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Abstract

Naming latency studies have recently shown a position-of-
irregularity effect (words with early irregularities seem slowed
compared to those with late irregularities), for which Dual-
Route models of reading can account. Milostan & Cottrell
(1998) showed that the initial studies contained a confound
between irregularity position and friend/enemy ratio, and that
the statistical confound could be captured by connectionist net-
works which then show the supposed position effect. This pa-
per presents work to disentangle the position/regularity con-
found through a subject study and additional connectionist ex-
plorations. The latency data show that, once friend/enemy ra-
tios are controlled for, the supposed position effect is driven
entirely by high-enemy words in the first position. Further,
connectionist network simulations show that network error at
the first phoneme position only is a better match for naming
latency, while overall network error produces a better match to
subject error counts.

Introduction
A major component of the task of learning to read is the de-
velopment of a mapping from orthography to phonology. In
a complete model of reading, message understanding must
play a role, but many psycholinguistic phenomena can be ex-
plained in the context of this simple mapping task. A dif-
ficulty in learning this mapping is that in a language such
as English, the mapping is quasiregular (Plaut et al., 1996);
there are a wide range of exceptions to the general rules.
As with nearly all psychological phenomena, more frequent
stimuli are processed faster, leading to shorter naming laten-
cies. The regularity of mapping interacts with this variable,
a robust finding that is well-explained by connectionist ac-
counts (Seidenberg and McClelland, 1989; Taraban and Mc-
Clelland, 1987).

In this paper we continue consideration of a recent effect
that seems difficult to account for in terms of the standard par-
allel network models. Coltheart & Rastle (1994) have shown
that the amount of delay experienced in naming an exception
word is related to the phonemic position of the irregularity in
pronunciation. Specifically, the earlier the exception occurs
in the word, the longer the latency to the onset of pronouncing
the word. Table 1, adapted from (Coltheart and Rastle, 1994)
shows the response latencies to two-syllable words by normal
subjects. There is a clear left-to-right ranking of the latencies
compared to controls in the last row of the Table. Coltheart et
al. claim this delay ranking cannot be achieved by standard
connectionist models. Earlier work (Milostan and Cottrell,
1998) showed that the origin of the effect seen in the Colt-
heart study lies in a statistical regularity of English, related to

Position of Irregular
Filler 1 2 3 4 5
Nonword
Irregular 554 542 530 529 537
Regular 502 516 518 523 525
Difference 52 26 12 6 12

Exception
Irregular 545 524 528 526 528
Regular 500 503 503 515 524
Difference 45 21 25 11 4

Avg. Diff. 48.5 23.5 18.5 8.5 8

Table 1: Naming Latency vs. Irregularity Position

the number of “friends” and “enemies” of the pronunciation
within the word’s neighborhood. 1 The human subject study
and network simulations presented in this paper attempt to
tease apart the effects of phoneme position and neighborhood
ratio.

Background
Computational modeling of the reading task has been ap-
proached from a number of different perspectives. Advocates
of a dual-route model of oral reading claim that two separate
routes, one lexical (a lexicon, often hypothesized to be an
associative network) and one rule-based, are required to ac-
count for certain phenomena in reaction times and nonword
pronunciation seen in human subjects (Coltheart et al., 1993).
Connectionist modelers claim that the same phenomena can
be captured in a single-route model which learns simply by
exposure to a representative dataset (Seidenberg and McClel-
land, 1989).

In the Dual-Route Cascade model (DRC) (Coltheart et al.,
1993), the lexical route is implemented as an Interactive Ac-
tivation (McClelland and Rumelhart, 1981) system, while
the non-lexical route is implemented by a set of grapheme-
phoneme correspondence (GPC) rules learned from a dataset.
Input at the letter identification layer is activated in a left-to-
right sequential fashion to simulate the reading direction of
English, and fed simultaneously to the two pathways in the

1Friends are words with the same pronunciations for the ambigu-
ous letter-to-sound correspondence; enemies are words with differ-
ent pronunciations.



model. Activation from both the GPC route and the lexicon
route then begins to interact at the output (phoneme) level,
starting with the phonemes at the beginning of the word. If
the GPC and the lexicon agree on pronunciation, the correct
phonemes will be activated quickly. For words with irregu-
lar pronunciation, the lexicon and GPC routes will activate
different phonemes: the GPC route will try to activate the
regular pronunciation while the lexical route will activate the
irregular (correct) pronunciation. Inhibitory links between al-
ternate phoneme pronunciations will slow down the rise in ac-
tivation, causing words with inconsistencies to be pronounced
more slowly than regular words. This slowing will not occur,
however, when an irregularity appears late in a word since the
lexicon will try to activate all of a word’s phonemes as soon
as the word’s lexical node becomes active. If an irregularity is
late in a word, the correct pronunciation will begin to be ac-
tivated before the GPC route is able to vote against it. Hence
late irregularities will not be as affected by the conflicting in-
formation. This result is validated by simulations with the
one-syllable DRC model (Coltheart and Rastle, 1994).

Several connectionist systems have been developed to
model the orthography to phonology process (Seidenberg and
McClelland, 1989; Plaut et al., 1996). These connectionist
models provide evidence that the task, with accompanying
phenomena, can be learned through a single mechanism. In
particular, Plaut et al. (henceforth PMSP) develop a recurrent
network which duplicates the naming latencies appropriate to
their data set, consisting of approximately 3000 one-syllable
English words (monosyllabic words with frequency greater
than zero in the Kuçera & Francis corpus (Kuçera and Fran-
cis, 1967)). Naming latencies are computed based on time-to-
settle for the recurrent network, and based on mean squared
error (MSE) for a feed-forward model used in some simu-
lations. The structure of the feed-forward network is shown
in Figure 1. In addition to duplicating frequency and reg-
ularity interactions displayed in previous subject work, this
model also performs appropriately in providing pronuncia-
tion of pronounceable nonwords. This provides an improve-
ment over, and a validation of, previous work with a strictly
feed-forward network (Seidenberg and McClelland, 1989).
(Milostan and Cottrell, 1998) then showed that the serial po-
sition effect proposed by Coltheart & Rastle could be ac-
counted for by a statistical regularity in English, as measured
by the Enemy Ratio (# of enemies in a word’s neighbor-
hood divided by the total size of the word’s neighborhood).
(Milostan and Cottrell, 1998) showed that, for the words used
in (Coltheart and Rastle, 1994), words with earlier irregulari-
ties had higher enemy ratios, and that the parallel connection-
ist model of PMSP, exposed to the same statistical regulari-
ties, also shows the same left-to-right effect that (Coltheart
and Rastle, 1994) claimed it would not.

Experiment
Intuition suggests that, since English is read from left to right,
left-to-right phenomena such as the serial position effect
might be seen, independent of statistical confounds. How-
ever, as with all assumptions, such effects must be verified
through careful testing, and the source of such effects must
be carefully delineated within the model hypothesized for the
system at hand.

105 grapheme units

100 hidden units

61 phoneme units

Figure 1: Single Syllable Ortho-to-Phono Network
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Figure 2: Hypothetical Position-Only Effect

In a serial system such as the DRC, which by design pro-
cesses input orthography from left to right, any observed left-
to-right irregularity effect is a direct result of the GPC op-
eration. On the other hand, for a parallel model such as the
PMSP system, which produces the output phonology all at
once, effects of irregularity are driven by neighborhood en-
emy/friend measures, and serial effects should disappear once
these enemy ratios are controlled.

The serial position effect seen by Coltheart & Rastle could
be the result of a confound between the position of the irreg-
ularity and the statistics of English. Earlier positions appear
to have more irregularities. It would be productive, then, to
retest the Coltheart & Rastle hypothesis, this time controlling
for amount of consistency. If the serial position effect does
hold regardless of the enemy ratio of the test words, an effect
similar to that shown in Figure 2 would be expected. If, how-
ever, the effect is due to enemy ratio alone, the results should
be similar to that of Figure 3. The subject experiment and net-
work simulation presented here are an attempt to adjudicate
between these options, and stimuli will vary in both position
of irregularity, and in enemy ratio, in order to determine the
source of the effects.

Difficulties of GPC rules
One of the major discrepancies between the PMSP work and
DRC model is the latter’s assumption of the existence of a
pronunciation rule system. This rule system defines whether
a word is regular or not. Thus, all irregular stimuli chosen
for experiments on the DRC model are chosen according to
the GPC rules. Experiments which attempt to refute the DRC
model at any level must also take these rules into considera-
tion when choosing stimuli.

Ideally, the same words that the DRC system uses should
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Figure 3: Hypothetical Enemy-Ratio-Only Effect

be addressed. Thus, irregular words for this experiment were
identified using the Australian GPC used in the DRC system,
and the Australian pronunciations from the MRC database,
from which the GPC rules were initially derived. Neighbor-
hood Enemy Ratios were also calculated using the MRC pro-
nunciations. American English would then be used only for
identifying errors in subjects’ pronunciations.

A program was written implementing the GPC rules of the
DRC system as listed in (Rastle and Coltheart, 1999). A
word was considered irregular if the pronunciation generated
by the rules did not match the pronunciation provided by the
MRC database. From the list of identified exception words,
homographs where one generated pronunciation was correct
were excluded (/wind/ vs. /wInd/), as were Australian words
with spellings not commonly used in the United States (gaol).
Also excluded were words marked as irregular by the GPC
rule which states that word-final /s/ is always converted to /z/.
This rule causes all words ending in -ace or -ice (face, mice)
to be considered irregular.

Overall, the words which were identified by this proce-
dure using the Australian English were also found to be ir-
regular through a similar procedure using the rules of Ameri-
can English pronunciation from (Venezky, 1970). The details
of that investigation are reported with a companion study in
(Milostan et al., 2000).

Neighborhoods
Neighborhoods are defined using an extension of the (Tara-
ban and McClelland, 1987) neighborhood rules described in
(Milostan and Cottrell, 1998), summarized for single syllable
words here:

Consonant neighborhoods consist of orthographic clusters
which correspond to the same location in the word. For
one-syllable words, this results in 2 consonant cluster loca-
tions: onset and coda.

Each vowel group is considered within the context of its
coda. In order for a word to be in the neighborhood of a
test word, it must have the same vowel group (‘E’ is con-
sidered separately from ‘EE’) and be followed by the same
consonant cluster ending that syllable. As an example, the
‘OO’ neighborhood in ‘BOOK’ are all those words ending
in ‘OOK’, with the first syllable coda containing only ‘K’.

Consonant cluster neighborhoods include the preceding

Position
Enemy Ratio Front Back
High aunt plaid
Low earl fluke

Table 2: Sample Experiment Words

vowel for coda consonants, and the following vowel for
onset consonants. As expected, consonant irregularities are
by far the minority, and are limited to ‘CH’, ‘TH’, ‘G’, ‘C’,
‘Q’, and the silent instantiations such as ‘T’ and ‘H’.

Methods
Subjects
Subjects were 23 undergraduate psychology students from
University of California San Diego. All subjects had nor-
mal or corrected-to-normal vision, and were native North-
American-English speakers. They were given course credit
for their participation.

Materials
Sixty-four words with irregular grapheme-to-phoneme corre-
spondences (according to the GPC rules of the DRC model)
were chosen. Each target was uninflected and monosyllabic,
and had between 3 to 6 letters with Kuçera-Francis frequency
between zero and twenty-two.

The chosen words had an irregular grapheme-to-phoneme
correspondence in either the first (“front”) or third (“back”)
phoneme position, and were divided into 2 lists on that ba-
sis. Each list was further divided into two sublists, based on
whether the word had only friends in the neighborhood based
on the regularity (Enemy Ratio ) or mostly en-
emies at that location (Enemy Ratio ).
Since a word’s neighborhood by our measure includes itself,
words with a neighborhood size of one (“loners”) were ex-
cluded from consideration. These words correspond to Col-
heart’s categorization of “irregular consistent”.

Of the eligible words, the front-enemy condition had only
16 candidate words. Each of the other three conditions were
randomly pruned down to size 16 in order to balance the con-
ditions. The resulting average word frequency did not differ
significantly between conditions (

). Each irregular word was then matched
with a regular control word. Control words were matched to
their irregular partners based on initial phoneme (since dif-
ferent phonemes take longer to trigger the microphone) and
number of letters. The controls were also in the zero to 22
Kuçera-Francis frequency range.

An example test word from each of the four conditions is
shown in Table 2.

Results
Of the original 25 subjects, data from 2 were unusable (in one
case the latency data were accidentally deleted; in the other
case the audio recording did not function so errors could not
be scored). For the remaining 23 data sets, latencies asso-
ciated with voice key failures were discarded; if the stimu-
lus was either a test word or a control the associated (con-
trol or test) word was similarly disregarded (13 pairs total



0 1 2 3 4

Phoneme Irregularity Position 

0

20

40

60

80

100

L
at

en
cy

 d
if

fe
re

nc
e 

(E
xc

ep
t 

- 
C

on
tr

ol
)

no enemies
many enemies

Figure 4: Naming Latency Results overall
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Figure 5: Error Count Results overall

over all subjects). Latencies for all nonword fillers were also
discarded. Words which were pronounced incorrectly, along
with the associated match, were removed for separate error
analysis.

Naming latency differences were then calculated by sub-
tracting the control word latency from the associated test
word latency. Analysis of variance (ANOVA) was then per-
formed on these values. Words in the high enemy ratio
condition had significantly greater latency differences than
the words in the friend condition (

), and there was a significant interaction between en-
emy ratio and position of irregularity (

). Latency differences for first and third position irregu-
larities, combining both enemy ratio conditions, approached
but did not reach significance ( ).
The latency data is shown in Figure 4.

Subjects made a total of 22 errors on control words, and
248 errors on irregular test words. Control words are not
considered in the error analysis. Subjects made significantly
more errors for front position irregulars than for back po-
sition irregulars ( ), and
more errors for high-enemy words than for low-enemy words
( ). Position and enemy ra-
tio also had a significant interaction in number of errors made
( ). These error data are shown
in Figure 5.

Discussion
From the data collected in this experiment, there is a slight ef-
fect of irregularity position, but this appears to be completely

driven by the words with high enemy ratios (see Figure 4).
First-position-irregular words with high numbers of enemies
in their neighborhood take longer to name than similar words
with friends only. This effect has mostly disappeared for
those words with third position grapheme-phoneme irregu-
larities.

This makes sense from a cascaded information processing
point of view (McClelland, 1979), since it is possible that any
(potential) errors late in a word can be resolved by the time
the third phoneme is ready to be produced. This difference in
time delays can be considered an effect of the temporal nature
of the speech process, and the time available to make online
corrections. Words with later irregularities have, by defini-
tion, regular grapheme-phoneme correspondences at the be-
ginning. The subject can begin pronouncing those phonemes
immediately, even if she must then make accommodations
later. Thus, the initial phoneme in an irregular (high enemy
ratio) word may be produced with the same latency as a com-
pletely regular word, while the phoneme at the irregular map-
ping itself may actually be delayed internal to the word. How-
ever, there is currently no way of measuring the latencies of
each internal phoneme using only the voice key.

Feed-Forward Network Performance

The feed-forward network of PMSP does not contain a tem-
poral component. Since all phonemes are calculated simul-
taneously, the irregularity position may not play a part in the
latencies calculated from the network as these are actually a
measure of the difference between the correct target pronun-
ciation and the network’s actual output across the word. Thus,
the feed-forward pronunciation network should be affected by
enemy ratio alone, as those words with many contradictory
spelling-sound mappings will receive less total reinforcement
for the correct mapping.

Five feed-forward connectionist networks were trained on
3015 single syllable words as described in (Plaut et al., 1996;
Milostan and Cottrell, 1998). This data set is the 2998 words
used in PMSP plus 17 additional words used in the current
subject experiment. These words were not included in the
PMSP data set as they are of frequency rating zero.

Naming latency was then calculated for each test word by
using the sum squared error at the output layer, producing the
results shown in Figure 6. Unexpectedly, it appears that the
back position irregulars take longer to name than the front ir-
regulars, regardless of enemy ratio. Remember, however, that
naming latency in these feed-forward networks is a measure
of error, not of time directly. The representation used for the
output layer is a sparse coding of the output phonemes. Of
the 62 units, only a small number will be on for any particu-
lar word. Thus, the network is exposed to a training set where
the majority of the output units are off most of the time. These
networks learn how to turn off units very well, and thus there
will be less discrepancy between the target and actual output
which should be off and is, than for a target which should
be on and the related output unit which is actually on. This
means that, everything else being equal, training pairs with
more units on in the target will inherently produce more error
than for those with fewer on targets.

As an example, consider a hypothetical network with 10
output units, and compare the results of two targets, one of
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Figure 6: Network Sum Squared Error

which has one unit on and the other of which has two units
on. Since the “off” units receive more training, assume that
any units off in the target have an activation of 0.1 in the
actual network during testing, while the on-units are acti-
vated at 0.8. Both of the hypothetical training sets accu-
rately produce the intended output, but in the case where
the target has one unit on the network shows an error of

, while the target with 2 units on
has an error of . This discrep-
ancy becomes more exaggerated as the number of off-units
increases. Thus, if there is a systematic difference in the ex-
pected number of on-units among the conditions, those tar-
gets with more on-units may be unduly penalized. Examina-
tion of the output targets for the various test categories reveals
that indeed, those in the back position conditions have more
on-units than the front position targets, as shown in Figure 7.
This means that the words in the back position systematically
have one more phoneme than the front-position test words.

In parallel connectionist models, output error is associated
with naming latency under the assumption that the more er-
ror the output shows, the longer it takes for the system to
then converge on a veridical representation for a further stage
which will begin the actual production of the speech signal. If
the output for each of the ON-bits in the representation can be
cleaned up in parallel, then the time required before the next
stage may begin is more a measure of the average amount of
time required to make the cleanup. Thus, the average ON-bit
error provides a more realistic measure of naming latency.

To correct for the bias in number of bits on between first-
and third-position words, the total output error for each word
was divided by the number of ON-units in that word’s out-
put representation. These results are shown in Figure 8.
As in the human data, the networks show a significant ef-
fect of enemy ratio ( ) and
a significant interaction between enemy ratio and position
( ). Unlike the human sub-
jects, however, the networks also show a significant effect of
position ( ). Again, this ap-
pears to be mostly driven by the high enemy ratio words. This
is actually a bit surprising since the networks produce output
in parallel, and thus would not have any time to “correct”
for later-position errors. The network results instead reflect
the finding that English words are more consistent in endings
than they are in onsets (Treiman et al., 1995).
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Figure 7: Number of Units ON in Output Representation
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Figure 8: Network Error / Number of Phonemes ON




