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ABSTRACT
Recent contributions to the Lee-Yang-Mohling theory of single-

compohent_quantum fluids have enabled us to develop a new theory of the-

" quantum statistics for a multicomponent nonrelativistic system of
.charged and neutral particles in thermal eqﬁilibrium. With the emphasis

as much as possible'on the physical content of the theory, this.paper

preseﬁts-the new formulation Qf quantumn statistics with explicit rules
for caiculating the grand potential and particle and photon momentum_

distribﬁtions: -The present formalism not only simplifies and chrects
an eaflier version, but also it has made pdséible clear and systematic
précédures for removing many divergencies thét occur in the many-body

theory of fully ionized gases.
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I. INTRODUCTION

Recently, Mohling, RamaRao and Shea1 developed'a gimpie andl
appealing new master-graéh formulation of thé.quantum statistical
theory of a real quantum fluid in thérmal equi}ibrium. The derivation
given in MRS.applied to a single-component system with éﬁort-range
iﬁteractions, andeecs. II-IV of the present paper generalize thaf
theory to apply to a multicomponent system. Our explicit use of the

eleétromagnetic and Coulomb potentials means that our development

.amounts to a reformulation of the paper by Mohling and Grandy.2 Here,

:it should be mentioned that MG contains an oversight in the anlysis of

the self-énergy problem, and two classes of photon self-enefgy

structures were accidentally omitted. Hence, in Sec. IV, the necessary

‘amendments to MG are made so that the missing self-énergy structures

[called (0,2) and (2,0) structures] can be included. It turns out that

(0,2) and (2,0) structures have a critical bearing on the calculations

~given in the following paper. In MRS the existence of (0,2) and (2,0).

structufes is tantamount to high quantum mechanical degeneracy iﬁ Bose
fluids (which occurs at extremely low temperatures); if is interesting
to note that these.structures_are importantv(for photons) in ionized:
gases at all temperatures.

ft seems characteristic of any many-body theory‘to be plagueé‘by
divergencies and sppribus results, and the present formalism is not:With-
out such features. In the present case our understanding of gpantum 
eiectrodynamics allows usvto take cognizance of prospective troubleébme

features of the theory. .Thus, from the beginning we address ourselves
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_to ‘the tasks of mass-renormalization,'of'cancelling the infrared
divergénce and of 'summing the so-called Coulomb ring diagrams, whereby
we impose upon.ouf theory the constréint that such problems are to be
solvable in principle and in Eractiée; Some of these problems can

be treated by means of a very powérfui céunterterm technique used

3 in the study of uncharged quantum.fluids, and -

recently by Tuttle
Sec. V preéénts the counterterm technique as it reiates to the other
,topiqs.in this paper.

| An application of the theory given in the following paper'will
then make explicit use of most of the features of the present development;
particularly as discussed in Sec. V.

- In the next section we present some background material which

is important for our suvsequent discussion.
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IT. PRELIMINARY DISCUSSION

The investigatiohs described hereinbapply to a volume Q of

charged and neutral particles (with no internal states) in thermal

© equilibrium-~periodic boundary conditions are employed, and eventually_

~the infinite-volume limit will be imposed. The system is considered

to be multicomponent, and the constituent particles are labeled by
Greek letters a;B,n,o-. (the symbol ¥ is reserved exclusively for

photons). All particles are treated as point particles with mass,’éharge

and spin (where applicable), but spin-dependent interactions are not

considered. For most of the subsequent analysis it is not necessary '

to specify the constituents of the syétem; however, we assume always

- - that photons, electrons and heavy'ions are present. We complete the

definition of our nonrelativistic system by the specification of the

Hamiltonian. In standard notation, the N-particle Hamiltonian is

o N L ez, 2 LI ziz_e2
= " - ey . — ———J—-—
. H Hrad * % oM ) (Ri ¢’ &1> * 2 - o lJ
=1 7 | i,3=1 |
. ‘ifj
(2.1)
_ T T
=H + V17 + V17 + V27 + V27 + V2
= HO + V. +V
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In Eq.(i.l)the label i runs over all particle labels (except phétons)'

and all particles of each type. Since photons (aﬁd lafér, quasipérticles) N
are confinually annihilated and created, it'ié'desirable to remove the e
‘dependence of the Hamiltonian on particlé number by the_ﬁse of Fock-

fsﬁaée methods. (This also means that the grand canonical ensgmble:
| _ . B

I ) i "
will be employed.) Thus, using the number representation (corresponding

to the single-particle momentum représentation) we write

B, = Z Z w(b)(l,g“) aT(,lgf") a(x”) (2..75)'

.o kCZ
v. = aT(k %Y (x "lv 1 )a(k )a(l; s
1y R ] a %3 N3
a a,.a. vy -
.Q;Ty‘ ;E.]_’}SQ ’%53

(2.4)

H

Vay = § E
a a.a._ 7.7
afy KoKy ks,

” ,[a‘@f‘)agflv 157576, o) k") al,”)

N v el (6% a7 %1V, 1% 7) a5 alt,” ] .

(2-5)‘
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where the notation 5a includes spin dégrees of freedom with each

momentum state. In Eq.(2.3) the sum is over all particles and photoné,

3

and the (undressed) free-particle energy-momentum relations are

*figg)z

(0),.c ; s ‘
w o = for particles
%) ;;;TBT‘ p s
= 'kck . for photons (o = 7).

(2.7)

' quEq.(Qia if « and B are charged particles then V2 1s understood to
- be the Coulomb potential; otherwise, V2 is assumed to be a short-rahge
5 .

potential.

We next introduce the interaction picture by meéns of the operator

) -BH | |
wip) = e o e , | (2.8)
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where B is .(KT)-l, K 1is the Boltzmann cénstaﬁt and T is the
'abéolﬁte teﬂperature;vthen, ve ekpress thevgrand.partitionifunétién
“in térms of this operétor and appiy to the rééulting mathematical
:expressionslthe Ursell expansion. If we appiy Lee and Yang's
1analyéis6 of the coﬁbinatorial problém Qe arrive readily at expansions
in termé of the so-called primary graphs. In the primary graphs the
line:facﬁors (or, equivalently, the l-vertex functions) are

| ple, -W(O)(,lsd)] o
€ e ¥ ) (209)

where Ea"= +1 if « symbolizes a Boson and €, = -1 if « éymbolizes
a Fermion. A partial summation over l-vertices leads to the replacement

of the line factor in Eq.(2.9) by the new line factor ea‘va(k’), where
vf(k)-= {exp B[w.(O)(k) gl -eyt (2.10)
a'~ a & & " A

is the_free-particie momentum distribution,-andvthe associated graphs :
are called contracted graphs..6 In Egs. (2.9) and (2.10) ga is the partial
themodynamic _(Aor'chemical) potential for a-type particles, and

87 »
fqrmalism then a new expansion, khown as the linked-pair‘expanSion, can .

T

= 0.' If now Eqs. (2.3)~(2.6) are introduced explicitly into the
be derived. Finally, the very complicated analysis in MG, of the
self-energy structures in the linked-pair expansion, leads to the

‘master-graph formulation of quantum sx't;a*t:is‘l:ics.8
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The developments discussed in the preceding paragraph all

involve the free-particle momentum distribution in an intimate way.

It is well appreciated that the true momentum distribution for interacting =~

particles may deviate considerably from the free-particle momentum
distribution. Hence, in place of the theory in which one must correct
the free-particle momentum distribution, lee and Yangé expended

considerable effort to introduce a theory in terms of new line factors

" which were related more closely to the true momentum distribution.

Because ?ractical caléulations with the resulting theory were difficult
and cumbersome, the Lee and Yang analysis was still unsatisfactory%-
Mohling's fqrmalism8 also did not eliminate this unattractive featufe.
Mohling, RamaRao, and Sheal realized that fhe way to avoid‘f
the undesirable features of the free-particle moméhtum distribufioh‘is
fé avoid this distribution from the beginning--thaf is, do ﬁot»Sum over
the 1;veftices in the pfimary grabhs. .If thén the primary graphs, with
the/iipé factor given by Eg.(2.9), are used as a basis fbr the linkéd+'A
pair e%pansion,'several very desirable features arise: the analysis

of the self-energy problem is enormously simplified, and the ensuing

”Integral equations for the new line factors ére not only simplified but

also rédu@ed in number. Of course, the point can be made that the 1-

vertices, being self-energy structures (of a very simple type), might

‘best be included in the summation of all self-energy strﬁcturesf—this.

is indeed the case. Because the ensuing MRS formalism is both clear
and straightforward, it is susceptible to much more penetrating_analyses_
5 has developed a

counterterm (or a Hartree-Fock) technigue which affdrds a new and simple




8-  UCRL-19406

scheme fér analytically continuing the theory when it is necessary to . change
the_?egion of convergence. Moreover, the{éounierterm technique éan be
adapted easily td various renormalization programs. This technique can
be»applied readily to the present.formalism for‘fully-ionized.gases,

in  which we must develop sﬁecialized sbhemes for mass renormalization,

for cancelling‘the electromagnetic infrared divergence and for solving

the Qne-particle self-energy problem (see the following paper).
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IIT. PRIMARY LINKED-PATR (u,v) GRAPHS

In this and the next section we discuss the modifications of MRS
necessary to adapt that theory to apply'to a system of charged as well -
as neutral particles; also, we indicate the revisions of MG brought |

about by the developments in MRS. The discussion will be gualitative,

\

since most technical detail can be filled ih with the aid of MRS and MG.

" Also, in the interest of keeping this paper'to a8 reasonable length, we do

do not include the genéralizations of the diagrammatic rules for pfimary
graphs given in MRS. This is especially appropriate since our generalized
master graphs of Sec. V embrace all of the diagrams given in MRS and MG,

and'these graphs are the only ones used in practice.

The linked-pair graphé using line factors based on the
statistical factor in Eq. (2.9) rather than the freé-particle momentum
distribution in Eq. (2.10) are called primary linked-pair  (p,v) graphs.

A primary linked~pair' (u,v) graph is defined to be a graphical

‘structure consisting of P cluster verﬁices and Px x-vertices

[ corresponding to the statistical factor in Eq. (2.9)] which are

.entireiy interconnected by m internal wiggly lines; attached to the

_ éntire'structure are u outgding external solid lines and v incoming

‘external solid lines. The self-energy analysis (in the next secfion)

is greatly simplified if we define primary linked-pair (u,v) graphs

' to have no line factors; thus, the statistical factor in Eq. (2.9) is

to be associated with the x-vertex. Photon lines representing strictly

zero momentum are to be excluded from diagrams, since such photons

. . correspond to vacuum interactions (and the sum of all such contributions

can be shown to be zero). The rules for interconnecting the P + Px



10~ - © UCRL-19406

vertices and for assoclating with the graph the appropriate mathematicai
expressidn;can be generalized.from the corresponding.rulés in MRS. -
| It is in order; heré, to point out that a major erfor in MG
originétes_in the éssumption that p=vl for photon iines. Th%s
'fssumptioniﬂ@lies (iﬁéorrectly) that diagrams contaiﬁing structures with
zqnly.two incoming or only two outgoing photonllines cahnot occur. Moreover,
' the-selfeenergy analysis in.MG is incomplete since such (0,2) and (2,0)
Self-energy structures have not teen summed. |
In applications of quantum statisticé one is inte;ested in
thermodynamic functions, momentuﬁ distributions, pair-cérrelatioh
functions and so fofth. In this paper we concern ourselves only with
fechniques for calcﬁlating thermodynamic functions and momentum
distributions (defined below). Thermodynamic functions cén be
calculated directly from the grand potential by bartial»differentiation.
 For ‘example, if f 1is the grand potential and Q is the volume of the
system, then the pressﬁre P, the average particle number <Na>’. the
’particle density p, the average energy (E) and the averagé ent;dpy

(S) can be calculated as follows:

® - la@npe-slr (3.1
() = 87t a'(szf)/aga ;- (3.2)
p =

104

'<N_>/sz=Z (v )/ =gt Zaf/aga . (3.3)
o a ' ' o
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(E)

il

G - b(szf)/éfi ’ : - (5-14-)

(s) = 3(™mr)pT | (3.5)

- where G ='§:: (Na)gz is the Gibbs potentiai. Thus, as far as these

'y _
thermodynamic quantities are concerned, we need concentrate only. on the
calculation of the grand potential.

The basic definition of the grand potential is
2f(8,g,,) = 4o Trlexplp(c - H)]] (3.6)
where H is the Hamiltonian in Eq. (2.2) and Tr indicates the trace
in Fock space. The momentum distribution (na(&)) (which is the

‘averége number of a~type particles with momentum %) is defined by

Trla (%) a(x®) exp(-8f) explB(C - B)])

| | An (k)=
| L o o = -.B-l[ﬁ/‘é w(’lga) Iaf| . S (3.8)

In terms of primary linked-pair (u,v) graphs the grand potential is
CEE » given.by' '

) S S all different primary
of(B,g,,) =

.

linked-peir (0,0) graphs |

(3.9)
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‘and the momentum distribution for g-type particles is given by

N
V.

¢

- (o)
| Blgv, (k)]
(n () = O J

where in Eq. (3.10) the momentum 53

+
1 €

all different primary

T

(3.10)

external solid lines. One notes that the expression.in Eq. (3;10) for

the momentum distrivution for real systems differs significantly from

the.free-§arti¢le momentum distribution due to contributions from the

expreSSion in the brackets. By performing the temperature integrals '

.associated with the x-vertices and then summing over all possible

x-vertices, one can show that Egs. (3.9) and (3.10) reproduce the

linked-pair expansion of M1 and its generalization in MG.

The primary linked-pair expansion or the linked-pair expansion

15 neither the logical completion of nor thé most powerful form of the

lee-Yang formulation of gquantum statisties.

In particular, the lee- .

~ Yang program needed to be extended so as to inclﬁde a self-energy-

analysis. Such a self-energy analyéis of the theory was formulated’By

Mohling (M2), the result being the viable master-graph formulation,of

linked-pair (1,1) graphs

Zﬁb

is the momentum preassigned to the
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‘-quaﬁtum stétistiés.’ The criginal analysis of the self-energy problem

bbeohling' (M2 and-MG),was, unfortunately, extremely complicated.
Thus, 1t ié important that, in the next section, we generalize the
simpler self-energy analysis of MRS to multicomponent systems with

charged particles.
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| IV. ANALYSIS OF THE SELF-ENERGY STRUCTURES.

ih this section ﬁe generalize MRS to a multicombonent system
of‘chgrged ahd neutral,garticles and formally sum ail self-energy and
improper structures. I% is our purpose to improve the incomplete and'_
complicated self-energy analysis in MG, as regards (0,2) and (2,0)
pﬁoton.seifdenergy étructures.9 Our. presentation is qualitative and only
,Ia'ﬁinimal amount of formal detail is given; however, we éttémpt to
proVide a sound bésis-for the comprehenSion of the generélized méstef
| éraph theory which evolves from the self-energy analyéis.
- In primary linked'pair (u,v) graphs, graphicai structures

which can be removed from a diagram by cutting one or two internal lines

are called self-enéfgy structures. Self-energy structures are always

linked-ﬁairv (1,1), (0,2) or (2,0) graphs, where we emphasize

again, : that (0,2) and (2,0) structures have only photon external lines.

In 1inked-pair (u,v) graphs it is possible to sum all self-energy

siruttﬁres an& to relegate thé‘effect of the summation of these ]
‘.strucﬁﬁresﬁto line factors. We accomplish this summapion_proceauref-
i fforma1ly by eliminating all improper éraphical structures. |
An improper linked-pair (u,v) graph is one which can be separated |

into two graphs by cutting one internal line, where One of the two.

subgraphs is itself a (1,1), (0,2), or (2,0) structure. A proper gréph is a -

' graph which is not improper. We now perform a summation which will‘Lf_
- result 'in proper graphs with no self-energy parts (such graphs are

- ‘called irreducible graphs).

I
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bExéept fof a wiggly line the most primitive self-energy
.structure contains precisely one x-vertex and two external linesfachains‘
of these structures are also self-energy structuresT We include x-vertices -
in our program of summing self-energy structures. More generally, theré occur
(u,v)b'self-energy Structures with u 'outgoing and Vv incoming lines
such that p +.v.=-2.v
_ no ) <— Conservation of momentum requires that the external
 lihes ofA (l,l)A structﬁres have the same momentum and that the ex-
ternal lines of (0,2) or (2,0) (photon) structures héve momenta equal in
- magnitude and oppositeiy directed.
The fruition of our program of summation of all self;energy
‘structures, or improper parts,will be primary master (u,v) graphs
Jand generalized master (u,v) graphs in the next seétion] which .
'contain line factors instead of self-energy parts. While primaryjmaéter
(u,v) graphs can be set in one-to-one correspondence, for (u,v) = (l,l),
with the master graphs defined in- MG, it will becomé cleér subse@uentlw
‘ that_the new treatment of the self-enefgy“problem involves integrai equations
for‘these‘graphs which are simpler and fewer in number. _
.; We begin our analysis by introdﬁcing the quantity Lu’v(tg,tl,kg)

h * h . . N .
which is defined all different primary

Fu,v(te’tl?

E?) _ | - .,_‘ .
‘ linked-pair (ju,v) L-graphs
‘ . o
(k1) o
. In Eq. (4.1) the term primary linked pair (1,v) Legraph has been

introduced, and, since the term L-graph will be used in.other contexts,



~16- " UCRL-19406

we give here the definition of & general (p,vj .L-gfaph.
Corresponding to eny given (u,v). graphs, (u,v) £ (0,0), we define
a (u,v) L-graph to be a.graph with the same’sfructure and rules esl
the given (u,v) graph with the following exceptions:
(a) the external lines will be treated diagrammatlcellv.
like wiggly, instead of solid, internal lines with
,pregiven'mementa;
(b)v a tempefatufe 1abel t(t <B) 1is essigned to the head .
| ehd of each outgoing external line (if any); and
(c) the integration over the temperature label of any
| vertex to which is attached an incoming external
line (if any) is not performed. |
On the right-hand side of Eq. (L.1), whenever (0;2) I-graphs heve
both exteinal lines attached to the same vertex then a factor of .V
5(@2 -tl) is to be included in the corresponding term.
Now, we define the line factor G (%t ,t 1 ) in terms of

’ ,V 2 1,
LP v(te,il,g?) by the equation :
) . .

- a (=) Ca '_a -
t = -
G, vt tysk)= 8(t2. B 8yt (Pt k)
| (.2)

_ where the delta function represents a single internal wiggly line (and

the dummy temperature variable is removed in this case) and the presence

- of the t (-) requires. t >t to prevent the occurrence of those

2 2 1

wiggly line loops which are forbidden in primary linked-pair (u,v) graphs.

L
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In Egs. (%.1) and (4.2) gz is the external momentum (for one of
the lines and ig? for the other), and always u + v = 2.
The summation of all self~-energy struétures,'including the .formal

glimination of all improper graphs, is most efficiently implemented by

| means of integral equations.whose iterations produce precisely all

vprimary linked-pair- (u v) graphs. Hence, ve introduce

all different proper primary

'I 1 (t21 l’k ) = ’ , *
_ 'linked-pair (u,v) L~graphs o
(4.3)
Thus, (tg’ l,k_) represents all possible prqpe? (u,v) structﬁres

that can occur between two cluster vertices,ﬁekcept'for a single

_ internal wiggly line (which is indeed a proper structure), and this

structure is taken into account by the delta function term in the
. . ‘ (¢4 s
definlﬁion of Gu,v(t2’tl’£ ) in Eq. (k4.2).
Finally, we complete this summation program by stating a‘seﬁ

of simple coupled integral equations which interrelate the

V( 2, k%) and the L, (s 1,k ):
(k)
- (Lot)
L Q ' ' a a
Ll,l(tg,tl,;; ) = vds [Gl’l(tz,s,l'g ) Ml’l(s,tl,g )
0
+ 5a,7 2 O(tz,s k ) MO 2(tl,s K )]
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. . B
04 ' o - B (04
(tei l)}s )'= 6&,7 ds. [GO,2(t2!s)}\{‘ ) Ml,l(o,tl’ '}E)
0
o2 [ a o e
+ Gl,l(s,te’}‘{‘ ) MO,E(S,tl,l"{‘ )] : ("“5)
B
) (4 ’ x
O(t tl K%Y = &d’y ds [GE)O(tQ,s,g ) Ml,l(tl,s, k)
0)
: 04 a ’ ;
+ G ,l(tE’S’}\{l ) MQ)O(S’t]_’}\{o )] (4.6)

;'Fc;r‘ (1) = (0,2) o (2,0)

_1 & N

2’ l’

one can show tha't G (t ¥ Y=

%) = Mt

2} l)

1’ 2’ -k )'

The preceding suinmation prbgra.m is most succinctly expressed in

graphical form by the identification of the ¢, v(te,tl,ga) as line.
. . J . .

‘factors« Then, we achieve the so called master-graph formulation of

' guantum statistics as follows:

P=1 master (u,v) I-graphs

first, we define master (u,v) I-’g_faphs and

(k.7)

® all different Pth-order|

&,‘_.
g

-
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then, one can verify by iteration that

Mo (%

(bt = 8 86 - v) explale - v (k)]

+ u,v(te tl,k ) s - (4.8)
" which serves to relate expliciily all propef linked-pair (u,V) graphé
(includinginﬁerhal self-energy structures) and primary
v.maéter‘ (u,v) graphs. The rules for primary master (u,v) graphs and
the.procedures for calculating;PhySicél guantities ffom primary master
(p{y) gfaphs can be generalized from MRS. In fact, the developmenfs-
1-in the next section make it superfluous to enumefa@e further techniéai
; : . .aspects of primary master (u,v) graphs. \
| This completes our formal developmenf of the primary master graph
L v’thédry.: The theory, as it now stands, is still_ffaught with difficulties
'"whichvprobably can be resolved only Sy renormalizatién techniques or
'anglytic continuatién of the theory. Originally, the A~transformation was
| »:. déveloped to cvercdme these difficulties.8 Unfortﬁnately, the first formu-
':iatién'bf the A-transformation was not only'complicatéd, but also demanding
of ones. physical intuition. On the basis of the formulation in MRS it
hasvbeen possible to greafly sim@lify and: clarify theﬂA-transformatiOn.B’lO

-Thué) in the next section we present a reformulation'of the preceding

theory.
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V. THE GENERALIZED MASTER GRAPH THEORY
A very tractable reformulatlon of the precedlng theory is achieved,‘

if one rearrangesll the Hamiltonian in Eq. (2.2) by the addition and

subtraction of one-particle operators (as.with the Hartree-Fock

“method in perturbatlon theorv ) As first observed by Tutt?e,5 the

1ntroduct10n of such counterterms -into the precedlng theory does not

affect the form of the theory, except that new vertex functlons must'
~ be included to take account of the contribution of the counterterms

~to the interaction term in the Hamiltonian. Tuttle has also shown

that the new theory is identical to the so-called A-transformed theorv

of M2; +this feature of the theory is 1ndeed satisfactorv since a

- simple derivation of the A-transformed theory is now provided and

various aSpeots of the A-transformation are thereby clarified. - In

this section we give the revised form of the multicomponent theory brought

- about by fhe rearrangement of the Hamiltonian; we also discuss et

- length the selection of the counterterms in the new theory.

We begin our analysis by rearranging the Hamiltonian in

Eq. (2. 2), with the addition and subtraction of a one-particle operator.

Thus, we 1nLroduce the operator

U= }: aT(x) alk) u@g +Z e’ (k) a(x) s(x) (5{1)
3 -

k
- Z Z a' () a0 o) (5.2)
a @ : v h |

~r

" and add and subtract it in the Hamiltonian:
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(5.3) !

where ' | | : : N -
e ) ) @B, s
2N ;»g'a - ' R :
and -
) = ) = w0 ) s - 5

it is importaﬁtyto‘realize that in Eqs.‘(5.l), (5.2) and (5.4) the sﬁms
:fange over all particle types (including photons). Thus,

ﬁ;(g) and %a(g) depend upon the particle type, and this dé?endencé'

. is displayed by means of a subscript, as in Eq. (5.5). In Eg. (5.1)

U COnsistévof'two parts: a part ua(g) (discussed below) and aipart
.Sa(k) which is to be chosen specifically to achieve mass renorhalizétion

for charged particles. Thus, we write
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8, (k) -

=0
£22
5 (10 - (eg,—M;)Da (5.6)
there
p -1-um@, i(‘5-7)
a ko Tt " o

and Mﬁ ~is the experimentally observed mass (here, a refers to
'charged.particles). With Egs. (5.6) and (5.7) we see that for charged

particles .

WQ(O)(E) + Sa(%) = — R : (5.8> 

- which is fhé-correct'free-particle energy.
- 'The interaction V7 in the Hamiltonian in

y (©)

/> and thus this portion of the

“Eq. (2.2)'containsvthe bare mass
Hamiltonian must also be subjecﬁed to.mass-renormalization.‘_Thevmass-
. renormalization program can be completed if we rewrite V7 as

follows [see Eq. (2.1)]:

v,=V | - (59
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wifh'qz given in Eq. (5.7). Thus, the completion 6fvour mass-
renofmalization brogfam reqﬁires-the simple replacement in V7 of
Ma(O) - Ma(l-Da)-l.‘ Before diécussing the " formal éspects of the
preseht théory, we wish to make a few comments on:the nature of the other
counterterm pa(k).. |

\ Firét, it is important to streés that the ua(g) ‘are
completely arbitrary: these functions mav be discontinuous, temperature
' Aépendent; volume defendent and so forth. In'particular ud(&) can-
be a sum of terms, each of which has a different physical meaning. Of
-course, in actual caléulatiéns one will try to identify the functions
ua(k) and Sa(k) with the objectives both to simplify calculations
and to facilitate their physical interpretation. Oﬁly in thé course of
definite calculations can mechanisms arise for uniquely idqﬁtifying.'
~and selecting the counterterms ua(k) >and Sa(£)' Thus, the mannef
in which any arbitrariness of ua(g) and Sa(£) can be éxploited
depends inherently upoﬁ the system under consideratioﬁ. For example;
ohe recoénizes that enfirely,differént rearrangements of the
‘Hamiltqnian will be useful for the low-temperature degenerate Bose
s&stém (for which Da = 0) and the high-temperature fully ionized
gas. Since this paper concentrates on systems with eleétromagnetic
‘interactions, it is in order to suggest how counterterms can be used-
© in Calculations of the properfies of such systems.
First of all, we note that the masses involved in the

Hamiltonian in Eq. (2.2) are bare masses; thus, as done above, one

introduces counterterms ﬁx(g) which correctly renormalize the mass. .
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Next, we poihf out that the theory involves the virtual emission and |
reabsorptioh of phoﬁons Ey chafged particles (the so-called ohe—parficle
problem), aﬁd these processes lead to pfedictions of physical as weli
vasﬂspurious unﬁhysical effects; the unphysical contributions to the.
vtheory are fo be cancelled by .Sa(gj. With regard to the p%ysical'
gonfribuﬁions,'we point out that the electromagnetic potentials in
- Egs. (2.4) and (2.5)-are di?ergent for small photon momenta (a
propefty known as the infrared divergence), and this..féature can lead to
questions of convergence of the guantum statistical theory; however,'the
éareful summaiion of infinite series of seiected diagrams coupled with -
- the density of states factpf usﬁally leads to‘well-defined physical :
| quantiﬁies; ©.It does noﬁ appear that the Coulomb
problém can be analyzed usefﬁlly by means of a procédure based on
7 cduntertérms. In closing thesezintroducﬁory remarks we suggeét another
.viﬁportaht application of the counterterm‘technique: if. U ié selected
to contain all of the single-particle properties of V and thus V-U
is-mgde,small, then one can interprét Hé as describing quaSiparticles
“whose émallvinteraction energy is giveﬁ by V-U-- this situation is also
,véry>favorable for.the use of perturbétion theory. Some of the
'épplications of counterterms alluded to abovevwill be made in the ,.
v'fbllowing paper.
If the Hamiltonian in Eq. (5.3) is to be used as theAbasis of -

our quantum statisticél theory then one must use in place of the
'interaqtionvrepresentétion defined in Eq. (2.83) a modified intefactioﬁ

representation defined by means of the operator

Caan
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BH,  -BE - o
W'(B) = e e wa 0o (5.10)

Tuttle has shown that the Ursell expansion based on Eg. (5.10) insﬁead

of Eq.:(2.8) does not significantly affect the' MRS approach to the

'sélf-energy ahalysis, While it is straightforward to indicate

systematically the modifications of the theory in the preceding section

which are incurred by the use of Egs. (5.3) and (5.10) instead of

" Egs. (2.2) and (2.8), it is sufficient to concentrate on the more

‘useful generalized master (1,v) graph formulation. Thus, we merely

make a few comments on the procedure for arriving at the generalized

master—graph theory

First, we note that the use of Eq. (5.10) instead of Eq. (2.8)

means that the single-partlcle energy w'(k) in Eq. (5.5) apbears

everywhere in place of W (O)(k) of Eq. (2. 7) this replacement

occurs also in the x-vertex in Eq. (2.9). Next, we observe that the

interaction term V-U in Eq. (5.3) is now used in place of the interaction

'V in Eq. (2.2), and this produces another l-vertex (called a - A-vertex

by Tuftle') which is treated diagraermmatically like thevx-vertex and _
can_therefore appear along all lines. | |

In most cases one wishes to sum explicitly over all ways of
inserting x~-vertices ihto diagrams. At first sight fhis program might

seem inconsistent with our arguments in Sec. II, where we recommended

'against this summation, since the reshlting theory will depend upon

the free—particle momentum distribution. But now, as suggested in the

introduectory remarks of this section it may be possible to choose
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counterterms éoythat V-U 1is small and Hé corresponds to realistic
quasiparticle energies. If U has been thus choSen,'théﬁ the factors
which result from the summation of x-vertices are the qﬁasi~particle

momentum distributions v&(g); vhere

Vo) - fexo BIMY) - g - ed™h (5.11)
and the resulting theory depends upon the v&(g) which aré closely
related to the true momentum distributions. The v&(k) can be incor-
porated in a new vertex function for the A-vertex and new cluster
vertex function;, called 5enerélized vertex functions (see Fig. 1 and
Appendix B).
Finally, we apply the.seiernergy analysis of Sec. IV'aﬁd' 
ﬁote’fhét A-vertiées ére sélf-energy structures and therefore will
_rbe'included in the summation bf all (1;1)'self-energy'structurés. ‘But now, if
we use Eq. (5.11), then all x-vertices will be summed. :However, oﬁr discussion
in Sec.AII, as it rélates to IY and M2, implies that.the summation of l-~vertices
before the sélf-energy analysis is ill-advised, since in M2 the use
of contracted graphs (as opposed to primary graphs) led to a‘vefy
complicated self-energy analysis. However, some of the intricacy of that

analysis can be traced to the identification of two kinds of line factors

(statistical and dvnamical) which appear in several combinations in self-

energy structures.

~
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Although the initial simplification (in MRS)' of the self-
energy analysis was achieved by the use of primary graphs, on the .
basis of the simplicity and clarity- of the»new treatment in MRS, it
‘is now.reelized that the summation of l-vertices does not necessariiy '
impose compiications:on any subsequent self-energy analysis; Here, the
'effeets of'the summation of x-vertices are relegated to vertex |
fﬁﬁctiohs.(inStead of to line factors), and the self—energy enalysis
of Sec, IV can therefore’be adopted., |

After’the preeeding remarks it should be clear that the self-
energy analysis for the present contracted linked-pair (u,v) graphs
will result in a maeter-graph theory that is diagrammatieally’similar
to the one discussed in Sec. IV, Of course, the.self-energy summations

now include A-vertices and new integral equations as well as:

mathematical expressions for the diagrammatic'symbols are'reqpired.

. rhe nev master graphs,'called generalized master ngv) graphs15 (and
definedv in Aépendix A), follow the same rules as the primary_master éraphs
.eXcept generalized master graphs invoive generalized cluster veftex
functions (given in Appendix B) and néw line factors. Thus, it -
vremeins for us to present the integral equations for the line factors

of the generalized master graph theory; it will be seen that these
integral equations provide one ver& generél seheme‘fof selectingAv.
.‘countertefms‘

The basic line factors for generalized master graphs.erev_

_ defined
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o Can o (2) : . - :
= - t_,t.,k
Qu,v(te.’tl’& ) = 8ty ty) Sy +_ ‘o -Zu,v( 2’ "1~ )

¢

(5;12) ‘
\ ' N ) Q.
- where (u,v) = (1,1), (2,0), (0,2), and the quantity jp»v(tg,tl,}é_)
is defined below. Next, we define the functions '
. Q ‘ ' o ' | Sy
- = t)1 6 - k)]d + t ,to, kT,
ﬂ’iu, (tz’t.],"lﬁ ). eaca(flf.)[ (te tl) * ecxva(~)] uw,V JCu_,v( 2’ l’fg‘) g
(5.13)
~ where
' all different generalized
c}( (t)t:ka)i
. w,v 27 1~ v v
master (u,v) IL-graphs _
. E?
- (5.14)

The integral equations for the line factors defined in Eq. (5.12) are
".now defined on the basis of the following equations:

o . '..l - .
8 | (5as)

L1t tpk) = | s UGy 408, 8,00 Gy (080

>
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8
a ) Lo a o o
-ZO 2(t t k ) : 6(1,7’ dS [ go)e(tgbs)’l‘{'l ('ﬂil)l(s’tl, —}E )
* Gy (oK) Mo plstp €01, (5.6)

' o : : Ly = a
-Ze,o(tz’tl,ln" )= By | 381 ge,o(te’s’éﬁ ) ‘ﬂ[l,l(tl’s’ '33‘)

+ glfl(tg,s,lga) wcl’fe,o(?’tl:}ia)] . (5.17)

For subsequen't applications it is useful to decouple formally,
by means of a partial summation, the integral equation for the line

factor 91 l( tg,tl,"lg)r'. This partial summation is based on the
3 P .

-followixig' three functions:

S(tz(') -tl).+e ](t

o E’t > ",157) ) (5-18)

~~
o
4
o+
=
by
g
"

dsg 213, k ) ﬂl l(s) l) —k ) J

P
i
\Y)
T Ne
ct
-
.
1
Pie
N
il

(5719)
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: L _ . RS o
t550) = el lO(t,mty) + evg(R) ] + Ky 485t K7)

B .
) ' 01 - O x
y Sis. - t ¥y .
+ 8y o[ 9838, Ko oltyr8KT) G (sp805 =K7) K o,0ltr5p0K )

Q v
R | - (5.20)

Now, in terms of the above functions, the line factors become

f
c ay (=) _ . o o
gl,l(tg’tl’l's ) = 5(t2 _tl) t &y ds gl’l(te;s:ﬁ ) s)tl}}f_.) ;
. 5 ‘ |
(5.21)
) 7 R, . 7 1 7
; go,g(tz)tl:}f’ ) " dSld82 ‘XO,2( Serl)}s ) gl, l( S2)t2)fs )
! 0 v
x  Glspty, ), (5.22)
| B - |
‘ ‘ . 7y |4 . " y V4 Sr. - 7y
QE,O(TQ’tl’}\{- ) = dsldse Cj?l’l(f_é:szﬁ,}s ) 9(’61,51: k ) |
A |
Koo o(555,5K7) (5.23)
X 2,00 2’1~ : _

Thus, the integral equation in Eq. (5.21) involves, in a sense, only

(1,1) structures owing to the manner in which Q(tg’t1’§?) in

' Eq. (5.20)_combines (0,2) and (2,0) structures. The general

structures of the integral equations in Egs. (5.20) - (5.23) is

provided diagramatically by Figs. 2 and 3.

-
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a In Eqs;‘(5.l6) - (5.23) a bar haé been introduced to
:cﬁaracterize quantities associated with 45 lines, éhd thiS“notation
ﬁill bexuSed henceforth. It is important to realizenthat such a
_ notation is necessary, since, for a given function F(g) aséociaﬁed
.wi%h momentun X, if may bé true that .
F(-x) # F(~k) | ‘ e
Inithe‘case-éf photon lines, the difference between the kernels‘iﬁ .
‘; Eqé;'(5gl9) and (5.21) results in two different.line factors éal,l
v.and é?; ‘Fof the same réason the.counterterms .E;(-g) .chosen for
-%7 lines ﬁust differ from the counterterms uy(E) chosen for +§7
liﬁes. For charged particle lines, the present coﬁments are nOf
ﬂ_relevant.

'We have deferred until now the presentation of prescriptions for
caléﬁlaiing the momentum distribution and thermodynamic functions.' ihué,
W¢‘give ﬁexf the basic relétions between the geﬁeraliZed master-graph'.
fd£malisﬁ and physical gquantities. In termé of generélized mastef_‘(i,l)'

- graphs the momentum distribution, defined in Eg. (5.7),'18 given by’
8 |
(n,()) = vl | at G, (8,569,

(5.2&) 

_ The grand potential, defined in Eq. (3.6), is given in terms of generalized

 master (O;O) and (1,1). grephs by the féllowing relation:
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‘ Qf(ﬁ,ga:g) = QF(B;EQ)Q) + Z Ga Z Zn[l + GQV&(}‘{’)]
- a e
" Z Z eColE) [ arav (et -t) + €V ()]
a0 %

. - 7 o “-a
X 91 l(tg)'jl}:‘ )

J

where - ‘all different generalized

QF(S)QQJQ) = ' ’
, master (0,0) graphs:

(5.26)
’ . Tv .
_Zl l(T tg l,ka) = | ds gl,l(r;tg,s,}ga) Ql,l(r;s,’cl,,‘rga) )
0 o (5.27)
. . T
: Q(T;te’tl’ka) = ﬂl,l(te’tl’gz);* %,y | 25195 ﬂe,o(te’sl"f-a)
G

x  Glusysy, -K) Mo (t5,K) 5 (5.28)
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| sy (5) N
égl,l(r AL & = B(te -t ) + €y ng 1(1 b5k ),
(5.29)
~é?(r t,%y5 Ka)' is @defined in analogy with Egs. (5.18) and (5.19),
‘and T satisfies the 1nequg11tj B > T>t and t Thermodynanic

2 1’
funcuions are deterwined from the grand potentlal in Eq. (5. 25)

" by means of Egs. (3.1) - (3.5). EYpllClt examples of generalize
raster (u,v) graphs, for pu + y = 2, are givcn in the following
" paper.. | | |
| ‘.The ﬁreceding developnents mark the end of the presentétion of
the formal theory, thus Tulfilling the goais of‘this papér. The
bvfollowing'paper contains further theoretical developrents and the
explicit caléulation of the photon nomentun-distribution. Only in
the éontext of a specific application is it reasonable to discuss
the choice of counterterds vhich can be made in such & way thét
various diver"bnces end spurious quasi-physical éffects ére cancclled
explicitly. Eowever, wve éan present here a general procedure for
bchoosingba certain class of counterterms. The counferterms are
indéed erbitrary, and the following discussion should ﬁot be taken
to mean that there are no othgr ﬁseful schemes.for generating
systeﬁaticall& these functions, |

'WE direct attention to Eq. (5.21),vthé integral equation

for the line factor Q? (t ), where the explicit dependence on

2’ l’
Q(tz,tl,c ) of =q. (5.20) is to be noted. Clearly, £he conr

'7’“‘"1C‘3

or diver;ence properties of iterative solutions of this integral

<
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equation depend quite delicatelyr upon Q(t _,t.,% ). .Morsover,
34 : Pt o= : ) - Py 2 l ~
(-t + 1.-a) enends in o ticular aedditive m= * ) ~hea
Q LA lepends, in & particular additive manner, upon the
arbitrzry functions C (% . Thus, the choice of C (: can affect

attempts to choose Ca(%) such that ‘ :

U1
i
=

e C (K)[6(t. - + eV : 3
aa<f,>_[<2_u> w(,,) IR
cancels thosze contributions to Q(te,ﬁl,gz), criginating from th=
second and third terms on the rizght hand gside of Eg. (5.20),which

3 Bvris AT

give rise to divergences in Bg. (5.21). Of course, the form of

PR e S s ' L
Eq. (5.3%0) delinits the variety of contributions to Q(tg,ﬁl,i )

1k , ’

‘cancelled.

)

vhich can b
Now, we discuss formally a procedure for szlecting countarteris
wvhich allows us to wedify the line factors at an advquLd Ci"ﬂ ol a

" calculation. From Eq. (5.20) it is clear that the Tollowing selcction

procedure is tenable: : ' '

(1). Calculate, in Eq. (5.20),

5 .
a S o >’ e £ 1‘,a,
H, 1( tJ" ) ¥ %,y | 90198 Haoltersyn)
Y
) O » " .
X _(j (Sg) SlJ ~ ) cf,o rz( “l: 52:,\; )

. e -
to an:r Eesirzi ordsr.
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A (2). The .quantity -eopa(§) can'bé chosen t; be
| < any:térm in Eq. (5.31) which is mﬁltiplied :
o by [9(t2 -ty) + eav&(g)] and which is
; - _ ' otherwise independen%’of t, and té,
| The Ey(-k}; .méﬁtioned below Eq. (5.23), cén be dgtermined‘bv,a
simiiar procedure based on Eq. (5.13) for the -%7 case. Using
this prdcedure, one can often select counterterms which lead to more
convergeﬁt:iterative solutions for the line factors ang which also.
achieveithe correct mass renormalization. After a selection of
Ca(g), one must séill examine the”propertieé of fhevintegral
equatiqné for the line factoré to see how the iterative solutions have
been affected,15 The quantities in Eq. (5.31) are actually functionéls
| of the'ica(%)3 thus, a selection of Ca(g):’on the basis of.the above

procedure leads in general to integral equations for the countefterms.

The above procedure for canceliing contribﬁtions to the iine
‘factofs does hot'leéd to the neglect of any contribution in the theory,
éince.the counterterms reappear elséwhere in the theory. ‘In particulai,
. fhe counterterms reappear in the Hamiltonian as definite renormalized
' énefgiés’ w&(&)‘(including alteration of the masses Ma’ whose_
vsystéinndependent'rehormallzation is‘well-known iﬁ.quantum‘electro-

" dynamics)-. vIn the sense that V alone_leads to divergences in
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 the theory (thus, V is large) while V-U gives convergent results
(so that V-U is small), one finds alreadyv one Jjustification for
intérpreting the w&(g) as quasiparticle energies.
ACKNOWLEDGMENT
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APPENDIX A. RULES FOR GENERALIZED MASTER (u,v) GRAPHS

A Pth-order generélized master. (u,V) _gréph ié defined to.be
a graphi;al structure consisting of ‘P cluster veftices (bu£ no
l-vertices), defined in'Fig. 1 and Appendix B, which are entirely
intercénnected_by m internal soiid lines and to which are attached
M dﬁtgoing external solid lines and Vv incoming external solid
lines. Fach external solid line carries a single arrow, and each-
 intérﬁal solid line carries two arrows--one at each end. At the head
of each arrow fhere is.a dot. If the arrow points toward a vertex
this dot is identical with the vertex.) Three different,typeé of

,intefnal so0lid lines are poésible, depending upon.whetherpthe two‘arfows
‘point in the same direction, poin% toward each other or point awayk

" from each other. A generélized<master' (u,v) graph‘is irreducible -
and proper in the sense that the cutting of any one or two of its
.1nternal lines must not produce two (or three) disconnected graphs, at

‘least one of Wthh is a (l 1) (O 2) or (2,0) graph. Correspondlng”to

each generallzed master (u,v) graph there is prescribed an analytic

term according to the following rules:

‘ (1) To each external soiid line assign a pregiven momentum
‘with a particle label; if (1,v) # (0,0) the incomiﬁg. ‘
‘particle (not photon) lines refer to the same set of

particles és the outgoing‘lines. External lines with
different momentum labels orldirections are treéted.as ‘

distinguishable.



(2)

(3)

if their topological structures (including arrow

' unchanged (including the positions of these integeré'
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Two generalized master (p,v)' graphs are different

airections, particle-type labels aﬁd externgi 1ines;
but not‘including the mbﬁéntﬁm labels‘of_ihtérnal |
arrows and the temperature labels.which'willlée

assigned below) are different.

Té each arrow of the m internal solid lines>assign :

a different integer i (i=1,2,-..,2m) and a |
corrésponding momentum 5ia' (the-ppssible choices

of «a. will be fixed by the associafed cluster vertiges),
Assign a different temperature variable tj fo each

of the P cluster_verﬁicés'(enciréled dots) and fos'
eaéh of the dots which occur at the head ends of.

internal arrows that point away from vertices. To

each dot of the outgoing external solid lines assign .

v . - the température variable B.

 is the symmetry number. The symmetry number is

Assign to the entire greph a factor S-l, where S

defined to be the total number of permutations of

the 2m integers (assigned to the arrows of.the

“internal lines) which leave the graph topologically : i

with respect to the arrdws).



(6)

@
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Associate with the entire graph the appropriate

:product‘of P  cduster vertices withlthe momentum

variable assignments of rules (1) and (3). Assign
5 _

. v o
to the graph an overall sign factor IIe »  where
7 . . B a .

{
Pa' is the parity of the permutation of the bottom

row momenta of a-type particles in the vertex functions

with respect to the corresponding ones in the top row.

To each internal solid line with arrow labels i and

o

assign a line factor and a momentum conserving Kronecker

delta és follows:

. o . _
ke K §?l)1(t,s,ki ) when the arrows pointnln the

gi’~j : same direction,
B, x g;b 2(t,s,§i7) 8y y when the arrows point toward
~i’ ~J 2 4 each Other,
- LG, (t,5,k.7) 8 when the arrows point away
_aki’_kj 2,0 T %Y from each other, | ,

where the temperature labels 't and s correspond_to'

‘those assigned by rule (3). In each case, the arrow -

: labeléd i points toward the dot labeled t.

Finally, sum over the 2m internal momenta and integraﬁé

in rule (3).

" from O to B over the temperature variables tj assigned'
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" In one case the rdle‘(S) above needs to be supplemented:

. (5a) = If two internal lines connect the samé two cluster
vertices corresponding to pair functions (whose
- vertices have temperature labels +t, and th) and

b

~ have for the associated line factor product
a it B
 then we must subtract the wiggly-line double bound -

correction

Tt

330,
| 3 éé?
' k. k '
M3~y
o B
frdm the quantit§
: t.t
12~ .
o %)
gl,l(tB,tl’}‘\‘l) gl’l(tBth)}SQ ) 2
' k k
a B -

which would be assignedvby the above rules.
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'APPENDIX B. CIISTER ~VERTEX FUNCTIONS FOR GENERALIZED
MASTER (u,v) GRAPHS:
| In this appendix we give the exp].iéit expreésions for the
’éluste_x' vertex functions which are involved in.the 'diaéramnatic
expahs_ions , of generalized master (u,v) graphs. It should
Eé feélized_ that these vertex functions have evolved directly from .
the interaction terms in the‘ Hé.fniltonian.

The'gene'ralized cluster-vertex functions are explicitly

Py

= {e(%l -t) + eav&(;gl)][e(t2 -t) + éavé(gg)]

| K Xk
t
o B (B.1)
(B.2)
k 2 .
Ny A2 21(41'1(1 € Z e .e :
. o oaa 2 Tl . '
o - Qv _/(1-D ) 1 [Q(tl -t) + eavo:(;ﬁl) } v
ks K CF T (1k)?
N3~y 24
a7

el )y i) er ()1

X

5( i's'l +@) 2 (kB +k{-)+) Sml) m5
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/ '1544 ' Enﬁeaoeazag :::Q-ej :
- - ]
Wi —7 ‘[G(tl :t) + eava(l,ga)J
k. k. k_ / | o (k. kx_)° . | §

a7

tlug )= sy ) -3 () -3 (k) )

X e v

e U ptEs) °mym,

- ) o (8.3)
et o \ |
El ke '156 2nh2005a2a2 eé-e L

| - 5T o@r /(3D ) ~ [o(t) ~t) + evgky)]
C . k O’/ a (k k )"é‘ : o
., L, i 23 . '

a r7

- | Lot (e )4t )+ () - (1, )]
% [6(ty, ~t) + v 1T6(t, ~t) + v (ki)] e a ~l va‘7.~f2, 73 a 4

x 81.34) ( 1,31“".15/2""}.{,3) Bml; m4
.t "
1 ' 1 . PN
'fieeaza 2na 2 ksve, , - -
. » ‘ 2 -
ot ()~ (ke )= k) )
x e @77 @yl O (k. +k )% ,m
5 M B~ L R
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tt. o R
12 - i ~ S
151}32 "flgez' 2ra \2  k,-e_
=W '(C:JL[OD!? szo =2 [6(t, -t) + evi(k,)]
k 2
~5 It
a 7

L gy )+l (e ) - (s)

x [6(t -£).+§.;'(k )] € > O, (k.+k )om ,m

t.t
12 :
5 %
= [Q(tl -te) + e vi(k,)]
}55 .lf.br t
aB
t e
2
S ,
% / 6(t2 -t) + [e(t2 --tl) + eavsflge)]
A}SB '15'4 t
e B o
" R L )
1. o . B _ '
x | oty -t) + eaeﬁva(lgl)vé(}se)
K3 %, de | S L& My
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" In Egs. (B;2)'— (B.6) Q= eg(kc)_l is the fine structure constant,

_ . : _ v Y
and the Kronecker deltas conserve momentum and spin (mi is the spin

: . . ~ '
» projection); the photon polarization vector is represented by e - " 4

- The symbol used in Eq. (B.1) is defined by

kLo -
= - [<15] A )[ Ks h
a B '
+.€, <~l’ IV (t lm, 5 } for a=p8

a,

Y , L
- - e f&,%ﬁ%uﬂ%,&5>fw a#B

ap

(B.8)

‘In Egs. (B.1) and (B.8) a aud B are both charged particles and , -

hnz 7 e , ‘
.o a . B a, B o ‘
BT > e

vexp thv, D) + v 0y - Vg - w Vi)

X 8(k +y ) (155+,) 8 m, 5 5m2,m4 . o - (B.9)

where VCA'correqunds to tihe Coulomb irteraction between two particles,
one Cfvéharge Zae and - the other of charge Z_e; q = k., -k is thé‘

B ~3  ~]

momentum transfer.
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In Eq. (B.7) the primed bracke® symbol. {excluding hard-core

fpotentials)vis

2 ' 1] 2
SR SR
= exp t[-u (k )-u <kh)] exp t (k ) +u (h )]
'1‘{'3: '1‘(')# t . : '133 .'lsh t
t
. . .2 )
* [-ua(gl)fua(};:e)] - ds exp s[u (k) + ua(}ge)]
t
S
RESR
X v ; (B.10)
'}5'5 :Lsrl; t
ap
where’ -
t
Ak &, o _ |
= <k IR(t ’c)]}%,'}&u >
SRS ‘ o 3 : . _
TR <Shpk IRt )kl > 0 for a= 8
- &% < k |R(t t,)l;\c‘3 Kk > for a# B

J~4

1)
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t) 1is defined

In Eq,v(B.ll) the operator R(tl,

-

R(tl;t) = - 5%— eXp [tlﬂo(e)] exp [j(tlit)H(e)]“exP [_tHG(Q)], ' v

(B.12) .

where the superscript on HO(E) énd H(e) méans "tWO-particle"f-compére
Eq. (2.1) with N = 2.  The operator R(tl,t) is discussed in detail

in MI, and its matrix elements (called pair functions).will not_Be
analyzed here. If is worth observing that the pair function represents
the effective interaction for short-rangevforces and,'being expressible
in terms Qf wave functions or reaction matriées, is well-behaved even
when é hard-core interaction is present. In Eq. (B..11) neither

e’ nof p can be a photoh, and fhe operator 'R(fl,t) is defined onlf

for non-electromagnetic interactions..



discussed qplte adequately in MRS), nor do we discuss the
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rules to prevent the occurrence of forbidden wiggly-1line double

bonds are not given here (see MRE)
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Tt is precisély the (0,2) and (2,0) self-energy structures

(whose external lines are always photon lines) which are omitted

in MG.
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published). | | | |

The simplestvrearrangements of the Hamiltonian seem to bé: (1)
additlion and subtraction of one-particle operators, and (2)
trénsformafioﬁ of the creation énd annihilation operatdrsvby
means of é Bogqliubov tranéforméfioﬁ. These‘twd rearrangements:
_are, in geﬂéral, not equivalent.

Here, the counterterm is introduced into the Hamiltonian in the

samevmanner &8s the effective one~body pbtential‘in Hartree-Fock

theory. We refrain from applying the terminology “Hartree—chk

technique" to our counterterm technique, since this would suggest

thét we are using only a ' self;ponsistent,.effective-fieid.
theory. | ‘

,Gener;lized master graphs include all graphs in MRS, Tuttle ahd
MQ.; Genefalized master graphs are equivalent to the'éne-component :
transforméd master graphs of Tuttle. If the counterterm is equatéd

to zero, then the master-graph formulation of MG results (but.

now with the correct self~energy anélysis). If the V&(%) are
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|

. expanded in terms of exp'{ﬁ[gb —w&(g)]}, then the primed pfimary
- master graphs result (see Tuttle); if next the counterterm(ié'equated
to zero then one obtains primary master graphs (see MRS).

‘Tt is reasonable to inquire whether there will arise terms in

Q(te,tl,gu) of a form which can be cancelled by the counterterm

in Eq. (5.30). The general answer to this gquestion is not known,

but explicit calculations show that such terms usually occur and

that their cancellation by counterterms eliminates most (if not

all) divergences in the theory.

In essence, this procedure regroups terms in the integral equations

- for the line factors in such a way that an analytic continuation

- of the line factors is achieved. In this process of ahalytic

continuation, single-particle energies wd(g) are renormalized

_to'éuaSiparticle energies w&(k).
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FIGURE CAPTIONS

Symbols for the cluster vertices. The éorrésponding '

génera’l‘ized cluster vertex functions are given
explictly in Appendix B.
Diagrammatic representation of Egs. (5.20) and (5.21).

The graphical symbol for & l(tg,tl,g?) is also defined.
_ , | :

Diagrammatic representation of Egs. (5.22) and (5.25).7

The graphical symbols for‘go’e(te,tl,}ga) -and

92 O( tg,tl,}ga) are also defined.
] v v

o

€
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Fig. 2
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LEGAL NOTICE

This report was prepared as an account of Government sponsored work.
Neither the United States, nor the Commission, nor any person acting on
behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with
respect to the accuracy, completeness, or usefulness of the informa-
tion contained in this report, or that the use of any information,
apparatus, method, or process disclosed in this report may not in-
fringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages
resulting from the use of any information, apparatus, method, or
process disclosed in this report.

‘As used in the above, ''person acting on behalf of the Commission”
includes any employee or contractor of the Commission, or employee of
such contractor, to the extent that such employee or contractor of the
Commission, or employee of such contractor prepares, disseminates, or pro-
vides access to, any information pursuant to his employment or contract
with the Commission, or his employment with such contractor.




TECHNICAL INFORMATION DIVISION
LAWRENCE RADIATION LABORATORY
UNIVERSITY OF CALIFORNIA
BERKELEY, CALIFORNIA 94720

“ ~—~
b i 0w
L3 ——





