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The symbioticinteraction of plants with arbuscular mycorrhizal (AM)

fungiis ancient and widespread. Plants provide AM fungi with carbon

in exchange for nutrients and water, making this interaction a prime
target for crop improvement. However, plant-fungal interactions are
restricted to asmall subset of root cells, precluding the application of
most conventional functional genomic techniques to study the molecular
bases of these interactions. Here we used single-nucleus and spatial

RNA sequencing to explore both Medicago truncatula and Rhizophagus
irregularis transcriptomes in AM symbiosis at cellular and spatial resolution.
Integrated, spatially registered single-cell maps revealed infected and
uninfected plant root cell types. We observed that cortex cells exhibit
distinct transcriptome profiles during different stages of colonization by
AM fungi, indicating dynamic interplay between both organisms during
establishment of the cellular interface enabling successful symbiosis. Our
study provides insight into a symbiotic relationship of major agricultural
and environmental importance and demonstrates a paradigm combining
single-cell and spatial transcriptomics for the analysis of complex
organismal interactions.

Arbuscular mycorrhizal (AM) fungi occur in all major terrestrial
ecosystems’. They are fundamental to agricultural production as
they provide plants with nutrients, particularly non-renewable
phosphorus, as well as resistance to abiotic stress” and pathogens®.
Plants reward these services by transferring carbohydrates and
lipids to AM fungi, which enables extension of extraradical mycelium
in the soil*.

Intense coordination between species is required for symbiotic
recruitment, development and maintenance within the root. Preceding
contact, signalling between plant roots and germinating fungal spores

initiates hyphal branching towards the root at which a hyphopodium
will form to initiate the symbiosis’. Upon contact, a plant-derived
pre-penetration apparatus guides the fungus across and through the
epidermis, with hyphae travelling both inter- and intra-cellularly to
reach the inner-most cortical cells®’. Hyphae then differentiate to
form branched structures termed arbuscules within cortical cells®.
Thehost plantrestructures the cortex celland builds a peri-arbuscular
membrane (PAM)*, creating anapoplastic spaceacross whichmetabolite
exchange occurs between species. As symbiosis develops, the carbon
supply from the root allows for expansion of an intraradical and
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extraradical mycelium, through which soil minerals are transported
into the plant®.

Decades of research resulted in much progress regarding
functional characterization of genes involved in the AM symbiosis’™”,
yet many remain to be characterized. Multiple characteristics of AM
symbiosis complicate traditional transcriptomic approaches. As
obligate biotrophs, AM fungi cannot complete their life cycles or be
culturedindependently inasymbiotic conditions. Recent advancesin
asymbiotic sporulation of mycorrhizal fungi using bacterial fatty acids
as stimuli are encouraging'®'’, but it remains challenging to develop
axenic AMinoculums. Due to asynchronous colonization, many devel-
opmental stages exist simultaneously within the cortex. This limits the
ability of whole-root transcriptomics to differentiate between tran-
scriptional profiles of each stage®. Arbuscules are extremely transient
structures, lasting only afew days before senescence”*, confounding
efforts to distinguish discrete phases of interaction. Furthermore,
arbuscule collapse and vesicle or spore formation indicates that the
plantand fungus are assimilating exchanged nutrients, which creates
the need to analyse root cells that appear to be non-colonized”. Several
groups have elegantly addressed these challenges using laser-capture
microdissection (LCM) to obtain transcriptomes of cortex cells visually
confirmed to be directly adjacent to fungal appressoria (early stage)
and colonized cortex cells (CCCs; late stage)***. One disadvantage
of LCM is that it limits investigation to cell types already known to be
involved, which creates the need for an unbiased approach to analyse
allroot cell types.

Therapid adoption of single-cell RNA sequencing (scRNA-seq) or
single-nuclei RNA sequencing (snRNA-seq), with potential to identify
novel cell types, model developmental trajectories and analyse tran-
scriptional activity of individual cells*, has revolutionized plant biol-
ogy.InbothscRNA-seq and snRNA-seq, investigation of transcriptomes
fromallcelltypesis possible, rather than requiring manual selection of
individual cells, as with LCM. Moreover, snRNA-seq’s rapid protocols
are robust to diverse organisms and tissue types. In addition, certain
celltypes are preferentially released as protoplasts during enzymatic
digestion for scRNA-seq, but nuclei are extracted uniformly across
celltypes, leading to amorerepresentative population of cell typesin
snRNA-seq datasets”*%. For example, arbusculated cells have highly
ramified cellmembranes, which may be difficult to recover after enzy-
matic digestion due to their increased surface area. In both scRNA-seq
and snRNA-seq, the spatial context of gene expression is lost upon
dissociation of cells fromthe tissue. Spatial transcriptomics allows for
sequencing of cell transcriptomes within the tissue context, adding a
novel dimension to the data®.

Inthis Resource, we applied single-nuclei and spatial transcriptom-
icstotheinteraction between the modellegume Medicago truncatula
and the AM fungus Rhizophagusirregularisto create atwo-dimensional
integrated map of plant and fungal transcriptomes during symbiosis.
We provide an unbiased spatial and single-nuclei transcriptomics data-
set that profiled a multi-kingdom interaction. The spatially resolved
transcriptome provides insight into coordinated gene expression
occurring between the two partners across all major M. truncatula
root cell types. This transcriptomic map represents a novel resource
for AM fungiresearch and demonstrates the value of novel multi-omics
approachesin answering biological questions.

Results

Nuclear RNA profiling identifies M. truncatula cell types

To gain a comprehensive transcriptional profile of the plant/AM
fungal interaction, we performed snRNA-seq and spatial RNA-seq on
M. truncatula roots, which were mock-inoculated or inoculated with
the AM fungus R. irregularis. We isolated and purified nuclei from
M. truncatula roots by fluorescence-activated nuclei sorting (FANS,
Fig. 1a) before loading the suspension onto a microfluidic chip for
snRNA-seq profiling®.

Quality filtering and unsupervised clustering resulted in a data-
set 0f 16,890 nuclei grouped in 16 distinct cell clusters (Methods).
We assigned cluster identities using cell type-specific gene expres-
sion profiles derived from A. thaliana root single-cell datasets®
aswell as arhizobia-colonized M. truncatula single-nuclei dataset*
(Supplementary Table 1 and Extended Data Fig. 1). Nine clusters
(11,298 cells) exhibited characteristics of cortex cell identity, with
one additional cluster (174 cells) composed of cortex cells colo-
nized by R. irregularis (Fig. 1b). We also identified all other major
M. truncatularoot cell types and generated marker gene sets for each
(Supplementary Table1).

Simultaneous spatial capture of plant and fungal transcripts
To investigate gene expression from both symbiotic partners, we
performed spatial transcriptomic profiling on inoculated and
mock-inoculated M. truncatula roots at 28 dpi (Fig. 2a,b and Supple-
mentary Table 2). An example capture area from an inoculated plant
displays numerous root cross-sections fixed and stained on the glass
surface (Fig. 2c, i). On average, inoculated capture areas resulted
in 20,333 and 5,084 transcripts mapping to the M. truncatula® and
R.irregularis® genomes, respectively, while mock-inoculated capture
areasresultedinanaverage of21,987 (M.truncatula) and 23 (R. irregularis)
transcripts. Spatial unique molecular identifier (UMI; Fig. 2c, ii)
and feature (Fig. 2c, iii) distributionsindicate auniform capture of tran-
scripts across the expected areas of each cryosection, with few hotspots
of fungal colonization associated with increased transcript counts
fromR. irregularis (Fig. 2c, iv) and increased expression of phosphate
transporter 4 (MtPT4),amarker gene for arbusculated cells® (Fig.1d, v).
The spatial technology relies on polyadenylated transcript capture
via oligo(dT) primer sequences, which enabled unbiased capture
of R. irregularis and M. truncatula transcripts simultaneously. Ana-
lysing the distribution of all M. truncatula transcripts within each
inoculated capture area (Fig. 3a, i) and comparing it with that of all
R. irregularis transcripts (Fig. 3a, ii) showed distinct patterns of mes-
senger RNA capture and expression between the two species, indi-
cating the successful spatially resolved capture of transcriptomes
during symbiosis.

Overlapping, symbiosis-responsive transcriptomes

To identify genes associated with AM fungi colonization within
our spatial datasets, we performed dimensionality reduction and
clustering of all voxel transcriptome profiles fromboth AM fungi- and
mock-inoculated spatial capture areas (Extended Data Fig. 2). Due
to the relatively low resolution of the Visium platform (each 55-um
voxel could contain one to five cells), we refrained from assigning cell
identities to spatial dataset clusters (referred to as ‘spatial clusters’),
as voxels probably represent heterogeneous cell groups. Instead, we
identified voxel clusters within the mycorrhizal dataset that could
representsites of AM colonization. To do so, we compiled alist of estab-
lished AM-responsive marker M. truncatula and R. irregularis genes
(Supplementary Table 3) functioning in various stages of AM coloniza-
tionand analysed their expression across the 13 spatial clustersinrefer-
encetoastably expressed housekeeping gene, elongation factorlalpha
(MtEF1a)*. Spatial clusters 3 and 12 showed high specific expression of
the markers from both species and thus were deemed ‘AM responsive’
(Fig. 3b), with spatial cluster 12 showing higher expression of early
markers and spatial cluster 3 showing higher expression of late-stage
markers. We detected a few AM symbiosis marker genes within the
snRNA-seq dataset that were missing or lowly expressed within the
spatial datasets. This may be due to lower detection efficiency of unbi-
ased transcriptomic methods as compared with probe-based cap-
ture*’. To estimate spatial expression of these genes, we integrated
nuclear and spatial datasets together and imputed expression values
across modalities. Using this approach, we associated the expression
of two marker genes, does not make infection 1 (MtDMII)** and sickle 1
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Fig.1|snRNA profiling in M. truncatula roots colonized by R. irregularis.

a, Anoverview of the approach. M. truncatularoot tissue is flash frozen for nuclei
extraction and subsequent snRNA-seq using the 10x Genomics Chromium
platform. Intact single nuclei are emulsified with gel beads containing barcoded
oligonucleotides within a microfluidic chamber, resulting in abarcoded cDNA

library after reverse transcription. b, The UMAP coordinates 0f 16,890

M. truncatula nuclei from three AM-colonized root harvest timepoints clustered
by similarity in transcriptional profiles. The identities of 16 unique clusters are
represented by different colours.

(MtSKi1)*®, with mycorrhizal capture areas, despite their absence from
the spatial dataset.

Colonization stage-specific M. truncatula gene expression

We used stage-specific markers to determine the distribution of cells
across arbuscule development within the snRNA-seq datasets. Low
phosphate availability stimulates the interaction between plant and
AM fungus, resulting in secretion of strigolactones from cortex cells*.
ABCG transporter 59 (MtABCGS59) is upregulated during phosphate
starvation and upon mycorrhizal exposure®. We observed enrichment
of MtABCG59 in cells throughout the cortex clusters (Fig. 4a), repre-
senting cells that are responding to phosphate starvation. Cluster 14,
which specifically expressed 1-deoxy-D-xylulose 5-phosphate synthase
(MtDXS2) transcripts, probably represents cells undergoing active AM
symbiosis, as MtDXS2is required for the methyl b-erythritol phosphate
pathway-based isoprenoid production to sustain AM colonization
(Fig. 4a)*°. To determine whether we captured a developmental gra-
dient, we first defined an expression module of AM symbiosis marker
genes expressed in the AM symbiosis cluster (cluster 14), and then we
computed an AM module score for all cells (Methods). We selected cells
inthe 98th percentile for this AM module score and re-clustered them

intofive subclusters (Fig. 4b). Based on the enrichment of marker genes
observed, subclusters a, b and e probably represent earlier stages, as
these cells are enriched for MtABCG59 transcripts. Clusters c and d
may represent later stages of colonization based on the enrichment of
MtDXS2transcripts, and the cells at the edge of cluster d are probably at
the most advanced stage of colonization, as they are the only cellsin the
single-cell datasets that contain high levels of MtPT4 mRNA (Fig. 4b).

We also visualized the spatial dynamics of colonization by track-
ing the distribution of stage-specific AM symbiosis marker genes. By
analysing expression of MtABCG59, carotenoid cleavage dioxygenase
1(MtCCDI1)", MtPT4 and MYB-like transcription factor 1 (MtMYBI)*®,
we classified voxels within distinct stages of colonization (Fig. 4c).
We repeated this stage-specific analysis with the snRNA-seq data
to show the developmental trajectory of AM colonization starting
with the phosphate stress response gene pleiotropic drug resist-
ance 1 (MtPDRI)*’, which is enriched throughout the cortex cluster.
Calciumand Ca*/calmodulin-dependent protein kinase (MtCCaMK)*°
isinvolvedin host-symbiontsignallingin early stages andis enriched
inthecells closer to the colonized cluster. M¢PT4is enriched inasubset
of cells at the furthest edge of the colonized cluster and M¢eMYBI is also
enriched inthese distal cells (Fig. 5c, upper panel).
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Fig.2|Spatial transcriptomics enables simultaneous capture of

M. truncatula and R. irregularis transcripts. a, M. truncatula root tissue is flash
frozento create 16 pm thick cryosections, each containing numerous root cross-
sections. Cryosections are fixed to capture areas, each of which is equipped with
~5,000 spatially barcoded voxels at a resolution of 55 pm. b, Side-by-side images
of brightfield tissue image and underlying spatial capture voxels, with a close-up
view of asingle root cross-section within the capture area (one representative
capture area out of nine mycorrhizal capture areas was analysed) highlighting
voxel size inrelation to the tissue. ¢, Capture area containing cross-sections
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from M. truncatularoots infected with R. irregularis at 28 dpi (one representative
capture area out of nine mycorrhizal capture areas analysed). Image of root cross-
sections within capture area (i). UMI count (ii) and feature count (iii) overlaid
onto spots underlying tissue. Expression pattern of all R. irregularis transcripts
captured (scale, log, of UMI counts) (iv). Expression pattern of the arbuscule
marker gene post-imputation (v), MtPT4, exhibiting overlap in spots with the
highest expression of fungal transcripts (scale, log, of UMI counts). Visualization
doneinLoupe Browser.

Performing differential gene expression analysis, we found
258 genes enriched in the AM symbiosis cluster 14 (log FC >0.25,
adjusted P< 0.01, Supplementary Table 4) compared with all other
cortex clusters combined. Among these, we recovered known marker
genes for AM symbiosis, along with many genes not previously
associated with AM signalling as well as genes with no annotated
function. These included a gene encoding a monosaccharide trans-
porting ATPase (Medtr8g006790/MtrunA17 Chr8g0335291), which
we speculate the plant uses to provide sugars to the fungus, several
genes with leucine-rich repeat domains (Medtr6g037750/ MtrunA17_
Chr6g0464631 and Medtr3g058840/MtrunAl7_ Chr3g0102261),
which could mediate host-symbiont signalling, and MtABCI9,
which encodes a xenobiotic-transporting ATPase (Medtr3g093430/
MtrunA17 Chr3g0128391) (Fig. 5c, lower panel). Lastly, we observed

high expression of several lipid transfer M. truncatula genes within
this cluster (Extended Data Fig. 3).

Arobust set of symbiosis-responsive

M. truncatula genes

Differentially expressed genes (DEGs) between mycorrhizal and con-
trol spatial capture areasrevealed 2,383 AM-responsive M. truncatula
transcripts (Fig. 5a). Of these, 1,464 were upregulated (log, FC >1.0)
and 919 were downregulated (log, FC <1.0) in the mycorrhizal treat-
ment (Supplementary Table 5). Two LCM-based transcriptomic anal-
yses revealed similar numbers of DEGs in response to mycorrhizal
treatment®*?, with 188 genes significantly upregulated across all three
datasets, which we refer to as ‘robust’ AM-responsive genes (Fig. 5a
and Supplementary Table 5). No genes were found to be significantly
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Fig.3| Transcriptomic profiling reveals coordinated gene expression
between the symbiotic partners. a, The spatial distributions of host and
symbiont transcript expression from four unique capture areas containing lateral
root cross-sections from M. truncatula plants at 28 dpi (scale bar,1 mm; scale,
log, of UMI counts). i, Four unique inoculated capture areas exhibiting the spatial
distribution of all M. truncatula transcripts within the roots. i, The same four
capture areas exhibiting the spatial distribution of all R. irregularis transcripts
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within the roots. b, Adot plot of M. truncatula and R. irregularis housekeeping
genes along with genes known to be involved in different stages of the symbiosis
utilizing hierarchical clustering within the integrated mycorrhizal spatial object.
¢, Avisualization of gene expression imputation from snRNA-seq mycorrhizal-
integrated dataset for two lowly expressed genes, MtSKL1 and MtDMI, within a
single representative Visium Spatial Gene Expression capture area out of nine
mycorrhizal-treated capture areas analysed (scale bar,1 mm).

downregulatedinall three datasets. This set of robust AM-responsive
genes includes characterized AM symbiosis marker genes, such as
MtMYBI1, MtPT4 and MtRADI (a positive GRAS transcription regulator
of the symbiosis)*’. One of the upregulated transcripts cyclin-like 1

(MtCYCI) encodes a putative cyclin-like F-box protein and is a known
marker for cell division™, suggesting induction of cortical cell division
as aresponse to AM colonization. However, many of the 188 genes
remain to be investigated for their role in AM symbiosis.
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genes; cells with module scores in the 98th percentile were selected as ‘CCCs’ and Zoomin red blocks focuses on voxels that switch expression profiles.
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a, A Venn diagram showing overlap in symbiosis-responsive M. truncatula
genes with alog fold change > or <1between the spatial dataset from this study
and the two previously published LCM RNA-seq studies from Gaude et al.” and
Hogekamp et al.”*. b, The breakdown of predicted cell types represented in each
cluster within the integrated spatial dataset in terms of number of voxels. DEGs
between mycorrhizal and control treatments are shown above each bar for each
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M. truncatula genes in red and downregulated gene counts inblue. ¢, The
expression of four canonical pre- and post-AM symbiosis marker genes shown
ina UMAP plot of single-nuclei dataset (upper). The expression of four genes
enrichedin the CCC cluster of this dataset that have yet unknown roles in AMF
colonization, shown in a UMAP plot of single-nuclei dataset (lower). The UMAP
plots are coloured by normalized mRNA counts (scale, log(UMI counts +1))
depending on the marker gene, thus reflecting the colonization stage.

The 55-pum resolution of the Visium Spatial Gene Expression
platformresults in blending of several adjacent cells together into a
single profile (that is, it cannot resolve transcripts into single cells).
However, we utilized our annotated snRNA-seq and spatial datasets to
predict the proportions of each cell type represented in each spatial

cluster (Fig. 5b). Differences were observed in the proportion of cell
types between spatial clusters. We saw a relatively high proportion of
voxels identifying as lateral root primordia, which we hypothesize as
resulting from the high amount of mRNA captured from meristematic
root tissue on the capture area. We also observed large differences in
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the amount of DEGs between the individual spatial clusters, indicat-
ing the method can discern between cell populations experiencing
different degrees of AM colonization.

Functional enrichment depicts amarked symbiotic response
We performed functional enrichment analysis for Gene Ontology
terms, including biological process (Extended Data Fig. 4a), molecular
function (Extended Data Fig. 4b) and cellular component (Extended
Data Fig. 4c) among significantly upregulated M. truncatula genes
(I, Supplementary Tables 6 and 7) and the robust gene set (lI, Sup-
plementary Tables 8 and 7). As expected, we saw a >20-fold enrich-
ment for the “arbuscular mycorrhizal association’ biological process
termoverall, and >80-fold enrichment for this term within the robust
set. We also observed a high enrichment (>100-fold) of the ‘response
to symbiotic bacterium’ term within the robust set, indicative of
genes common to both fungal and bacterial (rhizobial) symbioses.
During rhizobial symbiosis, legumes allow controlled infection by
rhizobia, leading to the development of root nodulesin whichrhizobia
directly fix and transfer nitrogen to their hosts. The rhizobial symbiosis
coopted numerous components of the ancestral AM symbiosis signal-
ling mechanism® and this ‘common symbiotic signalling pathway’ is
represented within our robust dataset by the differential expression
of two co-expressed interacting genes, MtVAPYRIN (MtVPY)** and
MtEXOCYST70 (MtEXO70i)*. These genes function during the intracel-
lular phases of endosymbiosis in both AM and rhizobial symbioses,
with MtVPY genetic mutantsimpairedinarbuscule andinfection thread
development, respectively®. In the AM symbiosis, MtVPY interacts
with MtEXO70i, which is critical to PAM development and arbus-
cule branching”. Another robust gene, cysteine protease 3 (MtCP3),
probably plays a role in arbuscule degeneration, functioning to
degrade the PAM*®, and also contributes to nodule senescence®, indi-
cating acommon functionality. Interestingly, the biological process
‘proline catabolic process to glutamate’ and the molecular function
‘proline dehydrogenase’ showed a>20-fold enrichment (Extended Data
Fig.4a,b).Several studies noted altered proline levels under drought
stressin AM-treated plants*°°, and hypothesized that proline confers
protection from changes in water availability. As we did not apply a
drought stressto plantsinour survey, we believe proline metabolism
may contribute to a different protective mechanism.

AM fungi convert soil inorganic phosphate (Pi) into inorganic
polyphosphate (polyP) and can rapidly accumulate and translo-
cate polyP within hyphae®. AM fungi also depolymerize polyP via
fungal endopolyphosphatases and transfer this phosphorusinto host
plant cells across the PAM®, although the mechanism for this export
remains unclear. Some evidence suggests that the majority of this
export occurs via the transport of Pi across the apoplastic space and
subsequent uptake by the plant via Pi transporters®>. However, a grow-
ingamount of evidence suggests polyP may be directly exported to the
apoplastic space and then hydrolysed by the plantitself*. Nguyen and
Saito provided evidence that fungal-derived polyP and plant-derived
phosphatases had opposing localizations in mature arbuscules, indi-
cating that plant phosphatase activity could account for assimila-
tion of fungal-derived polyP®. Surprisingly, ‘exopolyphosphatase
activity’ exhibited the highest enrichment of all molecular functions,
(>30-fold) in our dataset. This adds support to the hypothesis that

polyphosphatase activity by the plant plays alarger rolein phosphorus
export than previously anticipated.

Lastly, we expected that cellular components enriched in our
datasets would include those involved in AM symbiosis, such as the
PAM and the plant plasma membrane. The robust dataset showed a
>100-fold enrichment for the ‘PAM’ category and captured 100% of
the M. truncatula genes assigned to that functional category within
the genome (Extended Data Fig. 4c). Overall, functional enrich-
ment analysis confirmed a strong symbiotic signature within our
mycorrhizal dataset.

Novel symbiosis-responsive R. irregularis gene expression
Bulk®**® and LCM-based single-cell*** RNA-seq studies conducted on
M. truncatulain symbiosis with R. irregularis utilized abroad spectrum
of cellisolation and transcriptomic techniques. In addition, consider-
able progress has recently been made® "> to build our knowledge of the
genetic landscape of AM fungi and fungal gene expression occurring
within this interaction. However, simultaneous capture of plant and
fungal mRNA during symbiosis remains challenging. Our approach
built upon existing research by providing the first spatially resolved
dataset of simultaneously captured plant and fungal transcriptomes
during the AM symbiosis. We detected expression of 12,104 unique
fungal transcripts across nine mycorrhizal capture areas (Supplemen-
tary Table 9). Fungal gene expression distribution across the capture
areas overlaps arbusculesin the tissue (Fig. 6a). Voxels spanning root
cross-sections that display a high degree of arbusculation also exhibit
high expression of total R. irregularis transcripts. AM fungi provide
their hosts with hard-to-access soil nutrients through the actions of
transporters across the PAM™ and benefit from the continuous trans-
fer of lipids and sugars from host plant to fungus”. We observed the
localized expression of five phosphate transporters (PT1/RIR_1575600/
g11592], PT2[RIR_1235500/g7615], PT4[RIR_0355700/g31083],
PTS[RIR_3213400/g18438] and PT7[RIR 2900800/g19437]), three ammo-
niumtransporters (AMTI[RIR 0149600/g16666], AMT2[RIR_0697800/
g1222] and AMT3[RIR_0390200/g18142]), and two sugar transporters
(ST2[RIR 2811400/g24501] and ST4[RIR_0496600/g26862]) to spatial
cluster 3, the cluster identified as symbiosis-responsive via localization
of M. truncatula AM symbiosis markers. We observed lower expression
of transporter transcripts relative to that of RiEF1a, although we did
observe expression of RiPT1, RiPT4, RiAMTI1, RiAMT2 and RiST2. Spatial
cluster 3 showed localized expression of M. truncatula transporters,
such as MtPT4, MtAMT2 and MtSWEET1b™ (Fig. 3b), indicative of active
nutrient transport occurring in both partners in these voxels.

The same analysis was performed for eight fungal effectors
(Fig. 6¢), including secreted protein 7—RIR_3212100/g18424 (RiSP7),
an effector protein involved in biotrophic response to AM coloni-
zation”’, secreted lysin motif—RIR_1359320 (RiSLM), an effector
which reduces chitin-triggered immune responses during symbio-
sis”®, SL-induced putative secreted protein 1-RIR_2427800/g2579
(RiSISI), a secreted protein induced in both AM pre-symbiotic and
symbiotic phases®’, and nucleus localized effector 1-RIR_2535800/
7021 (RiNLEI), an effector upregulated in arbuscules involved in the
suppression of defence responses”, as well as four members of the
MycFOLD effector family (RiMycFOLD2—RIR_3103500/g17566, RiMy-
cFOLD9—-RIR 2782800/g17548, RiMycFOLD11-RIR_098400/g17317,

Fig. 6| Spatially resolved R. irregularis transcripts reveal novel AM-specific
gene expression patterns. a, A single root cross-section within capture area
(left) and overlapping distributions of all R. irregularis transcript expression
(right) visualized in Loupe Browser. i, A representative root cross-section

from a mycorrhizal capture area lacking recognizable fungal structures shows
low expression of R. irregularis transcripts. i, A representative root cross-
section from a mycorrhizal capture area that contains visible arbuscules (red
arrows) shows high expression of R. irregularis transcripts, particularly around

arbuscules (scale bar, 250 pm; scale, log(UMI counts +1)). Approximately 50 root
cross-sections across nine mycorrhizal-treated capture areas were analysed.

b, Adot plot of RiEF1a and various transporters utilizing hierarchical clustering
within integrated mycorrhizal spatial object. ¢, A dot plot of RiEF1acand

various effector proteins utilizing hierarchical clustering within the integrated
mycorrhizal spatial object. d, A bar plot depicting top 25 Gene Ontology
categories for all expressed R. irregularis transcripts (biological process (i),
molecular function (ii) and cellular component (iii)).
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(Fig. 6¢). In fact, RiNLEI represented the fifth most highly expressed
fungal transcript. Evidence suggests that RiNLEI translocates to the

/225859)%. Most effectors exhibited

specific expression in spatial cluster #3, though relative to RiEF1a,

—RIR_ 1383400,

and RiMycFOLD16

the expression of one of these effectors, RiNLE1, was extremely high  plant nucleus of arbusculated cells and interacts with the histone H2B

Top 25 Gene Ontology categories:
Biological process
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protein to suppress defence responses via epigenetic modification
of MtH2B (Medtr4g064020/MtrunA17 Chr4g0031671)”°. Altogether,
the high level of expression and high proportion of cells (60%) that
RINLE1 is expressed in within spatial cluster 3 further supports that
this spatial cluster represents arbusculated cells and that other marker
genes that specify this cluster are probably involved in AM symbiosis.
Supplementary Table 10 describes all plant and fungal transcripts
found to be expressed in spatial cluster 3.

Lastly, we identified at least one Gene Ontology classification
for 8,559 out of the 12,104 expressed transcripts (Supplementary
Table 11). The top biological processes represented include ‘signal-
ling’, ‘transmembrane transport’ and ‘lipid metabolism’, consistent
with processes carried out during AM symbiosis (Fig. 6d, i). Similarly,
‘transferase activity’, ‘transporter activity’ and ‘lipid binding’ rank
highly among molecular function terms (Fig. 6d, ii). ‘Membrane ‘and
‘nucleus’ were well represented among cellular components, with
>1,000 and >800 transcripts classified to each, respectively (Fig. 6d, iii).
This dataset of >12,000 symbiosis-responsive spatially resolved
R. irregularis genes and corresponding tissue images is the first of its
kind and holds immense potential for in-depth characterization.

Discussion
Advances in single-cell transcriptomics transformed molecular
genetics by allowing cell type-specific analysis and, more recently,
conservation of the tissue context®. Here we combined single-nucleus
and spatial RNA-seq to construct the first high-resolution spatially
resolved integrated map of a multi-kingdom symbiotic interaction.
We successfully adapted the spatial transcriptomics platform for
use with plant roots and utilized transcriptome-wide mRNA cap-
ture from two species simultaneously. In addition, we identified cell
type-specificresponses to the AM symbiosis and integrated datafrom
both approaches to discover novel AM-responsive transcripts.
snRNA-seq increases resolution and throughput for the identifi-
cation of cell-state responses to external treatments and eliminates
the hurdle of protoplasting cells®*’. snRNA-seq provides a potential
advantage over scRNA-seq in conceptually allowing profiling of plant
and fungal nucleiin the same assay. However, evenin batches of nuclei
not subjected to gated flow sorting, we failed to recover a substantial
number of fungal transcripts and obtained no defined fungal nuclei,
possibly because fungal nuclei were not captured or were destroyed by
our plant nuclei extraction protocol. AM fungi consist of multinucle-
ate hyphaein a large syncytium but differ from other multinucleated
fungi due to the unusually high number of nuclei (up to 35,000) that
exist within their cells®. This aspect of their biology may complicate
interpretation of snRNA-seq data when compared with spatial or
bulk RNA-seq.

Spatial transcriptomics allows for a side-by-side comparison
of gene expression and tissue features and enabled the capture of
fungal transcripts. Yet limitations exist for this technology as well,
notably a super-cellular resolution (large inter-voxel distances that
miss many cells and large voxel sizes that blend adjacent cells together).
Probe-based capture technologies improve the resolution of spatial
transcriptomics, but this limits analysis to a set of pre-defined genes,
and may also lead to lower capture efficiency due to fewer primers®*.
Thereisaclearneed for a high-resolution spatial technology that allows
for unbiased mRNA capture fromintact tissue.

We found 258 M. truncatula genes that were upregulated in the
CCCs versus all other cortex cells of mycorrhizal-treated snRNA-seq
datasets. These genes were enriched for Gene Ontology termsrelated
to fungal symbiosis, terpene synthesis pathways and transport pro-
teins. We also found 17 different cytochrome P450-like proteins, whose
rolesinplant-microbeinteractionsinclude hydroxylation of fatty acids
and terpene synthesis®, and 19 leucine-rich repeat domain-containing
proteins that are typically associated with pathogenesis but have been
showntoalso be upregulated in AM symbiosis®*®°. Several xenobiotic,

sugar and amino acid transporters were also upregulated in CCC. The
identification of known and novel transcripts within the CCC cluster,
along with the 188 genes upregulated among three distinct RNA-seq
studiesinthe same symbiotic system, presents acommunity resource
for characterization of novel AM-associated genes.

R.irregularisforms symbioses with many diverse plant speciesin
naturaland agricultural ecosystems®” and serves as amodel species for
the AM symbiosis. Despite the biological importance of this fungus,
functional annotation and characterization of its genes has been slow
due to the difficulty in its genetic manipulation®, Recent advancesin
CRISPR-Cas9* gene editing and continued efforts in creating pure
cultures of AM fungi'®" will hopefully bring forth a new chapter of
AM symbiotic research that focuses on the fungal partner. Recent
efforts inimproving AM fungal genome assemblies®*”' and functional
characterization of R. irregularis genes involved in symbiosis®>”7%%2%
lay the groundwork for this shift. We identified spatial cluster 3 as
AM-responsive based on the expression of both M. truncatula and
R. irregularis marker genes for the AM symbiosis. The transcripts
expressed within this cluster, as well as the thousands of R. irregularis
genes expressed within the mycorrhizal capture areas in this study,
represent excellent targets for functional characterization studies in
both partnersanditis our hope thatthe AM community can use these
datasets as aresource to uncover new functionalities.

Methods

Plant growth and inoculation

Seeds of Medicago truncatula Gaertn, cv Jemalong A17 (Noble
Foundation) were scarified in concentrated sulfuricacid for 5-10 min
andrinsed with distilled water, sterilized in 3.75% sodium hypochlorite
solution, thenrinsed five times with sterile distilled water and placed
on 12 Murashige and Skoog medium, 1% agar plates at 4 °C or room
temperature for 48 h. Sand cones were prepared as follows: 8.25-inch
cone-tainers (Stuewe and Sons) with 1 cm?® rock wool at base, filled
up to 12.7 cm with autoclaved calcined clay (Turface Athletics MVP
50), followed by 2.5 cm of autoclaved horticultural sand (American
Soil and Stone) and topped with 2.5 cm fine play sand (SAKRETE).
To inoculate seedlings with Rhizophagus irregularis (Btaszk., Wubet,
Renkerand Buscot) C. Walker and A. Schiif3ler, 50 ml Agtiv Field Crops
liquid mycorrhizal inoculant (PremierTech) spores were captured on
a40-pm filter, rinsed with distilled water and resuspended in 50 ml
distilled water. A total of 1 ml of resuspended spores was applied to the
horticultural sand layer and an additional 300 pl were applied to the
fine play sand layer. Germinated seedlings were transplanted to the top
fine sand layer of inoculated and non-inoculated sand cones. Plants
were grown in 22-24 °C with 16 h day/8 h night, with 300 pmol m2s™
light intensity and 60% relative humidity. Plants were watered daily
and fertilized twice aweek with1/2x Hoagland’s medium modified with
20 pM phosphate to stimulate AM colonization.

Colonization assessment

AM colonization in wild-type roots at 21, 28 or 38 dpi was visualized
viastaining of AM chitin using 2.5 pg ml™ wheat germ agglutinin Alexa
Fluor 488 (Thermo Fisher Scientific) in 1x phosphate-buffered saline
(PBS) solution (pH 7.0). Briefly, roots collected from the fine sand layer
were rinsed, fixed in 50% ethanol for 30 min and cleared in 10% KOH
at 65 °C for 48 h. Cleared roots were neutralized with 0.1M HCl and
stained withwheat germ agglutinin488in1x PBS at4 °C for 24 hbefore
imaging. Colonization was quantified using the Trouvelot method’* on
aleica DM6B fluorescence microscope using five biological replicates
foreachtreatment (Extended Data Fig. 5a and Supplementary Table12).

Quantitative real-time PCR of target genes

To quantify expression of target genes, 100 mg of roots from the fine
sand layer were flash frozenin liquid nitrogen. Total RNA was extracted
using the RNeasy Plant Mini Kit (Qiagen) and corresponding DNase.
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Complementary DNA synthesis was conducted using the SuperScript
IV Reverse Transcriptase (Thermo Fisher Scientific) from 500 ng of
total RNA, and quantiative polymerase chain reaction (qPCR) was
conducted from cDNA diluted 1:5 using the PowerUp SYBR Green
Master Mix (Thermo Fisher Scientific). A 200 nM primer concentra-
tion and the following protocol were used for qPCR for all targets:
2minat50 °Cand 2 minat 95 °C, followed by 39 repeats of 15 s at 95 °C,
15sat 60 °Cand 1 minat 72 °C, and ending with 5 s at 95 °C. A melting
curve (55-95 °C; at increments of 0.5 °C) was generated to verify the
specificity of primer amplification. Five biological replicates and three
technicalreplicates of all targets (MtPT4 and RiTUB) were quantified for
gene expression levels relative to the housekeeping gene MtEF1a using
the AACT method (Extended Data Fig. 5b). All primer sequences used
for gPCR can be found in Supplementary Table 13. Raw AACT values
used for statistical analysis can be found in Supplementary Table 14.

Nuclei and bulk root tissue RNA profiling

M. truncatula roots from three plants from each treatment were
harvested at21,28 and 38 days post-inoculation; 150 mg of roots grown
intheinoculated fine sand layer was either flash frozen inliquid nitro-
gen, or nucleiextraction was performed up to the 20 pm filtration step
and then flash frozen. RNA was extracted using the RNeasy Plant Mini
Kit (Qiagen). Library preparation and sequencing were performed at
the QB3 UC Berkeley Genomics Core Sequencing Facility.

Nuclei extraction and sequencing

M. truncatula roots from three plants per condition were harvested
at 21, 28 or 38 dpi. A total of 150 mg of roots growing in inoculated
fine sand layer was weighed out and placed in the lid of a petri dish
and chopped rapidly with a razor blade for 3 min in 600 pl NIBAM (1x
NIB, Sigma CELLYTPNI1-1KT; 4% BSA; 1 mM DTT; 0.4 U pl™ Superase
RNAse inhibitor, Sigma; 1:100 Protease Inhibitor Cocktail for plant
tissues, Sigma). NIBAM root slurry was strained through 40 pm and
20 pm filters (CellTrics). SYBR Green (1:10,000) was used to visual-
ize nuclei during purification on the Influx Flow Cytometer. A total
0f 20,000 nuclei were sorted into 19 pl of ‘landing buffer’ (PBS with
0.4 U pl™ Superase RNAse inhibitor) with a final volume of 43 pl. DAPI
was appliedto 2 plof nucleisuspension to evaluate the quality of nuclei
onaleicaAxioObserver at20x magnification. The remaining 41 plwas
mixed with10x Genomics Chromium RT Master Mix with no additional
water added and loaded onto a Chromium Chip G, and thereafter the
standard manufacturer’s protocol was followed (V3.1 Dual Index).
Twelve cycles were used for cDNA amplification, and the completed
cDNAlibrary was quantified using an Agilent Bioanalyzer. Sequencing
was performed at the QB3 UC Berkeley Genomics Core Sequencing
Facility on a single NovaSeq SP lane with the sequencing parameters
28 bp (read 1length), 10 bp (index 1length), 10 bp (index 2 length)
and 90 bp (read 2length), or at Novogene (Sacramento, CA) using the
sequencing parameters 150 bp (read 1length), 10 bp (index 1), 10 bp
(index 2) and 150 bp (read 2 length).

Tissue preparation for spatial transcriptomics

Spatial transcriptomics was performed with the Visium Spatial Gene
Expression platform from 10x Genomics. Harvested plant roots
were rinsed with deionized H,0 and cryopreserved in optimal cut-
ting temperature compound via submerging of optimal cutting
temperature-embedded molds into a dewar of isopentane chilled
liquid nitrogen for even freezing. Cryomolds of roots were stored at
-80 °C until cryosectioning. Cryosectioning was performed on an
Epredia CryoStar NX70 Cryostat with ablade temperature of 14 °C and
asample head temperature of =12 °C with asection thickness of 16 °C.
Cryosections were placed onto the surface of the chilled Visium Spatial
Gene Expressionslide and adhered to the slide using heat from the sec-
tioner’s finger placed on the back surface of the capture area. Prepared
slides were stored at 80 °C before processing for 10x Visium spatial

transcriptome sequencing according to the manufacturer’s instruc-
tions with the following modifications: first, cryosections were stained
using an incubation of 0.05% toluidine blue O in 1x PBS for 1 min and
rinsed three times with 1x PBS. Second, a pre-permeabilization step was
added as suggested by Giacomello et al.”. The pre-permeabilization
mix foreachslide (48 pl exonucleasel, 4.5 pl of bovine serumalbumin
and 428 pl of 2% PVP 40) was then prepared, and 70 plwas pipettedinto
eachwell. Pre-permeabilization occurred for 30 minat 37 °C after which
the manufacturer’s protocol for tissue permeabilization was followed.
Permeabilization enzyme (70 pl) was added to each capture area and
incubation at 37 °C occurred for 12 min on the basis of the results of the
manufacturer’s tissue optimization protocol (Extended DataFig. 6).

Data processing and analysis

Cellranger and Spaceranger software (10x Genomics) were used to
preprocess single-nuclei and spatial transcriptomic sequencing librar-
ies, respectively. A formatted reference genome was generated using
Cellranger or Spaceranger’s ‘mkref’ function using the Medicago trun-
catula MedtrAl7_4.0 (ref. 37) whole genome sequence and annota-
tion and the Rhizophagus irregularis Rir HGAP_ii_V2 (DAOM 181602,
DAOM197198)* whole genome sequence and annotation using default
parameters. Single-nuclei and spatial reads were aligned to the genome
references using the ‘count’ functionin Cellranger 7.0 and Spaceranger
1.3 software packages (10x Genomics), respectively. Brightfield tissue
images were aligned to the spatial capture area fiducial frame and
voxels corresponding to overlaying tissue were manually selected
for all capture areas in Loupe Browser (10x Genomics). Data analysis
for both the single-nuclei and spatial data was performed using the
Seurat”4.3.0 package in R4.2.1available at https://www.R-project.org.

Filtering and normalization. For both single-nuclei and spatial
datasets, normalization and scaling were performed using the
SCTransform R function in Seurat before clustering. Metrics used
for filtering of the data during quality control steps can be found in
Supplementary Table 2.

Principal components analysis and K-means clustering. Principal
components analysis was performed on both snRNA-seq and spatial
RNA-seq datasets using the RunPCA function in Seurat with the ‘SCT’
assay specified. The FindNeighbors function was applied to construct
ashared nearest neighbour graph for the data using the first 30 prin-
cipal components. Clustering was performed using the FindClusters
function, which utilizes the shared nearest neighbour graph from the
previousstep. Finally, the RunUMAP function was utilized to construct
the uniform manifold approximation and projection (UMAP) dimen-
sionality reduction and visualize the dataset in two dimensions. Of
the seven snRNA-seq datasets generated (Extended Data Fig. 7 and
Supplementary Table 2), we selected five for further characteriza-
tion, resulting in a final dataset of 16,890 nuclei with an average of
1,120 mRNA molecules per cell after quality filtering. The remaining
two datasets were not included due to poor apparent colonization by
R.irregularis. All spatial datasets were analysed.

Integration of replicate datasets. Replicate capture areas or samples
fromeachtreatment (mycorrhizal or mock-inoculated) were integrated
into a two sets of Seurat objects (snRNA-seq, spatial) using the data
integration pipeline in Seurat®. First, we applied the PrepSCTIntegra-
tion function usingall transcripts for integration. We thenidentified a
setofintegration anchors with the FindIntegrationAnchors function.
Finally, we applied the IntegrateData function. Principal component
analysis and dimensionality reduction were performed on the inte-
grated objects in the same manner as the individual objects with the
following adjustments: (1) number of principal components, 30; (2)
metric, cosine; and (3) resolution was set to 0.5 for clustering. UMAP
plots for all datasets were created using the DimPlot() function and
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aredisplayed in Extended Data Fig. 7 (snRNA-seq) and Extended Data
Fig. 2 (spatial).

Cluster identification for snRNA-seq

We determined thatclusters0,1,2,4,6,8,9,14 and 16 are cortical cells
based on enrichment of isoflavone synthase 1 (MtIFS1, Medtr4g088195)
and isoflavone synthase 3 (MtIFS3, Medtr4g088160)%, as well as
ATP-binding cassette transporter 59 (MtABCGS9, Medtr3g107870)*%,
which encodes a strigolactone transporter that is expressed in cor-
tical cells under phosphate-depleted conditions. Cluster 14 repre-
sents cortical cells that are colonized by AM fungi, based on a range
of known marker genes, including ATP-binding cassette transporter
(MtNOPE1, Medtr3g093270)%, two isoforms of ABCB for mycor-
rhization and nodulation (MtAMN2, Medtr4g081190 and MtAMNS3,
Medtr8g022270)%,1-deoxy-D-xylulose 5-phosphate synthase (MtDXS2,
Medtr8g068265)*°, reduced arbuscular mycorrhiza 1 (MtRAM1,
Medtr7g027190)* and vapyrin (MtVPY, Medtrig089180)'°°. We spe-
cifically focused on more mature roots, excluding meristematic or
developing cells for most cell types as arbuscules do not formin these
cell types. As aresult, we did not observe evidence for developmental
variation (trajectories) that are typically captured in single-cell stud-
ies of embryonic or meristematic tissues. Marker genes for quiescent
centre and lateral root primordia, however, were used to identify clus-
ter 12 as meristematic cells, including four homologues of plethora
(MtPLT1-4, Medtr2g098180, Medtr4g065370, Medtr5g031880 and
Medtr7g080460)'* and yucca (MtYUCS, Medtr7g099330). MtYUCS'
and MtPLT genes tend to be associated with nodule formation as well,
but other genes that are upregulated by nodulation, such as nodule
inception (MtNIN, Medtr5g099060)'°?, were either absent from our
dataset or expressed at low levels and not specific to any cluster.
Respiratory burst oxidase homologues (MtRboHF, Medtr7g060540)"*,
whichis specifically expressedin root hairs, defined asmall cluster adja-
centtothe LRP cluster asroot hairs. The presence of scarecrow (MtSCR,
Medtr7g074650)'” indicated that cluster 7 represents endodermal
cells. Clusters 3,5and 11were predicted to be vascular tissue, with sev-
eral stele-specific A. thalianahomologues such as three homologues of
transcription factor MYB domain protein (MtMYBO71, Medtr5g014990,
MtMYBI113, Medtr2g096380, and MtMYB112, Medtr4g063100), as
well as functionally characterized M. truncatula marker genes
enrichedinthese clusters: three phosphate transporter homologues:
(MtPHO1.1-1.3, Medt1g 041695, Medtrlig075640, Medtr8g069955)*510¢
and sugar transport protein 13 (MtSTP13, Medtrlgl04780)>. Based
on homologues from Arabidopsis marker genes, such as peroxidase
13 (MtPrx13, Medtr1gl01830)°¢ and LOB-domain protein (MtLBDI1S,
Medtr8g036085)*®, cluster 17 represents xylem cells. FE/altered phloem
development (MtFe, Medtr6g444980) and Arabidopsis phloem early
DOF1homologues (PEARI,Medtr3g077750 and Medtr4g461080) were
enriched in cluster 13, suggesting that these are phloem cells'”. We
defined cluster 15 as representing companion cells, as it is enriched
for Arabidopsis phloem marker homologue super numeric nodules
(MtSUNN, Medtr4g070970)'°® and homologues of Arabidopsis com-
panion cell markers Arabidopsis sucrose proton symporter 2 (AtSUC2,
Medtrlg096910) and Arabidopsis FT interacting proteinl (A¢FTIPI,
Medtr0291s0010)'?. Clusters 5 and 11 were enriched for MtPHO1.1-1.3
(Medtr1g041695, Medtr1ig075640 and Medtr8g069955)'°¢, suggest-
ingthat these are central cylinder/pericycle cells. Marker genes for all
snRNA-seq clusters can be found in Supplementary Table13 and adot
plot showing expression of markers for each cluster can be found in
Extended DataFig. 1.

Differential gene expression. Differentially expressed genes (upregu-
lated and downregulated) between the mycorrhizal and control inte-
grated datasets for all clusters were identified using the Likelihood
Ratio Test from the DESeq2 (ref. 110) package with an adjusted Pvalue
of <0.05 and alog, fold change threshold of -1.0 or 1.0.

Module score analysis. To determine which cells represented CCCs,
we generated a list of genes (Supplementary Table 3) that are known
to be involved in colonization, and used these as input to assign a
modulescoreto each cell using the Seurat AddModuleScore function.
Cells with ascore above the threshold of 98th percentile were selected
as ‘colonized’ cells and subsetted to a new object for further subclus-
tering analysis.

Gene expression imputation. Using the annotated snRNA-seq
integrated object as a reference and the spatial integrated object as
aquery, we performed a data transfer using the UMI counts from the
RNA assay within the single-nuclei object as the reference data and
stored the new data under a new assay called ‘imputation’. We then
were able to predict gene expression within the spatial dataset using
the expression values from the snRNA-seq dataset by specifying the
assay to ‘imputation’ during the analysis.

Voxel cell type proportion prediction in spatial RNA-seq. Using the
annotated snRNA-seq integrated object as areference and the spatial
integrated object as a query, we performed a label transfer using the
cell type annotations as the reference data. The query dataset is then
projected onto the PCA of the reference dataset and the labels are
predicted.

Comparison with previous datasets. We compared our dataset with
two prior studies (Gaude et al. 2012 and Hogekamp et al. 2013)***
thatimproved our understanding of gene expression changes during
the mycorrhizal symbiosis between M. truncatula and R. irregularis.
We wanted to include these datasets in our analysis to identify a core
set of DEGs between the three different RNA-seq techniques and be
able to compare and contrast the various methods in spatial tran-
scriptomics. One major hurdle to this comparison resulted from the
use of the Affymetrix Medicago GeneChip array by these two studies
leading to adifferenceinfeatureidentifications (IDs). We constructed
an ID converter (Supplementary Table 14) to convert between the
Affymetrix GeneChip, MedtrA17_4.0 and the M. truncatula A17 r5.0
gene IDs for a certain locus in bulk fashion using data available at
refs. 111,112. Genes identified as common between datasets can be
foundin Supplementary Table 5.

Gene Ontology and functional enrichmentanalysis. For M. truncatula,
we conducted Gene Ontology and functional enrichment analyses
utilizing the PANTHER Classification system (www.pantherdb.org)™",
For R. irregularis, we conducted Gene Ontology analysis with the

Blast2Go software'™.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Raw feature and UMI counts for all datasets are displayed in
Supplementary Table 2. Data availability on NCBIGEO (Gene Expression
Omnibus) isavailable at https://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc=GSE240107 (ref. 116). Genome assemblies for MedtrA17_4.0
(ref.37) and the Rhizophagusirregularis Rir HGAP_ii_V2 (DAOM 181602,
DAOM197198)** were accessed at https://www.ebi.ac.uk/ena/browser/
view/GCA_000219495.2 and https://www.ebi.ac.uk/ena/browser/view/
GCA_002897155.1 (refs. 117,118), respectively.

Code availability

All scripts used for data analysis are available on GitHub at https://
github.com/kserrano109/Medicago_Rhizophagus_RNAseq™ and
archived at Zenodo. Information on all Seurat objects used within the
data analysis for all datasets can be found in Supplementary Table 15.
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