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ABSTRACT 

Resonant Inelastic X-ray Scattering (RIXS) is the one of the most powerful methods for investigation of the electronic 
structure of materials, specifically of excitations in correlated electron systems. However the potential of the RIXS 
technique has not been fully exploited because conventional grating spectrometers have not been capable of achieving 
the extreme resolving powers that RIXS can utilize. State of the art spectrometers in the soft x-ray energy range achieve 
~0.25 eV resolution, compared to the energy scales of soft excitations and superconducting gap openings down to a 
few meV. Development of diffraction gratings with super high resolving power is necessary to solve this problem. In 
this paper we study the possibilities of fabrication of gratings of resolving power of up to 106 for the 0.5 – 1.5 KeV 
energy range. This energy range corresponds to all or most of the useful dipole transitions for elements of interest in 
most correlated electronic systems, i.e. oxygen K-edge of relevance to all oxides, the transition metal L2,3 edges, and the 
M4,5 edges of the rare earths. Various approaches based on different kinds of diffraction gratings such as deep-etched 
multilayer gratings, and multilayer coated echelettes are discussed. We also present simulations of diffraction efficiency 
for such gratings, and investigate the necessary fabrication tolerances. 

Keywords: resonant inelastic soft X-ray scattering, high density grating, anisotropically etched silicon gratings, soft x-
ray multilayers, sliced multilayer grating, spectral resolution. 

1. INTRODUCTION 
Resonant Inelastic X-ray Scattering (RIXS) is a relatively new probe of matter which can directly measure the energies 
of the soft excitations that are thought to be at the root of the complex properties of correlated electronic systems such as 
high Tc superconductors (for review, see Refs.1-3 and references therein). Its main feature is that it is a spectroscopic 
probe that avoids limitations imposed by core hole lifetime energy broadening of conventional spectroscopies. Normally, 
the energy scale of soft excitations is significantly less than the energy broadening given by core hole lifetimes, and so 
are obscured from measurement. RIXS is a technique that scatters a photon in resonance with a core hole excitation off 
the valence states to be probed. That is a Raman-like process, when core excitation and decay are one coherent process, 
rather than independent events. The one-step scattering nature of the process avoids the normal spectroscopic energy 
broadening processes due to lifetime, and can reveal completely resolved energy loss features.  

Many workshops around the world, including the international workshop ‘Soft X-Ray Science in the Next Millennium’ 
in the US in Pikeville TN,4 have endorsed the RIXS approach to measuring the loss spectrum of complex materials. In 
this connection the workshop in Pikeville stated that “…the ‘ultimate’ instrumental requirements for frontier soft x-ray 
fluorescence and resonant inelastic scattering research include: 10-meV total energy resolution in the 100-eV to 5-keV 
photon energy range…” (Ref.4, p. 45). This summarizes the issue; new methods must be found to achieve resolving 
powers up to 100 times that achieved now, but due to the small Raman x-ray cross section, these methods have to be 
highly efficient. Achieving such an improvement cannot be made with conventional grating optics because (i) it would 
dictate use of slit sizes that are extremely small; (ii) because of (i) almost all flux would be lost; (iii) extremely large 
spectrometers would be required, and (vi) because (i) and (iii) mean that unrealistically small optical slope errors would 
be required in the optics of the emission spectrometer. 
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At the ALS Experimental Systems Group (ESG) in fiscal year 2007, we have started an LDRD (Laboratory Directed 
Research and Development) project to establish and demonstrate the technology required for ultra-high resolution RIXS 
with soft x-rays. The project addresses the basic issue of how to achieve resolving powers of 106 in a soft x-ray emission 
spectrometer using unconventional grating optics. It should be noted that such gratings would be useful not just for high 
resolution spectroscopy, but also for the temporal compression of chirped x-rays. A few approaches potentially suitable 
for fabrication of such a grating are discussed in Sec. 2. Fabrication of a grating for ultra-high resolution spectroscopy 
can be a challenging problem itself. In order to understand the range of tolerances and figure out the major requirements 
to the grating production technology, in Sec. 3 we perform analytical estimations of the effects of different possible 
distortion factors.  

2. POSSIBLE APPROACHES TO FABRICATION OF A ULTRA-HIGH RESOLUTION 
DIFFRACTION GRATING FOR SOFT X-RAYS  

There are two principle ways to achieve ultra-high spectral resolution in the soft X-ray wavelength range. One way is to 
use high order diffraction with a grating with reasonably low groove density, while another one is to use the first order 
diffraction of a grating with an ultra-high density of grooves.  

A conventional grating, if it is used for high order x-ray diffraction, would provide very low diffraction efficiency, 
because for all normal reflecting materials, the scattering angle would need to be bigger than the critical angle of the 
material. The effective critical angle can be significantly increased with a multilayer (ML) coating.5,6 In this case, the 
Bragg equation for the multilayer and the high order diffraction equation for the surface grating have to be 
simultaneously fulfilled. By choosing the appropriate set of multilayer and grating period parameters, it becomes 
possible to maximize diffraction efficiency for a selected high order. The lamellar ML grating, blazed ML grating, and 
sliced ML grating considered in Sec. 2.1 are the examples of such a grating. 

Aiming for a resolving power in first diffraction order of 106 in a reasonably compact x-ray spectrometer assumes the 
need for 106 grating grooves with extremely high line density, ~50,000 l/mm. However, high quality conventional 
gratings, produced by mechanical ruling or ion etched into a mask produced by holographic lithography are limited to 
the groove density of around 5000 l/mm. We are developing a technique, discussed in Sec. 2.2, to fabricate a required 
high-density grating based on cutting a small period multilayer mirror at an oblique angle.  

2.1 Gratings for high order diffraction of soft X-ray 

Lamellar grating: Figure 1 shows a lamellar ML grating produced e.g., by ion beam etching of a multilayer deposited 
onto a flat substrate. It has previously been demonstrated that such a grating can provide high efficiency for the first 
order diffraction of hard x-rays with 154.0=λ nm.7,8  Here, we demonstrate that in order to increase the efficiency, the 
grating land has to be decreased and the grove depth has to be increased. This allows more multilayer periods to be 
involved in the diffraction process.   

A high energy x-ray grating with highly asymmetrical ds  ratio was suggested and investigated and reported in the 
literature.9 With 2.0=ds , the diffraction efficiency of the desired first order was found to be ~95% of the 0th order; but 
at the same time, the efficiency of the second order was ~76%. As it was explained in,9 for highly asymmetrical ds  
ratios, the effective depth of the multilayer increases, and, therefore, more multilayers become involved in diffraction. 
As a result, the overlap of the multilayer diffraction orders reduces, and efficiency in a selected order can be enhanced. 

The dependences of the diffraction efficiency of a soft x-ray grating ( 4.12=λ Å) on land-to-period ratio for the 5th and 
9th orders are shown in Fig. 2. For the simulations we used a commercial code10 that solves Maxwell’s equations in 2d 
periodic structures; this code was validated to high precision against existing and proven differential theory methods of 
Neviere.11 The grating under analysis was assumed to be made of an etched W/B4C multilayer with a total of 600 
bilayers. Tungsten-to-bilayer thickness ratio was 22.0=Γ , with a period of 45 Å. The grating period was 4 µm.  

The dependences in Fig. 2 have a characteristic oscillatory shape, strongly damped at larger land-to-period ratios. One 
can understand this behavior on the basis of light diffraction by a grating consisting of a succession of equidistant slits.12 
Relating this to a lamellar ML grating (Fig. 1), the diffracting slit element represents the grating land.  

  
  



 
 

 
 

 

 
 

Fig. 1. Diffraction from a lamellar ML grating.  
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Fig. 2. Dependences of the diffraction efficiency of a soft x-

ray ( 4.12=λ Å) grating on land-to-period ratio for the 
5th and 9th orders. The period of the grating is 2 μm. The 
efficiency curve oscillations are predicted with the slit 
function shown with the dotted line. 

 

Then, with the exact diffraction condition fulfilled,  

dlSinSin λβα =− ,       (1) 

the envelope of the normalized interference function, , called in12 the light intensity function, can be written  as )(lI

( ) ( ) ( )[ ] 2
0 ,...),,(,...),,,()( dsldslSindsNRldsIlI ππαλλ= ,    (2) 

where ,...),,,(0 ldsI λ  is the intensity normalization factor, ,...),,( NR αλ  is the reflectivity envelope function, 
accounting for finite reflection of the grating lands,   is the diffraction order. The term l )( ds  in (2) can be thought of 
as a geometrical transmission factor of a slit. The function (2) envelopes the interference (diffraction) peaks, given by (1) 
at different  (see also discussion in Ref.12). The sinc function in the square brackets of (2) can be thought of as a result 
of the Fourier transform of an elementary slit. If 

l
5.0=ds , the odd, )12( +l -th interference peaks are close to the -th 

maxima of (2); whereas the even interference peaks, 
l

)22( +l , are not observed, because their positions correspond to the 
zeros of the sinc function. However, if 5.0<ds , the sinc function period increases, and the main peak of (2) starts to 
envelope the higher order interference peaks. In order to estimate the optimal (corresponding to the maximum diffraction 
efficiency) slit ratio, ds , for a given l , we find the maximum of the product of two last terms in (2), 

( ) ( ) ( )[ ]sldSinds π 2dslπ . The maximum reaches at llds 371166.1 .0)( ≈≈ π  with the intensity in the maximum  

1
0max )34.4,...)(,,(,...),,,()( −≈ lNRldsIlI αλλ .    (3) 

The dotted line in Fig. 2 shows the slit function, scaled to fit the main peak of the calculated efficiency of 9th order 
diffraction. The function exactly predicts optimum for ratio ds , emphasizing the point that to first order, the grating 
can be satisfactory described by a reflectivity function and a slit diffraction function.  

Paradoxically, the agreement can be also thought of as an indication of the deviation of the grating, used for simulation, 
from an ideal one. Indeed, for a lamellar ML grating, the geometrical term can differ from that of a convectional 
grating.13 For an ideal lamellar grating with significantly large number of bilayers (with no absorption), there should not 
be any geometrical losses. In this case, the maximum intensity, diffracted in high order, would be reached at infinitively 
small size of the grating lands, corresponding to the first maximum of sinc function in (2). However, any deviation from 
the ideality would be described with a geometrical loss factor, proportional (at least in first approximation) to the 



 
 

 
 

parameter s . Such a loss would make appearance of the optimal finite size of the lands (slits), similar to that was found 
above. 

The number of layers necessary for efficient diffraction has been also examined for the 9th order. From the simulation, it 
was found that approximately 1000 layer pairs are necessary to get maximum efficiency, and about 350 bilayers for the 
half of the maximum.  

Concluding the discussion of possibility of use a lamellar ML grating in high order with soft x-rays, we should say that 
the efficiency of 9th order at 05.0≈ds  is rather high (Fig. 2), reaching close to the efficiency of the zero order. Small 
land width at large effective number of bilayers results to the separation of the orders (preventing overlapping). 
However, the reflectivity of a very narrow land is small, increasing the effective extinction length and demanding the 
large number of ML bilayers to provide high ML reflectivity and grating efficiency. As a result of that the optimal 
design has a very large aspect ratio that is a great challenge for existing lithographic technology.  

Multilayer coated blaze (MLBG) grating11 is another design of a low groove density grating, capable of providing high 
efficiency of diffraction in high orders (Fig. 3). The high efficiency of a MLBG grating in the 1st order has been 
demonstrated in EUV wavelength range.14 In order to provide high efficiency of the grating in higher orders, a 
significantly larger blaze angle is required. This in turn has its limitations as the grating efficiency ultimately will be 
decreased due to enhanced shadowing and losses on non-working facets of the grating grooves.  

 
 

 
Fig. 3. Design of a multilayer coated blaze 

grating. d is the grating period, D is the 
ML bilayer spacing, φ is the blaze 
angle, α is the incidence angle, β is the 
diffraction angle, 2θ` is the scattering 
angle, θ is the Bragg angle. 
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Fig. 4. Dependence of efficiency of 19th (the dotted line), 20th (the 

solid line), and 21th (the dashed line) diffraction orders of a 
MLCB grating on the incidence angle at 1.3 nm wavelength. 
The grating with the period d=1 μm and blaze angle φ=3.03° 
is optimized for 20th order. Parameters of W/B4C multilayer 
are: DML=2.644 nm, Γ=0.2, N=100. 30 orders were used in 
the calculation. The efficiency of the 20th order exceeds 30%, 
whereas the adjacent orders are almost completely suppressed 
due to high selectivity of the ML. 

 

According to the Maystre - Petit scalar model15, the resulting efficiency of a blaze grating is equal to the reflectivity of 
working facet, )(θ ′R  multiplied by a geometry factor: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×′=

α
β

β
αθ

cos
cos;

cos
cosmin)(

0

max R
I

I
.    (4) 

The geometry factor increases at small scattering angle θ ′2 , and reaches one at the Littrow geometry, when . 
The Littrow geometry works well for EUV range, where the reflectivity of ML mirrors at normal incidence can be rather 
high. In the soft x-ray range, the reflectivity of the ML mirrors rapidly decreases with increase of the grazing angle. In 
this case, the maximum efficiency for the chosen -th order is achieved at some optimal value of scattering angle. Using 
the optimal scattering angle, grating equation, and Bragg equation, one can calculate all parameters of the grating, 

o02 =′θ

l



 
 

 
 

including blaze angle, ML period, and angle of incidence, and estimate the grating efficiency. Figure 4 presents the 
results of optimization with the GSolver code of a MLBG grating for high efficiency diffraction of 1.3-nm x-rays in the 
20th order. The optimized grating, with the period 1 μm and with the bilayer spacing of a W/B4C multilayer of 2.644 nm, 
provides more than 30% efficiency at the blaze angle of 3.03°. Note that all other orders, including the zero order and 
nearest-neighbor ones, are significantly suppressed; so almost all diffracted energy is concentrated in the 20th order. It 
should be noted that the peak efficiency obtained in this detailed simulation is close to that obtained in the modification 
of the simple scalar model of Petit and Maystre. 

2.2 Gratings with ultra-high density of grooves 

A grating with very small period is an alternative possibility to achieve a high dispersive power and resolution. Such a 
grating can be fabricated by slicing and polishing the ML structure at some angle to the plane of the ML. This reveals the 
periodic structure with the period determined with the ML bilayer spacing and slice angle values. The grating equation 
and Bragg condition are fulfilled simultaneously, so the highest diffraction efficiency of the grating is achieved in first 
order, while the Bragg condition for the first order reflection from the ML structure is satisfied.  

A high dispersive power of such a kind of grating fabricated by slicing the MoSi2/Si ML at angle of 10 degrees, was 
experimentally demonstrated in EUV wavelength range.16,17 However the number of grooves is the number of bilayers 
and it is difficult to exceed 103 due to deposition technique limitations; this obviously restricts the resolving power of the 
grating and its collection aperture. Moreover, as it will be shown below, the effect of an error in layer position increases 
with the number of a layer due to an accumulative effect that can impose a fundamental limitation of resolving power of 
this type of grating. 

We propose a new design of sliced grating, which can provide the number of grooves as large as 106 and reasonably 
small size of the grating (2-10 cm). Such gratings can be fabricated by polishing of blaze ML gratings (Fig. 5). 
Simulations show that the efficiency of a sliced grating is determined by the ML reflectivity and appears to be larger 
than that of for a MLBG grating because of absence of the shadowing effect (Fig. 6).  

The crucial point for both blazed MLBG gratings and sliced ML gratings is the quality of the saw-like tooth substrate. 
Surface roughness of the working facets can significantly decrease the efficiency of ML blaze grating.18 The errors in the 
substrate periodicity as well as the accuracy of the ML period can affects both the efficiency and resolving power of the 
gratings. The tolerances of the grating substrate fabrication are discussed in the following section. 

 
 

 
 

Fig. 5. Design of a sliced ML grating. The 
notations: d is the grating period, D is 
the ML bilayer spacing, φ is the slice 
angle, α is the incidence angle, β is the 
diffraction angle, θ is the Bragg angle. 
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Fig. 6. Efficiency of a sliced multilayer grating (solid) as a 

function of incidence angle, at a wavelength of 1.3 nm, for 
the 1st grating order. The period of the grating with the slice 
angle φ=3.03° is d=50 nm. Parameters of W/B4C multilayer 
are the same as for blaze ML grating (Fig. 4): DML=2.644 nm, 
Γ=0.2, N=100. The efficiency of the sliced grating exceeds 
the one of the blaze grating due to the absence of shadowing, 
and is close to the ML reflectivity (dashed).  

 



 
 

 
 

3. EFFECTS OF GROOVE’S PERIODICITY DISTORTION ON PERFORMANCE OF AN 
ULTRA-HIGH RESOLUTION DIFFRACTION GRATING 

In this section in order to understand the range of tolerances and figure out the major requirements to the grating 
production technology, we estimate analytically the effects of different possible distortion factors. A grating with 
grooves normally distributed around their ideal positions is considered in Sec. 3.1. In Sec. 3.2, we analyzed an 
asymmetrically cut multilayer grating with normally distributed layers. The distortions considered in Sec. 3.1 and 3.2 are 
at the extremes of expected effect on grating performance. The requirements for production tolerancing of a grating 
according to Fig. 5 should be somewhere between the extremes. In this case consider in Sec. 3.3, the grating distortion 
associated with an error of period of the multilayer, which coats an ideal anisotropically etched Si substrate (echellette). 

3.1 Grating with grooves normally distributed around their ideal positions 

Let us consider a plane wave diffracted from a grating with uniformly distributed grooves, as in the case of a regular 
grating, or a multilayer structure, or in the case of a density grating formed by cutting a multilayer mirror at a small 
angle. Similar to an asymmetrically-cut-crystal, a single bilayer edge, seen as a line on the polished surface, can be 
considered as an elementary groove of the high density grating.  In order to avoid limitation of the grating resolution by 
the number of groves, , assume  to be large enough to provide the desired resolution. For simplicity, suppose an 
incident angle to be zero (normal incidence), , Fig. 7. The grating diffracts the light at the angle 

1+N N
o0=α β  satisfying the 

grating equation with ideally uniform groove spacing d ( l  is an integer number, the order of diffraction), 

 . (5) ββλ SindSinSindl o =+= )0(

 

 

 

Fig. 7. Geometry of diffraction of a plane wave from a density 
grating formed by cutting a multilayer mirror at a small 
angle. 

 

Suppose that the positions of the grooves are normally distributed around their ideal positions  according to the 

Gaussian distribution law with dispersion : 
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The electric field amplitude of the diffracted wave (normalized to the amplitude of the incident wave) can be thought of 
as a superposition of plane waves with the corresponding path differences calculated with respect to the first 
groove : )0( =m
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where: mdδ  is a deviation of the -th groove from its ideal position, m λπ2=k  is the wave number. Averaging of the 
electric field amplitude (7) with distribution (6) gives: 
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In order to get (8) we used a known expression for the Fourier transform (characteristic function) of the Gaussian 
distribution  (see, e.g. Ref.19),  )(xP

[ .2exp)(]exp[ 222
dSinkdxxPxikSin σββ −=∫

∞

∞−

]      (9)    

Using (8), a normalized intensity of the diffracted wave can be written as 
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−

+
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Then, intensity at the exact diffraction conditions (5) is equal to  

[ ]222max exp dSinkInt σβ−= ,     (11) 

that is smaller than 1 due to the groove’s position perturbation. 

In order to find the resolution of the grating, let us find the deviation from a given wave number kδ  such that intensity at 
kk δ+ is half of the maximum intensity: 

.2)( maxIntkkInt =+ δ       (12) 

After algebraic and trigonometric transformation and accounting the exact diffraction condition (5), expression (12) 
gives: 
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Because we are interested in a high-resolution grating, we can suggest that  

( ) 12 <<⋅= λβλδλπβδ dSindSink    and    ( ) ( ) 18 2222 <<λβσλδλπ dSin .  (14) 

Then, equation (13) can be approximately solved, and the solution can be expressed as the grating resolution, equal to 
the full width of the diffraction peak on half of maximum, is 

NlNl
R 1

)1(
39.122 ≈
+

⋅
≈=

πλ
δλ .      (15) 

Therefore, resolution for a grating with grooves normally distributed around their ideal positions and constructed 
according to condition (14) is equal to the resolution of an ideal grating with the same geometry. According to 
expression (11), the considered distortion of the grating leads to a reduction of intensity of the diffracted light. At  

( )ldd πσ 2= ,      (16) 

the intensity would be reduced by factor of . Note that the higher the order of diffraction used, the more precise 
fabrication of the grating has to be.  

e

3.2 Asymmetrically cut multilayer grating with normally distributed layer thicknesses 

In this section, we apply the analytical approach used in the previous section to a plane wave diffracted from a grating 
made of a multilayer structure asymmetrically cut (Fig. 8), similar to Ref.16.17 A derivation analogous to one performed 
in Sec. 3.1 leads to a normalized intensity of the diffracted wave as  

{ } .
)exp()()2exp(21)1(
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2222222

222222

dd

dd

SinkdkSinCosSinkN
NSinkdNkSinCosNSink

Int
σββσβ

σββσβ
−+−−+

+−+++−−
=    (17) 

A maximum of intensity achieved at exact diffraction conditions (5) is   



 
 

 
 

 

 

 

Fig. 8. Geometry of diffraction of a plane wave from a density 
grating formed by cutting a thick multilayer mirror at a 
small angle. We suppose that the thickness of the layers 
and, therefore, the d-factor of the grooves  are normally 

distributed with dispersion  around their mathematical 

expectation  according to the Gaussian distribution law 
(6), but now 

md
2
dσ

d
d ddmm −=δ . 
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At sufficiently small , such that  2
dσ

2)1()2()1()2()1( 222222222222 <<+=+=+ dNldNSindNSink ddd σπσβλπσβ ,   (19) 

the maximum intensity of the diffracted light is .1max ≈Int From other hand, at sufficiently large , such that  )1( +N

2)1()2( 2222 >>+ dNl dσπ ,    while         2)2( 2222 <<dl dσπ ,    (20) 

the maximum intensity of the diffracted light becomes much smaller than 1:  

( )[ ] ( ) 12)1(2exp1)1(
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−−−−
dd SinkNSinkNInt σβσβ .   (21) 

Dependence of maximum intensity  of light diffracted into the first order (maxInt 1=l ) on ddσ at different number of 
grooves  given by equation (17) is shown in Fig. 9. In Fig. 9, the saturation at the higher relative accuracies 
(smallest values of 

)1( +N
ddσ ) corresponds to the case when condition (19) is fulfilled. The linear (in log-log scale) slope 

corresponds to the conditions (20). The constant level ( ) appearing at significantly lower accuracy 
(

2)1( −+≈ N
πσ 21~dd ) corresponds to the situation when the structure does not work any more as a diffraction grating. Note 

that the conditions (20) are fulfilled for all interesting values of parameter ddσ .  

The resolution of a grating with normally distributed size of grooves, we find from relation (12) with )( kkInt δ+  given 
by (17), and  given by (18). After algebraic and trigonometric transformation, it gives maxInt

]2exp[1]4)(exp[)( 222222
dd SinkSinkkdkSin σβσβδβδ −−=+−  .   (22) 

 

Fig. 9. Dependence of the maximum intensity 
 on relative accuracy of the grating 

fabrication 
maxInt

ddσ for different number of 

grooves )1( +N .  The saturation at 
the higher relative accuracies (smallest 
values of 

.1=l

ddσ ) corresponds to the case 
when condition (22) is fulfilled. The linear 
(in log-log scale) slope corresponds to the 
conditions (23). The constant level ( ) 
appearing at significantly lower accuracy 
(

2−≈ N

πσ 21~dd ) corresponds to the 
situation when the structure does not work 
anymore as a diffractive grating.  



 
 

 
 

Because we are interested in a high-resolution grating, we can suggest that  

( ) ( ) ( )( ) 18)2(22 222222222 <<−≈−= ddSinSinSinkk ddd σλβλδλπλσβλδλπβσδ , (23) 

Finally after simplification of (22) accounting for (23), the grating resolution is found to be  
2222 dlR dσπλδλ ≈= .      (24) 

The result for the grating resolution (24) shows that high resolution for an asymmetrically cut multilayer grating with 
normally distributed layer thicknesses can be achieved only if the error of grating fabrication, determined as ratio ddσ  

is significantly small. Thus, in order to get resolution of  at reasonable diffracted intensity, say, about 20-30%, 
the grating distortion has to be less than 

610−≈R
310−<ddσ . Manufacturing of a multilayer grating with such accuracy is a 

challenging problem.   

3.3 Polished Multilayer Coating on an Anisotropically Etched Substrate 

Let us consider a plane wave diffracted from a grating shown in Fig. 10 and made by polishing of a multilayer structure, 
coating an ideal echellette - Fig. 5. Suppose an ideally sharp discontinuity of the multilayer coating appeared just on the 
edges of the echellette teeth, as it is shown in Fig. 10. In this case, the surface of the high-density grating has a periodic 
structure with period of the echellette, . If the average multilayer period is , the number of the multilayer grooves 
per  can be expressed in the terms of the averaged multilayer period, , and blaze angle, 

L p
L p ϕ : 

dLpSinLn == ϕ ,       (25) 

here  is the averaged groove spacing. Note that the total number  of bilayers, coating the echellette, can 
significantly exceed n . However, it does not effect the performance of the grating under consideration. 

d 0n

 

Fig. 10. Geometry of diffraction of a plane wave from a density 
grating formed by edges of the bilayers of a multilayer coating 
an echellette.  is the period of the echellette pattern on the 
substrate;  is the position of the -th groove; 

L
mD )1( +m ϕ  is 

the blaze angle; β  is the diffracting angle. The derivations in 
this section become clearer, if the groove numbering originates 
at the right-hand edge of the grating.  

 

It is natural to assume the thickness of the bilayers and, therefore, the d-factor of the grooves  are normally 
distributed around their mathematical expectation  according to the Gaussian distribution law (6). Let the total number 
of grooves to be a multiple of : , where 

md
d

n nMN =+1 M is an integer number of the echellette teeth. Note that there is a 
variation of the total number of grooves  per the echellette period , which is possible due to the variation of the 
bilayer thickness. However, we can ignore the variation of  without losing completeness of consideration because of 
the very small size of this last extra/missing bilayer at reasonable fabrication tolerances (compare with Fig. 10).  

n L
n

The grating in Fig. 10 diffracts the normal incidence light with wavelength λ  at the angle θ  satisfying the grating 
equation (5) with ideally uniform groove spacing .  The electric field amplitude of the diffracted wave is determined 
by the coordinate of the grooves  that can be presented as 

d

mD mm DqnmqLDmdD m d δδ +−+=+= )( , where mDδ  is 
the deviation of the position of the -th groove from its ideal position, and  is the floor integer number of the ratio 

. The deviation 
m q

nm / mDδ  is a periodic function of period  of a discrete variable: L sDsqnD δδ =+

mD

. Such distortion of the 
grating period will lead to a ghost effect similar to the Rowland ghosts considered e.g., in ref.20 In this work, in order to 
calculate the positions of the ghosts, the grating period error δ  was expanded in a Fourier sine series and the 
diffraction result was obtained in terms of Bessel functions, convenient for ghost effect analysis. For our purpose, 



 
 

 
 

because we are interested in simulation of the grating performance at the condition of the specified diffraction, we can 
use the same approach, as in the cases considered above, ignoring the ghost effect.  

In this case, a normalized intensity of the diffracted wave can be written as  

[ ] [ ]
[ ] [ ] .

exp)(2exp21
exp][2exp21

)(1
][1

)1(
1

222222

222222

2
dd

dd

SinkdkSinCosSink
nSinkdnkSinCosnSink

dnkSinCos
dMnkSinCos

N
Int

σββσβ
σββσβ

β
β

−+−−

−+−−
×

−
−

×
+

=   (26) 

A maximum of intensity achieved at the exact diffraction condition (5) is 

( )[ ] ( )[ ] .2exp12exp1
222222222max −− −−−−⋅= dd SinknSinknInt σβσβ    (27) 

Analysis of the obtained result can be performed in the way similar to one applied to the previously considered cases. 
First, suppose sufficiently small , such that 2

dσ 2)2( 2222 <<dnl dσπ  [compare with (19)]; then the maximum intensity 

of the diffracted light is approximately equal 1. Whereas, at sufficiently large n , such that 2)2( 2222 >>dnl dσπ , while 

2)2( 2222 <<dl dσπ  [compare with (20)], the maximum intensity of the diffracted light becomes much smaller than 1. 
In this limit, expression for the intensity of the diffracted wave is identical to one obtained in sec. 3.2, Eq. (21). The only 
difference is the number of grooves, contributing to the accumulation of error of the grating period, n  rather than 1+N  
in Eq. (21). It is an expected result, because the distortions considered in Sec. 3.1 and Sec. 3.2, are, indeed, the particular 
cases of the distortion investigated here, when 1+= NM , 1=n  and when  1=M , 1+= Nn

1=l
, respectively. Similarly, 

the dependence of the maximum intensity  of light diffracted into the first order ( ) on the ratio maxInt ddσ  at 
different number of grooves per an echellette tooth, , given by (25), is the same as one shown in Fig. 9, if one replaces 

 in Fig. 9 with . Similar to other considered cases, the resolution of a grating with normally distributed spacing of 
bilayers on an ideal echellette, we find from relation 

n

Int
N n

max5.0) Intk(k ⋅=+δ  with )k(kInt δ+  given by (26), and 

 given by (27). After algebraic and trigonometric transformation, accounting maxInt 1<<kkδ , 1<<2π 22 ddσ22 l , the 
exact diffraction condition ldSink πβ 2= , corresponding to wave number , one can get an equation suitable for 
analysis: 

k

[ ] ( )( )
( )( )[ ])2exp(4)2exp(1

)2exp(1)21(
222222222222

222222

dnlkkdnldnl

kkMnlkkMnlSindnlkk

ddd

d

σπδσπσπ

δπδπσπδ

−+−−

×≈−−+
             (28) 

Using the approximation 

 12 2222 <<dnl dσπ ,     (29) 

equation (28) gives the resolution estimation identical to Eq. (15) obtained in Sec. 3.1 for a grating with grooves 
normally distributed around their ideal positions and corresponds to an ideal grating. Therefore, in order to get a high-
resolution grating we should fulfill the condition (29) that establishes the requirement for the fabrication of the grating: 

( ) .2
1−

<< πσ lndd       (30) 

For first order diffraction, , and a reasonable number of bilayers, 1=l 100=n , the required relative accuracy of a bilayer 
thickness is about 2%. That is a very reasonable criterion for current coating technology.  

4. DISCUSSION AND CONCLUSION 
In the present work, we have considered a few approaches to fabricate an ultrahigh resolution soft x-ray grating with 
resolving power up to 106. Such a grating would enable an optimum use of the high resolution Resonant Inelastic X-ray 
Scattering technique with soft x-rays, at a resolution appropriate for examining the soft excitations that drive such 
phenomena as high temperature superconductivity. It should also be noted that this type of ultrahigh resolution grating 
can also be used for the temporal compression of long pulses. The path length difference introduced by the grating is 
simply the number of grooves multiplied by the wavelength. In this case, for example at 10 nm wavelength, this would 



 
 

 
 

be 10 mm, leading to ~30-psec chirping time. Chirping of the position/angle/energy of the beam in time in combination 
with use of such a grating could allow significant temporal compression. 

We have also analyzed the effect of possible distortions of the grating periodicity on diffraction efficiency. More 
detailed derivations can be found in Refs.21-23 It was shown that a grating, suggested here and made of an asymmetrically 
polished multilayer coating on an ideal anisotropically etched substrate (echellette), allows one to significantly weaken 
the tolerance for the multilayer fabrication. This becomes possible due to an effective periodic ‘tuning’ of positions of 
the grating grooves by the echellette. Analytically and with scalar numerical calculations, we have demonstrated that an 
extremely high diffracted intensity of more than 50% and resolution of about 10-6 are in principal possible with such a 
grating fabricated with relative error of about 1%. The fabrication error mainly affects the diffracted intensity. It can be 
illustrated with Fig. 11, which shows the dependence on the number of bilayers  of maximum intensity of a wave 
diffracted into  order by a grating coated with relative accuracy of 1%. At this tolerance, the intensity of the 
diffracted wave is about 50% at approximately 400 bilayers. 

n
1=l

 

 

 

Fig. 11. Dependence of maximum intensity of a 
wave diffracted in the first order by a 
grating coated with relative accuracy of 1% 
on number of bilayers coated an ideal 
echellette. Total number of grooves is 106. 

 

In the above consideration, the incident angle was chosen to be zero (normal incidence). For another incident angle, 
a similar derivation could be performed leading to a similar result. Moreover, qualitatively, the obtained result can 
be easily confirmed with the Fourier transform of the grating profile. After the Fourier transformation, a normal 
distribution of the grooves around their ideal position would manifest itself as an increased background, independent 
of any specific frequency. 

Note that, strictly speaking, the results obtained in the present work are valid only for diffraction by the grating 
surface and only for scalar considerations without accounting for the possible effects which would appear in a more 
sophisticated vector theory. The effect of the multilayer structure, especially important for the case of x-ray 
diffraction, is also not accounted. However, we believe that the estimation gives the right order of the perturbation 
effects even for the case of volume diffraction. More detailed simulations, accounting this and other issues, are in 
progress. Finally it should be noted that we have embarked on production of the required grating substrates, using 
existing techniques of anisotropic etching of asymmetrically cut Si(111) and obtained blazed substrates of high 
quality.  We will further optimize the substrate production and then multilayer coat these substrates in the near 
future.  
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