~a .jf 1,1 (s, t 1, 

o 

f3 

==)) fdS [ 0'.,7 

o 

(5.16) 

For subsequent applications it is useful to decouple formally, 
. . 

by means of a partial su~mation, the integral equation for the line 

. 7 
factor g 1,1 (t2, tl'~)· This partial summation is based on the 

following three functions: 

o(t (-) -t ) + €O .I (t
2
,t

l
, _k7) - 2.1 ,., , (5.18 ) 
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Q(t2,tl'~CX) = €CXCCX(~)[e(t2-t) + €CXV~(~)) + 01,1(t2,tl ,ks
CX

) 

~ 

+ 8 IdS ds J(' 2 oCt ,s ,k
CX

) cx,Y 1 2 ,2 1-

o 

(5.20) , 

Now; in terms of the above functj,ons, the line factOrs become 

, ~ 

8(t2(-) -tl) + €aI ds ~1,I(t2,s,~a) ~(s,tl,~a) 
o 

~ 

gO,2(t2,tl']'/) = I dsI ds2 J(O,2(S2'SI,~7) ~1,I(S2,t2,~7) 
o 

x (5.22) 

Thus, the integral equation in Eq.' (5.21) involves, in a sense, only 

(1,1) structures owing to the manner in which Q(t2,tl'~CX) in 

Eq. (5.20) combines (0,2) and (2,0) structures. The general 

structures of the integral (!quations in Eqs. (5.20) - (5.23) is 

provided diagramatically by Figs. 2 and 3. 

" 
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In Eq.s. (5.16) - (5.23) a bar has been introduced to 

characterize quantities associated with -k lines, and this notation -
will be used henceforth. It is important to realize that such a 

notation is necessary, since, for a given function F(k) associated ,... 

wi~h momentum ~, it may be true that 

Ini the case of photon lines, the difference between the kernels in 

Eqs~ (5.19) and (5.21) results in two different line factors §l 1 , 
and §. For the same reason the counterterms u (-k) 1 ,... chosen for 

_k1 lines must differ from the counterterms u (k) chosen for +k1 
- 1-"" 

lines. For charged particle lines, the present comments are not 

relevant. 

We have deferred until now the presentation of prescriptions for 

calculating the momentum distribution and thermodynamic functions. Thus, 

we give next the basic relations between the generalized master-graph 
. i 

fOljI!l8.lism and physical quantities. In terms of generalized master (1,1) 

graphs the momentum distribution, defined in Eq. (3.1), is given by 

t3 

(ncx(lsl) 0 v,;,O,l I dt gl, l(~' t,lsCX)' 

° 
·1 

(5.24) 

The grand potential, defined in Eq. (3.6), is given in terms of generalized 

master (0,0) and (1,1) graphs by the following relation: 

, " ). 
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gf(~,~,g) = nF(~,~,g) + ~ <a 

0: 

·r. , . .tn[l + € v'(l~)] . 0:0:-

1.0: 
;.;;. 

. [f1 
€ C (k) dt dt [e(t 
0:0:- 1 2 1 

o 

-t ) + € V'(k)] 
2 0:0:-

x (5.25) 

=\ fall different 

L Lmaster (0.,0) 

generali zed] 

graphs· 
(5.26) 

. T 

.ll,1(T;t:i,t1,)!.a) "I ds §1,1(T;t2,s,)!.a) ~,l(T;S,\,!:;a) , 

o . (5.27) 

5 fTdS ds QJ
2 

o(t ,6 ,kO:) 
0:, r 1 2 c.../IL, 2 1-

(, 

(5.28) 
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, § (Tj t
2

, t
l

, _~a) is defined in ana10f:,.Y lrith EClS ° (5.18) and (5.19), 

and 't satisfies the inequali ty ~ '~. T ~ t2 and tlo ThermodYllar.lic 

funct.ions' are determined from the gl'e.nc1 potential in Eq ° (5.25) 

by lr.ean3 of E'lso (3.1) - (3.5). Explicit examples of generalizsd 

Jr.aster (I-l,V) f,Taphs, for I-l + V :: 2, are Given in the f'011m.ring 

paper ., 

The precedinG develo~)!:~ents !l:ark the cnd of the prosen'tation 01' 

thc formal theory) thus fulfilline the goals of this p:!pcr. The 

follo\Ting pap~r contains further theoretical clev.eJ.cpl::ents and the 

cxplici t calculation of t.he photon r:lo:nentlLi> di stri bution. Only in 

the context of a spec5.fic application is it reasonable to discuss 

the choice of counterter{.13 \rhich can be Ir.ade in such a YTay that 

various divergences e.nd spurj.ous quasi-physical effects are cancclled 

'cxplici tly. Em.,ever, we can present here a general proce.:1.urc for 

choosing a certain class of counterter:n3 ° The counterterIiiS are 

indeed arbitrary, and the follmJine; discussjon should not be taken 

to p'!c~.n that there are no other useful scherr:es for generating 

systenatically these functions. 

'\-le direct attention to };tJ.. (5.21), the inteJal equation 

for the line :'ac'tor gl,1(t2,tIJ1?), vhere the explicit dependence on 

Q(t2JtlJ~Cl) of ~q. (5.20) is to b,;:; noted. Cle3:,ly, the con·rergz!1.ce 

or diver;;cnce properties of 1 tere.tiv~ so!.utions of this it;1tc[:ral 



Q( "- t lrO) 
I L. J J :.... .. 

2 1.-v 

arbitrary functions ~(lh\..!3) the ch:>ice of C (I:) CX .... 

vc'rv ,,-1-""'0-;- ';'J v tho ;t"-'l"-" t~ VI" <'''' lllt i OllS 07' E·::! • . : .:J \.11_ ..... u ',_ .:-..L '-_ '-"- J... ..... ~u_ ..... _ - .... _ (5.21). 
.. , 

. attempts to choose C (1.:) 
CX'" 

such that 

E C (k)[6(t -t) + ( V'(k)] 
CY. a: '" 2 1 Ct Ct. '" 

cancels t.hose contributions to Q( t ,t ,1P), o:dc;inating from th'~ 
2 1 .... 

second anc1 thirc1 terris on the riGht hanCl siele of Eq. (5.20), ".-Thier. 

give rise to c1ivergences in Eq. (5.21). Of course, the fo~~ of 

-which can be 
14 

cancelled. 

Now, v'" discuss forr:::ally a p::.'occc'i.UYC for s'21ecting COlj:lt~.:cte::CLS 

which 0.110' ... '3 us to I::oc1if.; the! line factors at an ndve-Dced st£:.Z'.:: 0;~ a 

calculation. From Eq. (5.20) it is clear tho.t the follm.;j_n2~ se12c:tion 

procedure i.f; tenable: 

(1). Calculate, in Eq. (5.20), 

,Iv" ( -<- ,. CY. ) . 2 0 l"t;l' s1 ,-', . 0'\', _ .,...., 

x 

to 
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The .quanti t:{ -€ C (k) can be chosen to be aa-
any term in Eq. (5.31) which is multiplied 

by [e(t
2 

-t
l

) + € V'(k)] 
ClCl-

and which is 

• othervrise independent;· of tl and t
2

• 

The ii/-lsL mentioned below Eq. (5.23), can be determined by a 

similar prncedure based on Eq. (5.13) for the case. Using 

this procedure, one can often select counterterrlls which lead to more 

convergent iterative solutions for the line factors and which alsq 

achieve the correct mass renormalization. After a selection of 

Ca(~)' one must still examine the propertieS of the integral 

equations for the line factors to see how the iterative solutions have 

been affected. 15 The quantities in Eq. (5.31) are actually functionals 

of the Ca(~); thus, a selection of C (k) on the basis of the above 
~-

procedure leads in,general to integral equations for the counterterms. 

The above procedure for cancelling contributions to the line 

factors does not lead to the neglect of any contribution in the theory, 

since the counterterms reappear elsewhere in the theory. In particular, 

the counterterms reappear in the Hamiltonian as definiterenormalized 

energies 'v' (k) ( including alteration of the masses M,..." 
ex '" .... 

whose 

system":'independent renorma.Hzatton is well-known in. quantuni electro-

dynamics). In the sense tbat Valone leads to divergences in 
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the theory (thus, V is large) while V-U gives convergent results 

(so that V-U is small), one finds already one justification for 

interpreting the w'(k) 
0-

as quasiparticle. energies. 
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APPENDIX A. RULES FOR GENERALIZED MASTER ( I-l, V ) GRAPHS 

A ~th-order generalized master (I-l,v) graph is defined to be 

a graphical st.ructure consisting of P cluster vertices (but no 

I-vertices), defined in Fig. 1 and Appendix B, which are entirely 

interconnected by m internal solid lines and to which are attached 

I-l outgoing external solid lines and V incoming external solid 

lines. Each external solid line carries a single arrow, and each 

internal solid line carries two arrows--one at each end. At the head 

of each arrow there is a dot. If the arrow points toward a vertex 

this dot is identical with the vertex. Three different types of 

. internal solid lines are possible, depending upon whether the two arrows 

point in the saine direction, point toward each other or pOint away 

from each other. A generalized master (I-l,v) graph is irreducible 

and proper in the sense that the cutting of anyone or two of its 

internal lines must not produce two (or three) disconnected graphs, at 

least one of which is a (1,1) (0,2) or (2,0) graph. Corresponding to 

eaCh generalized master (~1, v) graph there is prescribed an analytic 

term according to the following rules: 

(1) To each external solid line assign a pregiven momentum 

with a particle label; if (fl,V) I (0,0) the incoming 

particle (not photon) H.nes refer to the same set of 

parti cle s a s the outgoing line s • External lines with 

different momentum labels or directions are treated as 

distinguishable. 

i" ~ 
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(2) Two generalized master (~,v) graphs are different 

if their topoloe;ical structures (including arrow 

directions, particle-type labels and external lines, 

but not including the momentUm labels of internal 

arrows and the temperature labels which will be 

assigned below·) are different. 

(3) To each arrow of the m internal solid lines assign 

(4) 

a different lnteger i (i= 1, 2, •.• , 2m) and. a 

corresponding momentum k ex 
"'i 

(the possible choices 

of ex will be fixed by the associated cluster vertices). 

Assign a different temperature variable t. to each 
J 

of the P cluster vertices (encircled dots) and to 

each of the dots which occur at the head ends of 

internal arrows that point away from vertices. To 

each dot of the outgoing external solid lines assign 

the temperature variable /3 .• 

Assign to the entire grE.ph a Taetor -1 S , where 

is the symmetry number. The symmetry number is 

defined to be the total number of permutations of 

the 2m integers (assigned to the arrows of the 

s 

internal lines) which lEiave the graph topologically 

unchanged (including thE' positions of these integers 

with respect to the arrdws). 
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(5) Associate with the entire graph the appropriate 

product of P c,iuster vertices with the momentum 

variable assignments of rules (1) and (.J). Assign 
-p 

to the graph an overall sign factor IT e a, where, 
a 

I 
I 

P . is the parity of the permutation of the bottom 
a 

row momenta of a-type particles in the vertex fUnctions 

wi th respect to the corresponding ones in the top roy,. 

(6) To each internal solid line with arrow labels i and j 

assign a line factor and a momentum conserving Kronecker 

delta as follows: 

° gl,l(t,s,~a) when the arrows point in the 
. ~'!sj same direction, 

Ok. -k.gO 2(t,s,~)) ° when the arrows point toward, 
"'1' "'J .' 

a, '1 each other, 

1\ -k O2 o( t, s,k. 7) °a, '1 
when the arrows point away 

-i' '" j' "'1. from each other, 

where the temperature labels t and s correspond to 

.. those assigned by rule (:5). In each case, the arrow 

labeled i points towarii the dot labeled t. 

Finally, sum over the 3n internal momenta and integrate 

from 0 to ~ over the temperature variables assigned t. 
J 

in rule (3) • 
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In one case the rule (S) above needs to be supplemented: 

(Sa) If two internal lines connect the same two cluster 
~'. -

vertices corresponding to pair functions (whose 

vertices have temperature labels t3 and t 4) and 
, 

have for the associated line factor product 

~1,1(t3,tl'~la) ~1,1(t3,t2'~~) , 

then we must subtract the wiggly-line double bound 

correction 

from the quanti~ 

~1 

which would be assigned by the above rules • 

. : \", 
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APPENDIX B. CIDSTER -VERTEX FUNCTIONS FOR GENERALIZED 

MASTER ( ~, V ) GRAPHS 

" 
In t,his appendix we Si ve the explici t expressions for the 

cluster vertex functions which are involved in. the diagrannnatic 

expansions of generalized master (~JV) graphs. It should 

the interaction terms in the Hamiltonian. 

The generalized cluster-vertex functions are explicitly 

.0 

t<l t2 -kk
l 

"'2kk ). __ 
[G(tl -t) + €a:v~O~1)][G(t2 -t) + e!3v~q~.2)] 

.. -3 -4 it .. 

a: !3 

x ( ~l.~ \ 

)o3!4 ~ 
a !3 

(B .1) 

(B .2) 

t<t
2

. k k .). ' 
.... 1 ~ 

. . .' k
3
· !.c,; 

. .N. --+ t 

a 'Y 

t[ w' (kl)+w' (k )-w' (k )-w' (k
4
)] 

[ e( .) I \] e a:.... 'Y ""2 a: _% 'II .... t -t + V' O&~) -./ , 
2 'Y t:: 

x 
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1 [e( tl -t) + €"y I (k, ) ] 
(k k f2 "'" a "'4-

2 3 

" " e .e 
2 3

1 
[e(t

1 
-t) + € v'(k )] 

(k
2

k
3
)2 a a~l 

(B.4) 

... 

.. 



t 

r .. 

tlt2 

/':~ ~"'-, " . "'-3 / 
a )' 

tlt2l:~ ~t 
af3 

" t2 [~l ~] , 
.ls3 t4 t 

a f3 . 

ti[~l~]' 
" . ~3 14 t 

a f3 
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(e(t -t) + € V'(k,)] 
1 2 a a - __ 

' .. 

. , 

(B .6) 

;", 
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In Eets. (B.2) - (B.6) exo = e2,dlc)-l is the fine structure constant, 

and the Kronecker deltas conserve momentum and spin. (m
i 

is t,he spin 

projection) j t,he photon po.larizaUon vect,oris represented by 

i 
The symbol used in Eq. (B .1) is defined by 

= - [< kJ,k IV (t)lk ,k4 > 
'" - -2 c "'3 '" 

ex 13 
+ €: < lsl,l::f"lIV Ct) I kl Jk3 > ] ex . .-c; c -4- -

for ex = 13 

_ € € < k ex k 13lv (t)lk ex. k 13 > for ex I 13 . 
ex f3 -1 '_2 c -3'~ 

(B.B) 

In E~s. (B.l) and (B.B) ex and 13 are both charged particles and 

Xexp t[ (O)(k) + v (O)(k ) -- v (O)(k ) 
va -1 . 13 "'2 a -3 

where V . corresponds to the Coulomb i::teraction between two' particles, c 

one of charge Z e 
ex 

momentum transfer. 

and the other of charge zpe; is the. 

t) 

~', 
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In Ell- (B -7) the primed bracke:-, symbol (excluding hard-core 

potentials) is 

t2 [:1~]' = exp t[-u,,(1<3)-uB(4)] \exp t[u,,(l<l) 

-3 -4 t 

+ u
B

(!::2) 1 t2 [~l ~] 
1$3~4 t 

ex 13 ex 13 

f
· t2 

ds exp s [u .( k ) + u
A 
(k )] 

a: -1 f" ""2 

tl 

x s [ ] I ~1 ~ 

~3 ~l~ t ) 

(B .10) 

where 

for ex = p 

for ex I 13 

(B .11) 

"'" 
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In Eq. (B .11) the operator R( t
l

, t) is den ned 

a~ exp [t
1
H

O
(2)] exp [-(t

l
-.t)H(2)lexp [-til

c
(2)], 

(B .12) 

where the superscript on H (2) 
o and means "two-particle"--compare 

Eq. (2.1) with N:= 2. The operator R(tl,t) is discussed in detail 

in MI, and its matrix elements (called pair functions) 1-Till not be 

analyzed here. It is worth observing that the pair function represents 

the effe·ctive interaction for short-range forces and, being expressible 

in terms of wave functions or reaction matrices, is well-behaved even 

when a hard-core interaction is present. In Eq. (B.ll) neither 

ex nor f3 can be a photon, and the operator R( t
l

, t) is defined anI:: 

for non-electromagnetic interactions. 

,<" 

. I) 

,. 
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same manner as the effective one-body potential in Rartree-Fock 

theory. We refrain from applying the terminology "Hartree-Fock 

technique" to our counterterrn technique, since this would suggest 

that we are using only a self-consistent,.effective-field 

theory. 

13. .Generalized master gra~hs include all graphs in MRS, Tuttle and 

M~. Generalized master graphs are equivalent to theone-component 

transformed master graphs of Tuttle. If the counterterm is equat'ed 

to zero, then the master-graph formulation of MG results (but 

now with the correct sf:lf-energy analysis). If the V'(k) are a-
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expanded in terms of exp {f3[ ~ -w~O~)]), then the primed primary 

masteJ:' graphs result (see Tuttle); if next the counterterm .is equated 

to zero then one obtaj_ns primary master graphs (see MRS). 

14. It is reasonable t'o inquire whether there will arise terms in 

Q(t2,tl'~ex) of a form which can be cancelled by the counterterm 

in Eq. (5.30). The general answer to this question is not known, 

but explicit calculations show that such terms usually occur and 

'that their cancella·tion by counterterms eliminates most (if not 

all) divergences in the theory. 

15. In essence, this procedure regroups terms in the integral equations 

for the line factors in such a way that an analytic continuation 

of the line factors is achieved. In this process of analytic 

continuation,si~le-particle energies W (k) 
ex'" 

are renormalized 

to quasiparticle energies w'(k). ' ex'" 
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FIGURE CAPTIONS 

Symbols for the cluster vertices~ The corresponding 

generalized cluster vertex functions are given 

explictly in Appendix B. 

Diagrammatic representation of Egs. (5.20) and (5.21). 

'fhe graphical symbol for §1,1(t2,tl'~CX) is also defined. 

Diagrammatic representation of Egs. (5.22) and (5.23). 

The graphical s}~bols for f?o,2(t2,tl,~a) and 

~2,0(t2,tl'~CX) are also ~efined. 

IT~ • 
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This report was prepared as an account of Government sponsored work. 
Neither the United States, nor the Commission, nor any person acting on 
behalf of the Commission: 

A. Makes any warranty or representation, expressed or implied, with 
respect to the accuracy, completeness, or usefulness of the informa­
tion contained in this report, or that the use of any information, 
apparatus, method, or process disclosed in this report may not in­
fringe privately owned rights; or 

B. Assumes any liabilities with respect to the use of, or for damages 
resulting from the use of any information, apparatus, method, or 
process disclosed in this report. 

As used in the above, "person acting on behalf of the Commission" 
includes any employee or contractor of the Commission, or employee of 
such contractor, to the extent that such employee or contractor of the 
Commission, or employee of such contractor prepares, disseminates, or pro­
vides access to, any information pursuant to his employment or contract 
with the Commission, or his employment with such contractor. 
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