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ABSTRACT OF THE DISSERTATION

Multilevel Time-Varying Joint Models for Longitudinal and Survival Outcomes

by

Isaac Noe Quintanilla Salinas

Doctor of Philosophy, Graduate Program in Applied Statistics
University of California, Riverside, September 2022

Dr. Esra Kürüm, Chairperson

Motivated by the United States Renal Data System (USRDS), we propose a joint

modeling framework for longitudinal and survival outcomes that accounts for time-dynamic

associations. In this population of patients, two outcomes are of interest, hospitalization, a

longitudinal binary outcome, which is a major source of death risk, and mortality, which is

higher in this population than in other comparable populations, including Medicare patients

with cancer. Therefore, it is of interest to identify the patient-and dialysis facility-level risk

factors that jointly affect these outcomes. Furthermore, studies have shown the effect of

risk factors changes as a patient undergoes dialysis; therefore, it is necessary to model

the associations as a function of time. Additionally, we incorporate multilevel random

effects and multilevel covariates, at both the patient and facility levels, to account for

the hierarchical data structure. An approximate Expectation-Maximization algorithm is

developed for estimation and inference, where the fully exponential Laplace approximation is

employed to address the hierarchical structure, and spline models are utilized to incorporate

a time-dynamic association. We demonstrate the finite sample performance of our approach
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via simulation studies. We apply our proposed model to USRDS data to identify significant

time-varying associations.
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Chapter 1

Introduction

End-stage renal disease (ESRD) is the final stage of chronic kidney disease where

an individual’s kidneys fail. This requires individuals to undergo either dialysis treatment

or a kidney transplant. In the United States (U.S.), there were over 726,000 individuals with

ESRD at the end of 2016 with 70% of them undergoing dialysis treatment (United States

Renal Data System, 2018). Compared to other morbid populations, dialysis patients have

a higher level of mortality risk. Additionally, dialysis patients are frequently hospitalized

due to the nature of dialysis treatment and other comorbidities these patients have, such as

diabetes or cardiovascular disease (United States Renal Data System, 2018). Thus, for this

population of patients, frequent hospitalizations (collected longitudinally) and mortality

are associated outcomes, and it is of interest to understand the relative contribution of risk

factors to this association after the initiation of dialysis. Potential risk factors affecting this

relationship are both patient- and dialysis facility-level, such as facility staffing (e.g., the

ratio of nurse-to-patients). Our goal in this project is to jointly model hospitalization (binary
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longitudinal outcome) and time-to-death (survival outcome) in the dialysis population while

taking into account the multilevel/hierarchical structure of the data (repeated measurements

nested within patients and patients further nested within facilities). These models will be

applied to the data from the United States Renal Data System (USRDS), a large national

database. In terms of covariates, this database includes patient demographics and baseline

comorbidities at the subject-level, and facility staffing, such as nurse-to-patient ratio, at the

facility-level.

Joint modeling of longitudinal and survival outcomes have been extensively studied

in the literature. Researchers have modeled the association using random effect models

(De Gruttola and Tu, 1994), proportional hazard models (Tsiatis et al., 1995), shared-

parameter models (Wulfsohn and Tsiatis, 1997), and conditional score functions (Tsiatis and

Davidian, 2001). De Gruttola and Tu (1994) model the association between the longitudinal

and survival outcomes using subject-level random effects, which are assumed to follow a

multivariate normal distribution. The authors used the EM (Expectation-Maximization)

algorithm to maximize the full joint likelihood function to estimate the parameters. Tsiatis

et al. (1995) take a different approach where the longitudinal outcome is modeled with a

random effects model, and the association between the longitudinal and survival outcomes

are fitted with a proportional hazards model. The parameter in the hazard model are

estimated in two steps, an empirical Bayes estimate is used for the longitudinal process,

and in the second step, the longitudinal estimates are used as a time-dependent covariate

to fit the proportional hazard model. Additionally, the authors argue this method produces

better estimators than the maximization of the likelihood of the marginal proportional
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hazard model. Tsiatis and Davidian (2001) propose an alternative approach for estimating

the parameters of the joint model. The authors relax the normality assumption for the

random effects by conditioning the survival model with the complete sufficient statistic of the

random effects. The parameters are then estimated from the conditional score estimating

equations. Wulfsohn and Tsiatis (1997) used shared random effects to model both the

longitudinal and survival outcome. This allows the outcome to be jointly modeled. The

parameters are then estimated via the EM algorithm. The authors argue this method

utilizes the information of both outcomes to jointly obtain more accurate estimates of the

parameters. Liu et al. (2008) extend the shared-parameter model for hierarchical data. The

authors use random effects to account for the variation of the different levels in the data.

The parameters are estimated similarly to Wulfsohn and Tsiatis (1997). Additionally, the

shared-parameter model has been extended to handle generalized outcomes (Larsen, 2004;

Li et al., 2009; Rizopoulos et al., 2008). The methods described provide a framework to

model dependent outcomes; however, the authors do not allow for a dynamic association.

In longitudinal studies, such as the USRDS data, the association between out-

comes, longitudinal and time-to-event, or the relationship between a response and its pre-

dictors may change over time. The inability of traditional parametric regression models to

capture this dynamic structure of the data led Nan et al. (2005), Song and Wang (2008),

and Andrinopoulou et al. (2018) to implement varying coefficients in the joint models.

Nan et al. (2005) implemented the varying coefficient as a time-dependent covariate in the

proportional hazard model. The time-varying coefficient is approximated with a natural

cubic B-spline basis. The parameters are then estimated with the maximum partial like-
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lihood estimators. Song and Wang (2008) implemented a time-varying coefficient in the

proportional hazards model. The authors approximated the time-varying coefficient with

a local linear model. The parameters are then estimated using the corrected score or con-

ditional score local estimating equations. Andrinopoulou et al. (2018) used time-varying

coefficients in the shared-parameter model to describe the association of the dependent

outcomes. The authors approximated the time-varying coefficients with Bayesian P-Splines

(Lang and Brezger, 2004). While all these methods proposed in the literature allow for a

time-varying association between the longitudinal and survival outcomes, they do not imple-

ment time-varying coefficients between the risk factors and each outcome; in other words,

they cannot accommodate dynamic response-predictor relationships. Additionally, the mod-

els do not allow for generalized outcomes and hierarchical data.

In this dissertation, we develop a flexible multilevel joint modeling approach that

accounts for the three-level hierarchy of the USRDS data, that is, longitudinal measure-

ments, hospitalizations measured over time, nested within subjects and subjects further

nested within dialysis facilities. In addition, our joint modeling approach accommodates all

dynamic associations that may exist in a longitudinal study. To our knowledge, although

time-dynamic effects in joint modeling have been studied in the literature before, there has

not been any work that combined these key elements: (1) incorporate time-varying effects

of predictors (risk factors) on both the longitudinal and survival outcomes as well as the

time-dynamic effect of the longitudinal process on the survival outcome and (2) accommo-

date complex multilevel data structures while including both subject- and facility-level risk
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factors. Our work will fill this gap in the literature while handling generalized longitudinal

outcomes.

The proposed joint model accounts for all manners of associations, that is, depen-

dence among the repeated measurements within a subject and the correlation between the

longitudinal and survival outcomes, by including multilevel random effects. Therefore, given

the random effects, we assume that the outcomes are independent, leading to a submodel for

each response. The longitudinal submodel is a generalized time-varying linear mixed effects

model (Li et al., 2020) and a time-varying proportional hazard model (Cox, 1972) is em-

ployed for the survival outcome. The time-varying coefficients within each model allows us

to explore the dynamic response-response and response-predictor associations. We demon-

strate the estimation of these time-varying coefficients via the P-splines models (Eilers and

Marx, 2010) and random-coefficient spline models (Ruppert et al., 2003).

Estimation in our modeling scheme is based on an EM algorithm (Dempster et al.,

1977), where we treat the multilevel random effects as missing data. At the expectation

step (E-step), the posterior mean and variance of the random effects are estimated, whereas

the maximization step (M-step) involves maximizing the joint log-likelihood to obtain the

estimated model parameters. One major challenge in the implementation of joint models

to our three-level hierarchical data is due to the high-dimensional vector of random effects

(of order ni+1) at the facility level with the facility-level random effects as well as subject-

level random effects for ni patients receiving dialysis at the ith facility. This challenge is

compounded especially when the size of the data is large. Our analysis of the USRDS

data includes over 292,000 observations on ∼34,000 patients in more than 500 facilities,
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where the number of patients within a facility, denoted by ni, ranges between 50 to 162.

Therefore, we adopt the fully exponential approach proposed by Tierney et al. (1989) to

address this computational challenge. It is shown that the fully exponential Laplace ap-

proximation is advantageous over the standard Laplace approximation as it leads to lower

order approximation errors and reliable estimation results especially when modeling sparse

longitudinal outcomes with few repeated measurements within a subject. Although, the

fully exponential Laplace approximation have been employed previously (Rizopoulos et al.,

2009; Kürüm et al., 2021) in a joint modeling context; these works modeled time-invariant

relationships, whereas we demonstrate the use of this approximation in a time-varying joint

modeling framework.

The remainder of this dissertation is organized as follows. Chapter 2 includes

literature review on joint models and varying-coefficient models. In Chapter 3, we introduce

our proposed time-varying joint modeling approach. We describe our estimation procedure

based on P-spline and random-coefficient spline models, and discuss a bootstrap approach

for inference. In Chapter 4, we present simulation studies designed to demonstrate the finite

sample behavior of our estimators. Chapter 5 illustrates our proposed methodology using

the USRDS data set. Finally, in Chapter 6, we give our conclusions and outline some future

research topics.
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Chapter 2

Literature Review

In this chapter, we briefly discuss the statistical concepts that are relevant for

our proposed methodology. Section 2.1 provides details on longitudinal data analysis and

mixed effects models. Section 2.2 reviews survival data analysis and the Cox proportional

hazard model. In Section 2.3, we focus on joint longitudinal-survival models and their

corresponding estimation procedures. Lastly, in section 2.4, we present a brief summary of

time-varying coefficient models.

2.1 Longitudinal Data Analysis

Longitudinal studies involve repeated measurements of the same subjects over a

period of time. These type of studies enable researchers to investigate how the effects of risk

factors on an outcome change over time. One challenge in the analysis of longitudinal data

arises due to the association among the repeated measurements. In particular, although

the subjects are assumed to be independent of each other, due to the dependence among
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the repeated measurements within a subject, traditional regression models, where all the

observations are assumed to be independent, cannot be employed. Therefore, methods that

account for this dependence among the repeated measurements have been proposed, such

as generalized least squares and mixed effects models.

Linear mixed effects models are used in longitudinal studies to model both the

population- and individual-level effects. Let Y i = (Yi1, ..., Yini)
T, for i = 1, ..., n, denote

the vector of responses for the ith subject measured at time points ti = (ti1, ..., tini)
T.

The predictor variables at time point tij are denoted as Xij = (Xij0, Xij1, ..., Xijp)
T with

j = 1, . . . , ni, and Xi is a (p+1)× ni matrix containing all the predictor values for the ith

subject. A linear mixed effects model is composed of both fixed effects and random effects:

Y i =X
T
i β +DT

i bi + ϵi, (2.1)

where β = (β0, β1, ..., βp)
T represents the fixed effects, Di = (Di1, ...,Dini) with each Dij

representing a vector predictors for the random effects, bi = (bi1, bi2, ..., biq)
T are the subject-

level random effects following a normal distribution with E(bi) = 0 and Cov(bi) = G, and

ϵi is the error term, following a normal distribution with E(ϵi) = 0 and Cov(ϵi) = σ2Ini .

Given model (2.1) and the distributional assumptions, Y i follows a normal distribution

such that Y i ∼ N(XT
i β,V i), where

V i = Cov(Y i) =D
T
i GDi + σ2Ini . (2.2)

8



The covariance matrix in (2.2) is parameterized based on the random effects and the time

points for the ith subject.

The parameters β can be estimated using the weighted least squares (WLS) esti-

mator

β̂ =

(
n∑
i=1

XiV
−1
i X

T
i

)−1 n∑
i=1

XiV
−1
i Y i. (2.3)

Note that the estimator (2.3) is a function of the covariance matrix V i. If V i is unknown,

ideally, it should be estimated with either a maximum likelihood or restricted maximum

likelihood approach. However, it is known that the maximum likelihood approach produces

biased estimates for σ2 when the sample size is small; therefore, it is recommended to use

the restricted maximum likelihood function to estimate V i. Let α denote the full parameter

vector for the covariance G, then the restricted log-likelihood function is written as

ℓ(α, σ2) = −
n∑
i=1

log |V i| −
1

2

{
n∑
i=1

(
Y i −XT

i β̂
)T
V −1
i

(
Y i −XT

i β̂
)}

−1

2
log

∣∣∣∣∣∣
(

n∑
i=1

XiV
−1
i X

T
i

)−1
∣∣∣∣∣∣ . (2.4)

An optimization algorithm is used to estimate the values of α and σ2 that maximize the

restricted log-likelihood function (2.4). The estimates α̂ and σ̂2 are then used to obtain

V̂ i, which can be substituted in (2.3) to estimate β. Diggle (2002) and Fitzmaurice (2004)

provides more details on linear mixed effects models.

In terms of inference, it is shown that the asymptotic distribution for β̂ is a nor-

mal distribution with mean β and Cov(β̂), where the covariance for β̂ can be estimated

as Ĉov(β̂) =
(∑n

i=1XiV̂
−1
i X

T
i

)−1
. Note that Verbeke and Lesaffre (1997) showed that

9



when the random effects are normally distributed, the maximum likelihood estimates are

consistent and asymptotically normal with the inverse Fisher’s information matrix as the

asymptotic covariance matrix. However, when the random effects are not normally dis-

tributed, a sandwich type correction for the Fisher’s information matrix is required to

obtain an appropriate asymptotic covariance matrix.

Linear mixed effects models can be extended to accommodate response variables

that follow any exponential family distribution, known as generalized linear mixed effects

models (GLMM). These models involve the following assumptions:

• the conditional distribution of Yij |bi follows an exponential family distribution for

i = 1, ..., n and j = 1, ..., ni,

• given the random effects (bi), the repeated measurements in Y i are independent,

• bi follows a multivariate normal distribution with mean 0 and covariance matrix G.

The GLMM framework shows that the expectation of Yij , given the random effects, is

linearly associated with the fixed effects and random effects via a link function g(·):

g{E(Yij |bi)} =XT
ijβ +DT

ijbi,

where Xij and Dij are predictor variables, and β = (β0, β1, ..., βp)
T are the regression

coefficients for the fixed effects.

The parameters β and G can be estimated via a maximum likelihood approach.

The random effects are treated as latent variables and integrating out to construct the

10



log-likelihood function leads to

ℓ(β,G;Y ) = logL(β,G;Y ) =

n∑
i=1

ni∑
j=1

log

∫
p(Yij |bi;β)pbi(bi; δ)dbi, (2.5)

where L(β,G;Y ) is the likelihood function, p(Yij |bi;β) is the conditional density function

for Yij , pbi(bi; δ) is the density function of bi, and δ is a vector of parameters involved in G.

The maximum likelihood estimates for δ and β are obtained by setting the follow-

ing observed score functions to zero:

Sβ(β, δ|Y ) =
n∑
i=1

ni∑
j=1

Xij [Yij − E{µij(bi)|Y ij}] = 0 (2.6)

and Sδ(β, δ|Y ) = 0.5G−1

{
n∑
i=1

E(bib
T
i |Y i)

}
G−1 − n

2
G−1 = 0, (2.7)

where µij(bi) = g−1(XT
ijβ +DT

ijbi). The parameters β and δ can be estimated using the

Expectation-Maximization (EM) algorithm (Dempster et al., 1977) on equations (2.6) and

(2.7). First, the expectations in the score functions are evaluated using the current estimates

of the parameters to target the random effects (E-step); afterwards, the score functions are

maximized with respect to the parameters to update the estimates of β and δ (M-step).

The EM algorithm iterates between the E- and M-step until a convergence criteria is met.

For inferential purposes, the covariance matrices of β̂ and δ̂ can be estimated using the

observed Fisher information, that is, by plugging the estimated values of β and δ to the

inverse of the negative Hessian matrix of the log-likelihood given in (2.5).
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2.2 Survival Analysis

Survival data analysis methods are widely used in engineering and medical fields

to identify factors associated with time to an event of interest such as death, occurrence of

a disease, or failure of a machine. Traditional regression models are not suitable for this

type of data mainly due to censoring. The defining feature of censoring is that the time to

an event is not observable for all subjects; in other words, some subjects never developed

a disease or experienced death during the study, so their true time-to-event is missing in

the data set. Traditional statistical models assume that we have complete information on

all subjects, and therefore, when applied to this type of data they would produce biased

estimates of the distribution of the event times and possibly incorrect inference.

There are two types of censoring classifications in survival analysis:

left/right/interval censoring and informative/noninformative censoring. The first classifi-

cation of censoring is based on the positioning of the true event time. Right censoring

occurs when the event is observed after a pre-specified censoring time, such as the end of

the study. Examples of right censoring are lost to follow-up or a subject reaching the end

of a study without observing the event. Left censoring occurs when the event of interest

happens before a pre-specified censoring time. This is common in adolescent studies where

a participant is enrolled after experiencing the event. Interval censoring results when the

event occurs between an interval of time points. This is common in longitudinal studies

where participants experience the event between two measurements.

The second classification of censoring is related to whether the probability of cen-

soring an individual is independent to the probability of observing the desired event, known
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as informative and noninformative censoring. Informative censoring occurs when a partici-

pant withdraws from the study due to expecting an upcoming time-to-event. For example,

a participant may leave a study when their health has deteriorated beyond a certain point

due to the disease of interest. Noninformative censoring occurs when a participant leaves

the study for non study-related reasons. When informative censoring occurs, there is not

enough information to model the censoring mechanism. Therefore, noninformative censor-

ing is essential for survival analysis. For the rest of this section, we only consider situations

where noninformative right censoring is present.

In survival analysis, our main interest is to study the distribution of the true

event times T ∗ using the following basic functions: survival function, hazard function, and

cumulative hazard function. The survival function is the probability that T ∗ is larger than

a certain time point t:

S(t) = Pr(T ∗ > t) =

∫ ∞

t
p(x)dx,

where p(x) denotes the probability density function of T ∗. If the event of interest is death,

the survival function gives the probability that death occurs after time t. The survival

function must be nonincreasing as t increases and S(t = 0) = 1. The hazard (risk) function

depicts the conditional probability that the event occurs in the next moment (instant) given

that it has not occurred up to time t:

h(t) = lim
∆→0

Pr(t ≤ T ∗ < t+∆|T ∗ ≥ t)

∆
.

13



Furthermore, the hazard function can be expressed in terms of the survival and probability

density functions: h(t) = p(t)
S(t) . The cumulative hazard function, which is used to describe

the accumulated risk up to time t, can be obtained either via the hazard function or the

survival function: H (t) =
∫ t
0 h(x)dx and H (t) = − log{S(t)}, respectively.

As we mentioned above, the main challenge in survival analysis is censoring, that

is, we might not observe the true event time for all subjects. Therefore, we introduce

the “observed event time” variable Ti, which is defined as the minimum of the potential

censoring time Ci and the true event time T ∗
i with i = 1, . . . , n. In addition, the event

indicator is given as δi = I(T ∗
i < Ci) with I(·) as the indicator function. Under this

framework, our main objective in survival analysis becomes exploring the distribution of

the true event times T ∗
i using the available information (Ti, δi). Several methods have been

developed for this purpose, in particular, to estimate survival and (cumulative) hazard

functions.

We discuss the nonparametric method introduced by Kaplan and Meier (1958),

known as the Product-Limit estimator, to estimate the survival function. Let {tj , dj , Rj}Dj=1

denote the survival data, where t1 < t2 < · · · < tD are the ordered distinct observed event

times, dj represents the number of events at time point tj , and Rj denotes the number of

subjects still at risk of experiencing the event at tj . The Product-Limit estimator is defined

as

Ŝ(t) =


1, if t < t1

∏
tj≤t(1−

dj
Rj

), if t1 ≤ t.
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Greenwood (1926) provides the estimated variance of Ŝ(t) as

V̂ ar{Ŝ(t)} = Ŝ2(t)
∑
tj≤t

dj
Rj(Rj − dj)

.

Using the Product-Limit estimator, the cumulative hazard function can be estimated as

Ĥ (t) = − log{Ŝ(t)}.

2.2.1 Cox Proportional Hazard Models

Although the Product-Limit estimator provides an unbiased estimate of the sur-

vival function, it is limited to exploring the effects of categorical risk factors on the outcome.

To overcome this drawback, parametric models, which can be used to model the association

between a set of predictors (numeric and categorical) and the survival time, were proposed.

However, as the name implies, these models assume a parametric distribution for the true

time-to-event T ∗
i , which may lead to biased results and incorrect inference, if incorrectly

specified. An alternative method, proposed by Cox (1972), is the Cox proportional hazard

model, where the estimation is performed via a partial likelihood approach. The partial

likelihood procedure allows one to estimate the regression coefficients without making dis-

tributional assumptions for the true event times.

Cox (1972) proposed the following model, where it is assumed that the covariates

have a multiplicative effect on the hazard of an event,

h(t|X,β) = h0(t) exp
(
XTβ

)
(2.8)
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with h0(t) as the baseline hazard function, X = (X1, X2, ..., Xp)
T as the vector of predictor

variables, and β = (β1, ..., βp)
T denoting the corresponding regression coefficients. Using

the hazard function (2.8), the survival function is constructed as

S(t|X,β) = exp

{
−
∫ t

0
h0(u) exp(XTβ)du

}
,

where β can be estimated using a maximum likelihood approach using the likelihood con-

struction discussed by Kalbfleisch (2002), where noninformative right censoring is assumed.

Given the survival data framework {T ∗
i ,Xi, δi}ni=1, the time-to-event T ∗

i has a probability

density function pT (t;β) and survival function ST (t;β), and similarly, the censoring time

Ci has a probability density function pC(c;θC) and survival function SC(c;θC), with θC is

a vector of parameters for the censoring mechanism. Under noninformative censoring, the

time-to-event distribution and the censoring distribution do not share any parameters and

are independent; therefore,

Pr{T ∗
i ∈ (t, t+∆), δi = 1;Xi,β,θC} = Pr{T ∗

i ∈ (t, t+∆), Ci > t;Xi,β,θC} = pT (t;β)∆SC(t;θC)

Pr{T ∗
i ∈ (t, t+∆), δi = 0;Xi,β,θC} = Pr{T ∗

i > t,Ci ∈ (t, t+∆);Xi,β,θC} = pC(t;θC)∆ST (t;β).

The likelihood function is then constructed as

L (β,θC) =
n∏
i=1

{pT (T ∗
i ;β)∆SC(T ∗

i ;θC)}δi{pC(T ∗
i ;θC)∆ST (T ∗

i ;β)}1−δi .
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Furthermore, we can define the following log-likelihood as the parameters of the censoring

distribution are not the main interest,

L (β) ∝
n∏
i=1

{pT (T ∗
i ;β)}δi{ST (T ∗

i ;β)}1−δi . (2.9)

Replacing pT (Ti;β) with h(T ∗
i |Xi,β)S(T ∗

i |Xi,β) in (2.9) yields

L (β) =

n∏
i=1

[
{h(T ∗

i |Xi,β)}δi{S(T ∗
i |Xi,β)}

]
, (2.10)

where we remove the subscript T in the survival function to align with our previous nota-

tion. Given the model form in (2.8), the likelihood function (2.10) requires estimating both

the regression coefficients and baseline hazard function. The initial step in this estimation

procedure would be to choose a form for the baseline hazard function, which can be specified

parametrically or nonparametrically. The former is the aforementioned parametric models

approach, which might produce incorrect results, and the latter results in a semiparamet-

ric estimation procedure, which can be computationally burdensome. In order to avoid

these drawbacks, Cox (1972) proposed following a partial likelihood approach, which avoids

estimating the baseline hazard function.

In the partial likelihood approach, D =
∑n

i=1 δi denotes the number of partici-

pants experiencing the event, {tj}Dj=1 represents the ordered and distinct time-to-event for

participants observing the event, X(j) are the predictors for the participant at time point

tj , and R(tj) is the set of individuals at risk prior to tj . The partial log-likelihood function
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is given as

ℓ(β) = log L(β) = log

 D∏
j=1

exp{XT
(j)β}∑

k∈R(tj)
exp{XT

k β}

 . (2.11)

In order to find the estimates that maximize the partial log-likelihood, first, the partial

derivatives are taken with respect to β, denoted as U(β) = ∂ log L
∂β . Second, the partial

maximum likelihood estimates that satisfy U(β̂) = 0 are obtained using a numerical ap-

proach, such as the Newton-Raphson algorithm. For inferential purposes, the covariance

matrix of β̂ is estimated by finding the inverse of the negative Hessian matrix of the partial

log-likelihood function (2.11) and evaluating it at β̂: Ĉov(β̂) = −
{
∂2log(L)
∂βT∂β

}−1
|β=β̂.

The partial log-likelihood function (2.11) assumes that the time-to-events are dis-

tinct, that is, having only one subject experience the event at the specific time point.

However, when this assumption is not met, the partial likelihood function does not include

information from all participants that experienced the event at the distinct time point,

in particular, information from only one subject is included in the calculation of (2.11).

Breslow (1974) and Efron (1977) proposed alternative partial likelihood functions for non-

distinct survival times, where the numerator and denominator include information from

all participants experiencing the event at the distinct time point and the partial likelihood

function also incorporates the number of subjects that experience the event at that time

point.

As we discussed above, the partial likelihood approach does not make any dis-

tributional assumptions while estimating the regression coefficients; however, researchers

might be interested in constructing the survival function and this would require estimating

the baseline hazard function first. The profile maximum likelihood estimator, proposed by
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Breslow (1974), can be used for this purpose. Given the maximum likelihood estimates of

β from the partial log-likelihood (2.11), the baseline hazard function at time tj is computed

as

ĥ0(tj ; β̂) =
1

(tj − tj−1)
∑

k∈R(tj)
exp{XT

k β̂}
,

where R(tj) is the set of individuals at risk prior to time tj . The estimate for the baseline

hazard function can be used to estimate the cummulative baseline hazard and survival

functions Ĥ0(t; β̂) =
∑

tj≥t ĥ0(tj ; β̂) and Ŝ(t; β̂) = exp{−Ĥ0(t; β̂) exp(X
Tβ̂)}, respectively.

The Cox model defined in (2.8) assumes that all the covariates are time-invariant,

that is, collected at the baseline; however, studies may collect data at different time points

until a patient experiences an event of interest. In this type of data, it would be of interest to

incorporate the repeated measurements, known as time-dependent covariates, to the survival

model and explore their effects on the time-to-event. Let Wi(t), for i = 1, . . . , n, denote the

time-dependent covariate, which can be classified as either exogenous, the value of Wi(t) is

known and uninfluenced by the occurrence of the time-to-event, or endogenous, the value

of Wi(t) is unknown and might be influenced by the occurrence of the time-to-event. Let

Wi(t) = {Wi(s) : 0 ≤ s < t} denote the covariate’s history, an exogenous time-dependent

covariate satisfies the following condition: Pr{Wi(t)|W (s), T ∗
i ≥ s} = Pr{Wi(t)|W (s), T ∗

i =

s} for s ≤ t, indicating that Wi(·) is not associated with the occurrence of the time-to-

event. On the contrary, an endogenous covariate will not satisfy the condition; therefore,

modeling the survival function with an endogenous time-dependent covariate requires careful

construction of the likelihood function (further discussed in Section 2.3).
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To account for exogenous time-dependent covariates, the Cox model in (2.8) is

extended, using a counting process, to incorporate the time-dependent covariate (Andersen

and Gill, 1982). Let {Ni(t), Ri(t)} be the ith participant’s event process, where Ni(t)

denotes the number of events for the ith participant at time point t, and Ri(t) represents if

the ith participant is at risk at time t (Ri(t) = 1) or not (Ri(t) = 0). The Cox model (2.8)

can be rewritten as

hi(t|Wi(t),Xi) = h0(t) exp
{
XT

i β + αWi(t)
}
,

where α is the regression coefficient for the time-dependent covariate Wi(t). The corre-

sponding partial log-likelihood function with the counting process integral is derived as

L(β, α) =
n∑
i=1

∫ ∞

0

(
Ri(t) exp{XT

i β+αWi(t)}−log
[∑

j

Rj(t) exp{XT
j β+αWj(t)}

])
dNi(t).

(2.12)

The regression coefficients β and α are estimated by maximizing the partial log-likelihood

function (2.12) with respect to the parameters using a numerical approximation algorithm.

Inference is similar to the Cox model with baseline covariates, that is, performed via eval-

uating the inverse Hessian matrix at the estimated values.

2.3 Joint Modeling of Longitudinal and Survival Data

Increasingly, studies involve collecting data on multiple outcomes, usually of dif-

ferent types. That is, within a single study, some outcomes are measured at several time

points (longitudinal), whereas other endpoints are measured at a single time point, such
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as the time until an event of interest occurs (survival). Sections 2.1 and 2.2 described

statistical techniques to answer research questions where separate analysis of longitudinal

and survival data can be employed. However, in many situations, exploring the associa-

tion between these outcomes might be of interest, which requires modeling these outcomes

jointly. In this section, we discuss joint modeling techniques for longitudinal and survival

outcomes. Note that, a näıve approach to study the relationship between these outcomes

would be including the longitudinal outcome as a time-varying predictor in a Cox model,

similar to the approach described in Section 2.2.1. However, the time-dependent Cox model

would only produce accurate estimates and inference when we have exogenous time-varying

covariates. As shown by Sweeting and Thompson (2011) and Tsiatis and Davidian (2004),

when we have an endogenous time-varying covariate, these models would lead to biased

estimates and incorrect inference. In this section, we focus on joint analysis of endogenous

time-varying covariates, that is, our longitudinal outcome and a time-to-event outcome.

Several methods have been developed to jointly model longitudinal and survival

outcomes, such as the shared-parameter models, where the two outcomes are jointly mod-

eled via a common set of random effects (Wulfsohn and Tsiatis, 1997; Song et al., 2002;

Henderson et al., 2000; Hsieh et al., 2006; Rizopoulos et al., 2008); the random effects mod-

els, which are similar to the shared-parameter models, but with different set of random

effects underlying each outcome (De Gruttola and Tu, 1994); proportional hazard models

with a two-stage estimation procedure, where the longitudinal outcome is modeled in the

first stage and a time-dependent Cox model with the predicted longitudinal outcomes as

a covariate is fit in the second stage (Tsiatis et al., 1995); and conditional score functions,
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where the survival models are conditioned on the complete sufficient statistics of the random

effects (Tsiatis and Davidian, 2001). Among these methods, shared-parameter models are

the most frequently utilized method due to their performance in estimation and inference,

and their computational feasibility. In this section, we focus on model formulation and

estimation under this framework.

2.3.1 Shared-parameter Models

Under this approach, to obtain the joint distribution of the longitudinal and sur-

vival outcomes, we start by defining the longitudinal and survival submodels. Consider

the following data for the ith subject, {Ti, δi,Y i, ti,Xi}, where Ti is the observed time-

to-event, δi is the event indicator, Y i = (Yi1, ..., Yini)
T denotes the repeated measurements

with Yij = Yi(tij) as the longitudinal outcome at time point tij , ti = (ti1, ti2, ..., tini)
T are

the measurement times, andXi = (Xi1, . . . , Xip−2)
T is a time-invariant vector of predictors

with i = 1, ..., n. The longitudinal submodel is formulated as a linear mixed effects model

Yij = mi(tij) + ϵi(tij),

mi(tij) = XT
ijβ +ZT

ijbi, (2.13)

bi ∼ N(0,G) and ϵi(tij) ∼ N(0, σ2),

where Xij = (1, tij ,X
T
i )

T, β = (β1, · · · , βp)T are the fixed regression coefficients, and Zij

is a subset of Xij representing the design matrix for the random effects bi = (bi1, . . . , biq)
T.

Additionally, both the random effects and the error term are assumed to be mutually

independent.
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The survival submodel is constructed using the Cox proportional hazard model,

hi{t|Mi(t),Xi} = lim
∆→0

Pr{t ≤ Ti < t+∆|Ti ≥ t,Mi(t),Xi}
∆

= h0(t) exp{XT
i γ + αmi(t)}, (2.14)

where h0(t) denotes the baseline hazard function, γ and α are the regression coefficients,

and Mi(t) = {mi(s) : 0 ≤ s < t} is the history of the longitudinal outcome until time t.

Using equation (2.14), the survival function is expressed as

Si{t|Xi,Mi(t)} = exp

[
−
∫ t

0
h0(s) exp{XT

i γ + αmi(s)}ds
]
.

The joint distribution of the longitudinal and survival outcomes are obtained un-

der the full conditional independence assumption, that is, given the random effects, the

outcomes are assumed to be independent. More specifically, the random effects account

for the association between the longitudinal and survival outcomes, and they also explain

the correlation between the repeated measurements of the longitudinal outcome within a

subject. Let θ = (θTT ,θ
T
Y ,θ

T
b )

T denote the full parameter vector where θT = (γT, α,θTh )
T

is the vector of parameters for the survival submodel with θh as the vector of parameters

involved in the baseline hazard function, θY = (βT, σ2)T is the vector of parameters in the

longitudinal submodel, and θb is the vector of parameters involved in the covariance matrix

G. The joint density function for the ith subject is formulated as

p(Ti, δi,Y i, bi;θ) = p(Ti, δi|bi;θ)p(Y i|bi;θ)p(bi;θ),
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where the density for the survival outcome is given as

p{Ti, δi|bi;θ,Mi(t)} =
[

h0(Ti) exp{XT
i γ + αmi(Ti)}

]δi
exp

[
−
∫ Ti

0

h0(s) exp{XT
i γ + αmi(s)}ds

]
,

and the joint density for the longitudinal outcome and the random effects is expressed as

p(Y i|bi;θ)p(bi;θ) =

ni∏
j=1

p(Yij |bi;θ)p(bi;θ)

= (2πσ2)−ni/2 exp

− 1

2σ2

ni∑
j=1

{
Yij −XT

ijβ −ZT
ijbi
}2

×(2π)−q/2|G|−1/2 exp(−biG
−1bi/2)

with G as the covariance matrix of the random effects bi.

The parameters are estimated by maximizing the observed (incomplete)

log-likelihood function ℓ(θ) =
∑n

i=1 log
∫
p(Ti, δi,Y i, bi;θ)dbi with respect to θ using opti-

mization methods such as the Newton-Raphson algorithm or the Expectation-Maximization

(EM) algorithm (Dempster et al., 1977). Due to the unknown random effects, the EM algo-

rithm is favored over the Newton-Raphson algorithm due to its ability to handle ‘missing’

data, and the variances have closed-form solutions.

In the EM algorithm, the expectation step (E-step) is used to target the random

effects {bi}ni=1, and the maximization step (M-step) will update the estimates of θ. The

algorithm will repeat the steps until a convergence criteria is met. In the E-step, we compute

the expected value of the random effects by taking the expectation of the complete log-
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likelihood function:

Q(θ|θ(k)) =
n∑
i=1

∫
log{p(Ti, δi,Y i, bi;θ)}p(bi|Ti, δi,Y i;θ

(k))dbi

=
n∑
i=1

∫ [
{log p(Ti, δi, |bi;θ) + log p(Y i|bi;θy)

+ log p(bi;θb)}p(bi|Ti, δi,Y i;θ
(k))
]
dbi, (2.15)

where p(bi|Ti, δi,Y i; θ
(k)) is the conditional density function of bi and θ

(k) is the current

value of θ at the kth iteration of the EM algorithm. As the integral does not have a closed

form, it should be evaluated with numerical integration techniques such as the Gaussian

quadrature (Press et al., 1992) or the Laplace approximation methods. (Tierney et al.,

1989). Gaussian quadrature techniques are used when the dimensionality of the random

effects and the number of repeated measurements are small (Wulfsohn and Tsiatis, 1997).

On the contrary, when these quantities are large, Laplace approximation method is recom-

mended (Rizopoulos et al., 2009).

The M-step identifies the estimates that maximize (2.15). The variances for the

random effects and error terms can be obtained with closed-form solutions:

σ̂2 =

(
n∑

i=1

ni

)−1 n∑
i=1

∫
(Y i −XT

i β −DT
i bi)

T(Y i −XT
i β −DT

i bi)p(bi|Ti, δi,Y i;θ
(k))dbi

=

(
n∑

i=1

ni

)−1 n∑
i=1

[
(Y i −XT

i β)
T(Y i −XT

i β − 2DT
i b̃i) + tr{DT

i DiVar(b̃i)}+ b̃
T
i D

T
i Dib̃i

]
Ĝ = n−1

n∑
i=1

Var(b̃i) + b̃
T
i b̃i,

where b̃i =
∫
bip(bi|Ti, δi,Y i;θ

(k))dbi and Var(b̃i) =
∫
(bi− b̃i)p(bi|Ti, δi,Y i;θ

(k))dbi are the

posterior mean and variance of bi, respectively, which are computed in the E-step. The
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remaining parameters can be estimated using a Newton-Raphson algorithm:

β̂
(k+1)

= β̂
(k) −

{
∂A

(
β̂
(k)
)
/∂β

}−1

A
(
β̂
(k)
)
,

θ̂t
(k+1)

= θ̂t
(k) −

{
∂A

(
θ̂t

(k)
)
/∂θt

}−1

A
(
θ̂t

(k)
)
,

where A(·) is the partial derivative of the log-likelihood function (2.15) with respect to the

parameter of interest.

The hazard function in equation (2.14) requires defining a form for the baseline

hazard function even though it is possible to leave the baseline hazard function completely

unspecified in traditional survival models (see Section 2.2.1). However, in a joint modeling

setting, Hsieh et al. (2006) demonstrated that leaving the baseline hazard function unspeci-

fied leads to the underestimation of the standard errors of parameter estimators. Therefore,

it is advisable to define an explicit form for h0(t) by either choosing a form corresponding

to a parametric distribution (Weibull, log-normal, or Gamma) or parametric but flexible

form such as linear splines, B-splines or piecewise constant functions.

For inferential procedures, the standard error of the estimators must be obtained.

As we mentioned above, Hsieh et al. (2006) notes that for accurate inference, the standard

errors must be obtained using a parametric structure for the baseline hazard function.

However, even in that case, under some circumstances, observed Fisher’s information might

lead to incorrect results. Additionally, Rizopoulos et al. (2008) highlights possible issues

due to misspecification of the random effects distribution. Therefore, Hsieh et al. (2006)
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and Rizopoulos et al. (2008) recommend following a bootstrap approach to estimate the

standard errors of the estimators.

2.4 Varying-Coefficient Models

Parametric regression models are well established in literature to study the rela-

tionship between a response and its corresponding set of predictors. Although these models

are easy to implement and mostly computationally feasible, they cannot be used to observe

dynamic trends in real-world applications. Fan and Zhang (2008) points this limitation us-

ing a respiratory study from Hong Kong, where the primary interest is to assess the affects

of daily measurements of pollutants, such as Sulfur Dioxide and dust, on the number of daily

hospital admissions from 1994 to 1995. In this case, modeling the association between the

pollutants and the number of daily hospital admissions as a constant would be inappropriate

since daily factors may cause the association to vary. Kürüm et al. (2014) provide details

of a study that explores the nonlinear association between the net ecosystem exchange of

CO2 (NEE) and the photosynthetically active radiation (PAR). The researchers demon-

strate that the relationship between NEE and PAR depends on temperature; therefore,

modeling the regression coefficients as a constant would be improper and the relationship

between NEE and PAR should be allowed to change with temperature. These examples

show real-life situations where allowing an association to be dynamic is necessary and tra-

ditional regression models cannot be employed to model these relationships. With the aim

of increasing the flexibility of traditional regression models and reducing the modeling bias,

varying-coefficient models were proposed.
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Let Y denote the response variable and X = (X1, . . . , Xp)
T denote a vector of

covariates, respectively, a varying-coefficient model is given as

Y =XTβ(U) + ϵ, (2.16)

where β(U) = {β1(U), . . . , βp(U)}T is referred as the varying-coefficient functions and ϵ is

the error term with E(ϵ|U) = 0 and V ar(ϵ|U) = σ2(U). These models were first introduced

by Cleveland et al. (1992) and became popular in the statistical literature due to the work

by Hastie and Tibshirani (1993). Varying-coefficient models explore the dynamic features

of the data by allowing the regression coefficients to change over a covariate U , such as time

and temperature. At a fixed U = u value, the model coefficients can be interpreted in a

similar way to a linear regression model.

Time-varying coefficient models is a special case of the model presented in (2.16),

where the dynamic association is modeled as a function of time. These models are partic-

ularly useful in longitudinal studies and they were first proposed by Hoover et al. (1998),

where the authors discuss a longitudinal HIV study collected from infants born from HIV-

infected mothers in Africa. In this study, the interest was to explore the relationship of

the weight of the infant (response) with gender, HIV status, and maternal vitamin A levels

(predictors). Studying these associations via a traditional regression model would be in-

appropriate as it would ignore an infant’s development over time and would not allow the

response-predictor relationships to change over time. Therefore, to model these dynamic

trends in the data and reduce modeling bias, a time-varying coefficient model is needed.
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Under the framework provided by Hoover et al. (1998), for the ith subject, Yij =

Yi(t) and Xij =Xi(t) denote the outcome and a vector of covariates, respectively, at time

t = tij with i = 1, . . . , n and j = 1, . . . , ni. The time-varying coefficient model is expressed

as

Yij =X
T
ijβ(t) + ϵij ,

where β(t) = {β1(t), . . . , βp(t)} is the time-varying coefficient function and ϵij ∼ N(0, σ2)

is the error term at time tij .

Estimation in varying-coefficient models have been studied extensively. In partic-

ular, there are three approaches to estimate the functional form of β(t): local polynomial

techniques (Fan and Zhang, 1999; Hoover et al., 1998; Wu et al., 1998), polynomial splines

(Huang et al., 2002, 2004), and smoothing splines (Hastie and Tibshirani, 1993; Hoover

et al., 1998; Chiang et al., 2001). Fan and Zhang (2008) provide an excellent review of

the literature on estimation and inference procedures for varying-coefficient models. In this

chapter, we focus on spline-based methods for time-varying coefficient models, in particular,

penalized B-splines.

Spline models are a global smoothing approach used to model the trend in the

relationship between a covariate and an outcome by allowing the slope to change at various

values, referred as knots, of the covariate. Spline models achieve this result by utilizing

basis functions that alter the slope at the specified knots. A commonly used basis function

is the truncated power functions as that is non-zero if a value of X is greater than a knot κ:

(X − κ)+ = (X − κ)I((X > κ)), where I(·) is the indicator function. B-spline functions is

an alternative basis function that provide more numerical stable results than the truncated
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power functions, especially due to their performance at the boundaries (Ruppert et al.,

2003). Although both methods, spline models with truncated power functions or the B-

spline basis functions, can be used to approximate the time-varying coefficients, due to their

desirable features, B-splines are more commonly used.

Estimation via the B-splines involve approximating the varying-coefficient func-

tion, βl(t), for l = 1, . . . , p, as

βl(t) = θ
T
l B(t),

where B(t) = {B1(t), . . . , BR(t)}T are the B-spline basis functions and θl = (θl1, . . . , θlR)
T

are the corresponding R-dimensional spline coefficients. The B-spline basis functions are

computed by implementing the recursive algorithm as described by de Boor (1978) and

Eilers et al. (2015).

In practice, application of the B-splines approach require specification of the num-

ber and the location of the knots. Misspecification of these quantities would possibly lead to

biased estimates and inaccurate inference. Additionally, a small number of knots would lead

to an undersmooth function, whereas a large number would produce an overfitted model.

To overcome this challenge, Eilers and Marx (2010) recommends choosing a large number

of knots and implementing a penalty term to control for overfitting the model. This leads

to P-spline models where the likelihood function contains a roughness penalty term. Fur-

thermore, in terms of the location of the knots, Eilers and Marx (2010) shows, via extensive

simulation studies, that equally-spaced knots perform better than quantile-based knots,

which have been shown to hinder the performance of the penalty term. For n subjects, the
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penalized log-likelihood function is defined as

ℓ(θ, σ2) =
n∑
i=1

ℓi(θ, σ
2)−

p∑
l=1

λl
2
θTl D

(2)TD(2)θl, (2.17)

where θ = (θ1, . . . ,θp)
T are the spline coefficients, λl is the penalty term for the lth varying-

coefficient function, and D(2) is the matrix of the 2nd-order difference operator, ∆2θr =

∆θr−∆θr−1 = θr−2θr−1+θr−2 for r = 3, . . . , p, as defined by Eilers and Marx (1996), and

ℓi(θ, σ
2) =

ni∑
i=1

− 1

2σ2

{
Yij −

p∑
l=1

XijlθlB(t)

}2

− 1

2
log(2πσ2),

is the log-likelihood contribution of the ith subject. The maximum likelihood estimates θ̂

are found by maximizing (2.17) with respect θ using a numerical approximation algorithm

such as the Newton-Raphson.

An important component of the P-spline estimation method is choosing the op-

timal values of the penalty terms λ = (λ1, . . . , λp)
T. Eilers and Marx (2010) recommends

a leave-one-out cross-validation (LOOCV) approach to obtain the optimal values of λ.

The LOOCV approach identifies the optimal λ that minimizes CV =
∑n

i=1

∑n
j=1{Yij −

Ŷ−(i)j}2/
∑n

i=1 ni, where Ŷ−(i)j is the predicted value of Yij from a model fitted from a data

set without the ith subject. Although this approach is easy to implement and produces

accurate results, it may become computationally challenging when the model involves a

large number of covariates. An alternative method in this case is the random-coefficient

splines model, where the optimal penalty term is obtained as part of the estimation pro-

cedure (Brumback et al., 1999; Ruppert et al., 2003; Goldsmith et al., 2011, 2012). Under
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this approach, βl(t), for l = 1, . . . , p, can be approximated as

βl(t) = θlBF (t) + ϑlBR(t),

where θl = (θl1, θl2)
T and ϑl ∼ N(0, σ2κlInκ) are the fixed and random effects, respectively,

BF (t) = (1, t)T and BR(t) = {(t− κ1)+, . . . , (t− κnκ)+}
T represent the spline basis func-

tions with {κκ}nκ
κ=1 as the nκ equally-spaced knots, (a)+ = (a)I{(a) > 0}, and I(·) as the

indicator function. The log-likelihood function is expressed as

ℓ(θ,ϑ, σ2,σ2
κ) =

n∑
i=1

ℓi(θ,ϑ, σ
2)−

p∑
l=1

1

2
log(2πσ2κl)−

1

2σ2κl
ϑT
l Inκϑl, (2.18)

where θ = (θ1, . . . ,θp)
T, ϑ = (ϑ1, . . . ,ϑp)

T, σ2
κ = (σ2κ1, . . . , σ

2
κp)

T, and

ℓi(θ,ϑ, σ
2) =

ni∑
j=1

− 1

2σ2

[
Yij −

p∑
l=1

Xijl{θlBF (t) + ϑlBR(t)}

]2
− 1

2
log(2πσ2)

is the ith subject’s contribution to the log-likelihood function Using the methods described

in Section 2.1 for estimation under mixed effects models, we obtain θ̂ and predict the random

effects ϑ. Additionally, the variance terms σ2
κ in (2.18) act as the penalty term for the

random coefficients, controlling the smoothness of the time-varying coefficient functions and

preventing overfitting. Therefore, utilizing mixed effects models produce smooth functions

as part of the estimation procedure without the need to perform a cross validation approach

to find the optimal penalty. For inferential procedures, the standard errors for time-varying

coefficient functions can be obtained using a negative inverse Hessian matrix, when P-
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splines models are used, or a bootstrap approach, when random-coefficient spline models

are utilized.
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Chapter 3

Multilevel Time-Varying Joint

Models for Longitudinal and

Survival Outcomes

3.1 Model

Consider the following framework, let i = 1, . . . , n index a cluster (facility); j =

1, . . . , ni index the subjects (patients) within the ith cluster; and k = 1, . . . , nij index the

recorded observations for the jth subject at time tijk. In our framework, each subject

has a recorded longitudinal outcome Yijk ≡ Yij(tijk) and an observed event time Tij . Let

Xij = (Xij1, . . . , Xijp)
T and Zi(j) = {Zi(j)1, . . . , Zi(j)q}T denote the subject- and facility-

level predictors, respectively. In our motivating problem, the facility-level characteristics

are reported every year, and Zi(j) denotes those characteristics recorded in the calendar
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year prior to the jth patient’s dialysis initiation. Thus, the facility-level predictors have

both dialysis facility index i and the subject level index j.

The proposed joint modeling framework is composed of a submodel for each out-

come. The longitudinal submodel is formulated with a generalized time-varying mixed

effects model

mij(t) = E{Yij(t)|Xij ,Zi(j), bij , bi} = g−1
{
XT

ijβX(t) +Z
T
i(j)βZ(t) + bij + bi

}
, (3.1)

where g(·) denotes the canonical link function, βX(t) = {βX1(t), . . . , βXp(t)}T and βZ(t) =

{βZ1(t), . . . , βZq(t)}T are the subject- and facility-level time-varying coefficients, respec-

tively, bij and bi are the subject- and facility-level random effects (RE) such that bij ∼

N(0, σ2S) and bi ∼ N(0, σ2F ), respectively. The random effects are assumed to be indepen-

dent of each other. Although we impose distributional assumptions on the random effects,

parameter estimation and inference in joint modeling are shown to be robust to misspecifi-

cation of distribution of the random effects (Song et al., 2002; Hsieh et al., 2006; Rizopoulos

et al., 2008). For the USRDS data application, Yij(t) is a binary longitudinal outcome

defined as the indicator of at least one hospitalization in a 3-month follow-up window with

midpoint t for the subject j at the facility i. Thus, for the data analysis, g(·) takes the form

of the logit link function g(p) = log(p/1− p).

For the survival submodel, let T ∗
ij and Cij denote the true event time and potential

censoring time, respectively. The observed event time is defined as Tij = min(T ∗
ij , Cij) and

δij denotes the event indicator such that δij = I(T ∗
ij ≤ Cij) with I(·) as the indicator func-
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tion. The survival submodel is formulated as a Cox model with time-varying coefficients:

hij{t|Mij(t),Xij ,Zi(j)} = lim
ε→0

Pr{t ≤ T ∗
ij < t+ ε|T ∗

ij ≥ t,Mij(t),Xij ,Zi(j)}

= h0(t) exp{XT
ijγX(t) +Z

T
ijγZ(t) + α(t)mij(t)}, (3.2)

where h0(t) denotes the baseline hazard function, Mij(t) = {mij(s), 0 ≤ s < t} repre-

sents the history of the longitudinal outcome, γX(t) = {γX1(t), . . . , γXp(t)}T and γZ(t) =

{γZ1(t), . . . , γZq(t)}T are the subject- and facility-level time-varying coefficients, respec-

tively, and α(t) represents the time-varying effect of the longitudinal outcome on the risk

of an event. The corresponding survival function is constructed from the hazard function

(3.2):

Sij{t|Mij(t),Xij ,Zi(j)} = Pr{T ∗
ij > t|Mij(t),Xij ,Zi(j)}

= exp

[
−
∫ t

0

h0(s) exp{XT
ijγX(s) +ZT

i(j)γZ(s) + α(s)mij(s)}ds
]
.

(3.3)

In our framework, we assume that random effects account for the association

between the longitudinal and survival outcomes. In other words, given the random effects,

the longitudinal and survival outcomes are assumed to be independent; therefore, the joint

density function is represented as

p(Tij , δij ,Y ij , bij , bi;θ) = p(Tij , δij |bij , bi;θ)p(Y ij |bij , bi;θ)p(bij , bi;θ), (3.4)

where p(·) is the probability density function, Y ij = (Yij1, . . . , Yijnij )
T, θ = (θTL,θ

T
S , σ

2
S , σ

2
F )

T

with θL and θS denoting the vector of parameters for the longitudinal and survival submod-
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els, respectively. We assume that, in addition to the time-varying effects, the random effects

also explain the association between the repeated measurements within a subject; therefore,

the density functions for the longitudinal submodel and random effects are constructed as

p(Y ij |bij , bi;θ)p(bij , bi;θ) =

[ nij∏
k=1

p{Yijk|bij , bi;θ}

]
p(bij , bi;θ)

=

( nij∏
k=1

exp[{XT
ijβX(tijk) +Z

T
i(j)βZ(tijk) + bij + bi}Yijk]

1 + exp{XT
ijβX(tijk) +Z

T
i(j)βZ(tijk) + bij + bi}

×(2πσ2S)
−1/2 exp

(
−b2ij

2σ2S

))
(2πσ2F )

−1/2 exp

(
−b2i
2σ2F

)
.

The probability density function for the survival submodel is derived using the hazard

function in (3.2) and survival function in (3.3):

p(Tij , δij |bij , bi;θ) = hij{t|Mij(t),Xij ,Zi(j)}δijSij{t|Mij(t),Xij ,Zi(j)}

=
[

h0(Tij) exp
{
XT

ijγX(Tij) +Z
T
i(j)γZ(Tij) + α(Tij)mij(Tij)

}]δij
× exp

[
−
∫ Tij

0
h0(s) exp{XT

ijγX(s) +Z
T
i(j)γZ(s) + α(s)mij(s)}ds

]
.

3.2 Estimation

In this section, we discuss two approaches to estimate the parameters involved

in (3.4): P-spline models (described in Section 3.2.1) and random-coefficient spline models

(described in Section 3.2.2). For more information on the computational details of each

method, please refer to Appendix A.
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3.2.1 P-Spline Model

We propose estimating the Multilevel Time-Varying Joint Model (MTJM) with

an approximate Expectation-Maximization (EM) algorithm (Dempster et al., 1977), where

the expectation step (E-step) treats the REs as missing, and the maximization step (M-

step) estimates the parameters. Due to the high dimensionality of the random effects,

specifically integrating the joint log-likelihood function with respect to the REs for each

facility (for the USRDS data, the minimum and maximum number of patients (ni) is 50

and 160, respectively), the fully exponential Laplace approximation is utilized to reduce the

computational burden during the E-step. The EM algorithm iterates between the E-step,

which computes the expected value of the random effects, and the M-step, which maximizes

the parameters from the approximate expected complete likelihood function.

Let u = (u1, . . . ,un)
T with ui = (bi1, bi2, · · · , bini , bi)

T be the vector of all random

effects (subject- and facility-level), and θ = (θTL,θ
T
S , σ

2
F , σ

2
S)

T are the parameters involved

in approximating the time-varying coefficient models and variances, the complete joint log-

likelihood function is characterized as ℓ(u,θ) =
∑n

i=1 ℓi(ui,θ) where

ℓi(ui,θ) =

ni∑
j=1

log p(Tij , δij |bij , bi;θ) + log p(Y ij |bij , bi;θ) + log p(bij , bi;θ)

=

ni∑
j=1

[
δij{log h0(Tij) +XT

ijγX(Tij) +Z
T
i(j)γZ(Tij) + α(Tij)mij(Tij)}

−
∫ Tij

0
h0(s) exp{XT

ijγX(s) +Z
T
i(j)γZ(s) + α(s)mij(s)}ds

+

nij∑
k=1

{
g(mijk)Yijk + log(qijk)

}
−

b2ij

2σ2S
− 1

2
log(2πσ2S)

]
− b2i
2σ2F

− 1

2
log(2πσ2F ), (3.5)
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is the contribution of the ith facility to the joint log-likelihood, mijk = mij(tijk), mij(t) =

g−1{XT
ijβX(t) + ZT

i(j)βZ(t) + bij + bi}, and qijk = 1 − mijk. The incomplete likelihood

function, L(θ) =
∑n

i=1

∫
Li(ui,θ)dui with Li(ui,θ) as the likelihood contribution of the

ith facility, is used to compute the expected value and variance of the random effects.

The time-varying coefficients α(t), βX(t), βZ(t), γX(t), and γZ(t) are estimated

via a P-splines approach (Eilers and Marx, 1996). P-splines are used to achieve sufficient

smoothing with a high number of equally spaced knots and avoid over fitting with a penalty

term on the differences of the adjacent B-spline coefficients. The time-varying functions

(VCF) in the longitudinal and survival submodels are approximated as

βXω
(t) = τT

Xω
B(t), βZν

(t) = τT
Zν
B(t),

γXω
(t) = ψT

Xω
B(t), γZν

(t) = ψT
Zν
B(t), α(t) = ψαB(t), (3.6)

where B(t) = {B1(t), B2(t), . . . , BR(t)}T represents the B-spline basis functions, and τXω ,

τZν , ψXω
,ψZν

,ψα are the R-dimensional spline coefficients with ω = 1, . . . , p and ν =

1, . . . , q. The baseline hazard function, h0(t), is approximated using the same P-splines

approach such that log{h0(t)} = ψT
h B(t), where ψh = (ψh1 , . . . , ψhR)

T.

Under the P-splines approach, the log-likelihood in (3.5) is rewritten as

ℓi(ui,θP ) =

ni∑
j=1

log p(Tij , δij |bij , bi;θP ) + log p(Y ij |bij , bi;θLP ) + log p(bij , bi;θP ), (3.7)

where θP = (θLP ,θSP , σ
2
s , σ

2
F )

T denotes the vector of parameters including the P-spline

coefficients involved in the longitudinal and survival submodels
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θLP = (τT
X1
, . . . , τT

Xp
, τT

Z1
, . . . , τT

Zq
)T and θSP =

(
ψT
α ,ψ

T
h ,ψ

T
X1
, . . . ,ψT

Xp
,ψT

Z1
, . . . ,ψT

Zq

)T
,

respectively. Similarly, the incomplete likelihood is redefined as

L(θP ) =
∑n

i=1

∫
Li(ui,θP )dui.

The following steps provide an overview of our estimation procedure to obtain

θ̂P = (θ̂LP , θ̂SP , σ̂
2
s , σ̂

2
F )

T:

1. The initial values of θLP and θSP are vectors with all elements set to 0. The initial

values of subject- and facility-level random effects variances σ2S and σ2F , respectively,

are obtained using a generalized multilevel linear mixed effects model.

2. (E-step) A fully exponential Laplace approximation is used to obtain the estimates

of the posterior mean and variance for the random effects ui. This leads to the

approximated expected likelihood.

3. (M-step) The expected complete log-likelihood function is maximized to obtain the

closed-form solutions of the current estimates of σ2S and σ2F . A Newton-Raphson algo-

rithm is used to maximize the approximate expected complete log-likelihood function

to obtain the current estimates of (θTLP ,θ
T
SP )

T.

4. The EM algorithm iterates between the E-step and M-step until the difference between

two consecutive log-likelihood values are less than a pre-defined tolerance level ϵ.
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E-step and the Fully Exponential Laplace Approximation

In the E-step, the posterior mean and variance of the random effects are computed

as

ui0 =

∫
uiLi(ui;θP )dui∫
Li(ui;θP )dui

and vi0 =

∫
(ui − ui0)(ui − ui0)TLi(ui;θP )dui∫

Li(ui;θP )dui
, (3.8)

respectively. The integrals involved in (3.8) do not have closed-form solutions and are po-

tentially high-dimensional due to the random effects ui = (bi1, . . . , bini , bi)
T (of dimensions

51 - 163 in our motivating data). Therefore, for approximating these integrals, we utilize the

fully exponential Laplace approximation (Tierney et al., 1989). However, the fully exponen-

tial Laplace approximation can only be used for strictly positive function and the integrands

in our estimation might not satisfy this condition. To avoid this drawback, we follow the

approach discussed in Rizopoulos et al. (2009) and use the cumulant generating function,

log[E{exp(cTui)}] (where c = (c1, . . . , cni+1)
T is a constant vector), which is always posi-

tive, to estimate the posterior mean and variance. Under this scenario, the posterior mean

and variance are obtained by differentiating and evaluating the cumulant generating function

at c = 0, ui0 = ∂ log[E{exp(cTui)}]/∂cT|c=0 and vi0 = ∂2 log[E{exp(cTui)}]/∂cT∂c|c=0.

The fully exponential Laplace approximation is conducted in two steps: the mode

and correction steps. In the mode step, the modes for ui0, that is, ûi = û
(c)
i |c=0 where

û
(c)
i |c=0 = argmaxui

{
ℓi(ui,θP ) + c

Tui
}
, are obtained, with ℓi(ui,θP ) is defined in (3.7).

This maximization is implemented via a safeguarded Newton-Raphson algorithm where ûiti

is updated as

ûit+1
i = ûiti − s{Hui(û

it
i )}−1Gui

(ûiti ),
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where Hui(û
it
i ) = Σ

(c)
i |(c,ui)=(0,ûit

i ) with

Σ
(c)
i = −∂2

{
ℓi(ui,θP ) + c

Tui
}
/∂uT

i ∂ui, Gui
(ûiti ) = −∂ℓi(ui,θP )/∂u

T
i |ui=ûit

i
, and s de-

notes the step size.

In the correction step, the posterior mean and variance are approximated using the

modes from the first step. Differentiating the cumulant-generating function and evaluating

at c = 0, the posterior mean and variance are computed as

ui0 = ûi −
1

2
tr(V) and vi0 = Σ−1

i − 1

2
tr

−VVT +Σ−1
i

∂2Σ
(c)
i

∂cT∂c

∣∣∣∣∣
(c,ui)=(0,ûi)

 ,

where V = Σ−1
i {∂Σ(c)

i /∂cT}|(c,ui)=(0,ûi), Σi = Σ
(c)
i |c=0, with ûi and Σ−1

i are the modes

and the inverse ofΣit
i from the last iteration of the Newton-Raphson algorithm, respectively,

from the first step. More information on the fully exponential Laplace approximation is

provided in Appendix A.1.

After estimating the posterior mean and variance of the random effects, the expec-

tation of the complete joint log-likelihood function is approximated in the E-step. However,

the closed-form expression of the expectation, denoted as∑n
i=1E{ℓi(ui,θP )|Y i,T i, δi,Xi,Zi,θ

∗
P} with θ∗P representing the current estimates of θP ,

is intractable. Therefore, we employ a second degree Taylor’s expansion around the esti-
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mated posterior mean of ui0 to approximate the expected log-likelihood as follows:

ℓ∗(θ∗P ) =
n∑
i=1

ℓi(u
∗
i0,θ

∗
P ) + ℓ′i(u

∗
i0,θ

∗
P )E(ui − u∗

i0)−
1

2
E(ui − u∗

i0)
TΣ∗

iE(ui − u∗
i0)

=
n∑
i=1

{
ni∑
j=1

[
δij{log h∗

0 (Tij) +X
T
ijγ

∗
X(Tij) +Z

T
i(j)γ

∗
Z(Tij) + α∗(Tij)m∗

ij(Tij)}

−
∫ Tij

0
h∗
0 (s) exp{XT

ijγ
∗
X(s) +Z

T
i(j)γ

∗
Z(s) + α∗(s)m∗

ij(s)}ds

+

nij∑
k=1

{
g(m∗

ijk)Yijk + log(q∗ijk)
}
−

(b∗0ij)
2 + v∗b,ij0
2σ2∗S

− 1

2
log(2πσ2∗S ) +R∗

ij∆
(2)∗
ij

]

−
(b∗i0)

2 + v∗b,i0
2σ2∗F

− 1

2
log(2πσ2∗F )

}
, (3.9)

where m∗
ij(t) = g−1

{
XT

ijβ
∗
X(t) +Z

T
i(j)β

∗
Z(t) + b∗ij0 + b∗i0

}
, mijk = m∗

ij(tijk),, qijk = 1− mijk,

E(ui − u∗
i0) = 0, ∆

(2)∗
ij is ∆

(2)
ij (defined in the Appendix A.1), and

Σ∗
i = −∂2ℓi(ui,θ∗P )/∂uT

i ∂ui|(ui)=(u∗
i0)
. Moreover, u∗

i0 denotes the estimated posterior mean

of ui0 obtained in the E-step, R∗
ij =

v∗
b,ij0+2η∗ij0+v

∗
b,i0

2 with v∗b,ij0, v
∗
b,i0, and η

∗
ij0 representing

the posterior variance for the subject- and facility-level random effects, and the posterior

covariance between the subject- and facility-level random effects, respectively.

M-step

The variance for the subject- and facility-level random effects are estimated by

setting the score functions of the incomplete log-likelihood
∑n

i=1 log
∫
Li(ui;θP )dui to zero.

The score functions of the incomplete log-likelihood function with respect to σ2S and σ2F are
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given as

V (σ2S) =
n∑
i=1

∂

∂σ2S
log

{∫
Li(ui,θP )dui

}
=

n∑
i=1

∫ ni∑
j=1

(
b2ij

2σ2S
− 1

σ2S

)
L(ui)dui =

n∑
i=1

Vi(σ
2
S)

and

V (σ2F ) =
n∑
i=1

∂

∂σ2F
log

{∫
Li(ui,θP )dui

}
=

n∑
i=1

∫ (
b2i
2σ2F

− 1

σ2F

)
L(ui)dui =

n∑
i=1

Vi(σ
2
F ),

where L(ui) = Li(ui;θP )/
∫
Li(ui;θP )dui is the posterior density function of ui. Setting

V (σ2S) and V (σ2F ) to zero, the estimates of σ2S and σ2F for the current iteration are given as

σ2∗S =

(
n∑
i=1

ni

)−1 n∑
i=1

ni∑
j=1

{(b∗ij0)2 + ν∗b,ij0} and σ2∗F = n−1
n∑
i=1

{(b∗i0)2 + ν∗b,i0}.

The parameters θ
\σ
P = (θTLP ,θ

T
SP )

T are estimated by maximizing the penalized log-likelihood

ℓ∗λ(θ
\σ∗
P ) = ℓ∗(θ

\σ∗
P )− 1

2
λdiag

(
Ξ∗D(2)TD(2)Ξ∗T

)
, (3.10)

where ℓ∗(·) is the log-likelihood function specified in (3.9), λ is a vector of penalty terms for

each time-varying coefficient function, D(2) is the second order difference matrix (defined

in Section 2.4), and Ξ∗ is a matrix with each row corresponding to the coefficients for the

P-spline functions defined in (3.6) and the baseline hazard function (the penalized log-

likelihood is further defined in the Appendix A.1.2). Note that the parameters in θ
\σ
P do

not have closed-form solutions; therefore, we employ the Newton-Raphson algorithm and
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update θ̂
\σ
P through

θ̂
\σ(it+1)

P = θ̂
\σ(it)
P −H

(it)

θ
\σ
P

G
(it)

θ
\σ
P

,

where ‘it’ is the current iteration, G
(it)

θ
\σ
P

and H
(it)

θ
\σ
P

are the gradient and Hessian of the

penalized log-likelihood function (3.10) with respect to θ
\σ
P , respectively, evaluated at the

current estimates θ̂
\σ(it)
P .

3.2.2 Random-Coefficient Spline Model

Although the P-splines approach described in the previous section is very flexible

and performs well in most cases, as the number of covariates get larger, determining the opti-

mal penalties for each time-varying coefficient function becomes computationally infeasible.

To overcome this challenge, we propose to utilize mixed effects models that estimate the

penalty as part of the estimation procedure. This leads to our Multilevel Time-Varying Joint

Model with random-coefficient splines (MTJMRE). Under the random-coefficient spline ap-

proach, the time-varying functions in the longitudinal and survival submodels ((3.1), (3.2))

are approximated as

βXω
(t) = ϕT

Xω
BF (t) +φ

T
Xω
BR(t), βZν

(t) = ϕT
Zν
BF (t) +φ

T
Zω
BR(t),

γXω
(t) = ρTXωBF (t) + ϱ

T
XωBR(t), γZν

(t) = ρTZωBF (t) + ϱ
T
ZωBR(t),

α(t) = ρTαBF (t) + ϱ
T
αBR(t),

where BF (t) = {1, t}T and BR(t) = {(t− κ1)+, . . . , (t− κnκ)+}
T with (a)+ = (a)I{(a) >

0} represents the spline basis functions, ϕXω
,ϕZν

, ρXω
,ρZν

,ρα are the 2-dimensional spline
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coefficients, and φXω
∼ N(0, σ2φxω

Inκ), φZν
∼ N(0, σ2φzν

Inκ), ϱXω
∼ N(0, σ2ϱxω Inκ),

ϱZν
∼ N(0, σ2ϱzω Inκ), ϱα ∼ N(0, σ2αInκ) are the nκ-dimensional spline random effect (S-

RE) coefficients with ω = 1, . . . , p and ν = 1, . . . , q, and Inκ is the nκ × nκ identity matrix.

The baseline hazard function, h0(t), is approximated using the same random-coefficient

spline approach such that log{h0(t)} = ρTh BF (t) +ϱ
T
h BR(t), where ρh is the 2-dimensional

coefficients and ϱh ∼ N(0, σ2hInκ) is the nκ-dimensional random effects.

Let θR = (θTLR ,θ
T
SR ,θ

T
σ , σ

2
F , σ

2
S)

T be the full parameter vector with

θLR = (ϕT
X1
, . . . ,ϕT

Xp
,ϕT

Z1
, . . . ,ϕT

Zp
)T and θSR = (ρTα ,ρ

T
h ,ρ

T
X1
, . . . ,ρTXp

,ρTZ1
, . . . ,ρTZq

)T as

the spline RE coefficients in the longitudinal and survival submodels, respectively, and

θσ = {σ2α, σ2h , (σ2
x)

T, (σ2
z)

T}T as the vector of all their corresponding variances, where

σ2
x = (σ2φx1

, . . . , σ2φxp
, σ2ϱx1

, . . . , σ2ϱxp )
T and σ2

z = (σ2φz1
, . . . , σ2φzq

, σ2ϱz1
, . . . , σ2ϱzq )

T represent

all the patient- and facility-level spline RE coefficient variances, respectively. In addition,

similar to Section 3.2.1, we denote u = (uT
1 , . . .u

T
n )

T, with ui = (bi1, . . . , bini , bi)
T denoting

the REs for the ith facility, as the vector of all subject and facility-level random effects

and ϑ = (φT
X ,φ

T
Z ,ϱ

T
α ,ϱ

T
h ,ϱ

T
X ,ϱ

T
Z)

T as the vector of all spline RE coefficients with φX =

(φTX1
, . . . ,φTXp

)T, φZ = (φTZ1
, . . . ,φTZq

)T, ϱX = (ϱTX1
, . . . ,ϱTXp

)T, ϱZ = (ϱTZ1
, . . . ,ϱTZq

)T.

Under the random-coefficient spline approximation for each varying-coefficient function and

baseline hazard function, the joint density function in (3.4) is redefined as

p(Tij , δij ,Y ij , bi, bij ,ϑ;θR ) = p(Tij , δij |bij , bi;ϑ,θR )p(Y ij |bij , bi;ϑ,θR )p(bij , bi;θR )×

p(ϱα;σ
2
α)p(ϱh ;σ

2
h )

p∏
ω=1

p(φXω;σ
2
φxω

)p(ϱXω
;σ2ϱxω )

q∏
ν=1

p(φZν
;σ2φzν

)p(ϱZν
;σ2ϱzν ).
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We propose to estimate the parameters θR = (θTLR ,θ
T
SR ,θ

T
σ , σ

2
F , σ

2
S)

T via an EM algorithm:

1. The initial values for θLR and θSR are vectors with all the elements set to 0. The

initial values for the σ2S and σ2F are obtained from a generalized linear mixed effects

model. The variances associated with the S-RE are obtained from generalized additive

models.

2. (E-step) A fully exponential Laplace approximation is used to obtain the posterior

mean and variance for the REs u and ϑ. This leads to the approximate expected

log-likelihood function.

3. (M-step) The parameters in θR are estimated. The S-RE variances θσ, σ
2
S and σ2F

are estimated with closed-form solutions. A Newton-Raphson algorithm is used to

maximize the approximate expected log-likelihood function to estimate θLR and θSR .

4. The algorithm iterates between the E-step and M-step until the relative difference

between two consecutive log-likelihood values are less than a pre-defined value.

E-Step and the Fully Exponential Laplace Approximation

In the E-step, we first compute the posterior mean and variance of the subject-

and facility-level REs u = (uT
1 , . . .u

T
n )

T, which are defined as

ui0 =

∫
uiLi(ui;ϑ,θR )dui∫
Li(ui;ϑ,θR )dui

and vi0 =

∫
(ui − ui0)(ui − ui0)TLi(ui;ϑ,θR )dui∫

Li(ui;ϑ,θR )dui
,
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respectively, where

Li(ui;ϑ,θR ) =

ni∏
j=1

p(Tij , δij |bij , bi;ϑ,θR )p(Y ij |bij , bi;ϑ,θR )p(bij , bi;θR )

×p(ϱα;σ
2
α)p(ϱh ;σ

2
h )

p∏
ω=1

p(φXω;σ
2
φxω

)p(ϱXω
;σ2ϱxω )

×
q∏

ν=1

p(φZν
;σ2φzν

)p(ϱZν
;σ2ϱzν ) (3.11)

is the likelihood function for the ith facility. Second, we calculate the posterior mean and

variance of the S-RE and baseline hazard function RE, ϑ = (ϱTα ,ϱ
T
h ,ϱ

T
X ,ϱ

T
Z ,φ

T
X ,φ

T
Z)

T,

using the following formulas

ϑ0 =

∫
ϑL(ϑ;u,θR )dϑ∫
L(ϑ;u,θR )dϑ

and Vϑ0 =

∫
(ϑ− ϑ0)(ϑ− ϑ0)

TL(ϑ;u,θR )dϑ∫
L(ϑ;u,θR )dϑ

,

where

L(ϑ;u,θR ) =

n∏
i=1

ni∏
j=1

p(Tij , δij |bij , bi;ϑ,θR )p(Y ij |bij , bi;ϑ,θR )p(bij , bi;θR )

×p(ϱα;σ
2
α)p(ϱh ;σ

2
h )

p∏
ω=1

p(φXω;σ
2
φxω

)p(ϱXω
;σ2ϱxω )

×
q∏

ν=1

p(φZν
;σ2φzν

)p(ϱZν
;σ2ϱzν ) (3.12)

is the likelihood function. Lastly, similar to Section 3.2.1, since the expected log-likelihood

function does not have a closed form, it will be approximated around the posterior means

of (uT,ϑT)T with a second-order Taylor’s expansion as explained in Section 3.2.1.

48



Let us start with the first step where the posterior mean and variance of the

random effects are targeted. We compute these values with a fully exponential Laplace

approximation as described in Section 3.2.1. Using the likelihood function in (3.11), the

log-likelihood function is expressed as

ℓi(ui;ϑ,θR ) =

ni∑
j=1

[
δij{log h0(Tij) +XT

ijγX(Tij) +ZT
i(j)γZ(Tij) + α(Tij)mij(Tij)}

−
∫ Tij

0

h0(s) exp{XT
ijγX(s) +ZT

i(j)γZ(s) + α(s)mij(s)}ds

+

nij∑
k=1

{
g(mijk)Yijk + log(qijk)

}
−

b2ij

2σ2
S

− 1

2
log(2πσ2

S)

]
− b2i

2σ2
F

− 1

2
log(2πσ2

F )

−1

2

(
1

σ2
α

ϱT
αInκϱα + log

∣∣2πσ2
αInκ

∣∣+ 1

σ2
h
ϱT

h Inκϱh + log
∣∣2πσ2

h Inκ

∣∣)
−1

2

p∑
ω=1

(
1

σ2
φxω

φT
Xω

InκφXω
+ log

∣∣2πσ2
φxω

Inκ

∣∣+ 1

σ2
ϱxω

ϱT
Xω

InκϱXω
+ log

∣∣2πσ2
ϱxω

Inκ

∣∣)

−1

2

p∑
ν=1

(
1

σ2
φzν

φT
Zν

InκφZν
+ log

∣∣2πσ2
φzν

Inκ

∣∣+ 1

σ2
ϱzν

ϱT
Zν

InκϱZν
+ log

∣∣2πσ2
ϱzν

Inκ

∣∣) .

Similar to the random effects u, the S-RE are also computed using a fully ex-

ponential Laplace approximation. In the mode step, the modes for ϑ are computed by

finding the values ϑ̂ = ϑ̂
(c)|c=0 where ϑ̂

(c)|c=0 = argmaxϑ{ℓ(ϑ;u∗
0,θR ) + cTϑ}, with

c = {c1, . . . , c(2p+2q+2)nκ
}T is a constant vector, and

ℓ(ϑ;u∗
0,θR ) =

n∑
i=1

(
ni∑
j=1

[
δij{log h0(Tij) +XT

ijγX(Tij) +ZT
i(j)γZ(Tij) + α(Tij)m∗

ij(Tij)}

−
∫ Tij

0

h0(s) exp{XT
ijγX(s) +ZT

i(j)γZ(s) + α(s)m∗
ij(s)}ds

+

nij∑
k=1

{
g(m∗

ijk)Yijk + log(q∗
ijk)
}
−

(b∗ij)
∗

2σ2
S

− 1

2
log(2πσ2

S)

]
− (b∗i )

2

2σ2
F

− 1

2
log(2πσ2

F )

)

−1

2

(
1

σ2
α

ϱT
αInκϱα + log

∣∣2πσ2
αInκ

∣∣+ 1

σ2
h
ϱT

h Inκϱh + log
∣∣2πσ2

h Inκ

∣∣)
−1

2

p∑
ω=1

(
1

σ2
φxω

φT
Xω

InκφXω
+ log

∣∣2πσ2
φxω

Inκ

∣∣+ 1

σ2
ϱxω

ϱT
Xω

InκϱXω
+ log

∣∣2πσ2
ϱxω

Inκ

∣∣)

−1

2

p∑
ν=1

(
1

σ2
φzν

φT
Zν

InκφZν
+ log

∣∣2πσ2
φzν

Inκ

∣∣+ 1

σ2
ϱzν

ϱT
Zν

InκϱZν
+ log

∣∣2πσ2
ϱzν

Inκ

∣∣) ,
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m∗
ij(t) = g−1

{
XT

ijβX(t) +Z
T
i(j)βZ(t) + b∗ij0 + b∗i0

}
, m∗

ijk = m∗
ij(tijk), q∗ijk = 1 − m∗

ijk, is the

log-likelihood function. The values ϑ̂ can be computed from a safeguarded Newton-Raphson

algorithm with ϑ̂
it
updated as

ϑ̂
it+1

= ϑ̂
it − s{Hϑ(ϑ̂

it
)}−1Gϑ(ϑ̂

it
),

where ‘it’ denotes the current iteration, Hϑ(ϑ̂
it
) = Σϑ = Σ

(c)
ϑ |

(c,ϑ)=(0,ϑ̂
it
)
with

Σ
(c)
ϑ = −∂2

{
ℓ(ϑ;u∗

0,θR ) + c
Tϑ
}
/∂ϑT∂ϑ, and Gϑ(ϑ̂

it
) = −∂ℓ(ϑ;u∗

0,θR )/∂ϑ
T|

ϑ=ϑ̂
it , and

s denotes the step size.

In the correction step, the posterior mean and variance for the S-RE are computed

from the modes. Differentiating the cumulant-generating function, logE{exp(cTϑ)}, and

evaluating at c = 0 leads to the following the posterior mean and variance

ϑ0 = ϑ̂− 1

2
tr(Vϑ) and Vϑ0 = Σ−1

ϑ − 1

2
tr

−VϑV
T
ϑ +Σ−1

ϑ

∂2Σ
(c)
ϑ

∂cT∂c

∣∣∣∣∣
(c,ϑ)=(0,ϑ̂)

 , (3.13)

where Vϑ = Σ−1
ϑ {∂Σ(c)

ϑ /∂cT}|(c,ϑ)=(0,ϑ̂), Σϑ = Σ
(c)
ϑ |c=0, with ϑ̂ and Σ−1

ϑ as the modes

and the inverse of Σit
ϑ, respectively, obtained from the last iteration of the Newton-Raphson

algorithm from the mode step. More information on the fully exponential Laplace approx-

imation is provided in the Appendix A.2.

The expectation of the complete joint log-likelihood function in the E-step is ap-

proximated using the estimated posterior mean and variance of θRE = (uT,ϑT)T. However,

the closed-expression of the expectation of the log-likelihood function is intractable. There-

fore, we employ a second degree Taylor’s expansion around the estimated posterior mean
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of θRE , denoted as θ∗0RE ,

ℓ(θRE ,θR ) ≈ ℓ(θ∗
0RE ,θ

∗
R ) + ℓ′(θ∗

0RE ,θ
∗
R )E(θRE − θ∗

0RE)−
1

2
E(θRE − θ∗

0RE)
TΣθREE(θRE − θ∗

0RE)

ℓ∗(θ∗
RE ,θ

∗
R ) =

n∑
i=1

(
ni∑
j=1

[
δij{log h∗

0 (Tij) +XT
ijγ

∗
X(Tij) +ZT

i(j)γ
∗
Z(Tij) + α∗(Tij)m∗

ij(Tij)}

−
∫ Tij

0

h∗
0 (s) exp{XT

ijγ
∗
X(s) +ZT

i(j)γ
∗
Z(s) + α∗(s)m∗

ij(s)}ds

+

nij∑
k=1

{
g(m∗

ijk)Yijk + log(q∗
ijk)
}
−

(b∗0ij)
2 + v∗b,ij0
2σ2∗

S

− 1

2
log(2πσ2∗

S ) +R
∗
ij∆

(2)∗
ij

]

−
(b∗i )

2 + v∗b,i0
2σ2∗

F

− 1

2
log(2πσ2∗

F )

)
+ pℓ(ϱ

∗
α;σ

2∗
α ) + pℓ(ϱ

∗
h ;σ

2∗
h )

+

p∑
ω=1

{
pℓ(φ

∗
Xω

;σ2∗
φxω

) + pℓ(ϱ
∗
Xω

;σ2∗
ϱxω

)
}
+

q∑
ν=1

{
pℓ(φ

∗
Zν

;σ2∗
φzν

) + pℓ(ϱ
∗
Zν

;σ2∗
ϱzν

)
}

+

nκ∑
κ=1

[
ς∗hκ
2

Λ∗(ϱhκ) +
ς∗ακ

2
Λ∗(ϱhκ) +

p∑
ω=1

{
ς∗φxωκ

2
Λ∗(φXωκ) +

ς∗ϱxωκ

2
Λ∗(ϱXωκ)

}

+

q∑
ν=1

{
ς∗φzνκ

2
Λ∗(φZνκ) +

ς∗ϱzνκ

2
Λ∗(ϱZνκ)

}]
, (3.14)

where m∗
ij(t) = g−1

{
XT

ijβ
∗
X(t) +Z

T
i(j)β

∗
Z(t) + b∗ij0 + b∗i0

}
, m∗

ijk = m∗
ij(tijk), q∗ijk = 1− m∗

ijk,

E(θRE − θ∗0RE) = 0, ∆
(2)∗
ij is ∆

(2)
ij evaluated at θ∗RE and θ∗R (defined in the Appendix A.1),

Σ∗
θRE

= −∂2ℓ/∂θTRE∂θRE |(θRE)=(θ∗
RE0)

, and pℓ(·; ·) is the log of the multivariate normal

density function. Additionally, Λ∗(·) indicates the second derivative of the log-likelihood

function with respect to the S-RE’s random effects (defined in Appendix A.2), evaluated

at current estimates of θRE and θR , and ς∗ακ, ς
∗
hκ, ς

∗
φxωκ, ς

∗
φzνκ, ς

∗
ϱxωκ, and ς∗ϱzνκ indicate

the posterior variance of each S-RE. Moreover, u∗
i0 denotes the estimated posterior mean of

ui0 obtained in the E-step, R∗
ij =

v∗b,ij0+2η∗ij0+v
∗
b,i0

2 with v∗b,ij0, v
∗
b,i0, and η

∗
ij0 represents the

posterior variance for the subject- and facility-level random effects, and posterior covariance

between the subject- and facility-level random effects, respectively.
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M-Step

The subject- and facility-level variances are computed as described in Section

3.2.1. The S-RE variances are obtained by setting the score functions of the incomplete

log-likelihood function, provided in Appendix A.2.3, to zero. The closed-form solutions for

σ2α, σ
2
h , σ

2
φxω

, σ2φzν
, σ2ϱxω and σ2ϱzν are expressed as

σ2∗α = n−1
κ

nκ∑
κ=1

{
(ϱ∗ακ)

2 + ς∗ακ
}
, σ2∗h = n−1

κ

nκ∑
κ=1

{
(ϱ∗hκ)

2 + ς∗hκ
}
,

σ2∗φxω
= n−1

κ

nκ∑
κ=1

{
(φ∗

Xωκ)
2 + ς∗φxωκ

}
, σ2∗ϱxω = n−1

κ

nκ∑
κ=1

{
(ϱ∗Xωκ)

2 + ς∗ϱxωκ

}
,

σ2∗φzν
= n−1

κ

nκ∑
κ=1

{
(φ∗

Zνκ)
2 + ς∗φzνκ

}
, σ2∗ϱzν = n−1

κ

nκ∑
κ=1

{
(ϱ∗Zνκ)

2 + ς∗ϱzνκ

}
,

respectively. The parameters θ
\σ
R = (θTLR ,θ

T
SR )

T are estimated by maximizing the approxi-

mated expected log-likelihood function defined in (3.14). Since the parameters in θ
\σ
R do not

have closed-form solutions, the Newton-Raphson algorithm is employed with the update as

θ
\σ(it+1)
R = θ

\σ(it)
R −H

(it)

θ
\σ
R

G
(it)

θ
\σ
R

,

where ‘it’ is the current iteration, G
(it)

θ
\σ
R

and H
(it)

θ
\σ
R

are the gradient and Hessian of the

log-likelihood function (3.14) with respect to θ
\σ
R , respectively, evaluated at the current

estimates θ
\σ(it)
R .
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3.3 Inference

For inference under both the P-spline and random-coefficient spline approaches,

we suggest using bootstrap-based standard errors as empirical results show that likelihood-

based standard errors are biased in estimation of the true standard errors (Hsieh et al.,

2006; Kürüm et al., 2021). Let f̂ (t) denote a single estimated time-varying coefficient

function from the longitudinal submodel (β̂∗(t)) or survival (α(t), h(t), γ∗(t)) submodel,

the following setup is used to obtain the bootstrap-based standard errors of f̂ (t) under both

our estimation procedures:

1. Draw a bootstrap sample by sampling n facilities from the data with replacement.

2. Apply the EM algorithm in Section 3.2.1 to the bootstrap sample and obtain pa-

rameter estimates, θ̂P , using MTJM (P-splines approach). Similarly, perform the

EM algorithm presented in Section 3.2.2 to the bootstrap sample and obtain param-

eter estimates, θ̂R , and predicted posterior means of θ∗0RE using MTJMRE (random-

coefficient spline technique).

3. Repeat Steps 1 and 2 for B bootstrap samples.

4. Compute f̂b(t), the estimated function using the fitted model from sample b, b =

1, . . . , B, and obtain the standard error of f̂ (t):

SE{f̂ (t)} =

√√√√ 1

B

B∑
b=1

{f̂b(t)− f̄ (t)}2,

with f̄ (t) = 1
B

∑B
b=1 f̂b(t).
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Chapter 4

Simulation Study

This chapter provides the results of the simulation studies conducted for the MTJM

(P-splines Models; 4.1) and MTJMRE (Random-Coefficient Spline Models; 4.2). Each

simulation study utilized the Armadillo library (Sanderson and Curtin, 2016, 2018) via the

RcppArmadillo package (Eddelbuettel and Sanderson, 2014) and analyzed in R (version

3.6.3) (R Core Team, 2022).

4.1 P-Splines Models

We generated 50 Monte Carlo data sets to assess the efficacy of MTJM, as described

in 3.2.1, in estimating the varying-coefficient functions as well as the bootstrap-based stan-

dard errors. Each data set contains n = 200 facilities, with each facility containing ni = 20

patients, each patient having 20 observations, measured at equally-spaced time-points in

the interval [0,1], before censoring from the survival submodel.
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Each subject had two covariates, the subject-level Xij1 and facility-level Zi(j)1,

both generated from a normal distribution with a mean 0 and variance 1. The subject- and

facility-level random effects (REs) were simulated independently from a normal distribution

with mean 0 and variances 1.4 and 0.3, respectively.

The true time-to-event T ∗
ij was generated using the inverse probability integral

transformation and Weibull baseline hazard function, h0(t) = 1.1t0.1, as described in Bender

et al. (2005). The censoring time was Cij = min(C∗
ij , 1), where C

∗
ij was generated from an

exponential distribution with a mean of 2.5. The observed time-to-event and event indicator

were obtained as Tij = min(T ∗
ij , Cij) and δij = I(T ∗

ij < Cij), respectively. The overall

censoring rate was approximately 71%. The binary longitudinal outcome at time t, Yij(t),

was simulated using an underlying normal latent variable Y ∗
ij , where Yij(t) = I(Y ∗

ij > 0),

and the longitudinal submodel served as the mean of the latent variable. The overall

hospitalization rate was approximately 27%. The time-varying coefficient functions for the

longitudinal submodel were β0(t) = cos(2πt)− 1.5, βX1(t) = sin(πt), and βZ1(t) = sin(2πt),

and the time-varying coefficient functions for the survival submodel were α(t) = sin(2πt),

γX1(t) = − cos(2πt)/2, and γZ1(t) = − sin(2πt)/2.

The time-varying coefficient and baseline hazard functions were both modeled

with B-spline functions using cubic truncated power functions and 5 interior knots, and

estimated using the procedure in Section 3.2.1. The bootstrap-based confidence intervals

were obtained using the approach described in Section 3.3 based on B = 48 samples.
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Results

Table 4.1 provides the bias, true standard deviation (SD), bootstrap-based stan-

dard error (BootSE), and standard deviation of the bootstrap-based standard errors

(BootSDSE
) for subject- and facility-level RE variances. The estimated RE variances per-

form well with small bias; however, the bootstrap-based standard errors deviate from the

true standard deviation, but within margin of error. Tables 4.2 and 4.3 provide the bias,

true standard deviation (SD), bootstrap-based standard error (BootSE), and standard de-

viation of the bootstrap-based standard errors (BootSDSE
) for each time-varying coefficient

functions in longitudinal and survival submodels, respectively, measured at time points

0.25, 0.5, and 0.75. The tables show a relatively small bias for all functions; furthermore,

the bootstrap-based standard errors perform well in estimating the theoretical standard

deviation.

Figures 4.1 and 4.2 provide the estimated time-varying functions (dashed line)

and true functions (solid line) for the longitudinal and survival submodels, respectively.

Both figures show the estimated function performs well in aligning with the true functions;

furthermore, the bootstrap-based confidence intervals (dotted) capture the true function.

We observe a boundary effect on the function α(t) as the confidence intervals begin to

widen.
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Figure 4.1: Estimated time-varying functions (dashed line) in the longitudinal submodel,
based on (3.1), for n = 200 facilities overlaying the true functions (solid line) along with
95% bootstrap-based (dotted) and mean theoretical (dashed-dotted) confidence intervals.
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Figure 4.2: Estimated time-varying functions (dashed line) in the survival submodel, based
on (3.2), for n = 200 facilities overlaying the true functions (solid line) along with 95%
bootstrap-based (dotted) and mean theoretical (dashed-dotted) confidence intervals.
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Parameter True value Bias SD BootSE BootSDSE

σ2S 1.4 0.02 0.06 0.15 0.11

σ2F 0.3 0.11 0.31 0.16 0.04

Table 4.1: The bias, true standard deviation, bootstrap-based standard error, and standard
deviation of the bootstrap-based standard error are provided for the subject- (σ2S) and
facility-level (σ2F ) variances.

Function Time True value Bias SD BootSE BootSDSE

β0(t)
0.25 -1.50 0.11 0.27 0.14 0.04
0.50 -2.50 0.11 0.27 0.15 0.05
0.75 -1.50 0.10 0.28 0.14 0.04

βX1(t)
0.25 0.71 -0.02 0.11 0.07 0.02
0.50 1.00 -0.02 0.12 0.07 0.02
0.75 0.71 -0.03 0.11 0.07 0.02

βZ1

0.25 1.00 0.00 0.04 0.04 0.01
0.50 0.00 0.01 0.04 0.04 0.00
0.75 -1.00 0.00 0.04 0.05 0.01

Table 4.2: The bias, theoretical standard deviation, bootstrap-based standard error, and
the standard deviation of the bootstrap-based standard error for the longitudinal submodel.

Function Time True value Bias SD BootSE BootSDSE

α(t)
0.25 1.00 0.01 0.25 0.24 0.03
0.50 0.00 0.16 0.59 0.58 0.11
0.75 -1.00 0.17 0.77 0.72 0.13

h0(t)
0.25 0.96 -0.01 0.07 0.08 0.01
0.50 1.03 -0.03 0.09 0.10 0.01
0.75 1.07 -0.07 0.16 0.17 0.02

γX1(t)
0.25 0.50 0.00 0.06 0.06 0.01
0.50 0.00 -0.02 0.08 0.09 0.02
0.75 -0.50 -0.02 0.15 0.14 0.02

γZ1(t)
0.25 0.00 -0.01 0.06 0.06 0.01
0.50 -0.50 0.02 0.08 0.08 0.01
0.75 0.00 -0.04 0.16 0.15 0.02

Table 4.3: The bias, theoretical standard deviation, bootstrap-based standard error, and
the standard deviation of the bootstrap-based standard error for the survival submodel.
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4.2 Random-Coefficient Spline Models

We conducted a simulation study to assess the efficacy of the proposed MTJMRE

model in estimating the time-varying coefficient functions as well as the bootstrap-based

standard errors. Performance of the model was assessed at n = 250 and n = 500 facilities,

with each facility containing ni = 50 patients. The maximum number of repeated mea-

surements for each patient was 25 observations, measured at equally-spaced time-points in

the interval [0,1], before censoring from the survival submodel. Reports for each case were

based on 50 Monte Carlo data sets.

The subject-level covariates, Xij = (Xij1, Xij2)
T, were simulated from a normal

distribution with means 0 and 1.5 and variances 1 and 0.5, respectively. The facility-level

covariates, Zi(j) = (Zi(j)1, Zi(j)2)
T, were simulated from a normal distribution with means

-0.3 and 1.5 and variances 1 and 0.5, respectively. The subject- and facility-level random

effects (REs) were simulated independently from a normal distribution with mean 0 and

variances 1.3 and 0.2, respectively.

For each subject, the true time-to-event T ∗
ij was generated using the inverse prob-

ability integral transformation with the Weibull baseline hazard function as h0(t) = 1.5t0.5

(Bender et al., 2005). The censoring time was Cij = min(C∗
ij , 1), where C

∗
ij was generated

from an exponential distribution with a mean of 1.5. The observed time-to-event and event

indicator were obtained as Tij = min(T ∗
ij , Cij) and δij = I(T ∗

ij < Cij), respectively. The

binary longitudinal outcome at time t, Yij(t), was simulated using an underlying normal

latent variable Y ∗
ij , where Yij(t) = I(Y ∗

ij > 0), and the mean of the latent variable was
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determined using the longitudinal submodel. The overall censoring and hospitalization rate

were approximately 58% and 31%, respectively.

The subject-specific and facility-specific time-varying coefficient functions for the

longitudinal submodel were βX(t) = {β0(t), βX1(t), βX2(t)}T with β0(t) = cos(3πt/2)− 0.5,

βX1(t) = sin(2πt − 1/8), and βX2(t) = −sin(2πt − 1/8); and βZ(t) = {βZ1(t), βZ2(t)}T

with βZ1(t) = cos(πt − 1/2), and βZ2(t) = −cos(πt − 1/2), respectively. The time-

varying coefficient functions for the survival submodel were defined as α(t) = sin(2πt),

γX(t) = {γX1(t), γX2(t)}T specifying the subject-level functions with γX1(t) = − cos(2πt)

and γX2(t) = cos(2πt), and γZ(t) = {γZ1(t), γZ2(t)}T were the facility-level functions with

γZ1(t) = − sin(3πt/4) and γZ2(t) = sin(3πt/4).

The time-varying coefficient and baseline hazard functions were both modeled with

the random-coefficient spline models and estimated using the procedure in Section 3.2.2.

In terms of inference, the bootstrap-based confidence intervals were obtained using the

approach described in Section 3.3 based on B = 25 samples.

Results

Figures 4.3 and 4.4 display the estimated time-varying functions (dashed) and true

functions (solid) for the longitudinal and survival submodels based on n = 250 facilities,

respectively; additionally, figures 4.5 and 4.6 display the estimated time-varying functions

(dashed) and true functions (solid) for the longitudinal and survival submodels based on

n = 500 facilities, respectively. For n = 250, there is a noticeable bias in estimating the

time-varying functions, and the width of the bootstrap-based confidence intervals increase

at the boundaries for the longitudinal submodel; however, as expected, the shape, bias and
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confidence intervals improve when the number of facilities increases to n = 500. In terms

of the survival submodel, overall, our method performs well, where the estimates target the

true functions, and the bootstrap-based confidence intervals cover the true function. For

both scenarios (n = 250 and n = 500), we observe slight boundary effects in our estimation

such that the estimated functions deviate from the truth at these points. In addition, for

both longitudinal and survival submodels, bootstrap-based confidence intervals are close to

the theoretical confidence intervals (dotted lines). Overall, the results show that our method

leads to lower bias and narrower confidence intervals as the number of facilities increases.

Table 4.4 provides the estimated bias, theoretical standard deviation, bootstrap-

based standard error, and standard deviation of the bootstrap-based standard error for the

subject- and facility-level variances. The table shows that both variances are estimated

well regardless of the number facilities; however, as the number of facilities increases, the

bootstrap-based standard errors perform better in estimating the true standard deviation.

Tables 4.5 and 4.6 provide the estimated bias, theoretical standard deviation, bootstrap-

based standard error, and standard deviation of the bootstrap-based standard error for

the time-varying functions in the longitudinal and survival submodel, respectively, at time

points 0.25, 0.5, and 0.75. Overall, the tables indicate that the bias decreases as the number

of facilities increases to n = 500. Furthermore, the bootstrap-based standard errors target

the true standard deviation, that is, the SD is captured within ±2 the standard deviation

of the bootstrap-based standard errors for all functions and time points.
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Figure 4.3: Estimated time-varying functions (dashed line) in the longitudinal submodel,
based on (3.1), simulation runs for n = 250 facilities overlaying the true functions (solid line)
along with 95% bootstrap-based (dotted) and mean theoretical (dashed-dotted) confidence
intervals.
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Figure 4.4: Estimated time-varying functions (dashed line) of the survival submodel, based
on (3.2), simulation runs for n = 250 facilities overlaying the true functions (solid line)
along with 95% bootstrap-based (dotted) and mean theoretical (dashed-dotted) confidence
intervals.
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Figure 4.5: Estimated time-varying functions (dashed line) in the longitudinal submodel,
based on (3.1), simulation runs for n = 500 facilities overlaying the true functions (solid line)
along with 95% bootstrap-based (dotted) and mean theoretical (dashed-dotted) confidence
intervals.
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Figure 4.6: Estimated time-varying functions (dashed line) in the survival submodel, based
on (3.2), simulation runs for n = 500 facilities overlaying the true functions (solid line)
along with 95% bootstrap-based (dotted) and mean theoretical (dashed-dotted) confidence
intervals.
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Parameter True value Number of facilities Bias SD BootSE BootSDSE

σ2S 1.3
250 0.03 0.07 0.06 0.01
500 0.03 0.05 0.04 0.005

σ2F 0.2
250 0.02 0.03 0.03 0.04
500 0.02 0.02 0.02 0.003

Table 4.4: The true and estimated values, as well as the true and bootsrap-based percentiles,
are provided for the subject- (σ2S) and facility-level (σ2F ) variances.
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Function Time True value Number of facilities Bias SD BootSE BootSDSE

β0(t)

0.25 -0.12
250 -0.12 0.09 0.08 0.01
500 0.06 0.06 0.05 0.01

0.5 -1.21
250 0.11 0.13 0.12 0.02
500 -0.03 0.07 0.08 0.01

0.75 -1.42
250 -0.05 0.21 0.18 0.04
500 -0.06 0.11 0.10 0.01

βX1(t)

0.25 0.99
250 -0.06 0.03 0.03 0.00
500 0.08 0.02 0.03 0.00

0.5 0.12
250 0.03 0.06 0.06 0.01
500 -0.02 0.04 0.04 0.01

0.75 -0.99
250 0.11 0.10 0.10 0.02
500 -0.13 0.06 0.07 0.01

βX1(t)

0.25 -0.99
250 0.10 0.03 0.04 0.01
500 -0.06 0.03 0.03 0.01

0.5 -0.12
250 -0.10 0.06 0.07 0.01
500 0.05 0.05 0.05 0.01

0.75 0.99
250 -0.11 0.14 0.12 0.02
500 0.17 0.07 0.07 0.01

βZ1(t)

0.25 0.96
250 -0.10 0.04 0.04 0.01
500 0.09 0.03 0.03 0.01

0.5 0.48
250 -0.02 0.06 0.06 0.02
500 -0.01 0.05 0.04 0.01

0.75 -0.28
250 0.06 0.10 0.09 0.02
500 -0.10 0.08 0.06 0.01

βZ2(t)

0.25 -0.96
250 0.13 0.05 0.06 0.01
500 -0.10 0.04 0.04 0.01

0.5 -0.48
250 -0.03 0.08 0.09 0.02
500 0.03 0.06 0.06 0.01

0.75 0.28
250 -0.04 0.13 0.12 0.03
500 0.09 0.08 0.08 0.01

Table 4.5: The bias, theoretical standard deviation, bootstrap-based standard error, and
the standard deviation of the bootstrap-based standard error for the longitudinal submodel
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Function Time True value Number of facilities Bias SD BootSE BootSDSE

α(t)

0.25 1
250 -0.17 0.30 0.27 0.06
500 0.02 0.15 0.14 0.02

0.5 0
250 -0.05 0.29 0.29 0.06
500 0.13 0.25 0.26 0.04

0.75 -1
250 0.07 0.45 0.45 0.08
500 -0.04 0.31 0.29 0.04

h0(t)

0.25 0.75
250 0.14 0.12 0.11 0.02
500 -0.09 0.05 0.07 0.01

0.5 1.06
250 0.06 0.17 0.12 0.02
500 -0.02 0.11 0.09 0.01

0.75 1.30
250 0.08 0.28 0.17 0.03
500 -0.10 0.20 0.12 0.02

γX1(t)

0.25 0
250 0.06 0.04 0.04 0.01
500 -0.05 0.03 0.03 0.00

0.5 1
250 -0.09 0.06 0.06 0.01
500 0.06 0.05 0.05 0.01

0.75 0
250 0.05 0.10 0.11 0.02
500 -0.02 0.08 0.07 0.01

γX1(t)

0.25 0
250 -0.07 0.04 0.04 0.01
500 0.07 0.03 0.03 0.00

0.5 -1
250 0.06 0.08 0.07 0.01
500 -0.08 0.06 0.06 0.01

0.75 0
250 -0.05 0.11 0.12 0.02
500 0.03 0.08 0.09 0.01

γZ1(t)

0.25 -0.56
250 0.08 0.03 0.03 0.01
500 -0.05 0.02 0.02 0.00

0.5 -0.93
250 0.08 0.05 0.05 0.01
500 -0.04 0.05 0.04 0.01

0.75 -0.98
250 0.00 0.09 0.09 0.02
500 -0.07 0.06 0.05 0.01

γZ2(t)

0.25 0.56
250 0.21 0.04 0.04 0.01
500 -0.22 0.02 0.03 0.00

0.5 0.93
250 -0.03 0.08 0.07 0.01
500 0.03 0.06 0.06 0.01

0.75 0.98
250 0.01 0.12 0.11 0.02
500 0.00 0.09 0.08 0.02

Table 4.6: The bias, theoretical standard deviation, bootstrap-based standard error, and
the standard deviation of the bootstrap-based standard error for the survival submodel
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Chapter 5

Application to USRDS Data: Joint

Modeling of Hospitalization and

Survival Outcomes

5.0.1 USRDS Study Cohort and Patient- and Facility-level Risk Factors

We applied the MTJMRE to the United States Renal Data System (USRDS) data,

a national database collecting information on nearly all U.S. patients with end-stage renal

disease on dialysis. The study collected information on patients who were at least 18 years

old and initiated dialysis between January 1, 2006 and December 31, 2008. These patients

were followed for 5 years, with the last follow-up date as December 31, 2013, or until a

patient switched facilities. The inclusion criteria were: (1) patients who survived the first

90 days, did not recover any kidney function, and did not have a kidney transplant, and (2)

patients were covered by Medicare as their primary payer on Day 91.

70



Per the recommendation of the USRDS researcher’s guide ”90-day rule”, the first

day of study follow-up started on Day 91 to allow for the completion of the Medicare

eligibility application and establish a stable dialysis treatment modality (United States

Renal Data System, 2018). The final study cohort included 292,672 observations, 34,030

patients, and 520 facilities, where each facility approximately contained 50 to 162 patients

(median is 61, first [Q1] and third [Q3] quartile are 54-71, respectively).

The patient mean age was 65 years old with a standard deviation of 15, and

45% of patients were recorded as female. The common baseline comorbidites are reported

as follows: chronic obstructive pulmonary disease (COPD; 18.7%), septicemia (10.2%),

other infectious disease (23.1%), cardiorespiratory failure (12%), coagulopathy (7.9%), and

psychiatric conditions (11.2%). Among 520 facilities, the median follow-up time was 24.3

months (Q1-Q3: 21.1-27.4), and the mean number of hospitalizations was 1.8 person-years

with a standard deviation 2.2. The median unadjusted marginal survival time was calculated

as 46.5 months. The mean ratios for nurses to patients and patient care technician (PCT)

to patients is 7.6% and 9.4% with standard deviations of 3.2 and 2.9, respectively.

The proposed MTJMRE was fitted to study the time-varying effects of the patient-

and facility-level covariates for the longitudinal and survival submodels. The longitudinal

submodel included age (centered), sex, baseline comorbidities (COPD, septicemia, other in-

fectious diseases, cardiorespiratory failure, coagulopathy, and psychiatric conditions), nurse-

to-patient ratio, and PCT-to-patient ratio. The survival submodel includes age (centered),

sex, baseline comorbidities, nurse-to-patient ratio, PCT-to-patient ratio, and hospitalization

risk score (longitudinal outcome) as a covariate. The time-varying coefficients were esti-
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mated using a random-coefficient spline models with 20 equally-spaced knots. The baseline

hazard function was fitted using a Weibull model. All analysis was conducted in R (version

3.6.3) (R Core Team, 2022) and utilized the Armadillo library (Sanderson and Curtin,

2016, 2018) via the RcppArmadillo package (Eddelbuettel and Sanderson, 2014).

5.0.2 Analysis

The estimated time-varying effects of the patient-level risk factors (solid line) on

longitudinal hospitalizations are displayed in figure 5.1, along with the 95% confidence in-

tervals (dashed lines), and a reference line at 1 (dotted line). The results demonstrate that

older age at transition to dialysis is associated with a higher odds of hospitalization starting

at about 12 months (i.e., after the fragile first year transition to dialysis time period; figure

5.1 (b)). The effect of the psychiatric conditions and other infectious diseases/pneumonia is

relatively stable over time and they are significantly associated with higher odds of hospi-

talization approximately until the end of the third and fourth year of dialysis, respectively.

The effect of COPD (figure 5.1 (d)) becomes significant after the first year of dialysis and

similar to other chronic and acute conditions, its effect can be considered to stay stable

during the first five years of transition to dialysis. The estimated subject- and facility-level

variances were σ2S = 1.15 and σ2F = 0.82 with a 95% confidence interval of (0.83, 1.46) and

(0.73, 0.92), respectively.

The estimated time-varying effects (solid line) of the patient-level covariates on

the survival submodel is shown in figure 5.2, with the 95% confidence intervals (dashed

lines), and a reference line at 1 (dotted line). As expected, older age at dialysis transition is

associated with an increased hazard of death (figure 5.2 (a)). We observe that between first
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and fourth years of dialysis, females have a lower risk of death compared to males (figure

5.2 (a)). The chronic obstructive pulmonary disease is significantly associated with risk of

death during the second and third years of dialysis and these conditions both increase the

hazard of death. We observe a similar result in the effect of cardiorespiratory failure and

psychiatric conditions (figure 5.2 (f,h)). The estimated time-varying effect of hospitalization

risk score on the hazard of death is presented in figure 5.2 (i). According to the bootstrap-

based confidence intervals, hospitalization risk score have a significant effect on survival

between months 38 and 48 with the highest point estimate of HR(t)≈ 5.0 at about 47

months post-dialysis. The estimated baseline hazard parameter was λ = 1.004 with a 95%

confidence interval of (1, 1.04).

Figure 5.3 displays the time-varying effects (solid line) along with the bootstrap-

based confidence intervals (dashed lines) and the reference line (dotted line). The esti-

mated facility-level time-varying effects indicate that both nurse-to-patient ratio and PCT-

to-patient ratio are associated with significantly lower risk of death. In addition, we ob-

serve that the hazard ratios for both factors remain constant throughout the study period,

HR(t) ≈ 0.8 and HR(t) ≈ 0.75, respectively, for 0 < t ≤ 60. In terms of hospitalization,

between months 25 and 40 after transition to dialysis, both nurse-to-patient and PCT-to-

patient ratios are associated with a slightly lower the risk of hospitalization.
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Figure 5.1: Estimated patient-level effects on hospitalization, time-varying odds ratio
OR(t) = exp{β̂Xω(t)}, (solid) along with their 95% bootstrap-based confidence intervals
(dashed).
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Figure 5.2: Estimated patient-level effects on survival, time-varying hazard ratios HR(t) =
exp{γ̂Xω(t)} and HR(t) = exp{α̂(t)}, (solid) along with their 95% bootstrap-based confi-
dence intervals (dashed).
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Figure 5.3: Estimated facility-level effects on (a,b) hospitalization, time-varying odds ra-
tio OR(t) = exp{β̂Zν (t)}, and (c,d) on survival, time-varying hazard ratio HR(t) =
exp{γ̂Zν (t)}, (solid) along with their 95% bootstrap-based confidence intervals (dashed).
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Chapter 6

Conclusion

Motivated by the data from United States Data Renal System (USRDS), we intro-

duced a multilevel time-varying joint longitudinal-survival model to describe the dynamic

associations between each outcome (longitudinal and survival) and their corresponding mul-

tilevel predictors (subject- and facility-level risk factors). We adopted a varying-coefficient

modeling scheme for each outcome to explore these time-varying relationships. In terms of

estimation, we proposed two approaches, based on P-splines and random-coefficient splines.

Under each method, estimation and inference were performed via a proposed approximate

Expectation-Maximization algorithm, where at the E-step, the random effects were targeted,

while at the M-step, model parameters were estimated via a Newton-Raphson algorithm.

We investigated the finite sample capabilities of both estimation procedures through exten-

sive simulation studies, in which we recommended estimating the standard errors using a

bootstrap approach. Note that, although both procedures performed well and were demon-

strated to be capable of estimating time-dynamic associations in a joint modeling setting,
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we suggest using the P-splines method when the number of covariates in both submodels

are small.

In addition to the work presented in this dissertation, future work on Multilevel

Time-varying Joint Models are as follows:

1. Extend the models to incorporate multiple longitudinal outcomes as well as competing

risk type of survival outcomes.

2. Incorporate different functional forms of mij(t), such as longitudinal trajectory

(dmij(t)/dt) or cumulative effect (
∫

mij(t)/dt), into the survival submodel.
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Kürüm, E., Li, R., Wang, Y., and Şentürk, D. (2014). Nonlinear Varying-Coefficient Models
with Applications to a Photosynthesis Study. Journal of Agricultural, Biological, and
Environmental Statistics, 19(1):57–81.
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Appendix A

EM Algorithm Details

A.1 P-Spline Models

A.1.1 E-Step Functions

The score function Gui
is written as

Gui
= −

∆
(1)
i1 − bi1

σ2S
,∆

(1)
i2 − bi1

σ2S
, · · · ,∆(1)

ini
− bini

σ2S
,

ni∑
j=1

{
∆

(1)
ij

}
− bi

σ2F

T

,

where

∆
(1)
ij = δijα(Tij)mij(Tij)qij(Tij)−

∫ Tij

0
h0(s)α(s)mij(s)qij(s)Eijds+

nij∑
k=1

(Yijk − mijk)

with qij(Tij) = 1− mij(Tij) and Eij = exp{ZT
i(j)γZ(t) +X

T
ijγX(t) + α(t)mij(t)}.
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The Hessian matrix Hui is written as

Hui = Σi = −



∂2ℓi(ui,θ)
∂b2i1

0 · · · 0 ∂2ℓi(ui,θ)
∂bi1∂bi

0 ∂2ℓi(ui,θ)
∂b2i2

· · · 0 ∂2ℓi(ui,θ)
∂bi2∂bi

...
...

. . .
...

...

0 0 · · · ∂2ℓi(ui,θ)
∂b2ini

∂2ℓi(ui,θ)
∂bini

∂bi

∂2ℓi(ui,θ)
∂bi1∂bi

∂2ℓi(ui,θ)
∂bi2∂bi

· · · ∂2ℓi(ui,θ)
∂bini

∂bi

∂2ℓi(ui,θ)
∂b2i



, (A.1)

where ∂2ℓi(ui,θ)
∂b2ij

= ∆
(2)
ij − 1

σ2
S
, ∂

2ℓi(ui,θ)
∂b2i

=
∑ni

j=1

{
∆

(2)
ij

}
− 1

σ2
F
, and ∂2ℓi(ui,θ)

∂bij∂bi
= ∆

(2)
ij with

∆
(2)
ij = δijα(Tij)mij(Tij)qij(Tij)

{
qij(Tij)− mij(Tij)

}
−
∫ Tij

0
h0(s)α(s)mij(s)qij(s)Eij{α(s)mij(s)qij(s) + qij(s)− mij(s)}ds

−
nij∑
k=1

mijkqijk. (A.2)

To obtain the values involved in V, we must first obtain ∂Σi

∂uT
i
, ∂2Σi

∂uT
i ∂ui

,
∂û

(c)
i

∂cT
,
∂2û

(c)
i

∂cT ∂c
,

and

(
∂û

(c)
i

∂cT

)(
∂û

(c)
i
∂c

)
. The first derivative of Σi with respect to uT

i is a (ni+1)2 × (ni+1)

matrix from the concatenation of (ni+1)× (ni+1) matrices representing the ∂Σi
∂bij

and ∂Σi
∂bi

.

Let Ψ
(1)
ij represent the matrix involved in ∂Σi

∂bij
.
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The only nonzero elements involved in the Ψ
(1)
ij are the (j, j)th, (j, ni + 1)th, (ni +

1, j)th, and (ni + 1, ni + 1)th which are formulated as

Ψ
(1)
ij = −δijα(Tij)mij(Tij)qij(Tij)

[{
mij(Tij)− qij(Tij)

}2 − 2mij(Tij)qij(Tij)
]

+

∫ Tij

0
h0(s)α(s)mij(s)qij(s)Eij ×

×
[{
α(s)mij(s)qij(s) + qij(s)− mij(s)

}2
+mij(s)qij(s)

{
α(s)qij(s)− α(s)mij(s)− 2

}]
ds

+

nij∑
k=1

{
mijkq2ijk −m2

ijkqijk
}
.

The second derivative of Σi with respect to uT
i and ui is a (ni + 1)2 × (ni + 1)2

matrix compiled of block matrices of size (ni + 1)× (ni + 1):

∂2Σi

∂uTi ∂ui
=



Ψ
(2)
i1 0 · · · 0 Ψ

(2)
i1

0 Ψ
(2)
i2 · · · 0 Ψ

(2)
i2

...
...

. . .
...

...

0 0 · · · Ψ
(2)
ini

Ψ
(2)
ini

Ψ
(2)
i1 Ψ

(2)
i2 · · · Ψ

(2)
ini

∑ni
j=1Ψ

(2)
ij


,
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where Ψ
(2)
ij is an (ni + 1) × (ni + 1) matrix with the only non-zero elements being in the

(j, j)th, (j, ni + 1)th, (ni + 1, j)th, and (ni + 1, ni + 1)th position formulated as

Ψ
(2)
ij = −δijα(Tij)mij(Tij)qij(Tij)

×
{
q3ij(Tij)− 11mij(Tij)q2ij(Tij) + 11m2

ij(Tij)qij(Tij)− m3
ij(Tij)

}
+

∫ Tij

0
h0(s)α(s)mij(s)qij(s)Eij

[ {
α(s)mij(s)qij(s) + qij(s)− mij(s)

}3
+mij(s)qij(s)

{
α(s)qij(s)− α(s)mij(s)− 2

}{
3α(s)mij(s)qij(s) + 4qij(s)− 4mij(s)

}
−2α(s)m2

ij(s)q
2
ij(s)

]
ds+

nij∑
k=1

(
mijkq3ijk − 4m2

ijkq
2
ijk +m3

ijkqijk
)
.

The first derivative of û
(c)
i with respect to c is a (ni+1)× (ni+1) matrix denoted

as

∂û
(c)
i

∂cT
=



∂b̂
(c)
i1

∂c1
· · · ∂b̂

(c)
i1

∂cni+1

...
...

...

∂b̂
(c)
ini
∂c1

· · ·
∂b̂

(c)
ini

∂cni+1

∂b̂
(c)
i

∂c1
· · · ∂b̂

(c)
i

∂cni+1


,

and the second derivative of ûi
(c) respect to c is a (ni + 1)2 × (ni + 1) matrix denoted as

∂2û
(c)
i

∂cT∂c
=



∂2û
(c)
i

∂cT∂c1

∂2û
(c)
i

∂cT∂c2

...

∂2û
(c)
i

∂cT∂cni+1


.
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Rizopoulos et al. (2009) provided the first and second partial derivatives for ûi with respect

to c as
∂û

(c)
i

∂cT
|c=0 = Σ−1

i and
∂2û

(c)
i

∂cT∂c
|c=0 = Σ−1

i (−∂Σi/∂u
T
i )Σ

−1
i Σ−1

i , respectively, where

Σi = Σ(c)|c=0.

To obtain the partial derivatives
∂Σ

(c)
i

∂cT
and

∂2Σ
(c)
i

∂cT∂c
, Rizopoulos et al. (2009) ex-

panded the derivatives using the chain rule:

∂Σ
(c)
i

∂cT

∣∣∣∣∣
(c,ui)=(0,ûi)

=
∂Σ

(c)
i

∂û
(c)
i

∂ûi
(c)

∂cT

∣∣∣∣∣
(c,ui)=(0,ûi)

=
∂Σ

(c)
i

∂uT
i

∂ûi
(c)

∂cT

∣∣∣∣∣
c=0

,

∂2Σ
(c)
i

∂cT∂c

∣∣∣∣∣
(c,ui)=(0,ûi)

=
∂2Σ

(c)
i

∂uT
i ∂ui

(
∂ûi

(c)

∂c

∂ûi
(c)

∂cT

)∣∣∣∣∣
c=0

+
∂Σ

(c)
i

∂uT
i

∂2û
(c)
i

∂cT∂c

∣∣∣∣∣
c=0

.

The first derivative ofΣ
(c)
i with respect to c is a (ni+1)2×(ni+1) matrix composed

of concatenated (ni+1)× (ni+1) matrices obtained from
∂Σ

(c)
i

∂cj
for j ∈ {1, ..., ni+1}, where

the matrix
∂Σ

(c)
i

∂cj
=

Σ
(c)
i

∂ui

∂u
(c)
i

∂cj
=
∑ni

j′=1
∂Σ

(c)
i

∂bij′

∂b
(c)
ij′
∂cj

+
∂Σ

(c)
i

∂bi

∂b
(c)
i
∂cj

. The second derivative of Σ
(c)
i

with respect to c is a (ni+1)2×(ni+1)2 matrix composed of (ni+1)2 matrices representing

∂2Σ
(c)
i

∂cj∂cj′
of size (ni + 1)× (ni + 1) for j, j′ ∈ {1, ..., ni + 1}, where ∂2Σ

(c)
i

∂cj∂cj′
is formulated as

∂2Σ
(c)
i

∂uT
i ∂ui

(
∂ûi

(c)

∂cj

∂ûi
(c)

∂cj′

)∣∣∣∣∣
c=0

+
∂Σ

(c)
i

∂uT
i

∂2û
(c)
i

∂cj∂cj′

∣∣∣∣∣
c=0

. (A.3)

The components in (A.3) are obtained as

∂2Σ
(c)
i

∂uT
i ∂ui

(
∂ûi

(c)

∂cj

∂ûi
(c)

∂cj′

)∣∣∣∣∣
c=0

=

 ni∑
j∗=1

{
∂2Σ(c)

∂b2ij∗

∂b̂
(c)
ij∗

∂cj

∂b̂
(c)
ij∗

∂cj′
+

∂2Σ(c)

∂bij∗∂bi

∂b̂
(c)
ij∗

∂cj

∂b̂
(c)
i

∂cj′

+
∂2Σ(c)

∂bij∗∂bi

∂b̂
(c)
i

∂cj

∂b̂
(c)
ij∗

∂cj′

}
+
∂2Σ(c)

∂b2i

∂b̂
(c)
i

∂cj

∂b̂
(c)
i

∂cj′

] ∣∣∣∣∣
c=0
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and

∂Σ
(c)
i

∂uT
i

∂2û
(c)
i

∂cj∂cj′

∣∣∣∣∣
c=0

=


ni∑
j∗=1

∂Σi

∂bij∗

∂2b̂
(c)
ij∗

∂cj∂cj′
+
∂Σi

∂bi

∂2b̂
(c)
i

∂cj∂cj′


∣∣∣∣∣
c=0

.

A.1.2 M-Step

The penalized likelihood function (3.10) contains a penalty term

λ = (λα, λh ,λ
T
τx ,λ

T
τz ,λ

T
ψx
,λψz)

T that controls the roughness of each time-varying coefficient

function with λτx = (λτx1 , . . . , λτxp )
T, λτz = (λτz1 , . . . , λτzq )

T, λψx = (λψx1
, . . . , λψxp

)T, and

λψz = (λψz1
, . . . , λψzq

)T; and the matrix Ξ∗ contains the time-varying coefficients formu-
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lated as

Ξ∗ =



ψα1 · · · ψαR

ψh1 · · · ψhR

τX11 · · · τX1R

...
. . .

...

τXp1 . . . τXpR

τZ11 · · · τZ1R

...
. . .

...

τZq1 . . . τZqR

ψX11 · · · ψX1R

...
. . .

...

ψXp1 . . . ψXpR

ψZ11 · · · ψZ1R

...
. . .

...

ψZq1 . . . ψZqR



.

The maximum likelihood estimates for the parameters in θP are obtained by max-

imizing the penalized likelihood function (3.10). However, computing the Hessian matrix

can be burdensome for the M-Step. Therefore, a quasi-Newton method is used with a BFGS

update to approximate the Hessian matrix. Approximating the update for the Hessian ma-

trix can be found in Givens and Hoeting (2012). Below are the first derivatives for the

M-Step.
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∂ℓ∗λ(θP )

∂ψα
=

n∑
i=1

ni∑
j=1

{
B(Tij)δijm∗

ij(Tij)−
∫ Tij

0
B(s)h∗

0 (s)E
∗
ijm

∗
ij(s)ds+R∗

ij

∂∆
(2)∗
ij

∂θαξ

}

−λα
2
D(2)TD(2)ψα

∂ℓ∗λ(θP )

∂ψh
=

n∑
i=1

ni∑
j=1

{
δijB(Tij)−

∫ Tij

0
B(s)h∗

0 (s)E
∗
ijds+R∗

ij

∂∆
(2)∗
ij

∂ψh

}

−λh

2
D(2)TD(2)ψh

∂ℓ∗λ(θP )

∂τXω

=
n∑
i=1

ni∑
j=1

{
Xijω ⊗B(Tij)δijα

∗(Tij)m∗
ij(Tij)q

∗
ij(Tij)

−
∫ Tij

0
Xijω ⊗B(s)h∗

0 (s)E
∗
ijα

∗(s)m∗
ij(s)q

∗
ij(s)ds

+

nij∑
k=1

Xijω ⊗B(tijk)
(
Yijk − m∗

ijk

)
+R∗

ij

∂∆
(2)∗
ij

∂τXω

}

−
λτxω
2

D(2)TD(2)τXω

∂ℓ∗λ(θP )

∂τZν

=

n∑
i=1

ni∑
j=1

{
Zi(j)ν ⊗B(Tij)δijα

∗(Tij)m∗
ij(Tij)q

∗
ij(Tij)

−
∫ Tij

0
Zi(j)ν ⊗B(s)h∗

0 (s)E
∗
ijα

∗(s)m∗
ij(s)q

∗
ij(s)ds

+

nij∑
k=1

Zi(j)ν ⊗B(tijk)
(
Yijk − m∗

ijk

)
+R∗

ij

∂∆
(2)∗
ij

∂τZν

}

−
λτzν
2

D(2)TD(2)τZν

∂ℓ∗λ(θP )

∂ψXω

=
n∑
i=1

ni∑
j=1

{
δijX

T
ijω ⊗B(Tij)−

∫ Tij

0
Xijω ⊗B(s)h∗

0 (s)E
∗
ijds+R∗

ij

∂∆
(2)∗
ij

∂ψXω

}

−
λψxω

2
D(2)TD(2)ψXω

∂ℓ∗λ(θP )

∂ψZν

=
n∑
i=1

ni∑
j=1

{
δijZ

T
i(j)ν ⊗B(Tij)−

∫ Tij

0
Zi(j)ν ⊗B(s)h∗

0 (s)E
∗
ijds+R∗

ij

∂∆
(2)∗
ij

∂ψZν

}

−
λψzν

2
D(2)TD(2)ψZν
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∂∆
(2)∗
ij

∂ψα
= B(Tij)δijm∗

ij(Tij)q
∗
ij(Tij){q∗ij(Tij)− m∗

ij(Tij)} −
∫ Tij

0
B(s)h∗

0 (s)E
∗
ijm

∗
ij(s)q

∗
ij(s)

×
{
α∗2(s)m2∗

ij (s)q
∗
ij(s) + 3α∗(s)m∗

ij(s)q
∗
ij(s)− α∗(s)m2∗

ij + q∗ij(s)− m∗
ij(s)

}
ds

∂∆
(2)∗
ij

∂ψh
= −

∫ Tij

0
B(s)h∗

0 (s)α
∗(s)m∗

ij(s)q
∗
ij(s)E

∗
ij{α∗(s)m∗

ij(s)q
∗
ij(s) + q∗ij(s)− m∗

ij(s)}ds

∂∆
(2)∗
ij

∂τXω

= Xijω ⊗B(Tij)δijα
∗(Tij)m∗

ij(Tij)q
∗
ij(Tij)

×
[{

q∗ij(Tij)− m∗
ij(Tij)

}2 − 2m∗
ij(Tij)q

∗
ij(Tij)

]
−
∫ Tij

0
Xij ⊗B(s)h∗

0 (s)E
∗
ijα

∗(s)m∗
ij(s)q

∗
ij(s)×

×
[{
α∗(s)m∗

ij(s)q
∗
ij(s) + q∗ij(s)− m∗

ij(s)
}2

+m∗
ij(s)q

∗
ij(s)

{
α∗(s)q∗ij(s)− α∗(s)m∗

ij(s)− 2
}]
ds

−
nij∑
k=1

Xijω ⊗B(tijk)
{

mijkq∗2ijk − m∗2
ijkq∗ijk

}
∂∆

(2)∗
ij

∂τZν

= Zi(j)ν ⊗B(Tij)δijα
∗(Tij)m∗

ij(Tij)q
∗
ij(Tij)

×
[{

q∗ij(Tij)− m∗
ij(Tij)

}2 − 2m∗
ij(Tij)q

∗
ij(Tij)

]
−
∫ Tij

0
Zi(j) ⊗B(s)h∗

0 (s)E
∗
ijα

∗(s)m∗
ij(s)q

∗
ij(s)×

×
[{
α∗(s)m∗

ij(s)q
∗
ij(s) + q∗ij(s)− m∗

ij(s)
}2

+m∗
ij(s)q

∗
ij(s)

{
α∗(s)q∗ij(s)− α∗(s)m∗

ij(s)− 2
}]
ds

−
nij∑
k=1

Zi(j)ν ⊗B(tijk)
{

mijkq∗2ijk − m∗2
ijkq∗ijk

}
∂∆

(2)∗
ij

∂ψXω

= −
∫ Tij

0
XT
ijω ⊗B(s)h∗

0 (s)E
∗
ijα

∗(s)m∗
ij(s)q

∗
ij(s)

×
{
α∗(s)m∗

ij(s)q
∗
ij(s) + q∗ij(s)− m∗

ij(s)
}
ds

∂∆
(2)∗
ij

∂ψZν

= −
∫ Tij

0
ZT
i(j)ν ⊗B(s)h∗

0 (s)E
∗
ijα

∗(s)m∗
ij(s)q

∗
ij(s)

×
{
α∗(s)m∗

ij(s)q
∗
ij(s) + q∗ij(s)− m∗

ij(s)
}
ds,
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A.2 Random-Coefficient: Models

A.2.1 Derivatives to obtain the posterior modes

The derivatives with the respect subject- and facility-level random effects required

for Section 3.2.2 are computed by replacing the VCMs from the derivatives in Section A.1.1

with random-coefficient spline models. The score functions Gϑ is defined as

Gϑ = −
(
G

T
φα

,GT
φh
,GT

φX1
, . . . ,GT

φXp
,GT

φZ1
, . . . ,GT

φZq
,GT

ϱX1
, . . . ,GT

ϱXp
,GT

ϱZ1
, . . . ,GT

ϱZq

)T
,

where Gφα
=
{
∂ℓ(θRE ,θ)
∂φα1

, . . . , ∂ℓ(θRE ,θ)
∂φαnκ

}T
, Gφh

=
{
∂ℓ(θRE ,θ)
∂φh1

, . . . , ∂ℓ(θRE ,θ)
∂φhnκ

}T
,

Gφβη
=
{
∂ℓ(θRE ,θ)
∂φβη1

, . . . , ∂ℓ(θRE ,θ)
∂φβηnκ

}T
, and Gφγη

=
{
∂ℓ(θRE ,θ)
∂φγη1

, . . . , ∂ℓ(θRE ,θ)
∂φγηnκ

}T
, with

∂ℓ(θRE ;θ)

∂ϱακ
=

n∑
i=1

ni∑
j=1

{
δijmij(Tij)(Tij − κκ)+ −

∫ Tij

0
h0(s)Eijmij(s)(s− κκ)+ds

}
− ϱακ

σ2α
,

∂ℓ(θRE ;θ)

∂ϱhκ
=

n∑
i=1

ni∑
j=1

{
δij(Tij − κκ)+ −

∫ Tij

0
h0(s)Eij(s− κκ)+ds

}
− ϱhκ

σ2h
,

∂ℓ(θRE ;θ)

∂φXωκ
=

n∑
i=1

ni∑
j=1

Xijω

({
δijα(Tij)mij(Tij)qij(Tij)(Tij − κκ)+

−
∫ Tij

0
h0(s)Eijα(s)mij(s)qij(s)(s− κκ)+ds

}
+

[ nij∑
k=1

{Yijk(tijk − κκ)+ − mijk(tijk − κκ)+}

])
−φXωκ
σ2φxω

,
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∂ℓ(θRE ;θ)

∂φZνκ
=

n∑
i=1

ni∑
j=1

Zi(j)ν

({
δijα(Tij)mij(Tij)qij(Tij)(Tij − κκ)+

−
∫ Tij

0
h0(s)Eijα(s)mij(s)qij(s)(s− κκ)+ds

}
+

[ nij∑
k=1

{Yijk(tijk − κκ)+ − mijk(tijk − κκ)+}

])
−φZνκ
σ2φzν

,

∂ℓ(θRE ;θ)

∂ϱXωκ
=

n∑
i=1

ni∑
j=1

Xijω

{
δij(Tij − κκ)+ −

∫ Tij

0
h0(s)Eij(s− κκ)+ds

}
− ϱXΩκ

σ2xν
.

and

∂ℓ(θRE ;θ)

∂ϱZωκ
=

n∑
i=1

ni∑
j=1

Zi(j)ω

{
δij(Tij − κκ)+ −

∫ Tij

0
h0(s)Eij(s− κκ)+ds

}
− ϱZΩκ

σ2zν
.

Due to the random effects in S-RE being independent of each other, the Hessian

matrix Hϑ can be written as

Hϑ = Σϑ = −



Hϱα 0 0 0 0 0

0 Hϱh 0 0 0 0

0 0 HφX 0 0 0

0 0 0 HφZ 0 0

0 0 0 0 HϱX 0

0 0 0 0 0 HϱZ



,
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where Hϱα = diag
{
∂2ℓ(θRE ,θ)

∂ϱ2α1
, . . . , ∂

2ℓ(θRE ,θ)
∂ϱ2αnκ

}
, Hϱh = diag

{
∂2ℓ(θRE ,θ)

∂ϱ2h1
, . . . , ∂

2ℓ(θRE ,θ)
∂ϱ2hnκ

}
,

HφX =



HφX1
0 0 0

0 HφX2
0 0

0 0
. . . 0

0 0 0 HφXp


,

HφZ =



HφZ1
0 0 0

0 HφZ2
0 0

0 0
. . . 0

0 0 0 HφZq


,

HϱX =



HϱX1
0 0 0

0 HϱX2
0 0

0 0
. . . 0

0 0 0 HϱXq


,

and

HϱZ =



HϱZ1
0 0 0

0 HϱZ2
0 0

0 0
. . . 0

0 0 0 HϱZq


,
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with HφXω
= diag

{
∂2ℓ(θRE ,θ)
∂φ2

Xω1
, . . . , ∂

2ℓ(θRE ,θ)
∂φ2

Xωnκ

}
, HφZν

= diag

{
∂2ℓ(θRE ,θ)
∂φ2

Zν1
, . . . , ∂

2ℓ(θRE ,θ)
∂φ2

Zνnκ

}
,

HϱXω
= diag

{
∂2ℓ(θRE ,θ)
∂ϱ2Xω1

, . . . , ∂
2ℓ(θRE ,θ)
∂ϱ2Xωnκ

}
and HϱXω

= diag

{
∂2ℓ(θRE ,θ)
∂ϱ2Zν1

, . . . , ∂
2ℓ(θRE ,θ)
∂ϱ2Zνnκ

}
.

The derivatives in the Hessian matrix Hθφ are defined as

∂2ℓ(θRE ,θ)

∂ϱ2ακ
=

n∑
i=1

ni∑
j=1

{
−
∫ Tij

0

h0(s)Eijm2
ij(s)(s− κκ)

2
+ds

}
− 1

σ2
α

,

∂2ℓ(θRE ;θ)

∂ϱ2hκ
=

n∑
i=1

ni∑
j=1

{
−
∫ Tij

0

h0(s)Eij(s− κϑ)
2
+ds

}
− 1

σ2
h
,

∂2ℓ(θRE ,θ)

∂φ2
Xωκ

=

n∑
i=1

ni∑
j=1

X2
ijω

([
δijα(Tij)mij(Tij)qij(Tij){qij(Tij)− mij(Tij)}(Tij − κκ)

2
+

−
∫ Tij

0

h0(s)Eijα(s)mij(s)qij(s){α(s)mij(s)qij(s) + qij(s)− mij(s)}(s− κκ)
2
+ds

]
+

[nij∑
k=1

{
−mijkqijk(tijk − κκ)+

}])
− 1

σ2
φxω

,

∂2ℓ(θRE ,θ)

∂φ2
Zνκ

=

n∑
i=1

ni∑
j=1

Z2
i(j)ν

([
δijα(Tij)mij(Tij)qij(Tij){qij(Tij)− mij(Tij)}(Tij − κκ)

2
+

−
∫ Tij

0

h0(s)Eijα(s)mij(s)qij(s){α(s)mij(s)qij(s) + qij(s)− mij(s)}(s− κκ)
2
+ds

]
+

[nij∑
k=1

{
−mijkqijk(tijk − κκ)+

}])
− 1

σ2
φzν

,

∂2ℓ(θRE ,θ)

∂ϱ2Xωκ
=

n∑
i=1

ni∑
j=1

X2
ijω

{
−
∫ Tij

0

h0(s)Eij(s− κκ)
2
+ds

}
− 1

σ2
ϱxω

,

and

∂2ℓ(θRE ,θ)

∂ϱ2Zνκ
=

n∑
i=1

ni∑
j=1

Z2
i(j)ν

{
−
∫ Tij

0

h0(s)Eij(s− κκ)
2
+ds

}
− 1

σ2
ϱzν

.

96



A.2.2 Derivatives for Correction Terms

The correction terms in 3.13 require the following derivatives:
∂Σφ

∂ϑT ,
∂2Σ

∂ϑT∂ϑ
, ∂ϑ̂

(c)

∂cT
,

and ∂2ϑ̂
(c)

∂cT∂c
. The first derivative of Σϑ with respect to ϑT is a {(p+q+2)nκ}2×{(p+q+2)nκ}

matrix from the concatenation of nκ × nκ matrices representing the the derivatice of Σφ

with respect to an individual S-RE. The second derivative of Σϑ with respect to ϑT and ϑ

is a {(p+ q + 2)nκ}2 × {(p+ q + 2)nκ}2 matrix composed of the concatenation of nκ × nκ

matrices representing the second derivative of Σϑ with respect to an individual S-RE. The

remaining sections will derivatives for the corrections terms with respect the VCM’s α(t),

h0(t), βX(t), βZ(t), γX(t), and γZ(t).

Correction Terms for α(t)

The first derivative of ϱ̂α
(c) with respect to c is a n× n matrix denoted as

∂ϱ̂(c)α
∂cT

=


∂ϱ̂

(c)
α1

∂c1
· · · ∂ϱ̂

(c)
α1

∂cn

...
...

...

∂ϱ̂
(c)
αnκ
∂c1

· · · ∂ϱ̂
(c)
αnκ
∂cn

 ,

and the second derivative of ϱ̂
(c)
α with respect to c is a n2κ × nκ matrix denoted as

∂2ϱ̂
(c)
α

∂cT∂c
=



∂2ϱ̂
(c)
α

∂cT∂c1

∂2ϱ̂
(c)
α

∂cT∂c2

...

∂2ϱ̂
(c)
α

∂cT∂cn


.
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The first and second partial derivatives for ϱ̂α with respect to c as ∂ϱ̂
(c)
α

∂cT
|c=0 = H−1

ϱα and

∂2ϱ̂
(c)
α

∂cT∂c
|c=0 = H−1

ϱα (−∂Hϱα/∂ϱ
T
α)H

−1
ϱα H

−1
ϱα , respectively, where Hϱα = H

(c)
ϱα |c=0.

The partial derivatives
∂H

(c)
ϱα

∂cT
and

∂2H
(c)
ϱα

∂cT∂c
are obtained using the chain rule:

∂H
(c)
ϱα

∂cT

∣∣∣∣∣
(c,ϱα)=(0,ϱ̂α)

=
∂H

(c)
ϱα

∂ϱ̂α
(c)

∂ϱ̂α
(c)

∂cT

∣∣∣∣∣
(c,ϱα)=(0,ϱ̂α)

=
∂H

(c)
ϱα

∂ϱTα

∂ϱ̂α
(c)

∂cT

∣∣∣∣∣
c=0

,

∂2H
(c)
ϱα

∂cT∂c

∣∣∣∣∣
(c,ϱα)=(0,ϱ̂α)

=
∂2H

(c)
ϱα

∂ϱTα∂ϱα

(
∂ϱ̂α

(c)

∂c

∂ϱ̂α
(c)

∂cT

)∣∣∣∣∣
c=0

+
∂H

(c)
ϱα

∂ϱTα

∂2ϱ̂(c)α
∂cT∂c

∣∣∣∣∣
c=0

.

The first derivative of H
(c)
ϱα with respect to c is a n2κ × nκ matrix composed of con-

catenated nκ × nκ matrices obtained from
∂H

(c)
ϱα

∂cκ
for κ ∈ {1, ..., nκ}, where the matrix

∂H
(c)
ϱα

∂cκ
=

H
(c)
ϱα

∂ϱα

∂ϱ
(c)
α

∂cκ
=
∑nκ

κ′=1
∂H

(c)
ϱα

∂ϱακ′

∂ϱ
(c)

ακ′
∂cκ

. The second derivative of H
(c)
ϱα with respect to

c is a n2κ × n2κ matrix composed of n2κ matrices representing
∂2H

(c)
ϱα

∂cκ∂cκ′
of size nκ × nκ for

κ,κ′ ∈ {1, ..., nκ}, where ∂2H
(c)
ϱα

∂cκ∂cκ′
is formulated as

∂2H
(c)
ϱα

∂ϱTα∂ϱα

{
∂ϱ̂α

(c)

∂cκ

∂ϱ̂(c)α
∂cκ′

}∣∣∣∣∣
c=0

+
∂H

(c)
ϱα

∂ϱTα

∂2ϱ̂(c)α
∂cκ∂cκ′

∣∣∣∣∣
c=0

. (A.4)

The components in (A.4) are obtained as

∂2H
(c)
ϱα

∂ϱTα∂ϱα

{
∂ϱ̂α

(c)

∂cκ

∂ϱ̂α
(c)

∂cκ′

}∣∣∣∣∣
c=0

=

nκ∑
κ∗=1

{
∂2H

(c)
ϱα

∂ϱ2ακ∗

∂ϱ̂
(c)
ακ∗

∂cκ

∂ϱ̂
(c)
ακ∗

∂cκ′

}

and

∂H
(c)
ϱα

∂ϱTα

∂2ϱ̂(c)α
∂cκ∂cκ′

∣∣∣∣∣
c=0

=

nκ∑
κ∗=1

{
∂Hϱα

∂ϱακ∗

∂2ϱ̂
(c)
ακ∗

∂cκ∂cκ′

}∣∣∣∣∣
c=0

.
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The formulation for
∂Hϱα
∂ϱακ

is nκ×nκ matrix with the (κ,κ)th element being the only nonzero

element expressed as

n∑
i=1

ni∑
j=1

{
−
∫ Tij

0
h0(s)Eijm3

ij(s)(s− κκ)
3
+ds

}
.

The formulation of
∂2H

(c)
ϱα

∂ϱT
α∂ϱα

is a n2κ × n2κ matrix composed of n2κ block matrices. Each

block matrix is a nκ × nκ matrix with the (κ,κ)th element being the only nonzero element

expressed as

n∑
i=1

ni∑
j=1

{
−
∫ Tij

0
h0(s)Eijm4

ij(s)(s− κκ)
4
+ds

}
.

Correction Terms for h0(t)

The correction terms for h0(t) can be obtained the same way as the correction

terms for α(t) as referred in A.2.2. The formulation for
∂Hϱh
∂ϱhκ

is nκ × nκ matrix with the

(κ,κ)th element being the only nonzero element expressed as

n∑
i=1

ni∑
j=1

{
−
∫ Tij

0
h0(s)Eij(s− κκ)

3p
+ ds

}

The formulation of
∂2H

(c)
ϱh

∂ϱT
h ∂ϱh

is a n2κ × n2κ matrix composed of n2κ block matrices. Each

block matrix is a nκ × nκ matrix with the (κ,κ)th element being the only nonzero element
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expressed as
n∑
i=1

ni∑
j=1

{
−
∫ Tij

0
h0(s)Eij(s− κκ)

4p
+ ds

}

Correction Terms for βXω(t)

The correction terms for βXω(t) can be obtained the same way as the correction

terms for α(t) as referred in A.2.2. The formulation for
∂HφXω
∂φXωκ

is nκ × nκ matrix with the

(κ,κ)th element being the only nonzero element expressed as

n∑
i=1

ni∑
j=1

X3
ijω

(
δijα(Tij)mij(Tij)qij(Tij)

[
{qij(Tij)− mij(Tij)}2 − 2mij(Tij)qij(Tij)

]
(Tij − κκ)

3
+

−
∫ Tij

0

h0(s)Eijα(s)mij(s)qij(s)(s− κκ)
3
+ ×

×
[{

α(s)mij(s)qij(s) + qij(s)− mij(s)
}2

+ mij(s)qij(s)
{
α(s)qij(s)− α(s)mij(s)− 2

}]
ds

+

[nij∑
k=1

{
−mijkqijk

(
qijk − mijk

)
(tijk − κκ)

3
+

}])

The formulation of
∂2H

(c)
φXω

∂φT
Xω

∂φXω

is a n2κ × n2κ matrix composed of n2κ block matrices. Each

block matrix is a nκ × nκ matrix with the (κ,κ)th element being the only nonzero element

expressed as

n∑
i=1

ni∑
j=1

X4
ijω

(
δijα(Tij)mij(Tij)qij(Tij)

×
[
q3ij(Tij)− 11mij(Tij)q2ij(Tij)− 11m2

ij(Tij)qij(Tij)− m3
ij(Tij)

]
(Tij − κκ)

4
+

−
∫ Tij

0
h0(s)Eijα(s)mij(s)qij(s)(s− κκ)

4
+

[{
α(s)mij(s)qij(s) + qij(s)− mij(s)

}3
+mij(s)qij(s)

{
α(s)qij(s)− α(s)mij(s)− 2

}{
3α(s)mij(s)qij(s) + 4qij(s)− 4mij(s)

}
−2α(s)m2

ij(s)q
2
ij(s)

]
ds+

nij∑
k=1

[
−mijkqijk

{(
qijk − mijk

)2 − 2mijkqijk
}
(tijk − κκ)

4
+

])
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Correction Terms for βZν (t)

The correction terms for βZν (t) can be obtained the same way as the correction

terms for α(t) as referred in A.2.2. The formulation for
∂HφZν
∂φZνκ

is nκ × nκ matrix with the

(κ,κ)th element being the only nonzero element expressed as

n∑
i=1

ni∑
j=1

Z3
i(j)ν

(
δijα(Tij)mij(Tij)qij(Tij)

[
{qij(Tij)− mij(Tij)}2 − 2mij(Tij)qij(Tij)

]
(Tij − κκ)

3
+

−
∫ Tij

0

h0(s)Eijα(s)mij(s)qij(s)(s− κκ)
3
+ ×

×
[{

α(s)mij(s)qij(s) + qij(s)− mij(s)
}2

+ mij(s)qij(s)
{
α(s)qij(s)− α(s)mij(s)− 2

}]
ds

+

[nij∑
k=1

{
−mijkqijk

(
qijk − mijk

)
(tijk − κκ)

3
+

}])

The formulation of
∂2H

(c)
φZν

∂φT
Zν
∂φZν

is a n2κ × n2κ matrix composed of n2κ block matrices. Each

block matrix is a nκ × nκ matrix with the (κ,κ)th element being the only nonzero element

expressed as

n∑
i=1

ni∑
j=1

Z4
i(j)ν

(
δijα(Tij)mij(Tij)qij(Tij)

×
[
q3ij(Tij)− 11mij(Tij)q2ij(Tij)− 11m2

ij(Tij)qij(Tij)− m3
ij(Tij)

]
(Tij − κκ)

4
+

−
∫ Tij

0
h0(s)Eijα(s)mij(s)qij(s)(s− κκ)

4
+

[{
α(s)mij(s)qij(s) + qij(s)− mij(s)

}3
+mij(s)qij(s)

{
α(s)qij(s)− α(s)mij(s)− 2

}{
3α(s)mij(s)qij(s) + 4qij(s)− 4mij(s)

}
−2α(s)m2

ij(s)q
2
ij(s)

]
ds+

nij∑
k=1

[
−mijkqijk

{(
qijk − mijk

)2 − 2mijkqijk
}
(tijk − κκ)

4
+

])
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Correction Terms for γXω(t)

The correction terms for γXω(t) can be obtained the same way as the correction

terms for α(t) as referred in A.2.2. The formulation for
∂HϱXω
∂ϱXωκ

is nκ × nκ matrix with the

(κ,κ)th element being the only nonzero element expressed as

n∑
i=1

ni∑
j=1

X3
ijω

{
−
∫ Tij

0
h0(s)Eij(s− κκ)

3
+ds

}

The formulation of
∂2H

(c)
ϱXω

∂ϱT
Xω

∂ϱXω

is a n2κ × n2κ matrix composed of n2κ block matrices. Each

block matrix is a nκ × nκ matrix with the (κ,κ)th element being the only nonzero element

expressed as

n∑
i=1

ni∑
j=1

X4
ijω

{
−
∫ Tij

0
h0(s)Eij(s− κκ)

4
+ds

}

Correction Terms for γZν (t)

The correction terms for γZν (t) can be obtained the same way as the correction

terms for α(t) as referred in A.2.2. The formulation for
∂HϱZν
∂ϱZνκ

is nκ × nκ matrix with the

(κ,κ)th element being the only nonzero element expressed as

n∑
i=1

ni∑
j=1

Z3
i(j)ν

{
−
∫ Tij

0
h0(s)Eij(s− κκ)

3
+ds

}
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The formulation of
∂2H

(c)
ϱZν

∂ϱT
Zν
∂ϱZν

is a n2κ × n2κ matrix composed of n2κ block matrices. Each

block matrix is a nκ × nκ matrix with the (κ,κ)th element being the only nonzero element

expressed as

n∑
i=1

ni∑
j=1

Z4
i(j)ν

{
−
∫ Tij

0
h0(s)Eij(s− κκ)

4
+ds

}

A.2.3 M-Step

The score functions for the incomplete likelihood function with respect to σ2α, σ
2
h ,

σ2φxω
, σ2φzν

, σ2ϱxω and σ2ϱzν are provided as

V (σ2
α) =

∂

∂σ2
α

log

{∫
L(ϱα;u,θR )dϱα

}
=

∫ nκ∑
κ=1

(
ϱ2αϑ

2σ2
α

− 1

σ2
α

)
Lϑ(ϱακ)dϱακ = Vϑ(σ

2
α),

V (σ2
h ) =

∂

∂σ2
h
log

{∫
L(ϱh ;u,θR )dϱh

}
=

∫ nκ∑
κ=1

(
ϱ2hϑ
2σ2

h
− 1

σ2
h

)
Lϑ(ϱhκ)dϱhκ = Vϑ(σ

2
h ),

V (σ2
φxω

) =
∂

∂σ2
φxω

log

{∫
L(φXω

;u,θR )dφXω

}
=

∫ nκ∑
κ=1

(
φ2

Xωκ

2σ2
φxω

− 1

σ2
φxω

)
Lϑ(φXω

)dφXω

= Vϑ(σ
2
φxω

),

V (σ2
ϱxω

) =
∂

∂σ2
ϱxω

log

{∫
L(ϱXω

;u,θR )dϱXω

}
=

∫ nκ∑
κ=1

(
ϱ2Xωκ

2σ2
ϱxω

− 1

σ2
ϱxω

)
Lϑ(ϱXω

)dϱXω

= Vϑ(σ
2
ϱxω

),

V (σ2
φzν

) =
∂

∂σ2
φzν

log

{∫
L(φZν

;u,θR )dφZν

}
=

∫ nκ∑
κ=1

(
φ2

Zνκ

2σ2
φzν

− 1

σ2
φzν

)
Lϑ(φZν

)dφZν

= Vϑ(σ
2
φzν

), and

V (σ2
ϱzν

) =
∂

∂σ2
ϱzν

log

{∫
L(ϱZν

;u,θR )dϱZν

}
=

∫ nκ∑
κ=1

(
ϱ2Zνκ

2σ2
ϱzν

− 1

σ2
ϱzν

)
Lϑ(ϱZν

)dϱZν

= Vϑ(σ
2
ϱzν

),

respectively, where Lϑ(ϑ) = L(ϑ;u,θR )/
∫
L(ϑ;u,θR )dϑ is the posterior density function

of ϑ.
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The maximum likelihood estimates for the parameters in θR are obtained by max-

imizing the log-likelihood function (3.14). Similarly to the P-splines approach, computing

the Hessian matrix can be burdensome for the M-Step. Therefore, a quasi-Newton method

is used with a BFGS update to approximate the Hessian matrix. Approximating the up-

date for the Hessian matrix can be found in Givens and Hoeting (2012). Below are the first

derivatives for the M-Step.
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Derivatives for α(t)

∂ℓ∗(θ∗
RE ,θ

∗)

∂ραl
=

n∑
i=1

ni∑
j=1

{
T 1−l
ij m∗

ij(Tij)−
∫ Tij

0

h∗
0 (s)E

∗
ijs

1−lm∗
ij(s)ds+R

∗
ij

∂∆
(2)∗
ij

∂ραl

}

+

nκ∑
κ=1

 ς∗ακ

2

∂
∂2ℓ(θ∗

RE ,θ∗)
∂ϱ2ακ

∂ραl
+

ς∗hκ
2

∂
∂2ℓ(θ∗

RE ,θ∗)
∂ϱ2hκ

∂ραl

+

p∑
ω=1

 ς∗φxωκ

2

∂
∂2ℓ(θ∗

RE ,θ∗)
∂φ2

Xωκ

∂ραl
+

ς∗ϱxωκ

2

∂
∂2ℓ(θ∗

RE ,θ∗)
∂ϱ2

Xωϑ

∂ραl


+

q∑
ν=1

 ς∗φzνκ

2

∂
∂2ℓ(θ∗

RE ,θ∗)
∂φ2

zνκ

∂ραl
+

ς∗ϱzνκ

2

∂
∂2ℓ(θ∗

RE ,θ∗)
∂ϱ2

zνϑ

∂ραl




∂∆
(2)∗
ij

∂ραl
= δijT

1−l
ij m∗

ij(Tij)q∗
ij(Tij)

{
q∗
ij(Tij)− m∗

ij(Tij)
}

−
∫ Tij

0

s1−lh∗
0 (s)m

∗
ij(s)q

∗
ij(s)Eij

×
{
α2∗(s)m2∗

ij (s)q
∗
ij(s) + 3α∗(s)m∗

ij(s)q
∗
ij(s)− α∗(s)m2∗

ij (s) + q∗
ij(s)− m∗

ij(s)
}
ds

∂
∂2ℓ(θ∗

RE ,θ∗)
∂ϱ2ακ

∂ραl
=

n∑
i=1

ni∑
j=1

−
∫ Tij

0

h∗
0 (s)E

∗
ijm3∗

ij (s)(s− κκ)
2p
+ s1−lds

∂
∂2ℓ(θ∗

RE ,θ∗)
∂ϱ2hϑ

∂ραl
=

n∑
i=1

ni∑
j=1

−
∫ Tij

0

h∗
0 (s)E

∗
ij(s− κκ)

2
+s

1−lds

∂
∂2ℓ(θ∗

RE ,θ∗)
∂φ2

Xωϑ

∂ραl
=

n∑
i=1

ni∑
j=1

X2
ijω

[
δijm∗

ij(Tij)q∗
ij(Tij){q∗

ij(Tij)− m∗
ij(Tij)}(Tij − κκ)

2
+T

1−l
ij

−
∫ Tij

0

h∗
0 (s)E

∗
ijm∗

ij(s)q
∗
ij(s)

{
α2∗(s)m2∗

ij (s)q
∗
ij(s)

+ 3α∗(s)m∗
ij(s)q

∗
ij(s)− α∗(s)m2∗

ij (s) + q∗
ij(s)− m∗

ij(s)
}
(s− κκ)

2
+s

1−lds

]
∂

∂2ℓ(θ∗
RE ,θ∗)

∂φ2
Zνϑ

∂ραl
=

n∑
i=1

ni∑
j=1

Z2
i(j)ν

[
δijm∗

ij(Tij)q∗
ij(Tij){q∗

ij(Tij)− m∗
ij(Tij)}(Tij − κκ)

2
+T

1−l
ij

−
∫ Tij

0

h∗
0 (s)E

∗
ijm∗

ij(s)q
∗
ij(s)

{
α2∗(s)m2∗

ij (s)q
∗
ij(s)

+ 3α∗(s)m∗
ij(s)q

∗
ij(s)− α∗(s)m2∗

ij (s) + q∗
ij(s)− m∗

ij(s)
}
(s− κκ)

2
+s

1−lds

]
∂

∂2ℓ(θ∗
RE ,θ∗)

∂ϱ2
Xωϑ

∂ραl
=

n∑
i=1

ni∑
j=1

−X2
ijω

∫ Tij

0

h∗
0 (s)E

∗
ij(s− κκ)

2
+s

1−lds

∂
∂2ℓ(θ∗

RE ,θ∗)
∂ϱ2

Zνϑ

∂ραl
=

n∑
i=1

ni∑
j=1

−Z2
i(j)ν

∫ Tij

0

h∗
0 (s)E

∗
ij(s− κκ)

2
+s

1−lds
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Derivatives for h0(t)

∂ℓ∗(θ∗
RE ,θ

∗)

∂ρhl
=

n∑
i=1

ni∑
j=1

{
δijT

1−l
ij −

∫ Tij

0

h∗
0 (s)E

∗
ijs

1−lds+R
∗
ij

∂∆
(2)∗
ij

∂ρhl

}

+

nκ∑
κ=1

 ς∗ακ

2

∂
∂2ℓ(θ∗

RE ,θ∗)
∂ϱ2ακ

∂ρhl
+

ς∗hκ
2

∂
∂2ℓ(θ∗

RE ,θ∗)
∂ϱ2hϑ

∂ρhl

+

p∑
ω=1

 ς∗φxωκ

2

∂
∂2ℓ(θ∗

RE ,θ∗)
∂φ2

Xωκ

∂ρhl
+

ς∗ϱxωκ

2

∂
∂2ℓ(θ∗

RE ,θ∗)
∂ϱ2

Xωκ

∂ρhl


+

q∑
ν=1

 ς∗φzνκ

2

∂
∂2ℓ(θ∗

RE ,θ∗)
∂φ2

Zνκ

∂ρhl
+

ς∗ϱzνκ

2

∂
∂2ℓ(θ∗

RE ,θ∗)
∂ϱ2

Zνκ

∂ρhl




∂∆
(2)∗
ij

∂ραl
= −

∫ Tij

0

s1−φh∗
0 (s)α

∗(s)m∗
ij(s)q

∗
ij(s)E

∗
ij

{
α∗(s)m∗

ij(s)q
∗
ij(s) + q∗

ij(s)− m∗
ij(s)

}
ds

∂
∂2ℓ(θ∗

RE ,θ∗)
∂ϱ2ακ

∂ρhl
=

n∑
i=1

ni∑
j=1

−
∫ Tij

0

h∗
0 (s)E

∗
ijm2∗

ij (s)s
1−l(s− κκ)

2
+ds

∂
∂2ℓ(θ∗

RE ,θ∗)
∂ϱ2hκ

∂ρhl
=

n∑
i=1

ni∑
j=1

−
∫ Tij

0

h∗
0 (s)E

∗
ijs

1−l(s− κκ)
2
+ds

∂
∂2ℓ(θ∗

RE ,θ∗)
∂φ2

Xωκ

∂ρhl
=

n∑
i=1

ni∑
j=1

−X2
ijω

∫ Tij

0

h∗
0 (s)E

∗
ijα

∗(s)m∗
ij(s)q

∗
ij(s)

×{α∗(s)m∗
ij(s)q

∗
ij(s) + q∗

ij(s)− m∗
ij(s)}s1−l(s− κκ)

2
+ds

∂
∂2ℓ(θ∗

RE ,θ∗)
∂φ2

Zνκ

∂ρhl
=

n∑
i=1

ni∑
j=1

−Z2
i(j)ν

∫ Tij

0

h∗
0 (s)E

∗
ijα

∗(s)m∗
ij(s)q

∗
ij(s)

×{α∗(s)m∗
ij(s)q

∗
ij(s) + q∗

ij(s)− m∗
ij(s)}s1−l(s− κκ)

2
+ds

∂
∂2ℓ(θ∗

RE ,θ∗)
∂ϱ2

Xωκ

∂ρhl
=

n∑
i=1

ni∑
j=1

−X2
ijκ

∫ Tij

0

h∗
0 (s)E

∗
ijs

1−l(s− κκ)
2
+ds

∂
∂2ℓ(θ∗

RE ,θ∗)
∂ϱ2

Zνκ

∂ρhl
=

n∑
i=1

ni∑
j=1

−Z2
i(j)κ

∫ Tij

0

h∗
0 (s)E

∗
ijs

1−l(s− κκ)
2
+ds.

106



Derivatives for βXω′ (t)

∂ℓ∗(θ∗
RE ,θ

∗)

∂ϕXω′ l
=

n∑
i=1

ni∑
j=1

[
Xijω′

{
δijα

∗(Tij)m∗
ij(Tij)q∗

ij(Tij)T
1−l
ij −

∫ Tij

0

h∗
0 (s)E

∗
ijm∗

ij(s)q
∗
ij(s)s

1−lds

+

nij∑
k=1

(
Yijk − m∗

ijk

)
t1−l
ijk

}
+R

∗
ij

∂∆
(2)∗
ij

∂ϕXω′ l

]

+

nκ∑
κ=1

 ς∗ακ

2

∂
∂2ℓ(θ∗

RE ,θ∗)
∂ϱ2ακ

∂ϕXω′ l
+

ς∗hκ
2

∂
∂2ℓ(θ∗

RE ,θ∗)
∂ϱ2hκ

∂ϕXω′ l


+

p∑
ω=1

nκ∑
κ=1

 ς∗φxωκ

2

∂
∂2ℓ(θ∗

RE ,θ∗)
∂φ2

Xωκ

∂ϕXω′ l
+

ς∗ϱxωκ

2

∂
∂2ℓ(θ∗

RE ,θ∗)
∂ϱ2

Xωκ

∂ϕXω′ l


+

p∑
ν=1

nκ∑
κ=1

 ς∗φzνκ

2

∂
∂2ℓ(θ∗

RE ,θ∗)
∂φ2

Zνκ

∂ϕXω′ l
+

ς∗ϱzνκ

2

∂
∂2ℓ(θ∗

RE ,θ∗)
∂ϱ2

Zνκ

∂ϕXω′ l


∂∆

(2)
ij

∂ϕXω′ l
= Xijω′

(
δijα

∗(Tij)m∗
ij(Tij)q∗

ij(Tij)
[{

m∗
ij(Tij)− q∗

ij(Tij)
}2 − 2m∗

ij(Tij)q∗
ij(Tij)

]
T 1−l
ij

−
∫ Tij

0

h∗
0 (s)α

∗(s)m∗
ij(s)q

∗
ij(s)E

∗
ijs

1−l ×

×
[{

α∗(s)m∗
ij(s)q

∗
ij(s) + qij(s)− m∗

ij(s)
}2

+mij(s)q∗
ij(s)

{
α∗(s)q∗

ij(s)− α∗(s)m∗
ij(s)− 2

}]
ds

−
nij∑
k=1

{
m∗
ijk(q

∗
ijk)

2 − (m∗
ijk)

2q∗
ijk

}
t1−l
ijk

)
∂

∂2ℓ(θ∗
RE ,θ∗)

∂ϱ2
αϑ

∂ϕXω′ l
=

n∑
i=1

ni∑
j=1

−Xijω′

∫ Tij

0

h∗
0 (s)E

∗
ijm

∗
ij(s)

[
{m∗

ij(s)}2 + 2m∗
ij(s)q

∗
ij(s)

]
(s− κκ)

2p
+ s1−lds,

∂
∂2ℓ(θ∗

RE ,θ∗)
∂ϱ2hκ

∂ϕXω′ l
=

n∑
i=1

ni∑
j=1

−Xijω′

∫ Tij

0

h∗
0 (s)E

∗
ij(s− κκ)

2p
+ s1−lds,

∂
∂2ℓ(θ∗

RE ,θ∗)
∂φ2

Xωκ

∂ϕXω′ l
= Xijω′X2

ijω

(
δijα

∗(Tij)m∗
ij(Tij)q∗

ij(Tij)

×
[{

m∗
ij(Tij)− q∗

ij(Tij)
}2 − 2m∗

ij(Tij)q∗
ij(Tij)

]
T 1−l
ij (Tij − κκ)

2p
+

−
∫ Tij

0

h∗
0 (s)α

∗(s)m∗
ij(s)q

∗
ij(s)E

∗
ijs

1−ls1−l(s− κκ)
2p
+ ×

×
[{

α∗(s)m∗
ij(s)q

∗
ij(s) + q∗

ij(s)− m∗
ij(s)

}2
+m∗

ij(s)q
∗
ij(s) {α∗(s)qij(s)− α∗(s)mij(s)− 2}

]
ds

−
nij∑
k=1

{
mijk(q∗

ijk)
2 − (m∗

ijk)
2qijk

}
t1−l
ijk (s− κκ)

2p
+

)
.
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∂
∂2ℓ(θ∗

RE ,θ∗)
∂φ2

Zνκ

∂ϕXω′ l
= Xijω′Z2

i(j)ν

(
δijα

∗(Tij)m∗
ij(Tij)q∗

ij(Tij)

×
[{

m∗
ij(Tij)− q∗

ij(Tij)
}2 − 2m∗

ij(Tij)q∗
ij(Tij)

]
T 1−l
ij (Tij − κκ)

2p
+

−
∫ Tij

0

h∗
0 (s)α

∗(s)m∗
ij(s)q

∗
ij(s)E

∗
ijs

1−ls1−l(s− κκ)
2p
+ ×

×
[{

α∗(s)m∗
ij(s)q

∗
ij(s) + q∗

ij(s)− m∗
ij(s)

}2
+ m∗

ij(s)q
∗
ij(s) {α∗(s)qij(s)− α∗(s)mij(s)− 2}

]
ds

−
nij∑
k=1

{
mijk(q∗

ijk)
2 − (m∗

ijk)
2qijk

}
t1−l
ijk (s− κκ)

2p
+

)
∂

∂2ℓ(θ∗
RE ,θ∗)

∂ϱ2
Xωκ

∂ϕXω′ l
=

n∑
i=1

ni∑
j=1

−Xijω′X2
ijω

∫ Tij

0

h∗
0 (s)E

∗
ij(s− κκ)

2p
+ s1−lds,

∂
∂2ℓ(θ∗

RE ,θ∗)
∂ϱ2

Zνκ

∂ϕXω′ l
=

n∑
i=1

ni∑
j=1

−Xijω′Z2
i(j)ν

∫ Tij

0

h∗
0 (s)E

∗
ij(s− κκ)

2p
+ s1−lds,
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Derivatives for βZν′ (t)

∂ℓ∗(θ∗
RE ,θ

∗)

∂ϕZν′ l
=

n∑
i=1

ni∑
j=1

[
Zi(j)ν′

{
δijα

∗(Tij)m∗
ij(Tij)q∗

ij(Tij)T
1−l
ij −

∫ Tij

0

h∗
0 (s)E

∗
ijm∗

ij(s)q
∗
ij(s)s

1−lds

+

nij∑
k=1

(
Yijk − m∗

ijk

)
t1−l
ijk

}
+R

∗
ij

∂∆
(2)∗
ij

∂ϕZν′ l

]

+

nκ∑
κ=1

 ς∗ακ

2

∂
∂2ℓ(θ∗

RE ,θ∗)
∂ϱ2

αϑ

∂ϕZν′ l
+

ς∗hκ
2

∂
∂2ℓ(θ∗

RE ,θ∗)
∂ϱ2hκ

∂ϕZν′ l


+

p∑
ω=1

nκ∑
κ=1

 ς∗φxωκ

2

∂
∂2ℓ(θ∗

RE ,θ∗)
∂φ2

Xωκ

∂ϕZν′ l
+

ς∗ϱxωκ

2

∂
∂2ℓ(θ∗

RE ,θ∗)
∂ϱ2

Xωκ

∂ϕZν′ l


+

p∑
ν=1

nκ∑
κ=1

 ς∗φzνκ

2

∂
∂2ℓ(θ∗

RE ,θ∗)
∂φ2

Zνκ

∂ϕZν′ l
+

ς∗ϱzνκ

2

∂
∂2ℓ(θ∗

RE ,θ∗)
∂ϱ2

Zνκ

∂ϕZν′ l


∂∆

(2)
ij

∂ϕZν′ l
= Zi(j)ν′

(
δijα

∗(Tij)m∗
ij(Tij)q∗

ij(Tij)
[{

m∗
ij(Tij)− q∗

ij(Tij)
}2 − 2m∗

ij(Tij)q∗
ij(Tij)

]
T 1−l
ij

−
∫ Tij

0

h∗
0 (s)α

∗(s)m∗
ij(s)q

∗
ij(s)E

∗
ijs

1−l ×

×
[{

α∗(s)m∗
ij(s)q

∗
ij(s) + qij(s)− m∗

ij(s)
}2

+mij(s)q∗
ij(s)

{
α∗(s)q∗

ij(s)− α∗(s)m∗
ij(s)− 2

}]
ds

−
nij∑
k=1

{
m∗
ijk(q

∗
ijk)

2 − (m∗
ijk)

2q∗
ijk

}
t1−l
ijk

)
∂

∂2ℓ(θ∗
RE ,θ∗)

∂ϱ2
αϑ

∂ϕZν′ l
=

n∑
i=1

ni∑
j=1

−Zi(j)ν′

∫ Tij

0

h∗
0 (s)E

∗
ijm

∗
ij(s)

[
{m∗

ij(s)}2 + 2m∗
ij(s)q

∗
ij(s)

]
(s− κκ)

2p
+ s1−lds,

∂
∂2ℓ(θ∗

RE ,θ∗)
∂ϱ2hκ

∂ϕZν′ l
=

n∑
i=1

ni∑
j=1

−Zi(j)ν′

∫ Tij

0

h∗
0 (s)E

∗
ij(s− κκ)

2p
+ s1−lds,

∂
∂2ℓ(θ∗

RE ,θ∗)
∂φ2

Xωκ

∂ϕZν′ l
= Zi(j)ν′X2

ijω

(
δijα

∗(Tij)m∗
ij(Tij)q∗

ij(Tij)

×
[{

m∗
ij(Tij)− q∗

ij(Tij)
}2 − 2m∗

ij(Tij)q∗
ij(Tij)

]
T 1−l
ij (Tij − κκ)

2p
+

−
∫ Tij

0

h∗
0 (s)α

∗(s)m∗
ij(s)q

∗
ij(s)E

∗
ijs

1−ls1−l(s− κκ)
2p
+ ×

×
[{

α∗(s)m∗
ij(s)q

∗
ij(s) + q∗

ij(s)− m∗
ij(s)

}2
+m∗

ij(s)q
∗
ij(s) {α∗(s)qij(s)− α∗(s)mij(s)− 2}

]
ds

−
nij∑
k=1

{
mijk(q∗

ijk)
2 − (m∗

ijk)
2qijk

}
t1−l
ijk (s− κκ)

2p
+

)
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∂
∂2ℓ(θ∗

RE ,θ∗)
∂φ2

Zνκ

∂ϕZν′ l
= Zi(j)ν′Z2

i(j)ν

(
δijα

∗(Tij)m∗
ij(Tij)q∗

ij(Tij)

×
[{

m∗
ij(Tij)− q∗

ij(Tij)
}2 − 2m∗

ij(Tij)q∗
ij(Tij)

]
T 1−l
ij (Tij − κκ)

2p
+

−
∫ Tij

0

h∗
0 (s)α

∗(s)m∗
ij(s)q

∗
ij(s)E

∗
ijs

1−ls1−l(s− κκ)
2p
+ ×

×
[{

α∗(s)m∗
ij(s)q

∗
ij(s) + q∗

ij(s)− m∗
ij(s)

}2
+m∗

ij(s)q
∗
ij(s) {α∗(s)qij(s)− α∗(s)mij(s)− 2}

]
ds

−
nij∑
k=1

{
mijk(q∗

ijk)
2 − (m∗

ijk)
2qijk

}
t1−l
ijk (s− κκ)

2p
+

)
∂

∂2ℓ(θ∗
RE ,θ∗)

∂ϱ2
Xωκ

∂ϕZν′ l
=

n∑
i=1

ni∑
j=1

−Zi(j)ν′X2
ijω

∫ Tij

0

h∗
0 (s)E

∗
ij(s− κκ)

2p
+ s1−lds,

∂
∂2ℓ(θ∗

RE ,θ∗)
∂ϱ2

Zνκ

∂ϕZν′ l
=

n∑
i=1

ni∑
j=1

−Zi(j)ν′Z2
i(j)ν

∫ Tij

0

h∗
0 (s)E

∗
ij(s− κκ)

2p
+ s1−lds,
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Derivatives for γXω′ l(t)

∂ℓ∗(θ∗
RE ,θ

∗)

∂ρXω′ l
=

n∑
i=1

ni∑
j=1

[
Xijω′

{
δijT

1−l
ij −

∫ Tij

0

h∗
0 (s)E

∗
ijs

1−lds+R
∗
ij

∂∆
(2)∗
ij

∂ρXω′ l

]

+

nκ∑
κ=1

 ς∗ακ

2

∂
∂2ℓ(θ∗

RE ,θ∗)
∂ϱ2ακ

∂ρXω′ l
+

ς∗hκ
2

∂
∂2ℓ(θ∗

RE ,θ∗)
∂ϱ2hκ

∂ρXω′ l


+

p∑
ω=1

nκ∑
κ=1

 ς∗φxωκ

2

∂
∂2ℓ(θ∗

RE ,θ∗)
∂φ2

Xωκ

∂ρXω′ l
+

ς∗ϱxωκ

2

∂
∂2ℓ(θ∗

RE ,θ∗)
∂ϱ2

Xωκ

∂ρXω′ l


+

p∑
ν=1

nκ∑
κ=1

 ς∗φzνκ

2

∂
∂2ℓ(θ∗

RE ,θ∗)
∂φ2

Zνκ

∂ρXω′ l
+

ς∗ϱzνκ

2

∂
∂2ℓ(θ∗

RE ,θ∗)
∂ϱ2

Zνκ

∂ρXω′ l


∂∆

(2)∗
ij

∂ρXω′ l
= −Xijω′

∫ Tij

0

s1−lh∗
0 (s)α

∗(s)m∗
ij(s)q

∗
ij(s)E

∗
ij

{
α∗(s)m∗

ij(s)q
∗
ij(s) + q∗ij(s)−m∗

ij(s)
}
ds

∂
∂2ℓ(θ∗

RE ,θ∗)
∂ϱ2ακ

∂ρXω′ l
=

n∑
i=1

ni∑
j=1

−Xijω′

∫ Tij

0

h∗
0 (s)E

∗
ij{m∗

ij(s)}2s1−l(s− κκ)
2p
+ ds,

∂
∂2ℓ(θ∗

RE ,θ∗)
∂φ2

Xωκ

∂ρXω′ l
=

n∑
i=1

ni∑
j=1

−Xijω′X2
ijω

∫ Tij

0

h∗
0 (s)E

∗
ijα

∗(s)m∗
ij(s)q

∗
ij(s)

×{α∗(s)m∗
ij(s)q

∗
ij(s) + q∗ij(s)−m∗

ij(s)}s1−l(s− κκ)
2p
+ ds

∂
∂2ℓ(θ∗

RE ,θ∗)
∂φ2

Zνκ

∂ρXω′ l
=

n∑
i=1

ni∑
j=1

−Xijω′Z2
i(j)ν

∫ Tij

0

h∗
0 (s)E

∗
ijα

∗(s)m∗
ij(s)q

∗
ij(s)

×{α∗(s)m∗
ij(s)q

∗
ij(s) + q∗ij(s)−m∗

ij(s)}s1−l(s− κκ)
2p
+ ds

∂
∂2ℓ(θ∗

RE ,θ∗)
∂ϱ2

Xωκ

∂ρXω′ l
=

n∑
i=1

ni∑
j=1

−Xijω′X2
ijω

∫ Tij

0

h∗
0 (s)E

∗
ijs

1−l(s− κκ)
2p
+ ds,

∂
∂2ℓ(θ∗

RE ,θ∗)
∂ϱ2

Zνκ

∂ρXω′ l
=

n∑
i=1

ni∑
j=1

−Xijω′Z2
i(j)ν

∫ Tij

0

h∗
0 (s)E

∗
ijs

1−l(s− κκ)
2p
+ ds,
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Derivatives for γZν′ l(t)

∂ℓ∗(θ∗
RE ,θ

∗)

∂ρZν′ l
=

n∑
i=1

ni∑
j=1

[
Xijω′

{
δijT

1−l
ij −

∫ Tij

0

h∗
0 (s)E

∗
ijs

1−lds+R
∗
ij

∂∆
(2)∗
ij

∂ρZν′ l

]

+

nκ∑
κ=1

 ς∗ακ

2

∂
∂2ℓ(θ∗

RE ,θ∗)
∂ϱ2ακ

∂ρZν′ l
+

ς∗hκ
2

∂
∂2ℓ(θ∗

RE ,θ∗)
∂ϱ2hκ

∂ρZν′ l


+

p∑
ω=1

nκ∑
κ=1

 ς∗φxωκ

2

∂
∂2ℓ(θ∗

RE ,θ∗)
∂φ2

Xωκ

∂ρZν′ l
+

ς∗ϱxωκ

2

∂
∂2ℓ(θ∗

RE ,θ∗)
∂ϱ2

Xωκ

∂ρZν′ l


+

p∑
ν=1

nκ∑
κ=1

 ς∗φzνκ

2

∂
∂2ℓ(θ∗

RE ,θ∗)
∂φ2

Zνκ

∂ρZν′ l
+

ς∗ϱzνκ

2

∂
∂2ℓ(θ∗

RE ,θ∗)
∂ϱ2

Zνκ

∂ρZν′ l


∂∆

(2)∗
ij

∂ρZν′ l
= −Zi(j)ν′

∫ Tij

0

s1−lh∗
0 (s)α

∗(s)m∗
ij(s)q

∗
ij(s)E

∗
ij

{
α∗(s)m∗

ij(s)q
∗
ij(s) + q∗ij(s)−m∗

ij(s)
}
ds

∂
∂2ℓ(θ∗

RE ,θ∗)
∂ϱ2ακ

∂ρXω′ l
=

n∑
i=1

ni∑
j=1

−Xijω′

∫ Tij

0

h∗
0 (s)E

∗
ij{m∗

ij(s)}2s1−l(s− κκ)
2p
+ ds,

∂
∂2ℓ(θ∗

RE ,θ∗)
∂φ2

Xωκ

∂ρZν′ l
=

n∑
i=1

ni∑
j=1

−Zi(j)ν′X2
ijω

∫ Tij

0

h∗
0 (s)E

∗
ijα

∗(s)m∗
ij(s)q

∗
ij(s)

×{α∗(s)m∗
ij(s)q

∗
ij(s) + q∗ij(s)−m∗

ij(s)}s1−l(s− κκ)
2p
+ ds

∂
∂2ℓ(θ∗

RE ,θ∗)
∂φ2

Zνκ

∂ρZν′ l
=

n∑
i=1

ni∑
j=1

−Zi(j)ν′Z2
i(j)ν

∫ Tij

0

h∗
0 (s)E

∗
ijα

∗(s)m∗
ij(s)q

∗
ij(s)

×{α∗(s)m∗
ij(s)q

∗
ij(s) + q∗ij(s)−m∗

ij(s)}s1−l(s− κκ)
2p
+ ds

∂
∂2ℓ(θ∗

RE ,θ∗)
∂ϱ2

Xωκ

∂ρZν′ l
=

n∑
i=1

ni∑
j=1

−Zi(j)ν′X2
ijω

∫ Tij

0

h∗
0 (s)E

∗
ijs

1−l(s− κκ)
2p
+ ds,

∂
∂2ℓ(θ∗

RE ,θ∗)
∂ϱ2

Zνκ

∂ρZν′ l
=

n∑
i=1

ni∑
j=1

−Zi(j)ν′Z2
i(j)ν

∫ Tij

0

h∗
0 (s)E

∗
ijs

1−l(s− κκ)
2p
+ ds,
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