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Abstract—A comprehensive uncertainty, baseline, and noise
analysis in computing 3D points using a recent L1-based tri-
angulation algorithm is presented. This method is shown to be
not only faster and more accurate than its main competitor,
linear triangulation, but also more stable under noise and
baseline changes. A Monte Carlo analysis of covariance and a
confidence ellipsoid analysis were performed over a large range
of baselines and noise levels for different camera configurations,
to compare performance between angular error-based and linear
triangulation. Furthermore, the effect of baseline and noise was
analyzed for true multi-view triangulation versus pairwise stereo
fusion. Results on real and synthetic data show that L1 angular
error-based triangulation has a positive effect on confidence
ellipsoids, lowers covariance values and results in more-accurate
pairwise and multi-view triangulation, for varying numbers of
cameras and configurations.

Keywords—triangulation; noise analysis; uncertainty; multi-
view reconstruction; structure-from-motion;

I. INTRODUCTION

During the past years, there has been a surge in the
amount of work dealing with multi-view reconstruction of
scenes, for applications such as robotics, surveillance and
virtual reality. In the reconstruction process, three-dimensional
(3D) objects and scenes can be computed from a collection of
images taken from different camera viewpoints. Most common
reconstruction algorithms produce a point cloud representing
the scene’s structure. State-of-the-art algorithms [1], [2] can
obtain very accurate reconstructions from large numbers of
images, even from the Internet. Most commonly, such recon-
struction algorithms are based on sparse feature detectors such
as SIFT [3]. Despite notable recent advances, increasing the
accuracy, efficiency, and reconstruction density are still areas
of ongoing research.

Triangulation is an important step in the process of scene
reconstruction, typically following the initial steps of feature
tracking and camera calibration [4]. Triangulation determines
the 3D location of a scene point X from its imaged pixel
location xi in two or more images. When X reprojects exactly
onto its xi coordinates, triangulation is trivial through simple,
linear methods. However, in the presence of image noise,
the reprojected coordinates of X will not coincide with each
respective xi. In the general setting with an arbitrary number
of cameras, possibly noisy camera parameters, and inaccurate
image measurements (feature tracks), the goal becomes finding
the point X that best fits a given track. There are a num-
ber of triangulation methods in the literature. The midpoint
method [4], though inaccurate in general, is by far the fastest
method given two views. Another common, fast method that

solves for 3D points based on linear least squares is linear
triangulation [4]. Such methods are not very accurate under
noise, and the obtained solution is not necessarily the best from
all feasible solutions.

A number of optimal algorithms exist in the literature, but
most solve for either two views (such as Lindstrom [5]) or
three (such as Byrod et al. [6]). For more than three views, the
traditional approach has been a two-phase method, where an
initial linear method such as N -view linear triangulation [4] is
applied to obtain an initial point, followed by non-linear bundle
adjustment optimization to reduce the L2-norm of reprojection
error [7]. Bundle adjustment is expensive and prone to miring
in local minima, hence it requires an accurate initialization.
A few N -view optimal solvers have been proposed, with
very limited results. Most recently, a triangulator by Recker
et al. [8] uses a novel L1 angular error cost function that
is optimized with adaptive gradient descent given an initial
midpoint estimate. It shows a significant speed increase and
better reprojection errors than other triangulators, such as
N -view linear. However, its performance under noise and
baseline changes has not been well-studied, and that is the
main contribution of this paper.

Triangulation uncertainty is a function of feature tracking
accuracy, camera calibration, and reconstruction angle. Beder
and Steffen [9] provide an algorithm that computes the con-
fidence ellipsoid for a 3D point. Based upon a set of points’
average ‘roundness’, the algorithm determines the best pair
to start a 3D reconstruction, by essentially fixing its scale.
The roundness of the expected covariance matrices, which is
related to the condition number of the normal equation system
for reconstruction, is maximized, in order to obtain frames that
enable a stable reconstruction. Rumpler et al. [10] provide an
algorithm to derive a similar measure of covariance, but based
on Monte Carlo simulations, and also analyze the effect of
true multi-view triangulation as opposed to pairwise fusion on
accuracy. Both algorithms are based on linear triangulation [4].

The main goal in this paper is to provide a comprehensive
analysis of noise, baseline, and true multi-view triangulation
versus two-view fusion for angular error-based triangulation,
based mainly on the procedures presented by Beder and
Steffen [9] and Rumpler et al. [10]. Such an analysis has not
yet been performed for this algorithm, and this is of great im-
portance given it’s the state-of-the-art triangulation algorithm
and with the potential to completely replace linear triangulation
in future reconstruction pipelines. This is specially relevant
with large data, where both great speed and accuracy may
be required. Furthermore, it is studied whether this algorithm
makes pair-wise fusion become more accurate with respect



to true multi-view stereo even with very small baselines,
which is essential for a number of applications in which
accurate fusion may be required. Performance comparisons are
performed mainly with respect to linear triangulation, given
the overall lack of other truly N-view triangulation methods
for which to compare with. Related work will be discussed in
Section II. Full experimental results will be described in detail
in Section III, followed by conclusions in Section IV.

II. RELATED WORK

There are many general scene reconstruction algorithms in
the literature, several of which have been successful for certain
applications. A comprehensive overview and comparison of
different methods is given in Strecha et al. [11]. In this paper,
our focus will be on triangulation analysis and not on the
other components of reconstruction. Therefore, the following
sections will present some background on Recker et al.’s L1

cost function, confidence ellipsoids for triangulated points,
Monte Carlo covariance analysis, and merging of stereo pairs.

A. Linear Versus Angular Triangulation

Triangulation is one of the final steps in reconstruction and
its accuracy is a direct function of previously-computed feature
tracking, camera intrinsic calibration, and pose estimation [4].
Typically, 3 × 4 projection matrices are used to encapsulate
all camera intrinsic and pose information. The most widely-
used method in the literature is linear triangulation [4]. A
system of the form AX = 0 is solved by eigen-analysis or
singular value decomposition (SVD), where the A matrix is a
function of feature track and camera projection matrix values.
The obtained solution is a direct, best-fit solve. Numerical
stability issues arise with near-parallel cameras.

Recker et al. [8] proposed an L1 cost function based on
an angular error measure for a candidate 3D position, p, with
respect to its feature track t. This method will be referred
to from now on as angular triangulation. After initializing
through the simple midpoint method, adaptive gradient descent
is applied on the cost function. Finally, a statistical sampling
component, based upon confidence levels, reduces the number
of rays used for triangulation of a given feature track. It is
mentioned in Recker et al. [8] that an initialization based on
linear triangulation is also possible, but in practice did not
lead to better final results after optimization, and is more
expensive to compute than the midpoint estimate. As for the
choice of L1 norm, it measures the median of noise and is
more robust to outliers than the L2 or L∞ norms because
it does not amplify their effect. Furthermore, the L2 least-
squares solution is the maximum likelihood (ML) estimate
under Gaussian image noise, but typically contains many local
minima, while the L∞ model assumes uniform bounded noise,
which is not always realistic. The inputs to the algorithm are a
set of feature tracks across N images and their respective 3×4
camera projection matrices Pi. The error for p is computed as
follows. A unit direction vector vi is first computed between
each camera center Ci and p. A second unit vector, wti, is
computed as the ray from each Ci through its 2D feature track t
in each image plane. Since t generally does not coincide with
the projection of p in each image plane, there is frequently
a non-zero angle between each possible vi and wti. Finally,
the average of the dot products vi · wti across all cameras is

obtained. Each dot product can vary from [−1, 1]. Given Ci
cameras, T the set of all feature tracks, and p = (X,Y, Z) a
3D evaluation position, the cost function for p with respect to
a track t ∈ T is displayed in (1).

ft∈T (p) =

∑
i∈I(1− v̂i · ŵti)
||I||

(1)

Here, I = {Ci|t “appears in” Ci}, ~vi = (p − Ci), and
~wti = P+

i ti. The right pseudo-inverse of Pi is given by P+
i ,

and ti is the homogeneous coordinate of track t in camera i.
The equation can be expanded with vi = (vi,X , vi,Y , vi,Z) =
(X − Ci,X , Y − Ci,Y , Z − Ci,Z), with normalized v̂i = vi

||vi||
and ŵti = wti

||wti|| . Gradient values are defined in equations
5 − 7 of Recker et al. [8]. Variation in space is very smooth
for this function, as explained in Recker et al. [8], due to the
continuous nature of sums of dot products. As for the choice
of angular error versus reprojection error, it is important to
mention that while they are intrinsically similar, angular error
requires a lower operation count to compute. Furthermore,
Recker et al. [8] were able to prove that it is very unlikely
to converge to local minima while optimizing the L1-norm of
this function.

B. Confidence Ellipsoids for Triangulated Points

Beder and Steffen [9] present an algorithm to determine
the best initial pair for a multi-view reconstruction. Their
analysis is based on computing a confidence ellipsoid for
each computed 3D scene point X , such that its roundness
measures the quality of each obtained point. This measure
is related to the condition number of the normal equation
system for reconstruction, such that the frame pair with the
highest average roundness provides the most stable points
for reconstruction. For two views, the covariance matrices of
image feature matches x′ and x” are given by C ′ and C”,
respectively. The covariance matrix CXX of the distribution
of the scene point coordinates X is proportional to the upper
left 4×4 submatrix N−11:4,1:4 for the inverse of the 5×5 matrix
N given by (2). The A and B matrices encode information
related to the projection matrices for the two cameras, the
image coordinates of the feature match yielding the scene
point, and the 3D point coordinates.

N =

 AT
(
B

(
C’ 0

0 C”

)
BT
)−1

A X

XT 0

 (2)

If the homogeneous vector X = [XT
0 , Xh]T is normalized to

Euclidean coordinates, the covariance matrix of the Euclidean
coordinates’ distribution is given by (3), where Je corresponds
to the Jacobian of a division of X0 by Xh.

C(e) = JeCXXJ
T
e (3)

Finally, with the SVD of the matrix C(e), the roundness R
of the confidence ellipsoid is obtained as the square root of
the quotient of the smallest singular value λ3 and the largest
singular value λ1, per R =

√
λ3

λ1
. The value of R lies between

0 and 1, and only depends on the relative geometry of the two
poses, the feature positions and the 3D point; radial distortion
is not explicitly taken into account. The eigenvectors of C(e)

define the orientation of the principal axes of the ellipse, while
its eigenvalues define their lengths.



1) A Further Analysis of Confidence Ellipsoids: In (2), it
is possible to include image covariances C ′ and C ′′, but in
this case we are interested in analyzing only the geometric
properties of triangulation. To this end, both image covariance
matrices are set to identity, I3x3. In this setting, let the
interior matrix to be inverted in N be denoted by G, and
defined per (4). The expression is further simplified with
B1 = −S(P ′X) and B2 = −S(P ′′X) respective 2 × 3
matrices. Here, P ′X = x̂′ and P ′′X = x̂′′ can be interpreted
as image measurements after reprojecting the 3D point X
back into each respective image plane. Applying properties
of block matrices, the inverse of G is defined in (5). Now, let
W = ATG−1A = f(P ′, P ′′, x′, x′′, X), such that N can be
re-written as in (6).

G = B

(
C’ 0

0 C”

)
BT =

(
B1B

T
1 0

0 B2B
T
2

)
(4)

G−1 =

(
(B1B

T
1 )−1 0

0 (B2B
T
2 )−1

)
(5)

N =

(
W X

XT 0

)
(6)

For a block matrix such as N , of size (m+ 1)× (m+ 1) with
the upper-left submatrix of size m ×m, its inverse is shown
in (7), where K = −XTW−1X is a scalar.

N−1 =

(
W−1 + W−1XXTW−1

K −W
−1X
K

−X
TW−1

K
1
K

)
(7)

From (7), notice that CXX = (N−1)1:4,1:4 = W−1 +
1
KW

−1XXTW−1. This demonstrates that CXX can actually
be represented by two additive terms. Next, focus will return
to (3), where C(e) = JeCXXJ

T
e . It was mentioned that the

3 × 4 matrix Je corresponds to the Jacobian of a division of
X0 by Xh, and can be written as in (8) with the homogeneous
vector X = [XT

0 , Xh]T , where XT
0 = (XX , XY , XZ)T .

Je =
1

Xh

(
I3×3| −

X0

Xh

)
(8)

By multiplying per (3), an expression is obtained for the
3 × 3 matrix C(e), where all terms have a similar form.
For example, element (1, 1) of C(e) is shown in (9). If the
homogeneous coordinate Xh is very large, this value tends to
be small, and vice-versa, and this is related to the condition
number in the reconstruction of a 3D point.

C
(e)
11 =

CXX,11

X2
h

− (CXX,14+CXX,41)XX

X3
h

+
(CXX,41)X

2
X

X4
h

(9)

One question that immediately arises is what the space of
solutions for the roundness of confidence ellipsoids actually
looks like in the neighborhood of a 3D position. For example,
Recker et al. [8] showed how their angular cost function has a
very smooth variation, such that slightly different 3D positions
show function values that do not differ much.

To illustrate this, a scalar field analysis was performed.
At each location of a densely-populated uniform scalar field,
centered at a chosen scene structure position, both Recker et

al.’s [8] cost function and Beder and Steffen’s roundness [9]
were computed, as displayed in Fig. 1. To compute the round-
ness scalar field, the homogeneous coordinate at the current
position was computed from the SVD of the A matrix, and
applied to the non-homogeneous current 3D coordinates (by
multiplication). The scalar field visualization was implemented
and stored in VTK format [12]. Samples are color-coded
such that red indicates low values, whereas purple indicates
high values within the scalar field. A VisIt [13] marching
cubes implementation was used to generate isosurfaces, which
enclose regions of different ranges of values, in order to
create a contour plot [13]. The transition between isosurfaces
shows that the roundness measure in Fig. 1(b) is smooth, but
very different from the values for the angular cost function
in Fig. 1(a). The highest scalar field value for roundness
does not generally coincide with the convergence position for
the angular cost function. Furthermore, notice that roundness
values seem to be biased towards points that lie closest to
the cameras, such that values for those points are higher.
Meanwhile, the angular cost function is depth invariant by
definition, since it is a simple angular measure. Analyzing (9),
it can be seen that low values for the homogeneous coordinate
Xh, typically indicative of bad condition numbers, lead to
higher values of C(e), which may be a possible cause of closer
positions having higher values for roundness R.

C. Monte Carlo Estimation of Covariance

Rumpler et al. [10] performed an analysis based on Monte
Carlo estimation of covariances, to show that multi-view recon-
struction produces much less depth uncertainty than merging
stereo-pair reconstructions. Formally, the depth error in stereo
is shown in (10), where z is the depth, b the baseline, f the
focal length in pixels, and εd the matching error in pixels
(disparity values). Depth precision is mainly a function of the
angle formed between the cameras’ principal rays, such that
with a small angle these rays are nearly parallel.

εz =
z2εd
bf

(10)

However, Rumpler et al. [10] demonstrated that depth error can
alternatively be computed by first estimating a population of
points generated by perturbing input feature tracks with zero-
mean Gaussian noise and computing the covariance matrix of
the resulting set, in a Monte Carlo estimation procedure. The
largest singular value of this matrix corresponds to the uncer-
tainty in depth estimates for the set of points. For a column
vector X = [X1 . . . Xn] of 3D positions, the covariance matrix
is Σ = E

[
(Xi − µ)(Xi − µ)T

]
, where µ is the average 3D

position of the set.
Based on this Monte Carlo estimation of depth uncertainty,

it was shown that true multi-view linear triangulation is up to
ten times more accurate than mean or median fusion of stereo
pairs. In the next section, it will be analyzed if the same result
holds for angular triangulation.

III. RESULTS

Comprehensive results were obtained for Recker et al.’s
algorithm on both real and synthetic datasets. All tests were
conducted on an 8-core Intel(R) Core(TM) i7 − 2600 CPU
at 3.40GHz, on one thread, running Linux Mint 13 (Maya).



(a) Evaluated structure position (b) L1 cost function [8] (c) Roundness of confidence ellipsoid [9]

Fig. 1. Reconstruction of the Kermit dataset [2], where an evaluation 3D position, shown in red, is encased inside a green bounding box (a). Sample images
are shown along the top. Inside this bounding box, scalar fields were rendered with Recker et al.’s angular cost function [8](b), and with Beder and Steffen’s
roundness of confidence ellipsoid metric [9] (c).

In the following tests, these triangulation types will be used:
pairwise angular AP, multi-view angular AM, pairwise linear
LTP, multi-view linear LTM, pairwise midpoint MP, and multi-
view midpoint triangulation MM.

A. Synthetic Setup

To analyze performance, the following synthetic datasets
were generated. The same synthetic camera was used per
dataset, with a fixed focal length and principal point. First,
a set of cameras were placed in a quarter-circle camera
configuration, with an increasing baseline between 0◦-90◦. A
total of 30 cameras are viewing a point located at (0, 0, 0),
where 500 trials with random Gaussian noise were performed
for each baseline and noise level and then averaged. Then, a
similar setup was created for cameras ranging from 0◦− 180◦

and from 0◦−360◦. Finally, a set of 30 cameras were placed in
a linear configuration, also looking at (0, 0, 0). The following
14 Gaussian noise levels were used: σ = 0.1%, 0.2% .....
1.0%, 1.5%, 2.0%, 5.0% and 10.0%, where the percentages
correspond to the image diagonal size and correspond to the
standard deviation used for the Gaussian noise.

B. Confidence Ellipsoid Roundness Comparison

Fig. 2 displays a comparison made between computing the
roundness metric [9] with linearly-triangulated points versus
angular-triangulated points, for the 30-camera quarter-circle
setup described above. In this setup, within each X-axis bin, 29
measurements are displayed, each corresponding to a pairwise
triangulation between the first image and a second with a
uniformly increasing baseline between 3◦-90◦. Each of the
bins represents the 14 error levels, increasing from left to right
within the chart. A total of 500 trials with random Gaussian
noise were performed for each baseline and noise level com-
bination and then averaged. For angular-triangulated points in
(b), notice that roundness values increase with baseline but
decrease with increasing error. In contrast, roundness actually
increases with large noise in (a). Also, there is a very strong
inverse correlation between roundness and angular distance to
optimization [8], shown in (c).

C. Other Baseline and Noise Tests

Other tests were performed to analyze the effect of baseline
increase in two-view triangulation under increasing noise.
Fig. 3(a) shows the trends seen in the distance from ini-
tial midpoint to optimization in AP, while (b) displays the
corresponding ray divergences. Ray divergence is defined as
the Euclidean distance between closest points on two rays.
It was used as an evaluation metric because of its simple
computation and because it correlates well with Beder and
Steffen’s roundness metric [9], as proven in Hess-Flores et
al. [14]. Again, just as in Section III-B, within each X-axis bin
measurements are performed with an increasing baseline. Each
bin represents the 14 error levels, increasing from left to right,
with 500 averaged trials. Notice the clear trends indicating that
distances to optimization increase with error but decrease with
baseline, while divergences increase with error but show an
interesting parabolic shape with respect to increasing baseline.
For any of the quarter-circle, semi-circle or circle camera
configurations, at 90◦, distances to optimization decrease with
respect to lower angles because the triangulation angle is better.
However, ray divergences are actually greater. This makes
sense if we imagine two parallel rays right next to each other
at small baselines, where uncertainty is large but not ray diver-
gence, and spread apart as angle increases. Surprisingly, trends
in distances to optimization, roundness and ray divergences
continue and stable out near 180◦, perhaps indicating that this
is a better triangulation angle than 90◦ [9], [10]. For a linear
camera configuration, distances to optimization grow with
increasing error, as expected. However, as the baseline grows
for a given noise level, the distances to optimization decrease
because the angle is wider. For roundness R, results remain
practically identical regardless of noise. In general across all
configurations, the average distance to optimization increases
regardless of the baseline as noise increases. However, for all
noise levels, the average distance to convergence decreases
as the baseline increases, which is a very good sign. For
small baselines, values tend to be highest since there is a lot
of uncertainty in the measurement, and this coincides with
the literature [8]–[10]. In all tests, timing data for angular
triangulation is remarkably stable despite increasing noise,
which is a very important property.



(a) (b) (c)

Fig. 2. Roundness of confidence ellipsoid R [9] computed using LTP (a), and using AP [8](b), for a quarter-circle camera configuration. Notice that there is
an inverse correlation between distances to optimization [8] and the values for R (c).

(a) (b) (c) (d)

Fig. 3. Distance to optimization [8] from the initial midpoint estimate in AP (a), and corresponding ray divergences (b), for the half-circle camera configuration.
Distance (c) and ray divergence (d) are also shown for the linear camera configuration.

(a) AP (b) LTP (c) AM (d) LTM

Fig. 4. Average depth uncertainty between pairwise consecutive images obtained using AP (a) versus LTP (b), for the quarter-circle camera configuration.
Noise levels increase from left to right, and baseline increases left-right within each bin. Similarly, average depth uncertainty results for AM, obtained by adding
one image at a time as baseline increases, are shown in (c), versus LTM in (d).

D. Depth Uncertainty Analysis

In order to analyze how stereo pair fusion fares with respect
to true multi-view triangulation, we performed an analysis
inspired by Rumpler et al. [10]. First, triangulation estimates
between images 1-2, 2-3, 3-4, and so on were computed, using
LTP and AP. At each of the previously-mentioned error levels,
a total of 500 depth uncertainty samples were computed and
averaged for each pair. Figs. 4(a,b) shows the corresponding
results for the quarter-circle configuration. It can be seen that
depth uncertainty is generally low for both AP and LTP, but
can be very high in both cases under large errors and small
baselines. Next, triangulation estimates between images 1-2,
1-2-3, 1-2-3-4, and so on were computed, adding one image
at a time to the initial reconstruction of pair 1-2, now with
LTM and AM. Figs. 4(c,d) shows the corresponding depth
uncertainty results for the quarter-circle configuration. Notice
that uncertainty for LTM can be 1-2 orders of magnitude higher
than for AM with small baselines and large errors. This is one
of the most telling results of our comparisons, and confirms the
stability of AM versus LTM, which is critical for multi-view
reconstruction performance.

E. Results on Real Data

For real datasets, it is assumed that feature tracks and cam-
era projection matrices are available as input. Radial distortion

present in the images was not removed prior to testing, and im-
ages were acquired sequentially. Table I shows average depth
uncertainty results with all triangulators for the well-known
Dinosaur dataset [15], consisting of 4983 feature tracks,
computed similarly to Section III-D. This dataset in general
has very accurate feature tracks and cameras. Results are very
similar for AP and LTP, while AM slightly outperforms LTM.
Even though standard deviation values are relatively high, all
µ and σ values are very small overall. However, the efficiency
and speed benefits of angular triangulation in real datasets are
noticed with very large data [8]. Fig. 5 shows baseline analysis
data obtained for the same dataset. Ray divergence values in
(a) grow and decrease slightly with very long baselines, but
values are much smaller when using multiple views. In (b),
roundness values with AP and AM similarly rise, stabilize and
settle at lower values as the baseline is increased. In (c), depth
uncertainty values are very similar for AP, AM, LTP and LTM,
with a tendency for covariances to grow with baseline. In (d),
reprojection errors are very similar between AP versus LTP as
well as AM versus LTM, while midpoint reprojection errors
are not displayed since they are at least an order of magnitude
higher. Finally, scenes reconstructed with AM are shown in
Fig. 6.

IV. CONCLUSIONS

This paper provided a detailed uncertainty, noise and
baseline analysis for a state-of-the-art L1 angular error-based



TABLE I. DEPTH UNCERTAINTY DATA FOR THE Dinosaur DATASET [15], WITH MEAN µ AND STANDARD DEVIATION σ. VALUES CORRESPOND TO THE
AVERAGE LARGEST SINGULAR VALUE OF MONTE CARLO COVARIANCE MATRICES FOR POSITIONAL VARIATION IN EACH CASE.

Triangulation type µ σ

AP 1.1144E-05 2.4388E-04
LTP 1.1145E-05 2.4387E-04
AM 2.6643E-06 6.2394E-05
LTM 2.6682E-06 6.2824E-05

(a) d (b) R (c) Depth uncertainty (d) Reprojection error

Fig. 5. Baseline analysis for the Dinosaur dataset [15]. Ray divergence d (a) and roundness R [9] (b) are plotted for AP (blue) versus AM (red). Depth
uncertainty (c) and total reprojection error in pixels (d) are plotted for AP, LTP, AM, and LTM.

(a) Brown06 [16] (220 views) (b) Canyon [8] (90 views)

Fig. 6. Scenes reconstructed with multi-view angular triangulation. Cameras
are rendered in blue.

triangulation method which has been shown to provide greater
speed and accuracy than other algorithms in the literature [8].
For varying baselines and noise levels, confidence ellipsoids,
Monte Carlo covariance and stereo pair fusion were analyzed
versus linear triangulation. On real and synthetic data, it was
verified that angular triangulation is not just faster and more
accurate than linear triangulation, but is also more stable under
noise and baseline changes, and with a lower depth uncertainty.
This result is very promising towards applications requiring
stability, accuracy and speed in triangulation.
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