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Abstract

Novel Gene Expression Analyses to Accelerate Precision Pediatric Oncology

Research

by

Jacob J. Pfeil

Cancer is the second leading cause of death in the United States. While there have been medical

advances in treating cancer, the standard of care has not changed significantly in recent decades.

Chemotherapy, radiation, and surgery are the clinician’s first line of defense against cancer pro-

gression, but new therapeutic strategies such as precision oncology are being developed that

personalize cancer therapy to individuals. Precision oncology has primarily relied on coding

mutations as biomarkers of response to therapies. Numerous challenges have arisen in the in-

corporation of transcriptome analysis into precision oncology workflows. One such challenge

is in the necessary consideration of relative rather than absolute gene expression level, requir-

ing differential expression analysis across samples. However, expression programs related to

the cell-of-origin and tumor microenvironment effects confound the search for cancer-specific

expression changes. To address these challenges, we developed an unsupervised clustering

approach for discovering differential pathway expression within cancer cohorts using gene ex-

pression measurements. The hydra approach uses a Dirichlet process mixture model to au-

tomatically detect multimodally distributed genes and expression signatures. This led to the

identification of recurrent tumor microenvironment signatures across pediatric cancers as well

as a relationship between transposable element expression and immune infiltration.
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I then developed the vaccinaTE software toolkit to further characterize transposable

elements as potential immunotherapy targets. Using RNA-seq and mass spectrometry analy-

sis, I found expression and MHC-bound peptides uniquely mapping to transposable element

loci. This led to the creation of a novel process for prioritizing TE vaccine targets as well as

a microarray technology for personalizing TE vaccine therapy. To address the need for accu-

rate preclinical models to accelerate drug development for pediatric cancers, I then created a

Bayesian hierarchical modeling framework for evaluating patient-derived xenografts. I gener-

ated a database of PDX-specific pathway expression to facilitate validation studies that attempt

to target differentially expressed pathways. This thesis has sought to improve the treatment of

pediatric cancers through the identification of tumor subtypes that respond to specific therapies,

identify novel immunotherapy targets based on tumor microenvironment states, and use gene

expression analysis to optimize preclinical validation experiments. These methods have been

developed for pediatric cancers, but can be modified for adult cancers as well as other diseases

for which gene expression data is available.
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Childhood cancer patients need therapies that cure disease while also safeguarding

development and future health. Approximately, 16,000 children are diagnosed with cancer each

year in the United States. Despite significant improvements in childhood cancer therapies, one

in eight children will die of cancer. Some forms of childhood cancer respond better to standard

of care therapies than others (Figure 0.1). There are forms of pediatric brain tumors that have

survival rates around ~10 %.

The standard of care therapies are also harmful to the long-term health of child-

hood cancer survivors. For instance, children respond well to high-dose chemotherapy, but

chemotherapeutic agents are toxic and damage healthy tissue. Life-long side effects develop

in ~60 % of the childhood cancer survivors. Childhood cancer survivors are more likely to de-

velop other forms of cancer, heart and lung problems, stunted growth, and learning disabilities

[1, 23, 39]. There are ~380,000 childhood cancer survivors in the United States and 60% of

them are facing life-long disabilities as a result of their cancer therapy.

A more personalized approach may overcome the shortcomings of current standard

of care therapies. Molecularly targeted therapies identify rare alterations within a patient’s

cancer that can be specifically inhibited to prevent cancer progression. Targeted therapies are

biologically active at a lower dose than many standard of care therapies which makes them less

toxic. While targeted therapies have induced tumor remissions, cancer cells are prone to become

resistant to targeted therapies and the cancer returns. Research into the molecular mechanisms

of drug resistance as well as development of more pediatric targeted inhibitors may yield novel

therapeutic directions that yield better outcomes for patients with fewer harmful side effects

[32].
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Cancer cells divide at an uncontrolled rate and rely on DNA replication to sustain

growth. One of the first applications of chemotherapy targeted DNA replication. During the

1950s, the pediatric oncologist Sydney Farber was experimenting with folic acid (vitamin B)

as a potential cancer therapy. Folic acid is an important starting material for synthesizing DNA

and RNA, and leukemia cells use folic acid to proliferate. When exploring folic acid analogues,

Sydney Farber stumbled upon the folic acid antagonist amethopterin. Amethopterin works by

inhibiting the cell’s ability to use folic acid. Sydney Farber used amethopterin to induce remis-

sions in childhood leukemia. This was the first successful application of chemical therapies for

pediatric cancer and amethopterin remains part of the standard of care for childhood leukemia

[31, 5].

A more targeted approach identifies specific molecular alterations that make cancer

cells susceptible to targeted therapies. An example of a successful targeted therapy is imatinib

(Gleevec) for BCR-ABL driven leukemia. BCR-ABL is a fusion protein that couples the onco-

genic ABL1 gene with a constitutively expressed BCR gene. This increases the concentration

of the oncogenic ABL1 gene to drive cancer progression. Imatinib can correct for this alter-

ation by binding to the ABL active site and preventing ABL’s biological function. BCR-ABL

positive cancer cells depend on the ABL protein to proliferate, so inhibition of ABL’s function

halts cancer progression. The BCR-ABL fusion occurs in a fraction of leukemia patients, but

application of imatinib to BCR-ABL positive leukemias has been proven to improve treatment

outcomes [44, 2].

Each patient’s cancer evolves from a single cell that gradually accumulated cancer

features [38]. Cancer cells evolve through Darwinian selection such that the cancer cell pop-

3



Figure 0.1: Pediatric 5-year survival rates (Birth to 14 years) collected by the National Cancer
Institute SEER program [36].

ulation adapts to survive. This process is random and depends on the patient’s genetics and

environment. Therefore, each cancer is unique and requires a personalized approach to identi-

fying drug targets. The current treatment paradigm uses a one-size-fits-all approach that may

not be appropriate for some cancer patients. A personalized approach learns the molecular fea-

tures of each patient and identifies potential drug targets. The personalized approach maximizes

the use of effective therapies and improves treatment outcomes.

Gene Expression Analysis for Pediatric Cancer

Gene expression analysis is a relatively new approach for identifying drug targets for

cancer. Testing for specific DNA-level alterations has been better developed and has become

routine for several forms of cancer. Private diagnostics companies like Foundation Medicine

and Quest Diagnostics routinely test for genetic variants and report findings to clinicians. Clini-

cians use the genetic testing results to direct the treatment of their patients. Insurance companies
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will often cover the cost for genetic testing if there is an actionable variant for the disease. For

example, women with a family history of breast cancer can test for mutations in the BRCA1 or

BRCA2 DNA repair genes. Women with pathogenic BRCA mutations have a higher probabil-

ity of developing breast cancer. Identification of BRCA mutations also predicts sensitivity to a

targeted inhibitor. Mutations that disable BRCA genes correlate with sensitivity to PARP inhi-

bition. Cancer cells are often sensitive to loss of PARP and BRCA proteins [8]. Clinical genetic

testing is an important tool for identifying patients who could benefit from targeted therapies.

Genetic testing has proven clinical utility, but genetic testing depends on well char-

acterized variants. However, many patients who have genetic testing done receive a variant

prediction of unknown significance. Variants of unknown significance do not benefit the pa-

tient’s treatment, and pediatric cancer has fewer somatic mutations overall [43, 46, 15].

Pediatric cancer may also have a strong epigenetic component that cannot be de-

tected with genetic testing. Epigenetics consists of regulatory mechanisms that control gene

expression. Examples of epigenetic modifications include DNA methylation and histone post-

translational modifications. While epigenetic modifications are not as long-lasting as DNA-level

alterations, epigenetic modifications are inheritable and can promote tumorigenesis [7]. An ex-

ample of a pediatric genetic variant that has epigenetic implications is a recurrent mutation in

the histone tails of diffuse intrinsic pontine glioma patients. A recurrent histone H3 tail muta-

tion occurs for ~80% of diffuse intrinsic pontine glioma patients [17]. Histone H3 at Lysine 27

is substituted for a methionine. The lysine residue can be post-translationally modified through

methylation. Methylation of lysine 27 turns off the expression of neighboring genes. The me-

thionine substitution prevents methylation and leads to over-expression of some genes which is
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implicated in pediatric brain tumors.

Genetic variants and epigenetic modifications influence the expression of other genes

which can be measured by genome-wide gene expression profiling. Gene expression analysis

can therefore be used to identify the combined effects of genetic and epigenetic alterations in

cancer. Gene expression analysis has been used to identify cancer biomarkers and predict drug

sensitivity [4]. Gene expression analysis has not been validated for clinical applications, but

medical research institutions are currently developing these tools to identify drug targets for

cancer.

Overcoming Barriers to Genomic Medicine Approaches

Genomics is the study of the structure and function of all coding and non-coding el-

ements in the genome. DNA sequencing technology is used to study the genome sequence,

patterns of gene expression, and genome-wide epigenetic modifications. These methods are

now being translated into clinical tools and used in medicine to inform clinical decisions. Ge-

nomic medicine has a lot of potential, but several challenges are currently being addressed to

facilitate wide-spread adoption of genomic approaches.

One of the major milestones of genomic research was the completion of the Human

Genome Project which generated the first draft of the human genome. The Human Genome

Project initiated a new era of biological research with the hope of reinventing medicine and pro-

viding new cures for human disease. The United States has committed to supporting genomic

medicine research since the Human Genome Project. In 2015, President Obama announced

additional precision medicine funding through the Precision Medicine Initiative. The Precision
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Medicine Initiative provides $216 million for developing genomic approaches for cancer re-

search. One of the goals of the Precision Medicine Initiative is to collect genomic data for at

least one million US citizens.

In addition to public support, technological advances have also paved the way for ge-

nomic medicine. Innovations in DNA sequencing technology have lowered the cost to allow

for routine sequencing. Massively parallel DNA sequencing technology breaks the genome into

small fragments and uses fluorescence chemistry to discern the nucleic acid sequence. Rapid

development of DNA sequencing chemistry has driven the cost down, but the clinical utility of

DNA sequencing approaches needs to be proven. Several FDA approved drugs are linked to a

genomic alteration, which supports the utility of genomic methods, but DNA sequencing meth-

ods must be tested through regulatory channels and approved for clinical testing [28]. Medical

research institutions are validating and integrating DNA sequencing technology into pathology

departments.

The human genome contains three billion base pairs and 20,000 protein coding genes.

Genomic data is high-dimensional and requires many samples and sophisticated computational

resources to process and learn from the data. While some batch effects exist, genomic data

can be shared to increase the power of statistical analyses. The Cancer Genome Atlas (TCGA)

and Therapeutically Applicable Research to Generate Effective Treatments (TARGET) are large

cancer genome sequencing projects that generated high-quality sequencing data for cancer re-

searchers.

Genomic medicine requires computational infrastructure to analyze large high-dimensional

data sets. Fortunately, the cloud computing market gives medical institutions the flexibility to
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scale computation to community needs. The major cloud computing companies are Amazon,

Microsoft, and Google, and many Silicon Valley companies are taking part in the growing

genomic healthcare market. Although most hospitals would benefit from applying precision

medicine techniques, few have the resources to support a computer cluster. The cloud com-

puting market opens scientific computing to the general public. Cloud computing also creates

a market for bioinformatic application development. Clinicians will soon be able to select an

appropriate analysis, upload patient data, and download the results without being familiar with

the technical challenges of running bioinformatics software on a computer cluster. Research

into cloud-based bioinformatics tools will therefore facilitate adoption of precision medicine

approaches.

Tools For Gene Expression Analysis

Gene expression analysis measures the abundance of all coding and non-coding RNA

transcripts in a biological sample. The pattern of gene expression describes the transcriptional

activity of cells at the time the sample was collected. Cancer tissue is a complex mixture of

cancer cells, infiltrating immune cells, stromal cells, and cells from healthy tissue. Extracting

RNA from a heterogeneous tissue sample effectively averages gene expression estimates across

all cell types in the sample. The average is skewed towards the most common cell population

and cells expressing the most RNA transcripts.

The two main technologies for studying transcript abundance are gene expression

microarrays and RNA sequencing. Gene expression microarrays are glass sides with thou-

sands of short DNA probes printed on the surface. RNA transcripts are reverse transcribed

8



into complementary DNA and labeled with a fluorescent tag. The labeled cDNA is then al-

lowed to bind to the array of DNA probes. The number of bound cDNA is approximated using

fluorescence. Relative expression between a control and experimental group is measured by

labeling the groups with different color fluorophores. Microarrays have largely been replaced

with RNA sequencing, which is cheaper, more accurate, and can detect a larger range of tran-

scripts. Massively parallel DNA sequencing technology has been expanded to quantify RNA

transcript abundance. RNA transcripts are reverse-transcribed into cDNA and put into a DNA

sequencing library. RNA sequencing is quantitative such that the number of sequencing reads

for a transcript is proportional to the concentration of the transcript in the sample.

Raw RNA sequencing data is in FASTQ format. FASTQ format is a simple text

format that lists each sequence with the sequencer’s confidence score for calling each base in

the sequence. After preprocessing and quality control, the next step in gene expression analysis

is to map the sequencing data to a reference genome or transcriptome using sequence similarity.

The human genome is well-annotated, and the annotation is used to assign sequencing data to

specific genes. There are many algorithms for mapping sequencing data to reference genomes,

but one of the most widely adopted algorithms is called STAR [6]. After alignment, gene

quantification algorithms count the number of reads that mapped to each gene or transcript.

To improve transcript-level quantifications, some algorithms like the RSEM algorithm try to

maximize the likelihood of observing the data and estimate an expected count for each gene

[25].

Absolute gene expression is difficult to analyze, so a common analysis method is to

compare absolute gene expression of two groups of data and identify differences in expression.
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Differential expression analysis for cancer studies typically estimate gene expression in two

groups of samples, typically a healthy control and disease group, and identifies differences in

gene expression. Differential expression analysis can be used to find cancer genes by comparing

tumor expression to matched healthy tissue expression. When a tumor is biopsied or resected,

the surgeon often takes a sample of healthy tissue for comparison. For many cancer types, it is

not feasible to take a matched normal sample. In our experience, pediatric gene expression data

rarely has matched normal data, so other methods are needed to identify differentially expressed

genes.

One approach to interpreting gene expression results is to integrate genomic data into

functional pathways. Pathways describe mechanistic relationships between genes. Synthesiz-

ing differentially expressed genes into pathways provides a system-level view of cell function.

Examples of pathway databases include the Kyoto Encyclopedia of Genes and Genomes and

Reactome [22, 19]. Trained scientists curate pathway databases using scientific literature. One

challenge with pathway analysis is that genes interact in a tissue-specific manner and well-

curated pathways may not describe subtle changes in biological mechanisms. For this reason,

pathway analysis suffers from poor sensitivity.

UCSC Treehouse Approach To Finding Drug Targets

Treehouse is a UCSC pediatric cancer research initiative working to improve child-

hood cancer therapies using genomic data. Treehouse collaborates with several children’s hos-

pitals in California and presents findings at tumor boards at Stanford University, Children’s

Hospital of Orange County, BC Children’s Hospital, and University of California, San Fran-
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cisco (UCSF). While other pediatric research programs have focused on genetic variants, Tree-

house prioritizes gene expression analysis because there are so few actionable genetic variants.

The Treehouse analysis consists of classifying patients based on gene expression profiles and

predicting drug sensitivity using gene expression outlier analysis.

Treehouse advocates for open data sharing policies and has built one of the largest

cancer gene expression databases called the Treehouse compendium. The Treehouse com-

pendium includes public data from TARGET, TCGA, and the Short Read Archive. The com-

pendium also includes pediatric data obtained through collaboration with children’s hospitals

and clinical trials. Pediatric gene expression data is relatively rare, so most of the samples in

the compendium are from adults. Treehouse compendium V4 has over 11,000 samples rep-

resenting 77 different cancer types. There are 1,558 pediatric and young adult samples in the

compendium. Each version of the Treehouse compendium is processed using the same bioin-

formatic pipeline to reduce batch effects.

Treehouse has adopted docker containerization as a standard for bioinformatic pipeline

development. Docker is software that manages and builds light-weight virtual machines that can

run on any computer with docker software installed. Treehouse docker containers ensure that

partner institutions are able to run Treehouse methods in a consistent way. This is particularly

helpful in an environment where sharing raw data is difficult. For instance, some institutions

are unable to share raw sequencing data, so Treehouse can instead send the computation to the

data by deploying a dockerized version of the Treehouse pipeline.

The Treehouse workflow begins when clinicians submit RNA sequencing data for

analysis (Figure 0.2). Preprocessing and quality control steps ensure that reads are properly
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paired and that there is a sufficient number of RNA transcripts for analysis. Treehouse re-

searchers developed a novel QC metric for RNA sequencing data that quantifies the total num-

ber of uniquely mapped, exonic, and non-duplicate (UMEND) reads. The number of UMEND

reads estimates the total amount of gene-level information in an RNA-sequencing run. A thresh-

old of ten million UMEND reads is used to filter low-quality RNA sequencing data.

Preprocessed RNA sequencing data are then submitted to the UCSC Genomics Core

for alignment and gene expression quantification. The major steps in the Genomics Core RNA-

seq pipeline are alignment using the STAR algorithm [6] and gene quantification using the

RSEM algorithm [25]. The Genomics Core RNA-seq pipeline outputs several normalized gene-

level expression estimates, but Treehouse currently uses transcripts per million mapped reads

(TPM) normalization.

The Treehouse tertiary analysis pipeline classifies patients into disease cohorts, de-

tects gene expression outliers, identifies enriched pathways, and nominates therapeutic targets.

The results of Treehouse tertiary analysis are sent to a trained Treehouse analyst who synthe-

sizes the information and reports findings to clinicians.

Genomic data is high-dimensional and therefore difficult to visualize. Dimensional-

ity reduction methods have been developed to aid in identifying patterns in high-dimensional

data. Treehouse uses a method developed in Joshua Stuarts lab at UCSC called TumorMap.

TumorMap is a data clustering algorithm that uses the Google Maps API for visualization [3].

The TumorMap visualization for the Treehouse compendium shows that samples tend to cluster

by cancer subtype (Figure 0.3). An unexpected TumorMap placement occurs when a patient

places with a cancer subtype that is different than the patient’s original cancer diagnosis. Unex-
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Figure 0.2: The foundation for the Treehouse analysis is the Treehouse compendium. The
Treehouse compendium is an ongoing project to improve representation of pediatric samples
through collaborations. Samples that are processed through the Treehouse workflow are also
placed within the compendium. After receiving Tumor RNA-seq data, the data is preprocessed
and the quality of the data is assessed. The preprocessing step checks for common errors in se-
quencing data, removes adapter sequences, and submits the data for alignment and gene quan-
tification. The tumor gene expression profile is placed on the TumorMap and analyzed using
outlier analysis. These results are reviewed by a trained analyst and presented to clinicians for
further review.
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pected TumorMap placements occur in approximately 20% of Treehouse cases and may suggest

a refinement in the molecular diagnosis.

TumorMap also describes the patient’s six most similar gene expression profiles or

nearest neighbors. The nearest neighbor cancer types are used to define the patients disease

cohort for outlier analysis. The disease cohort can range from a single cancer to a mixture of six

different cancer types. All compendium samples that belong to the disease cohort are aggregated

to estimate the patients expected gene expression profile. The expected gene expression profile

is used to find abnormally expressed genes.

Treehouse analysis identifies genes that are over- or under-expressed in a given tumor.

Cells over-expressing cancer genes are sensitive to targeted inhibitors. Kothari et al. identified

sensitivity to ERBB2 inhibition by trastuzumab (herceptin) in breast cancer cell lines over-

expressing ERBB2. These cells were also over-expressing the FGFR4 genes, and combination

trastuzumab and FGFR4 inhibition by PD173074 showed an additive decrease in cell viability

[24]. Gene expression outlier analysis has also been used to inform clinical decisions. Jones et

al., used over-expression of RET and under-expression of PTEN to infer up-regulation of the

MAPK pathway. The patient consented to targeted inhibition of RET using sunitinib and the

patient’s disease stabilized for four months [18].

There are two kinds of Treehouse outlier analyses. The first is pan-cancer outlier anal-

ysis which averages over all cancer types in the Treehouse compendium. Pan-cancer analysis

highlight tissue-specific expression features. The second kind of outlier analysis is pan-disease

outlier analysis, which uses the TumorMap disease cohort to calculate outlier expression thresh-

olds. The list of gene expression outliers are then used for pathway analysis.
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Figure 0.3: TumorMap representation of Treehouse compendium version1 shows distinct clus-
tering of gene expression profiles by cancer diagnosis. TumorMap uses the Google Maps API
to visualize relationships between genomic features. Each hexagon in the TumorMap repre-
sents a sample in the Treehouse compendium and is colored by the patient’s cancer diagnosis.
Each gene expression profile is grouped by the six most similar gene expression profiles in the
compendium. A patient’s gene expression profile places with a surprising cancer cluster in 20%
of cases.
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Treehouse identifies gene expression outliers using the standard Tukey method for

univariate data [14]. Over-expression outliers are expressed in the top 5% of all genes and have

gene expression levels greater than Q3+1.5 · IQR, where Q3 is the third quartile and IQR is the

interquartile range. Likewise, under-expression outliers have gene expression levels lower than

Q1− 1.5 · IQR. The Tukey method sets thresholds for labeling genes expression outliers. The

method is analogous to using an outlier threshold of three standard deviations.

Treehouse outlier analysis was developed because current tools for identifying differ-

entially expressed genes are not designed for single sample applications. Differential expres-

sion analysis requires replicate expression profiles to control for technical noise. While repli-

cate measurements are important for making accurate statistical inferences, the cost of RNA

sequencing and the limited amount of cancer tissue per patient make it difficult to generate

replicate gene expression profiles.

Differential expression analysis also requires defining two conditions. For cancer, the

two conditions are usually cohort of paired healthy tissue, or normal samples, and the second

condition is a cohort of disease samples. In addition to having limited cancer tissue, in our

experience, it is more difficult to obtain paired normal pediatric tissue. Therefore, there is not

a control group to compare pediatric cancer expression to. This is one reason to assemble the

Treehouse compendium of adult and pediatric cancer because we can use other pediatric cancer

samples to identify patterns in expression for pediatric tissue.

Pathway analysis is used to interpret gene expression outlier lists. Pathway analysis

uses prior knowledge of molecular biology to interpret genomic data. Pathways are often rep-

resented as lists of related genes called gene sets. Gene set enrichment analysis is used to find
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Figure 0.4: Process of narrowing down Treehouse tertiary analysis results. Treehouse tertiary
analysis produces outlier genes, enriched pathways, and lists of known drug-gene interactions.
Gene expression outliers are prioritized if there is pathway level evidence and the outlier is
druggable. Relevant literature is used to refine the model and provide evidence for gene interac-
tions. Clinical information, including genetic testing, is used to supplement the cancer model.
Finally, the results are discussed with clinicians who provide more evidence for the Treehouse
drug targets.
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statistically significant overlap between gene expression outliers and pathway gene sets. Tree-

house uses the MSigDB website for gene set enrichment analysis [27]. Hallmark and Canonical

pathway gene sets are used to interpret gene expression outlier results [27, 26]. Hallmark gene

sets annotate gene expression programs under specific biological conditions. For example, the

MYC Targets V1 gene set contains genes expressed at high levels when the oncogenic MYC

protein is active. Canonical gene sets describe well characterized protein interactions that may

not be reflected in gene expression data.

In order to identify potential druggable targets, over-expressed genes from pan-cancer

and pan-disease analysis are used as input data into the Drug Gene Interaction Database (DGIdb)

[12]. DGIdb pulls data from publications to find the relationship between genes and their po-

tential drug inhibitors. For our CKCC analysis, we set DGIdb to query for drug-gene inter-

actions among four cancer databases: CIVic, CancerCommons, MyCancerGenome, and My-

CancerGenomeClinicalTrail, thus limiting our findings to only cancer therapies. DGIdb does

not contain all known drug-gene interactions nor does it guarantee gene druggability. As a

result, literature searches are used to find rational targeted inhibitors for over-expressed genes.

Treehouse analysis ends with synthesizing gene expression outlier results, enriched

pathway information, drug-gene interaction data, and relevant literature. The goal of the anal-

ysis is to build a descriptive model for the patients cancer and identify targeted inhibitors that

could impede tumor growth. Treehouse therapeutic directions consist of FDA-approved drugs,

off-label use of FDA-approved drugs for adults, and targeted therapies currently in pediatric

clinical trials. This information is presented back to clinicians for review.

Alternative methods to differential expression analysis include GFOLD and Cancer
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Outlier Profile Analysis (COPA). GFOLD is the state-of-the-art method for ranking genes based

on fold-change. GFOLD prioritizes genes that have high fold change relative to controls and a

large number of read counts. GFOLD performs better than differential expression algorithms

when working with a single biological replicate [9]. The Treehouse algorithm is similar to

GFOLD in that a gene expression outlier needs to be expressed at a much higher level than the

median and be in the top 5% of all expressed genes.

Many differential expression tools are based on a t-test for comparing two means.

One challenge with this approach is that some samples in a cohort may have differential gene

expression that is not consistent with the overall population. For a particular disease, patient

A may have MYC over-expression and normal levels of CDK4, but patient B may have CDK4

over-expression and normal levels of MYC. The COPA method was designed to find subtle

patterns of differential expression compared to a normal cohort. The COPA method assumes

that the healthy cohort will not have pathogenic expression, but samples within the experimen-

tal disease cohort will show mutually exclusive expression for pairs of genes [29, 42]. This

approach fails for Treehouse analysis because our control cohort includes cancer samples that

will likely have over-expression of oncogenic genes.
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Chapter 1

Comparative Tumor RNA Sequencing

Analysis for Difficult-to-Treat Pediatric and

Young Adult Patients With Cancer

Introduction

Innovation in the treatment of pediatric cancers has lagged behind that of adult can-

cers, although many of the FDA-approved therapies for adults likely have efficacy in pediatric

cancers. In order to repurpose available cancer therapies for pediatric cancers, the UCSC Tree-

house Childhood Cancer Initiative developed a gene expression analysis called Treehouse out-

lier analysis to match individual patients to FDA-approved drugs. The use of gene expression

data is particularly important since many pediatric cancers have low mutation burdens with

some tumors lacking a single somatic mutation. Current research suggests that pediatric can-

cers are driven by epigenetic dysregulation, so an analysis of gene expression may yield leads
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for more cases. As described above, the Treehouse outlier analysis uses the Tukey box-and-

whisker plot thresholds for defining overexpression. Using our gene expression approach, we

found more actionable leads than those found by a strictly DNA-level analysis of pediatric tu-

mors.

As a Treehouse case analyst, I learned to apply the Treehouse gene expression analy-

sis to pediatric cancer cases. I was responsible for cases from UCSF where I regularly analyzed

cases that were presented at UCSF molecular tumor boards. My investigation of individual

pediatric cases helped to shape the Treehouse approach and I identified several improvements

that have been implemented in Treehouse case analysis. I also trained several people in the

Treehouse group to apply Treehouse outlier analysis which has led to improvements the overall

analysis. I provided bioinformatic and statistical expertise for the Treehouse analysis, including

the theoretical background underlying the Tukey outlier method. I also generated figure 5 for

the [40] manuscript, which detailed the benefits of the Treehouse expression outlier approach

compared to the current clinical practice of focusing on mutated genes.
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Abstract

IMPORTANCE Pediatric cancers are epigenetic diseases; therefore, considering tumor gene
expression information is necessary for a complete understanding of the tumorigenic processes.

OBJECTIVE To evaluate the feasibility and utility of incorporating comparative gene expression
information into the precision medicine framework for difficult-to-treat pediatric and young adult
patients with cancer.

DESIGN, SETTING, AND PARTICIPANTS This cohort study was conducted as a consortium
between the University of California, Santa Cruz (UCSC) Treehouse Childhood Cancer Initiative and
clinical genomic trials. RNA sequencing (RNA-Seq) data were obtained from the following 4 clinical
sites and analyzed at UCSC: British Columbia Children’s Hospital (n = 31), Lucile Packard Children’s
Hospital at Stanford University (n = 80), CHOC Children’s Hospital and Hyundai Cancer Institute
(n = 46), and the Pacific Pediatric Neuro-Oncology Consortium (n = 24). The study dates were
January 1, 2016, to March 22, 2017.

EXPOSURES Participants underwent tumor RNA-Seq profiling as part of 4 separate clinical trials at
partner hospitals. The UCSC either downloaded RNA-Seq data from a partner institution for analysis
in the cloud or provided a Docker pipeline that performed the same analysis at a partner institution.
The UCSC then compared each participant’s tumor RNA-Seq profile with more than 11 000 uniformly
analyzed tumor profiles from pediatric and young adult patients with cancer, downloaded from
public data repositories. These comparisons were used to identify genes and pathways that are
significantly overexpressed in each patient’s tumor. Results of the UCSC analysis were presented to
clinical partners.

MAIN OUTCOMES AND MEASURES Feasibility of a third-party institution (UCSC Treehouse
Childhood Cancer Initiative) to obtain tumor RNA-Seq data from patients, conduct comparative
analysis, and present analysis results to clinicians; and proportion of patients for whom comparative
tumor gene expression analysis provided useful clinical and biological information.

RESULTS Among 144 samples from children and young adults (median age at diagnosis, 9 years;
range, 0-26 years; 72 of 118 [61.0%] male [26 patients sex unknown]) with a relapsed, refractory, or
rare cancer treated on precision medicine protocols, RNA-Seq–derived gene expression was
potentially useful for 99 of 144 samples (68.8%) compared with DNA mutation information that was
potentially useful for only 34 of 74 samples (45.9%).

(continued)

Key Points
Question Is it feasible and useful to

compare the tumor RNA sequencing

data of a child or young adult with the

tumor RNA sequencing data of

thousands of other patients (of all ages)

in a research setting?

Findings Among 144 tumor samples

from children and young adults,

comparative RNA sequencing analysis,

conducted across 4 precision medicine

studies in the United States and Canada,

was feasible and potentially useful for

99 of 144 pediatric and young adult

cancer samples. In contrast, DNA

mutation information was potentially

useful for only 34 of 74 samples.

Meaning This study’s findings suggest

that open sharing and combined

analysis of tumor RNA sequencing data

from pediatric and young adult patients

treated on different clinical trials may

represent a feasible approach and may

produce useful clinical and biological

information for individual patients.
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Abstract (continued)

CONCLUSIONS AND RELEVANCE This study’s findings suggest that tumor RNA-Seq comparisons
may be feasible and highlight the potential clinical utility of incorporating such comparisons into the
clinical genomic interpretation framework for difficult-to-treat pediatric and young adult patients
with cancer. The study also highlights for the first time to date the potential clinical utility of
harmonized publicly available genomic data sets.

JAMA Network Open. 2019;2(10):e1913968. doi:10.1001/jamanetworkopen.2019.13968

Introduction

We present a framework for comparative RNA sequencing (RNA-Seq) analysis of pediatric tumors
across multiple precision medicine studies. Our framework uses public genomic data sets of more
than 11 000 tumor RNA-Seq samples that we consolidated and released to the community. We
describe an application of our framework and the data compendium to the analysis of 144 tumors
from children and young adults with a relapsed, refractory, or rare cancer, studied on 4 separate
precision medicine trials in the United States and Canada.

While genomic profiling of tumors is becoming the standard of care in oncology, many tumors,
especially in children, do not harbor actionable DNA aberrations. Tumor gene expression information
may increase the number of actionable aberrations detected in tumors, and its utility is being
evaluated in adults (eg, the WINTHER trial1). Results of several studies suggested the possible clinical
utility of RNA-Seq for children. The Michigan Oncology Sequencing Center's Peds-MiOncoSeq study2

evaluated 92 patients with relapsed or refractory tumors using a combination of whole-exome
sequencing (WES) and RNA-Seq and reported that 46% of samples had actionable findings, including
36% of this subset that had gene fusions with a known or suspected role in tumorigenesis identified
through RNA-Seq analysis. In another study3 of 59 children, most with relapsed or refractory cancers,
analysis revealed actionable findings, including RNA fusions, in 51% of cases. The Individualized
Therapy for Relapsed Malignancies in Childhood (INFORM) consortium4 studied 57 patients with
WES, low-coverage whole-genome sequencing, RNA-Seq, methylation, and gene expression
microarrays and reported a 50% rate of actionable findings that included overexpression of
druggable oncogenes. Several patients whose tumors exhibited oncogene overexpression were
placed on targeted therapies against these alterations.4 Finally, the Precision in Pediatric Sequencing
(PIPseq) program5 profiled 65 patients using a combination of tumor or normal WES and tumor
RNA-Seq. Tumor RNA-Seq identified therapeutic targets in 23% of the patients; these targets
included overexpression of druggable oncogenes, defined based on comparisons of tumor RNA-Seq
expression with the RNA-Seq expression levels in a panel of normal tissues. While results of these
studies suggested that RNA-Seq expression may be clinically beneficial, they did not provide
reproducible methods that could be applied across different precision medicine trials.

Our group recently developed a reproducible and scalable approach for performing outlier
analysis for pediatric patients with cancer by using large publicly available cancer RNA-Seq data sets.6

The objective of the present study was to evaluate the feasibility and potential utility of our approach
for cancer samples collected prospectively from multiple precision medicine trials in difficult-to-
treat pediatric and young adult patients with cancer.

Methods

Study Design
Among 144 tumors from children and young adults, this cohort study was conducted as a consortium
of the following 4 clinical sites: British Columbia Children’s Hospital (BCCH), Vancouver, British
Columbia, Canada; Lucile Packard Children’s Hospital at Stanford University (LPCH), Stanford,
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California; CHOC Children’s Hospital and Hyundai Cancer Institute, Orange, California; and the Pacific
Pediatric Neuro-Oncology Consortium (PNOC), San Francisco, California. During the period from
January 1, 2016, to March 22, 2017, the University of California, Santa Cruz (UCSC) obtained and
processed tumor RNA-Seq data, as well as deidentified clinical and molecular information, for 181
tumors from 161 children and young adults with a relapsed, refractory, or rare cancer treated on
precision medicine protocols. Tumor RNA-Seq data were obtained from the following 4 clinical sites:
BCCH (n = 31), LPCH (n = 80), CHOC (n = 46), and PNOC (n = 24). Each clinical site had its own
precision medicine protocol in place, and UCSC Treehouse Childhood Cancer Initiative served as a
third-party institution conducting secondary analysis of each site’s tumor RNA-Seq data. This study
followed the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) reporting
guideline.

The BCCH study was approved by the University of British Columbia Research Ethics
Committee. The LPCH protocol “Clinical Implementation of Genomic Analysis in Pediatric
Malignancies” was approved by the Stanford University Institutional Review Board. The CHOC study
“Pilot Project: Molecular Profiles of Newly Diagnosed, Refractory and Recurrent Childhood,
Adolescent, and Young Adult Cancers” was approved by the CHOC Children’s Hospital and Hyundai
Cancer Institute Institutional Review Board. The PNOC-003 protocol has been previously described.7

The UCSC Treehouse Childhood Cancer Initiative protocol was approved by the UCSC Institutional
Review Board.

Because this study involved the sharing of deidentified data, UCSC was not required by our
institutional review board to obtain informed consent from study participants; however, clinical
partners obtained written informed consent from their participants as per their individual study
protocols. All study participants were informed that their deidentified data would be shared with
research partners, including UCSC.

Statistical Analysis
Comparative RNA-Seq Analysis
All RNA-Seq data (11 340 compendium samples and 144 samples from clinical partners) were first
uniformly processed using the RNA-Seq pipeline version 3.2 developed by the UCSC Computational
Genomics Lab8 (eMethods in the Supplement). The UCSC either downloaded RNA-Seq data from a
partner institution for analysis in the cloud or provided a Docker pipeline composed of gene-level
expression calculation, which was run at the partner institution; gene expression outlier analysis and
identification of druggable genes and pathways was then run on each of the 144 samples at UCSC.

Gene Expression Outlier Analysis
Gene-level transcript per million data were used to perform gene expression outlier analysis9 to
identify transcripts significantly enriched in each patient’s tumor compared with either all 11 340
tumors or tumor types identified as most similar (pan-disease analysis). For pan-cancer analysis, we
used the filtered set of 27 084 genes; for pan-disease analysis, we used the unfiltered set of 58 581
unique GENCODE Human Release 23 genes (eMethods in the Supplement) to make sure we did not
miss genes whose expression is specific to certain tumor subtypes.

Identification of Druggable Overexpressed Genes and Gene Sets
We obtained the following 3 lists of overexpressed genes: one list from pan-disease outlier analysis,
a second list from pan-cancer outlier analysis, and a third list from overlapping genes in pan-disease
and pan-cancer lists. For each list, we identified potential druggable genes and statistically enriched
pathways.

Drug-Gene Interaction Analysis
We used the Drug-Gene Interaction Database to assess which of the overexpressed genes can be
considered actionable by available therapies.10 The database programmatically searches through
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publications and other curated databases for reported associations between human genes and
available inhibitors. To refine our findings to only existing cancer therapies, we set the Drug-Gene
Interaction Database to query for drug-gene interactions among the following 4 curated cancer
databases (all part of the Drug-Gene Interaction Database10): CIViC, Cancer Commons, My Cancer
Genome, and My Cancer Genome Clinical Trial. The Drug-Gene Interaction Database does not contain
all known drug-gene interactions, nor does it guarantee a gene’s druggability. As a result, we
performed additional literature searches and consulted published clinical cancer genomic studies.
We prioritized studies, such as INFORM,4 in which gene expression information was considered in
assessing the actionability of each gene. The 92 genes for which overexpression was considered
directly or indirectly actionable in this study are listed in eTable 1 in the Supplement.

Gene Set Overlap Analysis
In parallel to identifying druggable genes, we used the Molecular Signature Database11 to identify
overexpressed cancer pathways in the tumor sample. Gene set overlap analysis computes
statistically significant pathways by evaluating the overlap between the input gene list of
overexpressed genes and the gene sets from the Molecular Signature Database11 collections
“Hallmark Gene Sets” and “Canonical Pathways.” In this analysis, for each input gene list, we looked
at the first 100 reported gene sets that have the false discovery rate (false discovery rate q value)
below 0.05.

DNA Mutation Analysis
DNA mutation data were obtained from the following platforms: Foundation Medicine gene panel
(LPCH), whole-genome sequencing as part of the Personalized Onco-Genomics Program (POG)
(BCCH), NantOmics whole-genome sequencing (CHOC), or Ashion Analytics whole-exome
sequencing (PNOC). We used the National Cancer Institute (NCI) Pediatric Molecular Analysis for
Therapeutic Choice (hereinafter the NCI Pediatric MATCH) considerations to curate the mutation
data reported by the DNA platforms and to classify samples into treatment arms based on the DNA
aberrations.12

Results

Patient Characteristics
To evaluate the feasibility of comparative RNA-Seq analysis across multiple precision medicine
studies, we obtained RNA-Seq data from 181 samples from 161 pediatric and young adult patients (age
range, 0-29 years; 65 of 108 [60.2%] male) with a relapsed, refractory, or rare cancer treated at the
following 4 clinical sites: BCCH (n = 31), LPCH (n = 80), CHOC (n = 46), and PNOC (n = 24). The age
at diagnosis was available for 126 individuals: the median age at diagnosis was 9 years, and the range
was 0 to 26 years. Among 144 tumor samples, 46 were from female patients, while 72 were male
patients; sex was not reported for 26 samples. RNA sequencing quality control analysis (eMethods in
the Supplement) was applied to all 181 samples; of these, 144 samples from 128 patients were of
sufficient quality for further analysis. For each case, gene-level transcript per million measurements
were computed8 from tumor RNA-Seq data, which were used in 2 types of analyses to identify
expression features of potential clinical relevance (Figure 1).

Reference Compendium for Tumor Comparisons
To provide a robust reference for tumor comparisons and gene expression outlier detection, we
assembled a compendium of 11 340 uniformly analyzed adult, pediatric, and young adult tumor
profiles (eTable 2 and eFigure 1 in the Supplement). Of 11 340 samples in the compendium, 1859
(16.4%) were from pediatric, adolescent, and young adult patients with cancer who were younger
than 30 years.
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Gene Expression Outlier Analysis
Gene expression outlier analysis is a promising method for identifying druggable overexpressed
oncogenes in adult tumors.9,13 We performed gene expression outlier analysis against similar tumors
(pan-disease analysis) and against all cancers in our compendium (pan-cancer analysis) (eMethods
in the Supplement).

The gene expression outliers were analyzed for the presence of genes whose products could be
targeted by small molecules directly or indirectly by targeting the downstream signaling pathway
(eTable 1 in the Supplement). This list is based on a similar list prepared by the INFORM study4 and
contains 37 genes whose protein products can be targeted directly and 55 genes whose products
cannot be targeted but that function in a pathway that can be targeted by a therapy. We
hypothesized that aberrant gene dosage of these directly or indirectly actionable genes could be
detected by gene expression outlier analysis. We also sought to assess whether multiple members of
the same pathways were highly expressed in concert in the same tumor.

Of 144 high-quality RNA-Seq data sets, 99 (68.8%) harbored outlier gene expression of 1 of 92
actionable genes. In 75 samples, both an actionable gene and the corresponding pathway were
overexpressed using outlier analysis. The most common gene expression outlier was FLT3 (OMIM
136351), overexpressed in 16 samples, all from hematopoietic tumors. This was followed by BTK (OMIM
300300) and CDK6 (OMIM 603368), overexpressed in 14 samples each. While BTK was overexpressed
in 14 hematopoietic tumors, CDK6 was overexpressed in both hematopoietic and nonhematopoietic
tumors, including neuroblastoma and glioma. The most common gene expression outlier in
nonhematopoietic tumors was PTCH1 (OMIM 601309), overexpressed in 11 samples from
craniopharyngioma, neurofibroma, sarcoma, glioma, medulloblastoma, and osteosarcoma. The most
common overrepresented gene set was receptor tyrosine kinases, overexpressed in 55 samples from
all diagnostic categories (Figure 2). Among these, FLT3 was most commonly overexpressed, followed
by FGFR1 (OMIM 136350) and PDGFRA (OMIM 173490). While FGFR1 was overexpressed in a variety of
nonhematopoietic tumor types, PDGFRA was exclusively overexpressed in brain tumors, and FLT3 was
exclusively overexpressed in acute leukemias. Of the 92 actionable genes, 47 were overexpressed in
2 or more samples (Figure 3). For the remaining 45 of the 144 samples (31.3%), our comparative
RNA-Seq analysis did not identify any actionable outliers (eTable 3 in the Supplement). An example
of Treehouse analysis is provided in eFigure 2 in the Supplement.

Comparison of RNA-Seq Findings With DNA Mutation Analysis
A small number of childhood tumors contain DNA alterations that may forecast response to
molecularly targeted therapies.14 Children’s Oncology Group NCI Pediatric MATCH12 is a nationwide
basket trial for children and adolescents with relapsed or refractory solid tumors evaluating the use of
DNA analysis to match patients to therapies. We had mutation data available for 74 of the 144
samples in our cohort; 52 of 74 were solid tumors.

Figure 1. Treehouse Workflow

181 Samples (from 4 institutions) of tumor 
RNA-Seq data (tumor biopsy or resection)

74 Samples (from 4 institutions) underwent 
tumor DNA mutation analysis

144 Samples underwent calculation of 
gene-level expression profile

Comparative gene expression profile analysis
• Most correlated samples
• Gene expression outliers

Overexpressed druggable pathways Mutation and comparative RNA-Seq findings
discussed in research tumor boards

The components in brown are performed by the
University of California, Santa Cruz bioinformatics
team, while the components in gray are performed by
the clinical partners. Calculation of gene-level
expression profiles can occur at the University of
California, Santa Cruz or at a partner site through the
use of portable software. Both the University of
California, Santa Cruz and clinical partners participate
in research discussions about cases. RNA-Seq indicates
RNA sequencing.
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Of 74 solid tumor and leukemia samples, 34 (45.9%) had an actionable abnormality as defined
by the NCI Pediatric MATCH study12 detected by DNA analysis. Fifty-five of 74 samples (74.3%) had
an actionable gene expression outlier (eTable 3 in the Supplement) detected by RNA-Seq, 28 (37.8%)
had abnormalities detected by both DNA and RNA analysis, 6 (8.1%) had only DNA abnormalities,
and 13 (17.6%) had no DNA or RNA abnormalities. Remarkably, 27 samples (36.5%) had only a gene
expression dosage abnormality, highlighting the potential utility of comparative RNA-Seq for
nominating molecular targets for patients with no DNA findings (Figure 4 and Figure 5).

To assess the consistency of DNA and RNA findings, we reviewed 28 samples that had both
types of findings. In 11 of 28 samples, at least 1 of the genes with a targetable DNA mutation was
identified as a gene expression outlier, suggesting that actionable DNA mutations are often
associated with the overexpression of the mutated gene. In 17 of 28 samples, however, none of the
genes with a targetable DNA abnormality were identified as a gene expression outlier. Because we do
not necessarily expect all mutant genes to be abnormally expressed themselves, we then reviewed
the 17 samples to see if there was expression support of the DNA abnormality downstream of the
mutated gene.

DNA analysis of 2 acute lymphoblastic leukemia samples (TH01_0122_S01 and TH01_0130_S01)
revealed a PAX5 (OMIM 167414)–JAK2 (OMIM 147796) fusion, which was previously shown to activate
Janus kinase and signal transducer and activator of transcription (JAK/STAT) signaling and promote
a progenitor phenotype in leukemia cells.15 Our comparative gene expression analysis did not reveal
the overexpression of the JAK/STAT pathway in these tumors but instead identified overexpression of
phosphatidylinositol-3-kinase (PI3K)/AKT and the mammalian target of rapamycin (mTOR)
(PI3K/AKT/mTOR) signaling pathway and B-cell receptor signaling pathways in both tumors and
overexpression of FLT3 in TH01_0130_S01. The overexpression of PI3K/AKT/mTOR and B-cell receptor
signaling pathway genes may be indicative of a progenitor B-cell state assumed by the leukemia cells.16

Similarly, another acute lymphoblastic leukemia sample (TH01_0129_S01) harbored a BCR–ABL (OMIM
151410) fusion. RNA sequencing revealed outlier expression of PI3K/AKT/mTOR and B-cell receptor
signaling pathways; PI3K/AKT/mTOR activation is known to be downstream of the BCR-ABL fusion
signaling,17 suggesting that this overexpression is consistent with the DNA finding of the gene fusion.
DNA analysis of 5 leukemia samples (TH01_0124_S01, TH01_0134_S01, TH03_0010_S01,
TH03_0010_S02, and TH03_0011_S01) identified an activating mutation in NRAS (OMIM 164790).
Activation of NRAS has been associated with proliferation and self-renewal in leukemia via the activation

Figure 2. Actionable Gene Expression Outliers Identified Through Comparative RNA Sequencing Analysis of the Cohort

Outliers visualized by gene set (x-axis)A Outliers visualized by disease type (x-axis)B
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Cell cycle
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DNA repair

The details of findings in each sample are listed in eTable 3 in the Supplement. BCR
indicates B-cell receptor; CNS, central nervous system tumors; HEME, hematopoietic
tumors; HSP, heat-shock proteins; JAK/STAT, Janus kinase and signal transducer and
activator of transcription signaling pathway; NBL, neuroblastomas; PI3K/AKT/mTOR,

phosphatidylinositol-3-kinase (PI3K)/AKT and the mammalian target of rapamycin
(mTOR) signaling pathway; RAS/RAF/MEK, mitogen-activated protein kinase RAS/RAF/
MEK/ERK pathway; RTK, receptor tyrosine kinases; SHH, sonic hedgehog; and SRC,
sarcomas.
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of MEK and mTOR signaling pathways.18 Our RNA-Seq analysis revealed overexpression of cell cycle
or BCL2 (OMIM 603167)–MDM2 (OMIM 164785) pathways in TH01_0134_S01, TH03_0010_S01,
TH03_0010_S02, and TH03_0011_S01; these pathways are downstream of activated RAS signaling,
and their overexpression is thus consistent with the activating NRAS mutation. Notably, TH01_0124_S01
harbored subclonal activating mutations in both KRAS (OMIM 190070) and NRAS (20.6% and 29.1%
mutant allele frequency based on RNA-Seq, respectively). While gene expression analysis revealed
overexpression of FLT3, outlier expression associated with pathways downstream of activated RAS
signaling was not found. These findings may represent either discordance between the DNA and RNA
analysis or intratumor heterogeneity in this leukemia sample, already suspected based on the presence
of 2 subclonal RAS mutations.

Figure 3. Recurrent Actionable Gene Expression Outliers
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Figure 2B, organized by disease (x-axis). Filled black squares denote outliers identified
using the pan-cancer analysis approach, while unfilled white squares denote outliers

identified by the pan-disease analysis approach. CNS indicates central nervous system
tumors; HEME, hematopoietic tumors; NBL, neuroblastoma; and SRC, sarcoma.
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DNA analysis of a diffuse intrinsic pontine glioma (DIPG), TH02_0092_S01, revealed copy
number gains of KDR (OMIM 191306), KIT (OMIM 164920), and PDGFRA, located on 4q12. Notably,
while KIT and PDGFRA were highly expressed but not meeting the outlier threshold (84th and 93rd
percentiles in the compendium), KDR was expressed at a much lower level, in the 54th percentile.
Therefore, considering expression information alongside the copy number information may be useful
for prioritizing druggable targets within copy number amplicons.19 In another DIPG sample,
TH02_0091_S01 with a BRAF (OMIM 164757) p.V600E mutation, gene expression analysis revealed
outlier expression of CSF1R (OMIM 164770). Recent work in melanoma showed that overexpression of
CSF1R can occur in melanomas with activating BRAF or MAPK mutations and is associated with
resistance to BRAF inhibitors.20 Because the interaction of these 2 pathways in DIPG is not known,
we did not consider these concordant DNA and RNA findings.

Figure 4. Comparison of DNA and RNA Analysis Results
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Figure 5. Utility of RNA Sequencing (RNA-Seq) Analysis
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A, RNA-Seq analysis can be used as additional support for DNA aberrations when a single
mutated gene is itself highly expressed or downstream genes are highly expressed as a
result of the mutation. B, With multiple mutated genes, RNA-Seq analysis can be used to
prioritize among them based on high expression of the mutated gene itself or

downstream targets. C, If DNA aberration is not expressed, nor are downstream genes,
RNA-Seq analysis can be used to deprioritize DNA abnormalities with no evidence of
effectiveness at the level of RNA. D, RNA-Seq analysis can reveal an abnormality in the
absence of DNA mutation.
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An atypical teratoid rhabdoid tumor (TH03_0016_S01) and myoepithelial carcinoma
(TH03_0113_S01) harbored loss of SMARCB1 (OMIM 601607) (INI1) through a frameshift mutation or
protein loss of unknown mechanism detected by immunohistochemistry, respectively. Comparative
gene expression analysis of both tumors revealed outlier expression of FGFR1, a promising target in
rhabdoid tumors deficient in SMARCB1 (INI1).21 Gene expression analysis of DIPG tumor TH02_0087_S01
with a loss-of-function mutation of PIK3R1 (OMIM 171833) activating the PI3K/AKT/mTOR pathway
revealed overexpression of the JAK/STAT pathway. While it is unknown whether PI3K/AKT/mTOR and
JAK/STAT pathways interact in DIPG, these pathways may be coactivated as a result of PI3K mutations
in meningiomas.22 Because the interaction of these 2 pathways in DIPG is not known, we did not count
this sample as having concordant DNA and RNA findings. Comparative gene expression analysis of a
malignant peripheral nerve sheath tumor TH06_0645_S01 and neurofibroma TH06_0646_S01 with loss
of NF1 (OMIM 162200) revealed overexpression of sonic hedgehog signaling present in this tumor
type.23 We also identified overexpression of receptor tyrosine kinases ERBB3 (OMIM 190151) and EGFR
(OMIM 131550) in these tumors.

Finally, in a glioma TH03_0290_S01 with a BRAF p.V600E mutation, the mutation was not
expressed in the RNA. In an additional case (TH01_0131_S01), an activating JAK2 mutation was
supported by only a few reads, with more than 100 total read coverage in both the DNA and RNA,
suggesting that the mutation may represent a subclonal event or a technical artifact.

Overall, our review of 17 samples with mutated genes not themselves overexpressed by
RNA-Seq analysis revealed that in 12 of the 17 samples the overexpressed genes and pathways were
consistent with the detected DNA mutations, even though the mutant genes themselves were not
overexpressed. In the remaining 5 samples, outlier expression was not consistent with an activating
mutation detected in the sample (including the lack of a BRAF p.V600E mutant allele in the RNA in
TH03_0290_S01; ambiguous evidence in TH02_0087_S01, TH01_0124_S01, and TH02_0091_S01;
and possible technical issues in TH01_0131_S01).

Discussion

DNA sequencing is increasingly integrated in clinical trials to identify new molecular targets for
children with incurable cancers. However, molecular targets are found for only a small number of
patients, and the yield is much lower than that of similar adult cancer trials.24 Studies focusing on
pediatric cancers have shown that the percentage of patients with potentially actionable findings
increases to 40% to 50% when RNA-Seq data are considered alongside DNA mutation information.4

Herein, we described a framework for including RNA-Seq–derived gene expression information into
precision medicine studies. Most notably, we show for the first time to date that such a framework
can be used consistently across separate precision medicine clinical trials.

To our knowledge, our work represents the first report of a translational cancer genomic
analysis in which prospective patient data are analyzed by a third-party computational group, with
results returned to clinicians and researchers. We found that this comparative analysis is feasible and
can produce new information of potential clinical relevance in 68.8% of samples. In 36.5% of
samples (27 of 74), druggable overexpressed genes and pathways were identified based on RNA
analysis alone and were not apparent in the tumor DNA analysis. Our work suggests that direct
investigations of the clinical utility and effectiveness of tumor RNA-Seq–derived gene expression
information will be valuable, and the next phase of our project will focus on defining the incremental
benefit of this approach. The findings from our work also suggest that open sharing of cancer
genomic data can benefit each pediatric and young adult patient with cancer so that every family’s
struggle contributes to the advancement of clinical care for the families that follow.

Clinical Implications
Although this study was not designed to assess clinical consequences, we noted associations of
comparative RNA-Seq analysis findings and clinical features. For example, our analysis of a high-risk
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neuroblastoma sample revealed outlier expression of the ALK (OMIM 105590) kinase and CDK6 kinase
(eFigure 2 in the Supplement). The outlier expression of CDK6, as well as several other cell cycle genes,
was consistent with a known DNA amplification of CDK6 in this sample; however, the potential activation
of ALK (OMIM 191175) was not evident before the RNA analysis. In another example, a 2-year-old boy
with multifocal stage 4 hepatoblastoma metastatic to the lungs, was initially treated in the Childhood
Liver Tumour Strategy Group of the International Society of Paediatric Oncology (SIOPEL-4) study,25

followed by surgery, 2 cycles of HEP0731 regimen T protocol, then salvage therapy with 3 cycles of
vincristine, irinotecan, and temozolomide and 1 cycle of gemcitabine-oxaliplatin with bevacizumab. The
patient had disease progression despite these therapies. Pathological analysis showed well and poorly
differentiated hepatoblastoma with fetal and embryonal elements, and immunostaining showed
retention of INI1 staining and diffuse nuclear and cytoplasmic β-catenin. Foundation Medicine testing
revealed the p.G34V variant in CTNNB1, previously reported in hepatocellular carcinoma as an activating
mutation.26 Comparative RNA-Seq analysis of the liver sample (TH03_0004_S04) uncovered gene
expression similar to the proliferation subtype of hepatocellular carcinoma27,28 as well as outlier
expression of HSP90B1, interleukin 6, and 4 other members of the JAK/STAT pathway. The
overexpression of HSP90B was previously noted in hepatocellular carcinoma.29 The proliferative
subtype of hepatocellular carcinoma is characterized by increased proliferation, high levels of serum
α-fetoprotein (AFP), and chromosomal instability27; tumors with chromosomal instability are potentially
sensitive to Aurora kinase inhibitors.30 Consistent with the similarity of the tumor to the proliferative
subtype of hepatocellular carcinoma, the patient with the TH03_0004_S04 tumor had a response to
the pan-kinase inhibitor pazopanib hydrochloride, with activity against Aurora kinase A.31 Based on the
present study, after initiation of this treatment, the patient had a decline in his AFP levels from 14 036
to 1052 ng/mL at 7 weeks after initiation of the therapy (to convert AFP level to micrograms per liter,
multiply by 1.0). At 10 weeks into this therapy, restaging studies showed progressive disease, and the
patient was switched to therapy with ruxolitinib phosphate, without objective response by AFP levels
or by imaging criteria.

Limitations
Our study has some limitations. The heterogeneous nature of the patients analyzed in this study (all
types of relapsed, refractory, and rare cancers) made drawing general statements difficult. The study
was not designed to directly evaluate clinical utility of comparative RNA-Seq analysis, and clinical
follow-up data on these patients were not readily available.

Conclusions

Our experience suggests that it is feasible to include RNA-Seq–derived gene expression analysis in
precision medicine studies and that this analysis can be harmonized across studies. We showed that
RNA-Seq–derived gene expression was potentially useful for 68.8% of 144 samples compared with
DNA mutation information, which was potentially useful for only 45.9% of 74 samples. Our study also
highlights for the first time to date the potential clinical utility of harmonized publicly available
genomic data sets. Open sharing and combined analysis of tumor RNA-Seq data from pediatric and
young adult patients treated on separate clinical trials represent a feasible approach and can produce
useful clinical and biological information for individual patients.
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Chapter 2

Toil enables reproducible, open source, big

biomedical data analyses

Introduction

My first role in the UCSC Genomics Institute was to develop bioinformatics pipelines

uing the Toil framework. While working on Toil pipelines, I found the hardcoding of server

resources to be a significant limitation of this software. I developed an innovative solution

to this problem that allows the user to dynamically allocate server resources. This work was

incorporated into the Toil source code and has been adopted by many UCSC bioinformatic

pipelines.
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open sharing of protocols. With a precise 
ontology to describe standardized protocols, 
it may be possible to share methods widely 
and create community standards.

We envisage that in future individual 
research laboratories, or clusters of co-
located laboratories, will have in-house, 
low-cost automation work cells but will 
access DNA foundries via the cloud to 
carry out complex experimental workflows. 
Technologies enabling this from companies 
such as Emerald Cloud Lab (S. San 
Francisco, CA, USA), Synthace (London) 
and Transcriptic (Menlo Park, CA, USA) 
could, for example, send experimental 
designs to foundries and return output 
data to a researcher. This ‘mixed economy’ 
should accelerate the development and 
sharing of standardized protocols and 
metrology standards and shift a growing 
proportion of molecular, cellular and 
synthetic biology into a fully quantitative 
and reproducible era.

To the Editor:
Contemporary genomic data sets contain 
tens of thousands of samples and petabytes 
of sequencing data1–3. Pipelines to process 
genomic data sets often comprise dozens 
of individual steps, each with their own set 
of parameters4,5. Processing data at this 
scale and complexity is expensive, can take 
an unacceptably long time, and requires 
significant engineering effort. Furthermore, 
biomedical data sets are often siloed, both for 
organizational and security considerations 
and because they are physically difficult 
to transfer between systems, owing to 
bandwidth limitations. The solution to better 
handling these big data problems is twofold: 
first, we need robust software capable of 
running analyses quickly and efficiently, and 
second, we need the software and pipelines to 
be portable, so that they can be reproduced in 
any suitable compute environment.

Here, we present Toil, a portable, open-
source workflow software that can be used 
to run scientific workflows on a large scale 
in cloud or high-performance computing 
(HPC) environments. Toil was created to 
include a complete set of features necessary 
for rapid large-scale analyses across multiple 
environments. While several other scientific 
workflow software packages6–8 offer some 
subset of fault tolerance, cloud support and 

HPC support, none offers these with the 
scale and efficiency to process petabyte and 
larger-scale data sets efficiently. This sets Toil 
apart in its capacity to produce results faster 
and for less cost across diverse environments. 

We demonstrate Toil by processing >20,000 
RNA-seq samples (Fig. 1). The resulting 
meta-analysis of five data sets is available 
to readers9. The large majority (99%) of 
these samples were analyzed in under 4 days 
using a commercial cloud cluster of 32,000 
preemptable cores.

To support the sharing of scientific 
workflows, we designed Toil to execute 
common workflow language (CWL; 
Supplementary Note 1) and provide draft 
support for workflow description language 
(WDL). Both CWL and WDL are standards 
for scientific workflows10,11. A workflow 
comprises a set of tasks, or ‘jobs’, that are 
orchestrated by specification of a set of 
dependencies that map the inputs and 
outputs between jobs. In addition to CWL 
and draft WDL support, Toil provides a 
Python application program interface (API) 
that allows workflows to be declared statically, 
or generated dynamically, so that jobs can 
define further jobs during execution and 
therefore as needed (Supplementary Note 2 
and Supplementary Toil Documentation). 
The jobs defined in either CWL or Python 
can consist of Docker containers, which 
permit sharing of a program without 
requiring individual tool installation or 
configuration within a specific environment. 
Open-source workflows that use containers 
can be run regardless of environment. We 
provide a repository of genomic workflows 
as examples12. Toil supports services, such 
as databases or servers, that are defined and 

Figure 1  RNA-seq pipeline and expression concordance. (a) A dependency graph of the RNA-seq 
pipeline we developed (named CGL). CutAdapt was used to remove extraneous adapters, STAR was 
used for alignment and read coverage, and RSEM and Kallisto were used to produce quantification 
data. (b) Scatter plot showing the Pearson correlation between the results of the TCGA best-practices 
pipeline and the CGL pipeline. 10,000 randomly selected sample and/or gene pairs were subset from 
the entire TCGA cohort and the normalized counts were plot against each other; this process was 
repeated five times with no change in Pearson correlation. The unit for counts is: log2(norm_counts+1).
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protection of the input data, and as part 
of a broader security plan, can be used to 
ensure compliance with strict data security 
requirements.

To demonstrate Toil, we used a single 
script to compute gene- and isoform-level 
expression values for 19,952 samples from 
four studies: The Cancer Genome Atlas 
(TCGA)1, Therapeutically Applicable 
Research To Generate Effective Treatments 
(TARGET; https://ocg.cancer.gov/programs/
target), Pacific Pediatric Neuro-Oncology 
Consortium (PNOC; http://www.pnoc.
us/), and the Genotype Tissue Expression 
Project (GTEx)18. The data set comprised 108 
terabytes. The Toil pipeline uses STAR19 to 
generate alignments and read coverage graphs, 
and performs quantification using RSEM20 
and Kallisto21 (Fig. 1 and Supplementary 
Note 6). Processing the samples in a single 
batch on ~32,000 cores on AWS took 90 h of 
wall time, 368,000 jobs and 1,325,936 core 
hours. The cost per sample was $1.30, which 
is an estimated 30-fold reduction in cost, and 
a similar reduction in time, compared with 
the TCGA best-practices workflow5. We 
achieved a 98% gene-level concordance with 
the previous pipeline’s expression predictions 
(Figs. 1,2 and Supplementary Fig. 1). 
Notably, we estimate that the pipeline, without 
STAR and RSEM, could be used to generate 
quantifications for $0.19/sample with Kallisto. 
To illustrate portability, the same pipeline was 
run on the I-SPY2 data set22 (156 samples) 
using a private HPC cluster, achieving similar 
per sample performance (Supplementary 
Table 1). Expression-level signal graphs (read 
coverage) of the GTEx data (7,304 samples 
from 53 tissues, 570 donors) are available from 
a UCSC Genome Browser23 public track hub 
(Supplementary Fig. 2). Gene and isoform 
quantifications for this consistent, union data 
set are publicly hosted on UCSC Xena9 and 
are available for direct access through a public 
AWS bucket (Supplementary Fig. 3 and 
Supplementary Note 7).

Although there is an extensive history of 
open-source workflow-execution software6–8, 
the shift to cloud platforms and the advent of 
standard workflow languages is changing the 
scale of analyses. Toil is a portable workflow 
software that supports open community 
standards for workflow specification and 
enables researchers to move their computation 
according to cost, time and data location. For 
example, in our analysis the sample data were 
intentionally co-located in the same region 
as the compute servers in order to provide 
optimal bandwidth when scaling to thousands 
of simultaneous jobs (Supplementary Note 
8). This type of flexibility enables larger, more 

managed within a workflow. Through this 
mechanism it integrates with Apache Spark13 

(Supplementary Fig. 4), and can be used to 
rapidly create containerized Spark clusters14 
(Supplementary Note 3).

Toil runs in multiple cloud environments 
including those of Amazon Web Services 
(AWS; Seattle, WA, USA), Microsoft Azure 
(Seattle, WA, USA), Google Cloud (Mountain 
View, CA, USA), OpenStack, and in HPC 
environments running GridEngine or Slurm 
and distributed systems running Apache 
Mesos15–17 (Forest Hill, MD, USA). Toil can 
run on a single machine, such as a laptop 
or workstation, to allow for interactive 
development, and can be installed with a 
single command. This portability stems 
from pluggable backend APIs for machine 
provisioning, job scheduling and file 
management (Supplementary Note 4). 
Implementation of these APIs facilitates 
straightforward extension of Toil to new 
compute environments. Toil manages 
intermediate files and checkpointing through 
a ‘job store’, which can be an object store 
like AWS’s S3 or a network file-system. The 
flexibility of the backend APIs allow a single 
script to be run on any supported compute 
environment, paired with any job store, 
without requiring any modifications to the 
source code.

Toil includes numerous performance 
optimizations to maximize time and cost 
efficiencies (Supplementary Note 5). Toil 
implements a leader/worker pattern for job 
scheduling, in which the leader delegates jobs 
to workers. To reduce pressure on the leader, 
workers can decide whether they are capable 
of running jobs immediately downstream 

to their assigned task (in terms of resource 
requirements and workflow dependencies). 
Frequently, next-generation sequencing 
workflows are I/O bound, owing to the large 
volume of data analyzed. To mitigate this, Toil 
uses file caching and data streaming. Where 
possible, successive jobs that share files are 
scheduled on a single node, and caching 
prevents the need for repeated transfers from 
the job store. Toil is robust to job failure 
because workflows can be resumed after any 
combination of leader and worker failures. 
This robustness enables workflows to use 
low-cost machines that can be terminated by 
the provider at short notice and are currently 
available at a significant discount on AWS and 
Google Cloud. We estimate the use of such 
preemptable machines on AWS lowered the 
cost of our RNA-seq compute job 2.5-fold, 
despite encountering over 2,000 premature 
terminations (Fig. 2). Toil also supports 
fine-grained resource requirements, enabling 
each job to specify its core, memory and local 
storage needs for scheduling efficiency.

Controlled-access data requires appropriate 
precautions to ensure data privacy and 
protection. Cloud environments offer 
measures that ensure stringent standards for 
protected data. Input files can be securely 
stored on object stores, using encryption, 
either transparently or with customer 
managed keys. Compute nodes can be 
protected by SSH key pairs. When running 
Toil, all intermediate data transferred to 
and from the job store can be optionally 
encrypted during network transmission and 
on the compute nodes’ drives using Toil’s 
cloud-based job store encryption. These 
and other security measures help ensure 

Figure 2  Costs and core usage. (a) Scaling tests were run to ascertain the price per sample at varying 
cluster sizes for the different analysis methods. TCGA (red) shows the cost of running the TCGA best-
practices pipeline as re-implemented as a Toil workflow (for comparison). CGL-One-Sample/Node (cyan) 
shows the cost of running the revised Toil pipeline, one sample per node. CGL (blue) denotes the pipeline 
running samples across many nodes. CGL-Spot (green) is the same as CGL, but denotes the pipeline run 
on the Amazon spot market. The slight rise in cost per sample at 32,000 cores was due to a couple of 
factors: aggressive instance provisioning directly affected the spot price (dotted line), and saving bam and 
bedGraph files for each sample. (b) Tracking number of cores during the recompute. The two red circles 
indicate where all worker nodes were terminated and subsequently restarted shortly thereafter.
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comprehensive analyses. Further, it means that 
results can be reproduced using the original 
computation’s set of tools and parameters. If 
we had run the original TCGA best-practices 
RNA-seq pipeline with one sample per node, 
it would have cost ~$800,000. Through the 
use of efficient algorithms (STAR and Kallisto) 
and Toil, we were able to reduce the final cost 
to $26,071 (Supplementary Note 9).

We have demonstrated the utility of Toil by 
creating one of the single largest, consistently 
analyzed, public human RNA-seq expression 
repositories, which we hope the community 
will find useful.

Editor’s note: This article has been peer-reviewed.

Note: Any Supplementary Information and Source Data 
files are available in the online version of the paper.

ACKNOWLEDGMENTS
This work was supported by (BD2K) the National 
Human Genome Research Institute of the National 
Institutes of Health award no. 5U54HG007990 and 
(Cloud Pilot) the National Cancer Institute of the 
National Institutes of Health under the Broad Institute 
subaward no. 5417071-5500000716. The UCSC 
Genome Browser work was supported by the NHGRI 
award 5U41HG002371 (Corporate Sponsors). The 
content is solely the responsibility of the authors and 
does not necessarily represent the official views of 
the National Institutes of Health or our corporate 
sponsors.

AUTHOR CONTRIBUTIONS
J.V., A.A.R. and B.P wrote the manuscript. J.V., A.A.R., 
A.N., J.A., C.K., J.N., H.S., P.A., J.P., A.D.D., B.O. and 
B.P. contributed to Toil development. F.A.N. and A.M. 
contributed to Toil-Spark integration. J.V. wrote the 
RNA-seq pipeline and automation software. M.H. 
and C.B. contributed WDL and cloud support. P.A. 
and S.Z. contributed CWL support. J.Z., B.C. and 
M.G. hosted quantification results on UCSC Xena. 
K.R. hosted GTEx results in UCSC Genome Browser. 
W.J.K., J.Z., S.Z., G.G., D.A.P., A.D.J., M.C., D.H. 
and B.P. provided scientific leadership and project 
oversight.

Data availability. Data are available from this project 
at the Toil xena hub (https://genome-cancer.soe.
ucsc.edu/proj/site/xena/datapages/?host=https://toil.
xenahubs.net).

COMPETING FINANCIAL INTERESTS
The authors declare competing financial interests: 
details are available in the online version of the paper.

John Vivian1, Arjun Arkal Rao1,  
Frank Austin Nothaft2,3, Christopher Ketchum1, 
Joel Armstrong1, Adam Novak1, Jacob Pfeil1, 
Jake Narkizian1, Alden D Deran1,  
Audrey Musselman-Brown1, Hannes Schmidt1, 
Peter Amstutz4, Brian Craft1, Mary Goldman1,  
Kate Rosenbloom1, Melissa Cline1,  
Brian O’Connor1, Megan Hanna5, Chet Birger5, 
W James Kent1, David A Patterson2,3,  
Anthony D Joseph2,3, Jingchun Zhu1,  
Sasha Zaranek4, Gad Getz5, David Haussler1 & 
Benedict Paten1

1Computational Genomics Lab, UC Santa Cruz 
Genomics Institute, University of California 

10.	Amstutz, P. Common workflow language. Github 
https://github.com/common-workflow-language/com-
mon-workflow-language (2016).

11.	Frazer, S. Workflow description language. Github 
https://github.com/broadinstitute/wdl (2014).

12.	Vivian, J. Toil scripts. Github https://github.com/
BD2KGenomics/toil-scripts/tree/master/src/toil_
scripts (2016).

13.	Apache Software Foundation. Apache Spark http://
spark.apache.org/ (2017).

14. Massie, M. et al. ADAM: genomics formats and pro-
cessing patterns for cloud scale computing. University 
of California, Berkeley, Technical Report No. UCB/
EECS-2013-207 (2013).

15.	Gentzsch, W. in Proceedings First IEEE/ACM 
International Symposium on Cluster Computing 
and the Grid 35–36 http://dx.doi.org/10.1109/
ccgrid.2001.923173 (IEEE, 2001).

16.	Yoo, A.B., Jette, M.A. & Mark, G. in Lecture Notes in 
Computer Science 44–60 (2003) Springer, Berlin,  
Heidelberg.

17.	Apache Software Foundation. Apache Mesos http://
mesos.apache.org/

18.	GTEx Consortium. Science 348, 648–660 (2015). 
19.	Dobin, A. et al. Bioinformatics 29, 15–21 (2013). 
20.	Li, B. & Dewey, C.N. BMC Bioinformatics 12, 323 

(2011). 
21.	Bray, N.L., Pimentel, H., Melsted, P. & Pachter, L. 

Nat. Biotechnol. 34, 525–527 (2016).
22.	Barker, A.D. et al. Clin. Pharmacol. Ther. 86, 97–100 

(2009). 
23.	Kent, W.J. et al. Genome Res. 12, 996–1006  

(2002). 

To the Editor:
The increasing complexity of readouts for 
omics analyses goes hand-in-hand with 
concerns about the reproducibility of 
experiments that analyze ‘big data’1–3. When 
analyzing very large data sets, the main source 
of computational irreproducibility arises from 
a lack of good practice pertaining to software 
and database usage4–6. Small variations across 
computational platforms also contribute to 
computational irreproducibility by producing 
numerical instability7, which is especially 
relevant to high-performance computational 
(HPC) environments that are routinely used 
for omics analyses8. We present a solution to 
this instability named Nextflow, a workflow 
management system that uses Docker 
technology for the multi-scale handling of 
containerized computation.

In silico workflow management systems 
are an integral part of large-scale biological 
analyses. These systems enable the rapid 
prototyping and deployment of pipelines that 
combine complementary software packages. 
In genomics the simplest pipelines, such as 
Kallisto and Sleuth9, combine an RNA-seq 
quantification method with a differential 
expression module (Supplementary Fig. 1). 
Complexity rapidly increases when all aspects 
of a given analysis are included. For example, 

the Sanger Companion pipeline10 bundles 
39 independent software tools and libraries 
into a genome annotation suite. Handling 
such a large number of software packages, 
some of which may be incompatible, is a 
challenge. The conflicting requirements of 
frequent software updates and maintaining 
the reproducibility of original results provide 
another unwelcome wrinkle. Together with 
these problems, high-throughput usage of 
complex pipelines can also be burdened by the 
hundreds of intermediate files often produced 
by individual tools. Hardware fluctuations in 
these types of pipelines, combined with poor 
error handling, could result in considerable 
readout instability.

Nextflow (http://nextflow.io; 
Supplementary Methods, Supplementary 
Note and Supplementary Code 1) is 
designed to address numerical instability, 
efficient parallel execution, error tolerance, 
execution provenance and traceability. It is a 
domain-specific language that enables rapid 
pipeline development through the adaptation 
of existing pipelines written in any scripting 
language.

We present a qualitative comparison 
between Nextflow and other similar tools in 
Table 1 (ref. 11). We found that multi-scale 
containerization, which makes it possible to 

Nextflow enables reproducible 
computational workflows
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Introduction

The Treehouse compendium consists of cancer gene expression profiles. One of the

limitations of gene expression outlier analysis is that it is not able to identify cancer gene ex-

pression that is common to many of the samples in the compendium. For example, during the

PDX analysis, I found that the model overestimated the threshold for FOXM1 outliers because

many of the samples in the compendium were expressing FOXM1 at an elevated level. Every

patient that is analyzed through the Treehouse approach is added to the Treehouse compendium.

Therefore, as the number of outliers increases, the threshold for identifying new outliers also

increases (Figure 2.1). As this method is not sustainable, I propose a mixture model to classify

patients into normal and elevated expression distribution.

I observed that many of the genes in the Treehouse outlier analysis results had sev-

eral peaks and could be modeled as a mixture of Gaussian distributions. After reviewing these

genes further, I found that many of these genes were not detectable by Treehouse outlier anal-

ysis because the multimodal pattern led to a high variance when modeled as a single Gaussian

distribution. By applying a Dirichlet process mixture model to the data, I was able to resolve

complex gene expression distributions to identify clinically relevant pathways. The pipeline is

named hydra because it reveals the many ways in which a cancer subtype may present itself.

Identifying these manifestations of cancer gene expression data will accelerate the clinical ap-

plication of this data because it highlights biological signals and reduces unexplained variance.
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Figure 2.1: Outlier analysis becomes less sensitive as you increase the number of outliers in the
compendium. One of the goals of the Treehouse initiative is to increase the size of the com-
pendium, but as you increase the number of outliers, the sensitivity for identifying additional
outliers decreases. The red line marks the threshold for identifying abnormal gene expression.
The first two distributions use Treehouse outlier analysis, but the last distribution uses a two-
component Gaussian mixture model to infer the normal and over-expression distributions.
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Chapter 3

UCSC Treehouse Outlier Analysis Leads to the

Discovery of Multimodal Expression

Distributions

Analysts responsible for reviewing UCSC Treehouse outlier results have many op-

portunities to investigate expression distributions, especially distributions for druggable genes.

As part of the UCSC Treehouse group, I personally reviewed many genes that did not have a

unimodal Gaussian distribution, violating the underlying assumption of Treehouse outlier anal-

ysis. This led me to study other statistical models for analyzing gene expression for precision

pediatric oncology research. After reviewing the literature, I found that mixture models have the

flexibility to infer complex expression distributions and recent advances in Bayesian inference

algorithms makes it possible to apply these models to large gene expression datasets.

The Treehouse analysis estimates pan-cancer and pan-disease outlier thresholds. The
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Figure 3.1: Models for the Treehouse analysis. Treehouse pan-cancer analysis is an example
of the complete pooling model. In a complete pooling model, distinct groups of data are not
modeled individually. Pan-cancer analysis does not account for different data features like
the age, cancer type, and gender. Pan-disease analysis is a form of no-pooling model where
each disease is modeled separately without considering information learned from other cancer
types. A hierarchical models is a compromise between the complete and no pooling model. In
a hierarchical model, separate parameters are learned for each data group while also sharing
information through prior distributions on the group specific parameters.

pan-cancer analysis uses the entire compendium to estimate the outlier threshold. Pan-disease

analysis uses expression from samples that share a diagnosis with the patient’s TumorMap co-

hort to estimate the outlier threshold. I propose a hierarchical model which uses the entire

compendium to estimate the predicted distribution of gene expression values for a specific dis-

ease. Additionally, the hierarchical model will be expanded to include predictors that identify

differences in gene expression related to biological features of the data.

Pan-cancer analysis is a form of complete pooling model. Complete pooling models

use one set of parameters to describe all the variation in the data (Figure 6.1). Complete pooling

models overestimate the uncertainty in the distribution because it does not account for known

variation in the data. For example, some genes are expressed in a tissue-specific manner, so

subsetting the data by tissue will improve estimates for that gene. Pan-cancer analysis over-

estimates the uncertainty in gene expression for some genes, which makes it more difficult to
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identify gene expression outliers. Pan-cancer analysis is appropriate for tightly controlled genes

that are uniformaly expressed in different tissues, but is may be less sensitive to tissue-specific

expression.

Pan-disease analysis uses the TumorMap defined disease cohort to find disease-specific

gene expression outliers. The goal of pan-disease analysis is to find abnormal gene expression

relative to patients with similar overall gene expression profiles. Pan-disease analysis is a form

of no-pooling model because samples outside of the disease cohort are not used in the analysis

(Figure 6.1). In the no-pooling model, each data cluster is modeled separately, so information is

not shared across data clusters. The no-pooling model ignores similarities across data clusters

that can be used to make more accurate estimates. While gene expression is tissue-specific, the

range of possible gene expression levels across all tissues is constrained by the limits of human

biology. Therefore, information from distinct cancers can still inform a disease-specific analy-

sis. This is particularly important for pediatric data because estimates of pediatric expression

are susceptible to large errors due to the lack of samples in the compendium [11, 37].

Complete pooling maximally underfits and no-pooling maximally overfits data, but

hierarchical modeling strikes a balance between the two [30]. In a hierarchical model, each

data cluster is modeled separately, but information is shared across levels of the hierarchy (Fig-

ure 6.1). Hierarchical models encode the collective knowledge about the system and can be

used to study macro-level parameters at the population level and micro-level parameters about

specific data clusters [30, 37]. These are ideal features for modeling and learning from the

Treehouse compendium data.

A mixture model is an extension of a hierarchical model where the labels that encode

45



distribution membership are learned from the data. In a traditional hierarchical model, the data

groups are known a priori, but in the mixture model framework, the labels need to be inferred

from the data. The labels are identified by maximizing the probability that each sample belongs

to either the normal or elevated gene expression distributions. The additional complexity is

in inferring the latent variables that encode distribution membership for each sample. MCMC

sampling tools, including STAN, provide tools for modeling mixture distributions. Future work

will unify the Treehouse hierarchical model with a mixture modeling component to identify

unobserved variables associated with cancer expression.

As a preliminary investigation into the different types of gene expression distributions

represented in the Treehouse compendium, I clustered gene expression distributions using K-

means clustering for a cohort of acute lymphoblastic leukemia patients (Figure 3.2). Using 10

clusters, I identified five different distributions. I found approximately normal, bi-modal, expo-

nential, left-skewed, and right-skewed distributions. Bi-modal expression included important

genes commonly identified in Treehouse gene expression analysis. Examples of genes with bi-

modal distributions for acute lymphoblastic leukemia are AKT1, BTK, CREB1, FLI1, JAK2/3,

and MYC. These distributions require special modeling considerations to properly identify bi-

ologically meaningful expression differences.

A Bayesian hierarchical mixture model is able to identify over-expression of FOXM1

for PDX PSS078 when outlier detection was not (Figure 3.3). The mixture model was able to

decompose the pan-cancer distribution into a low and high expression distribution. The mixture

model would have classified PSS078 FOXM1 expression into the high-expression component.

This would have identified FOXM1 as a potential drug target, which would have been helpful

46



Figure 3.2: Clusters of gene expression profiles for the Treehouse acute lymphoblastic leukemia
patients. Gene expression was centered and normalized by two standard deviations. The his-
tograms were then clustered using K-means clustering (k=10). The Treehouse compendium
includes uni- and bi-modal distributions as well as exponential distributions. Careful modeling
of these distributions may yield biological insight.
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Figure 3.3: Known cancer genes, such as FOXM1, have a bi-modal distribution and are difficult
to detect by outlier analysis. A hierarchical mixture model learns which samples come from the
low expressed or high expressed modes and can be used to classify FOXM1 over-expression.
The PDX PSS078 had a FOXM1 amplification that was not detected by outlier analysis, but
the mixture model classifies PSS078 expression with the high expression component of the
distribution.

for identifying drug targets and activated pathways.

Hierarchical modeling provides an opportunity to use all of the Treehouse compendium

to learn tissue specific expression, biological effects on gene expression, and predict expected

gene expression for new patients. A hierarchical model is a tool for detecting drug targets but it

is also an interpretable model for learning about general molecular features of pediatric cancers.

Hierarchical modeling is a well developed statistical framework that can be applied to childhood

cancer research and adapted into a diagnostic tool.
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When compared to outlier anlaysis, the mixture modeling approach achieved a sig-

nificant improvement in performance. UCSC Treehouse outlier analysis has two modes: pan-

cancer and pan-disease analysis. We used this approach to study the MYCN transcription fac-

tor, which is an important biomarker in neuroblastoma (3.4). We found that pan-cancer analysis

underestimates the threshold for overexpression, leading to false positives. The pan-disease

analysis overestimates the threshold for overexpression leading to false negatives. The mix-

ture modeling approach is better able to discern the threshold for overexpression, leading to a

20-30% increase in F1 score.
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Figure 3.4: Differential expression of cancer biomarkers yields multimodal distributions. Ap-
plication of a Gaussian mixture model performs better at isolating expression subtypes than
pan-cancer and pan-disease outlier analysis.
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Chapter 4

Hydra: A Bayesian Nonparametric Approach

for Identifying Cancer Gene Expression

Subtypes

Introduction

The hydra pipeline runs in two modes. The first mode applies the Dirichlet process

mixture model analysis to curated gene sets. This analysis is useful for identifying known

gene expression signatures. Comparing the hydra method to widely-used pathway enrichment

tools found that the hydra approach is more sensitive at detecting clusters driven by multimodal

expression patterns. The second mode identifies the enrichment of pathways across all multi-

modally expressed genes and can be used to identify novel pathway expression that may not

have been discovered before. This approach has been helpful for identifying important signals

associated with cancer subtypes, tumor microenvironment expression, and complex tissue sam-
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ples. We have found that multimodally expressed genes better separate known clinical subtypes

of neuroblastoma using the UCSC TumorMap tool. We have further subtyped a cohort of pedi-

atric neuroblastoma samples and identified differential expression of tumor microenvironment

signatures, including markers of the adaptive immune response and fibroblasts. This informa-

tion is important for identifying opportunities for eradicating tumors with an immunotherapy

treatment approach. Lastly, we have been able to use this tool to identify complex tissue sam-

ples that can influence the interpretation of cancer gene expression data. Osteosarcoma is a

pediatric bone tumor, but hydra analysis revealed a strong skeletal muscle signature in a subset

of samples. Through collaborations at UCSF, I validated this signal and confirmed that bone

samples with this signature contain contaminating muscle tissue. The hydra method is a flexi-

ble analysis tool that combines the capability to detect differential pathway expression with the

capability to perform clustering to identify the biological signals that differentiate cancer gene

expression profiles.
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Abstract

Precision oncology has primarily relied on coding mutations as biomarkers of response to
therapies. While transcriptome analysis can provide valuable information, incorporation
into workflows has been difficult. For example, the relative rather than absolute gene
expression level needs to be considered, requiring differential expression analysis across
samples. However, expression programs related to the cell-of-origin and tumor
microenvironment effects confound the search for cancer-specific expression changes. To
address these challenges, we developed an unsupervised clustering approach for
discovering differential pathway expression within cancer cohorts using gene expression
measurements. The hydra approach uses a Dirichlet process mixture model to
automatically detect multimodally distributed genes and expression signatures without
the need for matched normal tissue. We demonstrate that the hydra approach is more
sensitive than widely-used gene set enrichment approaches for detecting multimodal
expression signatures. Application of the hydra analysis framework to small blue round
cell tumors (including rhabdomyosarcoma, synovial sarcoma, neuroblastoma, Ewing
sarcoma, and osteosarcoma) identified expression signatures associated with changes in
the tumor microenvironment. The hydra approach also identified an association between
ATRX deletions and elevated immune marker expression in high-risk neuroblastoma.
Notably, hydra analysis of all small blue round cell tumors revealed similar subtypes,
characterized by changes to infiltrating immune and stromal expression signatures.
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Author summary

Pediatric cancers generally have few somatic mutations. To increase the number of
actionable treatment leads, precision pediatric oncology initiatives also analyze tumor
gene expression patterns. However, currently available approaches for gene expression
data analysis in the clinical setting often use arbitrary thresholds for assessing
overexpression and assume gene expression is normally distributed. These methods also
rely on reference distributions of related cancer types or normal samples for assessing
expression distributions. Often adequate normal samples are not available, and
comparing matched cancer cohorts without accounting for subtype expression
overestimates the uncertainty in the analysis. We developed a computational framework
to automatically detect multimodal expression distributions within well-defined disease
populations. Our analysis of small blue round cell tumors (including rhabdomyosarcoma,
synovial sarcoma, neuroblastoma, Ewing sarcoma and osteosarcoma) discovered a
significant number of multimodally expressed genes. Multimodally expressed genes were
associated with proliferative signaling, extracellular matrix organization, and immune
signaling pathways across cancer types. Expression signatures correlated with
differences in patient outcomes for MYCN non-amplified neuroblastoma, osteosarcoma,
and synovial sarcoma. The low mutation rate in pediatric cancers has led some to
suggest that pediatric cancers are less immunogenic. However, our analysis suggests
that immune infiltration can be identified across small blue round cell tumors. Thus,
further research into modulating immune cells for patient benefit may be warranted.

Introduction 1

Large cancer sequencing projects, including The Cancer Genome Atlas (TCGA) and 2

Therapeutically Applicable Research to Generate Effective Treatments (TARGET), 3

have facilitated the development of cancer gene expression compendia [1–6], but these 4

compendia often lack expression data from corresponding normal tissue. Without the 5

normal comparator, Hoadley et al. (2018) found that cell-of-origin signals drive 6

integrative clustering of TCGA data. Strong cell-of-origin and tumor microenvironment 7

(TME) signals may also complicate the interpretation of gene expression results for 8

precision oncology applications, so careful modeling of the data is necessary to infer 9

accurate conclusions. 10

The TME includes tumor cells, stromal fibroblasts, immune cells, and vasculature [7]. 11

Similarities in TME composition across tumor samples have led to the identification of 12

TME states (e.g. inflamed, immune-excluded, immune-desert). While these states are 13

dynamic, they can still shed light on the immunogenicity of tumor cells and correlate 14

with response to cancer immunotherapies [8]. The TME cellular composition can be 15

inferred from tumor RNA-Seq data since host cell RNA is sequenced along with the 16

cancer cell RNA. Tumor progression and response to therapies is associated with 17

features of the TME. Therefore, targeting the TME therapeutically may improve 18

treatment outcomes in some cancers. 19

Immunotherapies that activate the host immune system to eradicate tumors have 20

been effective in treating several cancer types, particularly cancers with a high mutation 21

burden [9, 10]. Pediatric cancers tend to have fewer mutations than adult cancers, and 22

while there has been limited testing of immunotherapies in pediatric cancer patients, the 23

currently available data suggest lower response rates than adult cancers [11,12]. 24

However, improved immune subtyping of pediatric cancers may identify subsets of 25

patients that are candidates for powerful immunotherapies. In addition to infiltrating 26

immune cells, cancer-associated fibroblasts (CAFs) assist in extracellular matrix 27

remodeling and activation of growth factor signaling. CAFs facilitate tumor growth, 28
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metastasis, and resistance to some therapies, so identification of CAF functions within a 29

tumor may also facilitate clinical decision making. Methods are needed to both infer 30

and characterize gene expression subtypes that correlate with tumor microenvironment 31

states to accelerate the development of personalized therapies for pediatric cancers. 32

Tumor/normal differential expression analysis in which a cohort of tumor tissues is 33

compared to corresponding normal tissue samples is an effective approach for 34

identifying gene expression biomarkers [13–15], but it is often not possible to conduct 35

this analysis in a clinical setting. Sufficient biological and technical replicates are 36

limited by tumor tissue availability, and healthy neighboring tissue often cannot be 37

isolated. In addition, for many pediatric cancers, the cell-of-origin, and thus the 38

appropriate reference normal tissue, is not known. Besides differential expression 39

analysis, single-sample pathway analysis can be used to identify upregulation of 40

biological gene sets in tumor subtypes. Among the most widely used pathway analysis 41

approaches is gene set enrichment analysis (GSEA) [16,17]. GSEA identifies 42

coordinated expression of pathway genes using gene ranks and a 43

Kolmogorov-Smirnov-like test statistic. GSEA is usually performed on differentially 44

expressed genes to compare two cohorts or phenotypes, but single-sample GSEA is also 45

available when there is not an obvious comparator. GSEA uses curated pathway gene 46

sets like those in the Molecular Signatures Database (MSigDB) [18]. 47

Cancer gene expression subtypes are traditionally identified using unsupervised 48

clustering methods such as consensus clustering analysis [19–21]. These methods are 49

generally underpowered because the number of genes greatly exceeds the number of 50

samples. Dimensionality reduction approaches such as Principal Component Analysis 51

(PCA) have been found to underestimate the dimensionality of gene expression 52

data [22]. Lenz at al. (2016) found two cases in which PCA fails to identify a biological 53

signal: when the size of the cluster is small and when the effect size is small. Lenz et al. 54

(2016) suggests investigating multimodally expressed genes to improve identification of 55

cancer subtypes. Cancer subtypes naturally lead to multimodal expression patterns 56

because each subtype expresses a correlated set of genes at different expression levels. 57

Expression subtypes may result from dysregulated pathway expression within cancer 58

cells, but another source of multimodal expression comes from varying amounts of 59

infiltrating immune and stromal cells in the TME. 60

Gaussian mixture models are a powerful class of unsupervised clustering algorithms 61

that can be used to detect multimodally expressed genes [23–25]. A Gaussian mixture 62

model is appropriate when the expression data can be modeled as a mixture of two or 63

more Gaussian distributions [26]. One limitation of Gaussian mixture models in this 64

context is that the number of clusters in the data is often not known beforehand, so a 65

parameter search must be used to identify the best-performing model. However, this is 66

a computationally expensive approach. This problem can be overcome by placing a 67

Dirichlet process prior on the number of expression clusters. The number of clusters is 68

then inferred while fitting the mixture model using Markov chain Monte Carlo (MCMC) 69

sampling [26]. This approach has not been widely used in clinical cancer research 70

because these algorithms are still computationally expensive, but recent advances in 71

Bayesian variational inference have made this approach scalable for precision oncology 72

applications [27]. 73

Here, we present the hydra framework for identifying clinically relevant expression 74

subtypes and classifying N-of-1 tumor samples using learned models. We provide an 75

overview of the hydra framework, assess performance for detecting differential pathway 76

expression, and apply the framework to better understand expression patterns in 77

high-risk neuroblastoma and other small blue round cell tumors. We apply the learned 78

models trained on publicly available cancer gene expression data to the N-of-1 setting 79

and show that this framework can identify distinct immune and stromal expression 80
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signatures that differentiate pediatric cancer samples. Finally, we identify recurrent 81

tumor microenvironment signatures across pediatric cancer types associated with 82

differences in patient outcomes. 83

Materials and methods 84

Dirichlet process gaussian mixture model 85

Traditional parametric models, like the finite mixture model, use a fixed number of 86

parameters (i.e. number of clusters). Over- or underfitting can occur when the 87

parametric model does not reflect the underlying data [28]. Unlike the finite mixture 88

model, the Dirichlet process mixture model (DPMM) represents a theoretically infinite 89

number of clusters and can adapt the number of clusters based on prior belief and the 90

data [26,28,29]. 91

The Dirichlet process (DP ) is an infinite dimensional extension of the Dirichlet 92

distribution [30] and is commonly used as a prior distribution for infinite mixture 93

models [31, 32]. The Dirichlet process has two parameters: the concentration parameter 94

α and centering distribution H. The concentration parameter α, where α ∈ R+, 95

controls the extent to which samples from the DP resemble the centering distribution 96

H. We model gene expression as a multivariate Gaussian distribution, so our centering 97

distribution is a normal-Wishart distribution (NW0). 98

We briefly describe the stick-breaking construction of the Dirichlet process 99

G ∼ DP (α,H). Consider a stick of unit length. To generate an infinite number of 100

mixing weights π1, π2, ..., πk for the DPMM, first break a stick of unit length at 101

ν ∈ [0, 1] where ν is sampled from a Beta distribution, and set π1 to be the length of the 102

first piece. We repeat this process using the remainder of the stick for each πk. The DP 103

is truncated to the number of clusters K, which was shown to accurately approximate 104

the infinite posterior for large K [26,28,30,33–35]. 105

ν ∼ Beta(1, α) (1)

πk = νk

k−1∏

l=1

(1− νl) (2)

Next, we sample the parameters from the centering distribution H weighted by the 106

mixing components. If we consider a probability space Θ where θ∗k ∈ Θ, then H is a 107

measure on the partitions of Θ. For our application, we will partition the parameter 108

space Θ into finite, measurable partitions B1, B2, ..., Bk. 109

θ∗k ∼ H (3)

G =

∞∑

k=1

πkδθ∗k (4)

(G(B1), G(B2), ..., G(Bk)) ∼ Dir(αH(B1), αH(B2), ..., αH(Bk)) (5)

This construction generates the marginal of the Dirichlet process, which follows a 110

Dirichlet distribution. Samples from the marginal distribution are finite, discrete, and 111

sum to 1 [30]. Next, we outline how the DPMM groups gene expression samples xi 112

under cluster-specific parameters µzi and Σzi where zi ∈ 1, 2, ...,K is the cluster index. 113
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xi|µzi ,Σzi ∼ N (µzi ,Σzi) (6)

zi|π ∼ Categorical(π1, π2, ..., πk) (7)

µzi ,Σzi |G ∼ G (8)

G|α,NW0 ∼ DP (α,NW0) (9)

To improve our methods ability to scale to larger datasets, we incorporated the bnpy 114

memoized online variational inference algorithm (moVB) [33] into our analysis 115

framework. The moVB algorithm uses variational inference to approximate the 116

posterior distribution and interleaves birth, merge, and delete moves to avoid local 117

optima and remove redundant clusters [36]. We found that the moVB algorithm 118

accurately identified the number of clustering on validation datasets (S1 Fig), whereas 119

standard MCMC sampling procedures tended to overestimate the number of clusters. 120

Hydra method 121

We developed a Bayesian non-parametric clustering framework for identifying biological 122

and technical variation in large cancer gene expression datasets without the need for a 123

reference normal dataset. To our knowledge, this is the first reproducible and widely 124

deployable implementation of a non-parametric mixture model framework designed to 125

overcome the challenges of precision oncology gene expression analysis. The hydra 126

pipeline is an open source software tool hosted on GitHub 127

(www.github.com/jpfeil/hydra). A Docker container is available for deployment 128

across environments (https://hub.docker.com/r/jpfeil/hydra). 129

The hydra framework contains three main command-line tools: filter, enrich, and 130

sweep (Fig 1). The filter command is run first to isolate the multimodally expressed 131

genes using a univariate Dirichlet Process Gaussian Mixture Model (DP-GMM). There 132

are two methods for analyzing the resulting set of multimodally expressed genes. The 133

enrich method, which subsets to the genes found to be significantly enriched in 134

biological pathways, and the sweep method, which searches within user-defined gene 135

sets for multimodal expression signatures. The underlying analysis routines can be 136

accessed within the Docker using Jupyter notebooks to facilitate the development of 137

user-defined workflows. 138

The filter command (Fig 1B) takes an expression matrix and filters the genes down 139

to the multimodally expressed genes using the DP-GMM described above. We apply a 140

DP-GMM to each gene, saving the model for genes with two or more expression clusters. 141

This creates a directory of multimodally expressed gene models which can be used to 142

predict differential expression in new samples. This analysis framework is a novel 143

contribution to the precision medicine research community. Our approach has several 144

beneficial properties. For example, training models on curated data sets and applying 145

the models to new samples avoids the use of reference distributions, which overestimate 146

the uncertainty in the analysis by not accounting for subtype expression. Furthermore, 147

this approach identifies the set of most strongly differentially expressed genes within a 148

disease context, which may enrich for potential biomarkers for precision medicine 149

applications. The multimodally expressed genes are also used in downstream clustering 150

analysis. 151

The enrich (Fig 1C) and sweep (Fig 1D) routines are two independent analyses to 152

explore multimodal expression in cancer gene expression cohorts. In addition to 153

identifying expression variation within a disease context, we also found that 154

multimodally expressed genes that participate in a biological pathway tend to have 155

correlated expression distributions. This insight facilitates the detection of multimodal 156
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Fig 1. Overview of the hydra framework tools. A: Suggested workflow for
applying hydra framework tools to identify clinically relevant gene expression subtypes.
B: The hydra filter command removes unimodally distributed genes which greatly
reduces the number of genes in downstream clustering analysis. C: The hydra enrich
command takes the multimodally expressed genes and returns enriched gene sets. The
enriched gene set genes are used for multivariate clustering of samples. D: The hydra
sweep command looks for multivariate normal clusters within user-defined gene sets.
This can be used for the automatic detection of clusters in large gene set databases.

expression signatures by enriching for genes that have multimodal expression 157

distributions and participate in known biological processes. The hydra software comes 158

prepackaged with popular gene sets, including the Molecular Signatures Database 159

(MSigDB) [18], the Gene Ontology terms [37,38], and the EnrichmentMap gene sets [39]. 160

The gene set database is configurable, so additional gene sets can be added at runtime. 161

The enrich command uses a hypergeometric test [40] to discover enrichment of 162

multimodally expressed genes within a user-defined database of gene sets. This creates a 163

list of gene sets and a list of enriched gene set genes. The enrich method outputs a table 164

of enriched gene sets while also clustering samples across the genes that participate in 165

the enriched gene sets. The table of enriched gene sets may reveal surprising expression 166

patterns and generate hypotheses for further investigation of tumor subtypes. 167

The implementation of the enrich method includes an important parameter known 168

as the minimum component probability. The minimum component probability is the 169

probability of placing a sample within the smallest expression cluster. This is an 170

additional filter to remove multimodally expressed genes that influence a relatively 171

small subset of tumor samples. This parameter gives the user the ability to subset the 172

enriched genes to those that influence a greater number of patients. To aid in the 173

exploration of minimum component thresholds, we implemented a scan sub-routine. 174

The scan routine tunes the analysis with respect to the constraints of the available data 175

(e.g. number of samples and number of genes), which is an important factor in pediatric 176

cancer research since data is often difficult to obtain and so datasets are relatively small. 177

We recommend setting this threshold such that the number of genes is less than the 178

number of samples because otherwise the inference may become unstable [41]. 179
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The sweep routine identifies differentially expressed gene sets and can be used as an 180

alternative to single-sample GSEA [16]. For each gene set, a multivariate DP-GMM is 181

applied to determine if more than one expression cluster is present within the gene set. 182

This approach is useful when curated gene sets are available for the disease of interest, 183

but manual inspection of each gene set is not feasible. Reducing the genes to 184

multimodally expressed genes facilitates the detection of differentially expressed gene 185

sets. Existing gene set enrichment tools are known to under-perform when the 186

expression is correlated [42], but our approach is designed to identify distinct correlation 187

structures within gene expression datasets. 188

We have also implemented routines for cluster profiling and N-of-1 tumor analysis. 189

These routines are accessible within the docker container using the Jupyter notebook 190

command. Cluster profiling analysis of clusters derived from the enrich or sweep 191

routines includes GSEA [43] to identify the pathway expression that characterizes each 192

cluster. GSEA uses all available genes since it requires non-differentially expressed genes 193

to assess the significance of an enrichment score. A t-statistic is calculated for each gene, 194

comparing gene expression values of samples inside to those outside of a cluster. Cluster 195

profiling GSEA uses the ranked gene-level t-statistics to determine gene set enrichment. 196

The N-of-1 tumor analysis routine classifies a new gene expression profile into one of 197

the inferred clusters, calculates a gene-level z-score for that sample relative to the 198

normalized expression distribution, and performs standard GSEA using a preranked list 199

of z-score values [43]. This procedure can identify new gene expression signatures that 200

may not be detectable using the entire expression cohort as a background reference 201

distribution. This approach is another novel contribution to the field and may facilitate 202

the identification of clinically relevant signatures that are being overlooked in current 203

gene expression analyses. 204

Synthetic data generation and validation 205

We first tested the hydra framework’s ability to detect differential pathway expression 206

using synthetic cancer data. We compared hydra sweep to two widely used gene set 207

enrichment tools: single-sample gene set enrichment analysis (ssGSEA) and gene set 208

variation analysis (GSVA) [44–46]. Both methods are implemented in the GSVA R 209

package [45]. In order to accurately model correlation structures within cancer cohorts, 210

we modeled the synthetic cancer gene expression data as a multivariate Gaussian 211

distribution. We used the TCGA glioblastoma multiforme (GBM) cohort (N=166) to 212

model a background mean and covariance matrix for the synthetic data analysis. We 213

chose TCGA GBM, a very different disease from those analyzed in the remainder of this 214

manuscript, to avoid overfitting the hydra method to diseases of interest. This also 215

enables us to demonstrate the flexibility of our method to analyze data from a variety of 216

cancer genome sequencing projects. 217

This approach allowed us to model cancer gene expression data while also controlling 218

for subtype-related expression variation. We downloaded the RSEM-quantified TPM 219

normalized gene expression measurements from the UCSC Xena Browser [3]. We focus 220

our analysis on normalized gene expression data because this data is more widely used 221

in the cancer research community and fewer methods are available to analyze 222

normalized counts. To reduce heteroscedasticity and the effect of outlier expression 223

levels, we transformed the expression data to log2(TPM + 1) [47]. 224

We defined an expression subtype as a subset of samples with a distinct expression 225

mean and correlation structure compared to other samples within the disease cohort. 226

To avoid biases in the synthetic data generation process, we used random sampling to 227

select MSigDB gene sets for each subtype, the size of the subtype, and the correlation 228

structure within the subtype. We randomly generated a covariance matrix for the 229

cancer subtype expression data, but used the underlying covariance matrix of the 230
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TCGA glioblastoma multiforme dataset for the background samples. We tested the 231

effect of having 10% and 25% of genes within a gene set being differentially expressed 232

(%DEG). In addition to these parameters, we tested a range of effect sizes: 0.25 (least 233

different), 0.5, 0.75, 1.0, 1.5, 2.0, 2.5, and 3.0 (most different). This process was 234

repeated twice for each gene set to create synthetic training and test data, which 235

resulted in the generation of 640 synthetic datasets. 236

We then applied the hydra framework using the hydra sweep command (Fig 1C), 237

since this method is directly comparable to the single-sample GSEA methods. The 238

mean expression filter removed any genes with a mean expression of fewer than 1.0 239

log2(TPM + 1). This avoids lowly-expressed genes that may have particularly noisy 240

expression measurements. The prior on the hydra covariance matrix was the identity 241

scaled by 2.0 and the prior on the number of clusters was set to 2 because we expect 242

there to be an activated cluster and a baseline expression cluster. We set the 243

over-expressing cluster to be the cluster with the largest L1 norm. 244

Pediatric cancer gene expression data 245

We downloaded pediatric cancer RNA-Seq data for neuroblastoma, osteosarcoma, 246

Ewing sarcoma, alveolar rhabdomyosarcoma, and embryonal rhabdomyosarcoma from 247

the UCSC Treehouse Compendium 248

(https://treehousegenomics.soe.ucsc.edu/public-data/). This data was 249

produced using the same RNA-seq pipeline, so potential computational batch effects are 250

minimized [1, 6]. Clinical data for the TARGET neuroblastoma and osteosarcoma 251

samples were obtained from the TARGET Data Matrix 252

(https://ocg.cancer.gov/programs/target/data-matrix). We also analyzed a set of 58 253

synovial sarcoma microarray profiles with matching metastasis rate data [48]. 254

TARGET neuroblastoma analysis 255

We applied each hydra tool to the TARGET MYCN -NA neuroblastoma cohort. We 256

first obtained the multimodal gene models using the hydra filter tool. The hydra filter 257

tool identified all genes with a multimodal expression pattern. We used the mean 258

expression filter to remove genes that may have unstable measurements due to low 259

transcript abundances. We excluded all genes with a mean expression value less than 1 260

log2(TPM + 1). 261

The hydra sweep command was applied to search for subtype expression within 262

curated MSigDB gene sets. We included the hallmark (n=50), BioCarta (n=289), 263

KEGG (n=186), PID (n=196), and Reactome (n=1499) genesets [18]. We include all 264

signatures with a minimum component probability of 10%. For example, the smallest 265

subtype cluster considered in this analysis had 7 samples, since the total number of 266

samples was 70. We investigated relationships among differentially expressed gene sets 267

by clustering the gene sets by their pairwise Jaccard index. This created a similarity 268

network that was then visualized using the Gephi software tool [49]. 269

The hydra enrich command identified correlated expression signatures using the 270

enriched GO term genes (FDR < 0.01). The multivariate mixture model α 271

concentration parameter was set to 5.0; the prior on the covariance matrix was set to 272

the identity scaled by 2.0. The prior parameter for the number of clusters was set to 5. 273

Our synthetic data analysis found that the signal decreases below an effect size of 1.0, 274

so we use this parameter value for all following analyses. We used the hydra scan 275

routine to search a range of minimum component probability thresholds (see Results) 276

and found that a threshold/probability of 20% yielded the most clusters while keeping 277

the number of genes (p = 42) below the number of samples (n = 70). 278
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To validate tumor microenvironment expression subtypes, we correlated the hydra 279

enrich expression clusters with the results of tumor microenvironment profiling tools 280

xCell [50], CIBERSORT [51], and ESTIMATE [52]. We also compared the hydra enrich 281

approach to state-of-the-art consensus clustering methods M3C [20] and k-means 282

clustering using the Gap statistic to select the number of clusters [53]. Since these 283

methods are influenced by the number of input genes, we tested a range of median 284

absolute deviation (MAD) thresholds. The number of clusters was assumed to be the 285

smallest statistically significant value. 286

Small blue round cell tumor analysis 287

We then compared the clustering patterns across MYCN -NA neuroblastoma, 288

osteosarcoma, Ewing sarcoma, embryonal rhabdomyosarcoma, alveolar 289

rhabdomyosarcoma, and synovial sarcoma. We applied the TumorMap dimensionality 290

reduction method [5] to visualize clustering of the full small blue round cell tumor gene 291

expression matrix. We then applied the hydra framework to explore expression variation 292

within each disease. Each disease expression matrix had unique statistical properties 293

including sample size and subtype variation. This required us to adapt the minimum 294

probability threshold for each disease dataset using the scan routine. The Jupyter 295

notebooks for exploring these datasets can be found on GitHub 296

(www.github.com/jpfeil/hydra-paper/analysis). We used agglomerative clustering 297

to investigate patterns in the top 10 enriched gene sets for each disease’s expression 298

subtypes. 299

Statistical analysis 300

A Kruskal-Wallis test was used to identify statistically significant differences across two 301

or more groups, and a Mann-Whitney U test was used for pairwise tests using a 302

Holm-Sidak correction for multiple hypothesis testing [54,55]. We used the scipy [56] 303

stats implementation of the Kruskal-Wallis test and the scikit-learn post hoc 304

processing [57] implementation of pairwise Mann-Whitney U tests. Spearman rank and 305

Pearson correlation values were calculated using the scipy library [55]. Survival analysis 306

was done using the survminer package [58]. 307

H&E slide preparation and pathologist review 308

Pediatric tumor samples were flash frozen, embedded in OCT, and 5µm cryosections 309

were collected. Slides were hematoxylin and eosin (H&E) stained and imaged on a Leica 310

DMi8, equipped with a HC PL APO 40x/0.85 NA objective and DFC7000T camera. 311

H&E slides were reviewed by a licensed pathologist. Morphologic analysis was 312

performed and the degree and type of inflammation estimated from the histologic 313

sections. Grading of inflammation was either minimal (<10% of total nuclei consist of 314

inflammatory cells) or moderate (20-30% of total nuclei consist of inflammatory cells). 315

The type of inflammation (predominantly small mature lymphocytes or mixed 316

inflammation consisting of small mature lymphocytes along with plasma cells and/or 317

eosinophils) was noted for each tumor sample. 318

Results 319

Performance assessment using synthetic gene expression data 320

To assess how well hydra detects differentially expressed pathways as compared to 321

common pathway enrichment approaches, we applied the hydra framework to 322
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synthetically-generated cancer gene expression data. We generated synthetic cancer 323

gene expression data based on the TCGA glioblastoma multiforme and the MSigDB 324

Hallmark gene sets as described above. We tested a range of effect sizes and percent 325

differentially expressed genes (%DEG) within the MSigDB gene sets. We generated 326

receiver operator curves (ROC) and calculated the area under the receiver operator 327

curve (AUC) for each analysis. Overall, the hydra pipeline outperformed the 328

single-sample GSEA approaches with a mean AUC of 0.93 (95% CI: 0.91 - 0.95). 329

ssGSEA had a mean AUC of 0.72 (95% CI: 0.71 - 0.74) and GSVA had a mean AUC of 330

0.67 (95% CI: 0.66 - 0.68) (Fig 2A). 331

We further investigated the performance of these methods by plotting the AUC 332

against the effect size at 10 and 25%DEG (Fig 2B). The hydra method performed 333

better across all effect sizes, achieving near perfect performance above an effect size of 334

2.0 and 0.75 at 10 and 25%DEG, respectively. ssGSEA and GSVA performed similarly 335

at low effect sizes, but ssGSEA performed better than GSVA as the effect size increased. 336

Overall, the hydra framework performed significantly better than these standard gene 337

set enrichment approaches, particularly at low effect sizes. Therefore, the hydra 338

approach is better suited for subtyping within a disease cohort when the effect sizes are 339

smaller and fewer genes are differentially expressed. 340

We performed a runtime analysis comparing hydra sweep, ssGSEA, and GSVA for 341

identifying a single differentially expressed gene set, since these methods are directly 342

comparable. Training the hydra model was the most computationally expensive step, 343

but the classification of new samples was very fast. The average runtime for the hydra 344

sweep algorithm was similar to ssGSEA, but the hydra runtimes were more variable 345

across effect-sizes and number of differentially expressed genes. The GSVA approach 346

was faster than hydra sweep and ssGSEA, but GSVA performed worse on the synthetic 347

data analysis than ssGSEA and hydra. We repeated the above analysis with an effect 348

size of 1.0, a %DEG of 25%, and a range of sample sizes, including 50, 100, 200, 300, 349

400, 500, 1000 samples. The hydra sweep and GSVA methods scaled well to large 350

sample sizes, but the ssGSEA runtime increased exponentially as the sample size 351

increased (Fig 2C & D). 352

Hydra analysis of high-risk neuroblastoma 353

High-risk neuroblastoma is an aggressive disease and is resistant to intensive therapy. 354

Further subtyping of high-risk neuroblastoma may identify novel therapeutic targets 355

and improve risk stratification. We hypothesized that unsupervised clustering of 356

multimodally expressed genes associated with enriched Gene Ontology terms would 357

identify expression subtypes of high-risk neuroblastoma tumors. TumorMap analysis [5] 358

showed that the MYCN -non-amplified (MYCN -NA) neuroblastoma samples clustered 359

separately from MYCN -amplified (MYCN -A) and stage 4S neuroblastoma samples (S2 360

Fig). We focused on the MYCN -NA neuroblastoma tumor samples because this is the 361

largest set of samples (N=70) and variation within MYCN -NA tumors is not well 362

understood [59]. 363

We applied the hydra filter analysis to the TARGET high-risk neuroblastoma cohort 364

as described above. This analysis identified 931 genes within the MYCN -NA 365

neuroblastoma cohort with a multimodal expression distribution. Of the 931 366

multimodally expressed genes, 358 genes were found to be potentially druggable by the 367

Drug Gene Interaction Database (S1 File) and 60 genes were associated with an 368

FDA-approved, anti-neoplastic drug [60]. 369

We next examined whether unsupervised clustering of multimodally expressed genes 370

revealed coordinated expression of annotated gene sets within the MSigDB database. 371

Applying the hydra sweep command to the MYCN -NA neuroblastoma cohort 372

discovered 105 gene sets with multimodal expression patterns. Each gene set sheds light 373
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Fig 2. Hydra sweep is more sensitive than existing gene set enrichment
approaches for detecting differential pathway expression in synthetic data
and scales well to large datasets. A: Mean receiver operator curves across effect
sizes, percent differentially expressed genes (%DEG), and MSigDB Hallmark gene sets.
A larger area under the curve (AUC) indicates better performance. The average AUC
and 95% confidence interval for each method are in the ROC plot figure legends. B:
Line plots comparing the mean AUC across a range of effect sizes and %DEG values. C:
Box plot showing mean runtimes for differential pathway analysis where the effect size
is fixed but the sample size varies. D: Line plot comparing the mean runtimes for
differential pathway analysis across a range of sample sizes.

on biological themes that are differentially expressed within the MYCN -NA 374

neuroblastoma cohort. We clustered the differentially expressed gene sets to reveal these 375
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biological themes (S4 Fig). We found 6 major themes, including annotated cancer 376

functions, cell cycle regulation, cell signaling pathways, immune functions, extracellular 377

matrix reorganization, and metabolic pathway gene sets. 378

We applied the hydra enrich analysis to the MYCN-NA cohort to identify how the 379

most highly enriched gene sets interact to form expression subtypes. This analysis found 380

428 genes with a minor component probability greater than 20% (S1 File). Gene 381

Ontology analysis found enrichment for the following GO terms (FDR: q < 0.01): 382

adaptive immune response (24 genes), mesenchyme development (12 genes), steroid 383

hormone secretion (4 genes), and response to corticosterone (4 genes). DP-GMM 384

analysis of the 44 enriched GO term genes identified three MYCN -NA neuroblastoma 385

clusters (Fig 3A). The posterior probability for belonging to each cluster was 42%, 34%, 386

and 17% for clusters 1, 2, and 3, respectively. The posterior probability for a sample 387

belonging to a new cluster was about 6% in our analysis. 388

We next investigated cluster-specific expression signatures using GSEA (see Hydra 389

Method section). Cluster 1 was enriched for adaptive immune response gene sets, 390

cluster 2 was enriched for proliferative signaling gene sets, and cluster 3 was enriched for 391

cancer-associated fibroblast gene sets (Fig 3B). Cluster 3 shares several features of a 392

wound healing response, including fibroblast recruitment, extracellular matrix 393

organization, and infiltration of immune cells [61]. 394

Clusters 1 and 3 were enriched for tumor microenvironment-associated gene 395

expression. To further validate this signal, we correlated the hydra clusters with 396

enrichment scores from the tumor microenvironment profiling tools xCell [50] and 397

ESTIMATE [52]. Cluster 1 had high average xCell enrichment scores associated with 398

adaptive immune cell types including B-cells, CD4+ naive T-cells, and CD8+ naive 399

T-cells (Kruskal-Wallis: p < 0.001). Cluster 2 was characterized by the absence of 400

immune and stromal expression and higher tumor purity scores than clusters 1 and 3. 401

The average ESTIMATE tumor purity was 88%, 96% and 82% for clusters 1, 2, and 3, 402

respectively. Cluster 3 was enriched for fibroblast-associated expression by xCell 403

analysis (Kruskal-Wallis: p < 0.001). Clusters 1 and 3 had higher ESTIMATE 404

immune-associated expression levels than cluster 2 (average ImmuneScore per cluster: 405

58, -612, 56), but cluster 3 had the highest stromal expression signature score (average 406

StromalScore per cluster: -1027, -1310, -135). Comparing ESTIMATE enrichment 407

scores across clusters reveals clear trends in broad immune and stromal expression 408

signatures. Lastly, we found a correlation between the hydra-identified tumor 409

microenvironment subtype and CD274 and CTLA4 expression (S6 Fig) 410

We next correlated clusters with clinical features. We found no difference in patient 411

survival outcomes across clusters (log-rank test, p > 0.05). Notably, cluster 1, which 412

had the highest adaptive immune expression signal in MYCN-NA neuroblastoma, 413

over-expresses cell-cycle regulation genes, which was not observed in other small blue 414

cell tumors. We investigated associations with clinical covariates, including mutation 415

burden, age, and tumor content as assessed by a clinical pathologist, but found no 416

statistically significant differences (Kruskal-Wallis: p > 0.05). We then investigated 417

associations between the hydra clusters and neuroblastoma-associated molecular 418

aberrations and clinical features (S1 File). ATRX gene deletions were enriched in 419

cluster 1 (Fisher’s Exact Test: p < 0.05). MKI low tumors were enriched in cluster 2 420

and 3 (Fisher’s Exact Test: p < 0.01). Chromosome 17 wild-type tumors were enriched 421

in clusters 2 and 3 (Fisher’s Exact Test: p < 0.01 ). Analysis on a larger dataset may 422

reveal additional clusters and correlations with clinical features. 423

Consensus clustering is a widely used approach for identifying tumor subtypes using 424

gene expression data. We applied the M3C consensus clustering method, which is a 425

more sophisticated version of consensus clustering that uses a null distribution to assess 426

the statistical significance of the clustering [20,21]. We used the top 5000 genes with the 427
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Fig 3. Hydra analysis identifies three distinct tumor microenvironment
expression subtypes in MYCN non-amplified neuroblastoma samples. A:
Gene expression heatmap displaying expression profiles of hydra clusters. Heatmap
columns (samples) are ordered by hydra cluster membership. Ward hierarchical
clustering applied to rows (genes) identified coordinated expression of GO term genes.
These GO term genes were originally identified by the hydra enrich command. B:
GSEA performed on each cluster identified enrichment of tumor microenvironment and
proliferative signaling gene sets. C: xCell enrichment score distributions for B-cells,
CD8+ naive T-cells, and Fibroblasts, and the ESTIMATE TumorPurity score
distributions for each cluster; enrichments for all cell types are available in S1 File.
Abbreviations: Normalized Enrichment Score (NES), Epithelial to Mesenchymal
Transition (EMT), Gene Ontology Biological Process (GOBP).

largest median absolute deviation (MAD) because this threshold is routinely used in 428

unsupervised clustering of cancer gene expression data [62–64]. 429

The M3C analysis resulted in the identification of two statistically significant 430

clusters. One M3C cluster correlated with hydra clusters 1 and 3 and the other M3C 431

cluster correlated with hydra cluster 2. Therefore, M3C clustering detected the tumor 432

purity signal in the expression data, but was not able to separate the adaptive immune 433

cell and fibroblast infiltrated clusters (hydra clusters 1 and 3). We also applied k-means 434

clustering using the gap statistic approach [53,65] for estimating the number of clusters, 435

but this approach grouped all samples into a single cluster. We tested a range of MAD 436

thresholds based on the median absolute deviation, but found similar results across 437

thresholds (S3 Fig). Overall, the hydra approach was more sensitive at detecting 438

distinct tumor microenvironment states than these other popular clustering methods. 439

To further investigate expression patterns within the hydra-identified tumor 440

microenvironment subtypes, we performed GSEA by z-score normalizing each tumor’s 441

gene expression data to its tumor microenvironment cluster. This is a novel GSEA 442

approach that uses the tumor microenvironment state discovered by the hydra method 443
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to identify additional gene expression signals for individual samples. This approach 444

revealed signals not present at the cohort level analysis (Fig 4). For example, 445

enrichment of immune expression signatures within cluster 2 predicted differences in 446

overall survival such that patients with higher immune expression had a better overall 447

survival rate. Similarly, an elevated cell cycle signal within cluster 3 predicted worse 448

survival compared to other cluster 3 samples with lower cell cycle expression. A 449

metastatic expression signal was identified in the analysis of cluster 1 samples, but this 450

signature did not correlate with a difference in survival. This approach may therefore 451

provide appropriate background distributions for revealing and evaluating the 452

significance of gene expression patterns and survival statistics within tumor subtypes. 453

Fig 4. Gene set enrichment analysis (GSEA) of MYCN -NA neuroblastoma
identifies overall survival differences within hydra cluster 2 and cluster 3.
Cluster-level GSEA separated cluster 2 into high and low immune expression subtypes
and cluster 3 into high and low cell cycle expression subtypes. A: Kaplan-Meier plot for
immune expression subtypes within cluster 2. B: Kaplan-Meier plot comparing cell cycle
expression subtypes within cluster 3.

N-of-1 tumor analysis for pediatric neuroblastoma 454

The command-line interface of the hydra toolkit includes a predict function for labeling 455

samples using a pre-fit model. The MYCN -NA neuroblastoma model described above 456

was used to predict expression subtypes on a new set of samples. We obtained tumor 457

gene expression data from six stage 4, MYCN -NA neuroblastoma samples from the 458

UCSC Treehouse gene expression compendium [5,6]. The age at diagnosis ranged from 459

2 to 6 years. Four out of six samples had a deletion in the ATRX gene. 460

Application of the hydra N-of-1 analysis framework clustered 4 out of the 6 samples 461

into cluster 1, which is characterized by adaptive immune cell expression. Three of the 462

ATRX -deleted samples clustered with the high adaptive immune cell expression cluster 463

(cluster 1) and one clustered in the low immune, high proliferative signaling cluster 464

(cluster 2). We showed earlier that tumors with ATRX deletions tend to have higher 465

adaptive immune expression, and we found a similar pattern in an independent set of 466

MYCN -NA neuroblastoma samples. 467

Two of the samples with loss of ATRX came from the same patient but at different 468

timepoints. The first sample (diagnostic sample) clustered with high adaptive immune 469

cell expression (cluster 1), but the resection sample clustered with the low immune 470

expression, high proliferative signaling cluster (cluster 2). We investigated possible 471

explanations for the change in tumor microenvironment state. We performed GSEA 472
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comparing the samples from different timepoints to investigate potential mechanisms 473

leading to immune evasion in these samples. GSEA found downregulation of the MHC 474

Class I Antigen Processing & Presentation GO term in the resection sample (adjusted 475

p-value < 0.002). Loss of antigen processing functions is a common mechanism of 476

immune evasion across cancer types [66]. 477

We obtained H&E stained sections for each of the hydra-identified clusters (S5 Fig). 478

The cluster 1 sample had moderate levels of inflammation (30-50%) consisting of 479

mature mononuclear cells, plasma cells, and eosinophils. The cluster 2 sample had 480

minimal levels of inflammation (<10%) with some scattered mature mononuclear cells 481

throughout the tumor. The cluster 3 sample looked similar to the cluster 1 slide with 482

moderate levels of inflammation (30-50%), but also had regions of apparent necrosis. 483

The inflammation and necrosis in the cluster 3 sample may correlate with the tissue 484

remodeling/wound healing signature identified in the expression data. 485

Hydra analysis discovers complex tissue signatures 486

While the MYCN -NA neuroblastoma analysis above focused on immune and wound 487

healing expression signatures, the hydra enrich method is unsupervised and can 488

therefore detect any type of expression signature. To illustrate this, we applied the 489

hydra filter/enrich analysis to the TARGET osteosarcoma cohort (N=74) and 490

discovered enrichment of the GO striated muscle contraction term (FDR < 0.01, Fig 5). 491

Multivariate clustering for the GO striated muscle contraction gene set using the sweep 492

routine identified two clusters. xCell analysis of the osteosarcoma cohort found 493

significant enrichment of skeletal muscle expression in the second cluster 494

(Mann-Whitney U test, p < 0.001). Surprisingly, the M3C clustering approach was not 495

able to detect the strong muscle signature using the 5000 genes with the largest MAD 496

(p > 0.05). We used the muscle expression signature to identify osteosarcoma tumors in 497

the UCSC Treehouse Compendium which also contained a similar expression signature. 498

We subsequently confirmed with a licensed pathologist that one of the muscle-expression 499

positive tumor samples did contain significant muscle tissue infiltration. The hydra 500

enrich analysis revealed expression signatures not routinely investigated when analyzing 501

osteosarcoma data. Nevertheless, these signals contribute significantly to the tumor 502

expression profile, so explaining these sources of variation is necessary to derive 503

clinically relevant conclusions from gene expression data. 504

We applied the filter method to Ewing sarcoma and discovered multimodal 505

expression of an important druggable gene, JAK1. Applying the multimodal expression 506

model allowed us to deconstruct the Ewing sarcoma distribution into three components 507

(S7 FigA). We found that the expression component with the highest JAK1 expression 508

was also enriched for mast cell expression (S7 FigB). Therefore, overexpression of JAK1 509

may not correspond to activation of the JAK/STAT signaling pathway in cancer cells 510

but rather to the presence of mast cells within the tumor microenvironment. 511

Furthermore, targeted inhibition of JAK1 using ruxolitinib was shown to inhibit 512

essential mast cell functions, including degranulation [67]. Therefore, therapeutic 513

intervention intending to inhibit JAK1 expression in cancer cells may inadvertently 514

inhibit the patient’s mast cell functions. Overexpression analysis using the Ewing 515

sarcoma JAK1 expression distribution may identify JAK1 as an actionable lead, but 516

further investigation into the effect of inhibiting off-target JAK1 expression in mast 517

cells is needed. The hydra framework facilitates the identification of important 518

expression signatures which can be used to deconstruct complex tumor expression 519

subtypes and identify potentially confounding expression signals. 520

We next quantified the number of multimodal druggable genes from the MYCN -NA 521

neuroblastoma dataset that correlated with at least one xCell cell type signature. Out 522

of the 358 druggable genes, we found that 77 correlated with a non-cancer cell type 523
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Fig 5. Hydra analysis of TARGET osteosarcoma cohort reveals skeletal
muscle signature. Hydra enrichment analysis on the TARGET osteosarcoma cohort
revealed a subset of patients with high skeletal muscle expression. A: Clustered
heatmap shows the muscle signature genes identified by hydra unsupervised enrichment
analysis (purple: enriched for muscle signature; yellow: not enriched for muscle
signature). B: xCell tumor microenvironment profiling identified significant differences
in skeletal muscle expression compared to background (p < 0.001). C: H&E stained
tumor slide confirms presence of striated muscle tissue within the tumor sample.

(Kruskal-Wallis test: Holm-Sidak adjusted p-value < 0.05, S1 File). Some of the 524

druggable genes were expected to correlate with non-cancer cells, including the cytokines 525

IL6 and TGFB2, which correlated with epithelial cells and fibroblasts, respectively. 526

Other druggable genes were surprising, like AURKA and AURKB, which correlated 527

with higher Th2 cell expression. Aurora kinases play essential roles in spindle formation 528

during mitosis and the overexpression of these genes is associated with evading spindle 529

formation checkpoints in cancer [68], but little is known in how these genes correlate 530

with infiltrating immune cells. Aurora kinase inhibitors show limited clinical activity in 531

solid tumors, but have been shown to have a greater effect in leukemias [68,69]. 532

Hydra analysis reveals recurrent expression subtypes across 533

small blue round cell tumors 534

We next investigated whether similar hydra clusters could be identified across other 535

small blue round cell tumors. We chose to focus on extracranial solid tumors because 536

they are among the most common pediatric cancers, making up 20% of all pediatric 537

cancer diagnoses [70], and while survival rates have improved, there are few effective 538

treatment options for the subset of patients with relapse or refractory disease [71]. 539

Identifying expression subtypes for these diseases may improve risk stratification and 540

discover opportunities for new therapies. These tumors also share similar 541

histopathological features, so we hypothesized that these tumors may share similar gene 542

expression subtypes, despite significant differences in the raw expression profiles (Fig 543

6A). 544

We first performed TumorMap analysis, which is a dimensionality reduction 545

approach for visualizing genomic data on a 2D surface [5]. We found that small blue 546
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round cell tumor types — MYCN -NA neuroblastoma, osteosarcoma, Ewing sarcoma, 547

synovial sarcoma, alveolar rhabdomyosarcoma, and embryonal rhabdomyosarcoma — 548

all form separate TumorMap clusters (Fig 6A). This suggests there is a strong 549

cell-of-origin signal driving the clustering of these cancer types, which is an observation 550

that was recently made in the larger TCGA dataset of adult cancers [72]. While 551

pan-cancer analysis emphasized the differences across small blue round cell tumors, we 552

hypothesized that expression subtypes within cancer types would participate in shared 553

biological themes. 554

Fig 6. Hydra enrich analysis of small blue round cell tumors reveals
similar expression subtypes across cancer types. A: TumorMap visualization of
6 small blue round cell tumor types. B: Hierarchically clustered heatmap for the top 10
enriched gene sets across the 21 small blue round cell tumor expression subtypes. Each
column corresponds to a cancer type and an expression subtype (x-axis). Each row
corresponds to a gene set. The expression subtype was manually assigned after
reviewing the most highly enriched gene sets for each cancer expression subtype.

We next performed hydra enrich analysis within each small round blue cell cancer 555

type and found shared biological themes across all six small blue round tumor types. 556

Hierarchical clustering of the top 10 statistically significant gene sets for each cancer 557

type resulted in clustering by expression subtype and not the cancer type (Fig 6B). 558

Common themes emerged across diseases including translational regulation, cell cycle 559

regulation, immune effector cell signaling, inflammation, extracellular matrix 560

organization, and tissue-of-origin signals. Furthermore, these signals predicted 561

differences in patient outcomes in osteosarcoma and synovial sarcoma (Fig 7). In both 562

cases, the presence of immune-associated expression correlated with better patient 563

outcomes compared to tumors with proliferative signaling pathways associated with 564

translation initiation and cell cycle regulation. Other osteosarcoma clusters were not 565

included in the survival analysis due to insufficient number of samples with survival 566

data (n < 5). Survival data were not available for the rhabdomyosarcoma and Ewing 567

sarcoma expression datasets. 568

Discussion 569

The hydra framework uses model-based clustering to facilitate the discovery of recurrent 570

expression patterns within cancer gene expression cohorts. We leveraged recent 571

improvements in model-based clustering algorithms to identify differentially expressed 572

genes without a matched normal distribution. We modeled differential expression as a 573

multimodal Gaussian distribution using nonparametric Bayesian statistics. We then 574

enriched for biologically-annotated Gene Ontology terms and performed multivariate 575
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Fig 7. Hydra analysis identifies tumor microenvironment expression
subtypes that correlate with patient outcomes in osteosarcoma and
synovial sarcoma. A: Kaplan-Meier plot showing overall survival curves for
osteosarcoma wound healing and translation clusters. B: Kaplan-Meier plot showing
metastasis survival curves for synovial sarcoma clusters.

clustering to reveal expression subtypes. The hydra framework can be used for both 576

identifying expression subtypes within large cohorts and classifying new tumor gene 577

expression profiles using the trained models. The hydra framework outperformed 578

standard gene set enrichment tools for identifying overexpression of the MSigDB 579

Hallmark cancer gene sets in synthetic data. Application of this framework to small 580

blue round cell tumors identified shared biological themes associated with the tumor 581

microenvironment. 582

Multivariate gene expression analysis is typically underpowered because the number 583

of genes greatly exceeds the number of samples. To address this limitation, we propose 584

selecting for multimodally expressed genes before performing multivariate analysis. The 585

hydra filter method reduces the number of genes and enriches for genes that participate 586

in known biological processes, including those curated in the Gene Ontology and 587

MSigDB databases. Selecting for multimodally expressed genes improves separation of 588

known clinical subtypes better than the standard approach of using all expressed genes 589

according to TumorMap analysis (S2 Fig). We also showed that the hydra approach of 590

subsetting to multimodal genes improves detection of differential pathway expression, 591

including the identification of expression subtypes associated with the TME. 592

Significant progress has been made in subtyping neuroblastomas and adapting 593

therapy for aggressive subtypes, but unexplained heterogeneity remains [59]. Failure to 594

account for this heterogeneity decreases the power of standard methods to detect 595

important expression patterns. Identifying biomarkers using genome-wide technology 596

may lead to improved risk stratification and the discovery of novel drug targets. Hydra 597

analysis of the TARGET MYCN -NA neuroblastoma cohort found differential 598

expression of tumor microenvironment markers, including markers of the adaptive 599

immune response. Pediatric cancers are generally thought to be less immunogenic 600

because they have lower mutation burdens than adult cancers, but the immunogenicity 601

of pediatric cancer has not been sufficiently investigated [11,12]. 602

Our analysis found significant variation in immune marker expression, including 603

markers of response to checkpoint blockade therapy, and identified ATRX deletions as a 604

potential biomarker of immune infiltrated tumors in MYCN -NA neuroblastoma. 605

Analysis of other small blue round cell tumors revealed similar expression signatures 606

across tumor types, despite samples clustering by their histology in a pan-cancer 607

TumorMap analysis. Identification of shared expression signatures across cancer types 608
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may suggest that these patients would respond similarly to therapies that target these 609

pathways. In particular, the identification of a cross-disease subtype associated with 610

high expression of immune markers may warrant further investigation of 611

immunotherapies in small blue round cell tumors using a basket clinical trial design [73]. 612

Hydra analysis found significant differences in tumor immune and stromal expression 613

that may inform precision medicine applications. The tumor microenvironment has 614

become an important therapeutic consideration, but few methods account for the tumor 615

microenvironment directly. Tumor purity has been identified as a confounding factor in 616

cancer gene expression subtyping efforts [74]. For example, tumor purity and tumor 617

microenvironment expression have been shown to correlate with pancreatic cancer 618

subtypes [75]. Furthermore, Aran et al. (2018) found that tumor purity was correlated 619

with the mesenchymal glioblastoma subtype and recommended a differential expression 620

approach to computationally remove the tumor purity signal. However, standard 621

approaches for subtracting the tumor purity effect may not be ideal because several 622

mechanisms may influence tumor purity, and each mechanism may result in a different 623

expression pattern. For instance, our analysis of MYCN -NA neuroblastoma identified 624

two gene expression signatures that correlated with lower predicted tumor purity. 625

Cluster 1 had an adaptive immune expression signature and cluster 3 had a 626

cancer-associated fibroblast signature. Therefore, the estimated tumor purity signal 627

should not be subtracted without first accounting for the different mechanisms 628

influencing tumor purity. 629

We also found shared biological pathway enrichment across small blue round cell 630

tumors. While these diseases are related and may derive from similar cell lineages, 631

current expression methods often emphasize difference across these diseases (Fig 6A). 632

Unsupervised clustering of adult cancer types found that cell-of-origin signals strongly 633

influence clustering of cancer gene expression data [72]. Although these diseases have 634

distinct expression patterns on the surface, we discovered common themes once we 635

subset the data to the cell-of-origin signal and applied the hydra analysis tools. 636

We found at least three shared TME states: immune silent, immune infiltrated, and 637

wound healing subtypes. The wound healing subtypes predicted better overall survival 638

in osteosarcoma and delayed metastases in synovial sarcoma tumors, which suggests the 639

involvement of the host immune response limits the progression of these tumors. 640

Amplification of the host immune response may further limit tumor growth and lead to 641

immune-mediated tumor cell death. Additional research into immune modulating 642

therapies is warranted in small blue round cell tumors and may lead to improved 643

outcomes for some patients. 644

Conclusion 645

Precision oncology aims to differentiate tumors of the same diagnosis in order to match 646

patients with the best treatment. We have developed the hydra framework to discover 647

subtle but recurrent expression patterns within a cohort of samples with the same 648

diagnosis, which is a novel strategy for pediatric precision oncology research. Our 649

approach may help to uncover the biology underlying tumor progression and response to 650

therapy. We have shown that hydra is more sensitive than standard gene set enrichment 651

approaches for detecting differential pathway expression. Additionally, our framework 652

provides tools to conduct unsupervised clustering analysis to discover expression 653

subtypes. We applied the unsupervised hydra analysis to small blue round cell tumors 654

and discovered distinct tumor microenvironment (TME) states. This shows that one of 655

the strongest signals in clinical gene expression data comes from the TME, so careful 656

modeling of the TME is required to maximize the impact of clinical gene expression 657

analysis. The hydra framework provides unbiased clustering tools to characterize these 658
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sources of variation in specific disease populations and identify shared biological themes 659

that can potentially be targeted therapeutically. 660

Supporting information 661

S1 Fig. 662

663

Example of bnpy memoized online variational inference clustering on toy 664

data. We used the bnpy moVB algorithm to infer the number of clusters from 665

synthetic data. The model first randomly assigns clusters. Then, the model iteratively 666

improves the model fit, creating and destroying clusters until the model converges on 667

the correct number of clusters at lap 16 [36]. 668

S2 Fig. 669

670

Enriching for multimodally expressed genes improves clustering of 671

established neuroblastoma subtypes. Standard TumorMap analysis of the 672

TARGET neuroblastoma dataset resulted in stage 4S samples clustering with stage 4 673

neuroblastoma samples (left). An alternative TumorMap based solely on 1,498 674

multimodally expressed genes separated the stage 4S samples into a distinct cluster 675

(right). 676
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S3 Fig. 677

Consensus and k-means clustering applied to TARGET MYCN -NA 678

dataset. We tested a range of gene expression variation thresholds based on the 679

median absolute deviation, but found that the clusters identified by this approach could 680

not resolve the same clusters as the hydra approach. The barplot shows the number of 681

clusters and the lineplot tracks the Rand index comparing the M3C and k-means 682

clusters and the hydra clusters. 683

S4 Fig. 684

685

Hydra sweep analysis reveals differential pathway expression within 686

MYCN -NA neuroblastoma without a matched cohort of normal tissue. 687

Unsupervised clustering of multimodal gene sets revealed biological themes associated 688

with hallmark cancer functions, including cell cycle, immune cell signaling, extracellular 689

matrix organization, and metabolism. 690
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S5 Fig. 691

692

Hydra method correlates with distinct tumor features as assessed by 693

licensed pathologist review of tumor H&E slides. A-B: H&E sections from fresh 694

frozen tumor tissue from MYCN -NA neuroblastoma sample at A: 2X magnification and 695

B: 20X magnification. Tumor cells are medium to large with moderate amounts of 696

cytoplasm and areas of rhabdoid appearing undifferentiated cells. There is a moderate 697

amount of mixed inflammation present (30-50%) consisting mostly of mature 698

mononuclear cells with some plasma cells and scattered eosinophils. C-D: H&E sections 699

from fresh frozen tumor tissue from MYCN -NA neuroblastoma at C: 2X magnification 700

and D: 20X magnification. Tumor cells are moderate to large in size with moderate 701

amounts of cytoplasm. There is a minimal amount (<10%) of apparent mononuclear 702

inflammation scattered throughout the tumor. E-F: H&E sections from fresh frozen 703

tumor tissue from MYCN -NA neuroblastoma sample at (E) 2X magnification and (F) 704

20X magnification. Tumor cells are medium to large with moderate amounts of 705

cytoplasm and areas of rhabdoid appearing undifferentiated cells. There are also areas 706

of apparent necrosis. There is a moderate amount of inflammation present (30-50%) 707

consisting mostly of mature mononuclear cells with some plasma cells and scattered 708

eosinophils. 709
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S6 Fig. 710

711

Hydra enrich analysis identifies correlation between expression subtypes 712

and checkpoint blockade markers in MYCN -NA neuroblastoma. 713

S7 Fig. 714

715

Hydra analysis identified JAK1 expression clusters that correlate with 716

mast cell expression signature in Ewing sarcoma. A: JAK1 expression 717

distribution for Ewing sarcoma cohort (top) and the JAK1 expression distributions for 718

cluster 1 (green), 2 (orange), and 3 (blue). B: Boxplot showing the xCell mast cell 719

enrichment score for the three clusters associated with JAK1 expression. 720

S1 File. TARGET MYCN -NA neuroblastoma supplementary data. 721

S2 File. Hydra method documentation. 722
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Introduction

The tumor microenvironment (TME) is the cellular matrix consisting of cancer, stro-

mal, and immune cells. The TME plays an important role in providing nutrients and oxygen

to the tumor, shielding cancer cells from the immune system, and providing growth factors that

promote cancer growth and resistance to therapies. Cancer cells co-opt the host’s wound heal-

ing response to promote angiogenesis and proliferative signaling. Epithelial cells create blood

vessels that bring nutrients, oxygen, and growth factors to the tumor. Stromal and immune cells

exclude cytotoxic immune cells and release signaling molecules that suppress cytotoxic func-

tions of the immune system. The tumor becomes a wound that cannot heal and the host’s wound

healing program contributes to cancer progression [13].

Stromal cells, such as fibroblasts, make up connective tissues that support other tis-

sues and organs. Fibroblasts are usually quiescent, but become activated during the wound

healing response. Fibroblasts are resilient and can shield tumors from radiation and chemother-

apy. Fibroblasts increase the interstitial pressure within the tumor microenvironment, which

excludes some immune cells from infiltrating. Cancer-associated fibroblasts (CAFs) are identi-

fied by over-expression of α-smooth muscle actin [21]. The wound healing program promotes

angiogenesis and extracellular matrix remodeling [13]. Fibroblasts also secrete mitogenic sig-

naling molecules that can promote resistance to targeted inhibitors by activating an alternative

proliferative signaling pathway. Examples of mitogenic factors include hepatocyte growth fac-

tor, epithelial growth factors, insulin-like growth factors, and fibroblast growth factors. Targeted

therapies inhibit the function of these growth factors, but compensatory expression of another
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growth factor molecule can lead to drug resistance [13].

The cells of the TME also recruit immunosuppressive immune cells that protect

cancer cells from the immune system. Infiltrating immune cells include regulatory T-cells,

macrophages, neutrophils, dendritic cells, and mast cells. The TME becomes immune privi-

leged, which prevents the immune system and immunotherapies from eliminating cancer cell

populations [20]. The immune component also provides important pro-survival signals that

allow cancer cells to evade apoptosis. The immune cells secrete epidermal growth factor, trans-

forming growth factor-β, tumor necrosis factor-α, and fibroblast growth factors [13, 35].

Tumors are complex systems of interacting cells, and characterizing the individual

cells in the tumor may lead to novel therapeutic directions. For my third aim, I propose a single-

cell sequencing approach to describe the cell populations within a patient tumor and to identify

drug resistance markers that could influence a patient’s response to therapy. Treehouse targeted

therapies are susceptible to drug resistance, so identifying markers of resistance before the drugs

are administered can allow for early intervention of cancer resistance mechanisms. Single-cell

RNA sequencing has been used to characterize tumor heterogeneity. A recent study into the

tumor heterogeneity of glioblastoma tumors identified variable expression of receptor tyrosine

kinases (RTKs) [33]. RTKs are important molecular targets for therapy and identification of

mosiac RTK expression could contraindicate application of an RTK targeted inhibitor. Single-

cell RNA sequencing is a powerful approach to identify markers of drug resistance than can be

used to prioritize targeted therapies.

There has recently been increased focus on targeting the tumor microenvironment for

therapeutic gain. Immunotherapies modulate the immune effector cells to target cancer cells
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Figure 4.1: The tumor micro-environment is made up of extracellular matrix, cancer, stromal,
and immune cells. The tumor microenvironment facilitates tumor growth and survival. Molec-
ularly targeting the tumor microenvironment may yield improved therapeutic responses.

and have become a front line defense against some cancers, including melanoma. While im-

munotherapies, including checkpoint blockade therapy, have become widely used, the response

rates remain low (< 40%), so new strategies are needed to increase the response rate.
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Chapter 5

vaccinaTE: A precision immuno-oncology

toolkit for identifying transposable element

vaccine targets

Introduction

Cancer vaccine technology today is focused on neoantigens derived from somatic mu-

tations, but there has been limited success in bringing this approach into the clinic. One reason

for this is the inability to scale this approach to the entire healthcare system. I took a differ-

ent approach by investigating mobile genetic sequences that are shared across individuals but

strongly repressed in healthy cells. Transposable elements make up 40% of the human genome

and become overexpressed in cancer cells. This makes transposable elements attractive targets

for cancer vaccine development. I developed the vaccinaTE software to identify shared trans-

posable element (TE) epitopes across individuals. I also show that expression of TEs correlates
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with a survival benefit in triple negative breast cancer and complete response to checkpoint

blockade therapy in melanoma.
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vaccinaTE: A precision immuno-oncology toolkit for 
identifying transposable element vaccine targets 
 
Jacob Pfeil, Jason Fernandes, Lauren Sanders, Alana Weinstein, Geoff Lyle, Holly Beale, 
Olena Morozova, Sofie Salama, David Haussler 
 
Abstract 

Cancer immunotherapy harnesses the power of the immune system to attack cancer and 
has led to durable responses in advanced disease. However, only a subset of patients respond, 
so innovative therapeutic strategies, such as combination therapies, are needed to increase the 
number of patients who benefit. Cancer vaccine in combination with checkpoint blockade 
therapy is a promising approach to increasing the antitumor immune response, but current 
limitations in cancer vaccine development may prevent this approach from being widely used. 
For example, cancer vaccines based on private mutations may be prohibitively expensive and 
inhibit widespread adoption of this approach. We propose a novel strategy for personalized 
cancer vaccines that use public antigens that are shared across individuals. 

Genomewide dysregulation of transcription and translation leads to overexpression of 
non-canonical protein coding genes, including transposable elements (TEs). TEs are strongly 
repressed in healthy cells to prevent genomic instability but become dysregulated in cancer. We 
developed a computational framework for identifying potential cancer vaccine targets within 
transposable elements using RNA-seq or mass spectrometry data. We focus on the youngest 
and most highly conserved transposable element in the human genome, L1HS. We applied our 
approach to triple negative breast cancer (TNBC) and melanoma and found that L1HS epitope 
kmers correlate with better survival in TNBC and complete response to checkpoint blockade 
therapy in melanoma. This suggests that these elements correlate with better survival, 
presumably through activation of the host immune system. Further activation through 
vaccination may lead to even stronger antitumor immune responses, which may work 
synergistically with checkpoint blockade therapy. 
 
Introduction 

Cancer is the second leading cause of death in the United States ​[1]​, and while there 
have been significant medical advances in treating this disease, the standard of care has not 
changed significantly over the past few decades. Chemotherapy, radiation, and surgery have 
been the frontline defense against cancer progression, but new therapeutic strategies are being 
developed that personalize the therapy to individuals. For example, targeted therapies are 
small-molecule drugs designed to inhibit specific molecular alterations, such as an activating 
kinase mutation. These therapies have generated complete responses in late-stage disease, 
but resistance often emerges and the cancer relapses. Targeted therapies are routinely used 
against recurrent activating mutations, including BRAF V600E in melanoma, but most patients 
do not have an actionable variant and do not benefit from these approaches. Furthermore, 
targeted therapies do not yield durable responses, since the cancer eventually relapses, and 
incur significant cost to the healthcare system ​[2]​.  

Another approach for treating cancer is to amplify the antitumor immune response. This 
approach has achieved remarkable responses while induces minimal toxic side-effects. The 
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discovery that the immune system can recognize and destroy cancer cells has opened the door 
to an entirely new therapeutic approach. Genomewide dysregulation of transcription and 
translation leads to the presentation of tumor-specific antigens by major histocompatibility 
complex molecules. Cytotoxic cells recognize tumor-specific antigens and induce 
immune-mediated cell death.  

Unfortunately, this process can select for cancer cells that evade immune recognition, 
which leads to an immunosuppressive tumor microenvironment that is able to coexist with the 
host's immune system [3]. For example, some cancer cells adopt immunosuppressive 
cell-surface markers to curb the antitumor immune response. These include the immune 
checkpoint molecules CTLA4 and PD1. Identification of immune checkpoint expression in 
cancer has led to the development of antibody therapies that block the immunosuppressive 
signal allowing cytotoxic T-cells to continue the antitumor attack. Checkpoint blockade therapy 
uses the immune system to achieve durable responses with relatively minor toxic side-effects 
[4–7]. 

The anti-CTLA4 antibody, ipilimumab, was the first checkpoint blockade therapy to 
achieve FDA approval [6,8]. CTLA4 has a stronger binding affinity to CD80 and CD86 than the 
costimulatory CD28 molecules, leading to inhibition of T-cell activation ​[3]​. CTLA4 normally 
becomes expressed after T-cell activation in order to prevent off-target autoimmunity, cancer 
cells may express CTLA4 to prevent cytotoxic T-cell activation ​[4–6]​. The anti-PD1 antibody 
pembrolizumab came later and was found to be more efficacious and have fewer side-effects 
[9]. PD1 is a cell-surface receptor expressed after T-cell activation. Activation of the PD1 
receptor by its ligand PDL1 leads to interference of downstream signaling from the T-cell 
receptor which suppresses the T-cell response ​[7,8]​.  

The extraordinary responses to checkpoint blockade therapy has led to this therapy 
becoming widely used and at increasingly earlier stages in cancer treatment ​[7]​. Using 
checkpoint blockade as a monotherapy achieves a response rate between 20 and 40% for 
melanoma ​[4,9]​. Current biomarkers for response include PDL1 expression, T-cell infiltration, 
tumor bulk, mutation burden, crippled DNA repair machinery, and microsatellite instability. In 
addition to identifying predictive biomarkers of response, combination immune checkpoint 
therapies are being investigated. Administering anti-CTLA4 and anti-PD1 therapies increases 
the response rate ( > 40%), but at the cost of increasing the number of adverse events, 
including fatal pulmonary toxicity ​[9]​. 

The increased response rate with combination immunotherapy shows that further 
activation of the immune system correlates with increased antitumor effects. The additional toxic 
side-effects limit this approaches utility, so new approaches are needed to similarly activate the 
antitumor immune response while avoiding toxic side-effects. Checkpoint blockade therapy 
allows infiltrating T-cells to continue their cytotoxic functions, but does not influence the T-cell 
clones that travel to the tumor. Therapies that expand T-cell clones that are able to recognize 
cancer cells may work synergistically with checkpoint blockade therapy to tip the balance in 
favor of immune-mediated destruction of tumors ​[10]​.  

During a normal infection, antigen presenting cells enter peripheral lymph nodes to 
excite T-cell that recognize the antigen into rapidly expanding and circulating throughout the 
body in search of the antigen. Another strategy for improving response to checkpoint blockade 
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therapy may be to increase the number of circulating T-cells able to recognize cancer cells 
using a cancer vaccine approach. Cancer vaccines expand the T-cells able to recognize cancer 
cells and increase the number of T-cells infiltrating the tumor ​[11]​.  

Despite extensive research into cancer vaccines, the clinical response to cancer vaccine 
monotherapy has been modest ​[12,13]​. Sipuleucel-T is the only FDA-approved cancer vaccine 
that stimulates the immune response against a tumor-specific antigen [14]. This suggests that 
expanding the number of antitumor T-cells is not sufficient, so checkpoint blockade therapy may 
be required to overcome the inhibitory mechanisms within the tumor microenvironment. Recent 
studies have shown that vaccines work synergistically with checkpoint blockade therapy to 
increase response rates ​[10,11]​. 

Sipuleucel-T does not target a mutated protein, but instead targets a shared antigen that 
is overexpressed in prostate cancer cells but not in healthy somatic cells. Being shared across 
patients has facilitated the development of Sipuleucel-T. The alternative cancer strategy being 
investigated is to identify private mutations within each tumor and synthesize a unique set of 
peptide vaccines based on that individuals cancer mutations. The private mutation approach 
does not scale well since it requires DNA sequencing, alignment, variant calling, MHC binding 
prediction, peptide synthesis, quality control and safety validation for each individual patient. 
Ideally, it would be possible to identify a set of protein-coding genes within the genome that are 
uniquely expressed in cancer cells but are also shared across individuals. However, this 
approach may also need to be personalized to the individual since the immunopeptidome 
reflects that patient’s particular HLA genotype.  

The one FDA-approved cancer vaccine targets a non-mutated gene that is 
overexpressed in cancer cells and not normal cells. This is an attractive model because cancer 
cells typically overexpress a large number of genes not usually expressed in healthy cells. 
Dysregulation of transcription and translation is a hallmark of cancer and causes many 
non-canonical genes to be expressed in tumor cells. Recent research into potential cancer 
neoantigens has found that over-expression of non-canonical genes, including genes from 
endogenous retroviruses and transposable elements, is a major source of tumor specific 
antigens ​[14,15]​. 

Epigenetic dysregulation is a hallmark of cancer. Cancer cells take on a stem-cell-like 
state, with the genome taking on a more euchromatic structure. This, in combination with 
widespread DNA hypomethylation, allows genes that are normally silenced to become 
expressed. Notably, 40% of the genome is composed of self-propagating DNA elements known 
as transposable elements (TEs). TEs encode viral-like genes that facilitate reintegration of their 
sequences throughout the genome. These elements are normally repressed to prevent genomic 
instability, but have been identified in specific tissues and developmental stages. For example, 
transposable elements are under selective pressure to retrotranspose in germline cells in order 
to propagate across generations. There have also been reports of higher expression in brain 
tissue and stem cells ​[16–24]​. 

Transposable elements can be subdivided into DNA transposons and retrotransposons. 
DNA transposons replicate with a DNA intermediate and retrotransposons replicate with an RNA 
intermediate coupled with a reverse transcription. There are two major classes of 
retrotransposon: long terminal repeat (LTR) and non-LTR elements ​[16]​. LTR elements are 

89



 
 

related to retroviruses. The non-LTR elements contain two subclasses, the short interspersed 
nuclear elements (SINEs) and the long interspersed nuclear elements (LINEs). LINEs are the 
only class of TE that contain the necessary protein machinery to retrotransposon. Moreover, 
autonomous LINEs are required for other TEs, including ​Alu ​SINEs, to retrotranspose. For this 
reason, the LINEs are strongly repressed in somatic tissues to prevent genomic instability 
caused from widespread retrotransposition.  

The youngest sub-class of LINEs are the human specific L1HS. These elements are the 
youngest in the genome and their protein coding sequences are the most strongly conserved. 
L1HS vaccines have been developed to treat HIV patients because HIV infected cells also 
over-express transposable elements. The L1HS vaccines were tested in pre-clinical models, 
including primates, and found to be immunogenic and safe ​[25]​. However, immunization against 
these elements did not have an effect in protecting macaques from SIV infection, but the 
vaccines were based on the consensus sequence of transposable elements and endogenous 
retroelements, which may not capture loci variation required for response ​[26]​.  

Methods for quantifying TE expression are currently being developed, but these 
methods are not designed for precision immuno-oncology applications. TE expression methods 
quantify expression at the class level using a consensus sequence or an average across loci 
[15,27]​. However, this approach is agostic of the targetable vaccine sequence and how it can be 
present at multiple loci or unique to a specific locus. We developed a novel TE epitope 
quantification approach to identify unique TE sequences for precision cancer vaccine 
development. Furthermore, DNA and RNA-level analysis of TE expression assume these 
sequences are translated, processed, and presented on the MHC, but this assumption is too 
strong. In response to this, we also developed a mass spectrometry approach that identifies 
MHC bound peptides. This approach confirms that TE peptides are presented on MHCs and ca 
be targeted using a cancer vaccine therapy. 

We discuss a novel approach based on expression of unique L1HS epitope kmers and 
peptides in RNA-seq and mass spectrometry data. Our method prioritizes L1HS epitopes that 
can be uniquely identified to facilitate the identification of vaccine targets. We have developed a 
novel process for identifying tumor-specific epitopes that are shared among individuals, allowing 
for a panel of vaccine targets to be synthesized, validated, and distributed across healthcare 
centers and matched to patient tumors. We quantified normal expression of potential epitopes in 
several human tissue samples and across developmental stages.  We show that L1HS peptides 
are processed and presented on triple negative breast cancer (TNBC) tumors but not matched 
normal tissue. Finally, L1HS epitope expression correlates with better survival in TNBC and 
complete response to checkpoint blockade therapy in melanoma.  

 
Methods and Materials 
Implementation of the vaccinaTE software 

The vaccinaTE toolkit was developed to facilitate the identification of vaccine targets in 
cancer populations. There are three main functionalities within the toolkit. The first function is to 
generate necessary reference files for building a database of unique transposable element (TE) 
kmers and peptides. The second function is to quantify unique kmers in RNA-seq data. The last 
function is to generate ​in silico ​kmers to detect APOBEC expression related to activation of 
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antiviral response within the cell ​[28–32]​. The vaccinaTE software is written in C++ to scale to 
genome-wide analysis of transposable element vaccine targets. We also provide several Python 
routines for preprocessing and analyzing the output of vaccinaTE. The vaccinaTE software tools 
are available to academic researchers under an Apache 2.0 license.  

We automated the identification of transposable element immunotherapy targets using 
the vaccinaTE toolkit. The underlying database of TE vaccine targets is based on TE 
annotations from a human reference genome sequence (Figure 1A). The first step of the 
pipeline identifies unique open reading frames (ORFs) across all TEs (Fig 1B). The 
generateORFs command takes a genome sequence file and a transposable element annotation 
file and generates the transcripts and predicted protein sequences for downstream analysis. 
The ORFs are then used in the findBinders tool to generate a database of all peptides (typically 
8, 9, 10, and 11mers) predicted to bind to HLA genotypes of interest. We used netMHCpan-4.0 
[33]​ to predict MHCI binding, which is software available for academic researchers, but if this 
tool is not available for some users, we also provide support for MHCflurry, which is available 
under an Apache 2.0 license ​[34]​. 
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Fig 1. Overview of vaccinaTE tools for quantifying TE epitope kmers and APOBEC 
mutated kmers. ​(A) High-level overview of basic approach for developing probes for TE 
vaccine development. (B) Outline of computational tools available for developing TE vaccine 
database. 

 
The next step is to identify the peptides within the protein sequences that bind to the 

HLA genotypes in the patient population. The findBinders script runs netMHCpan-4.0 or 
MHCflurry, whichever tool is available, to generate a database of potential TE vaccine targets. 
The database is used to quantify HLA-peptide kmer expression in RNA-seq data. We host 
several TE databases of interest to the cancer research community on the UCSC Xenahub ​[35]​. 
The predicted TE epitopes are reverse transcribed back into DNA using the genomic annotation 
of the TE elements. Unique and multimapping DNA kmers are used for quantifying expression 
in RNA-seq data. The vacKmer tool reverse transcribes the peptides and matches them to the 
transposable element loci that could have generated this sequence. This creates the FASTA 
database that can be used for quantifying druggable transposable element expression in 
RNA-seq data.  

Activation of the APOBEC antiviral response within cells is a hallmark of cancer ​[28,32]​. 
The APOBEC family of proteins is also involved in repressing transposable elements through 
several mechanisms, including random mutagenesis of single-stranded RNA and DNA. To 
provide additional support to transposable element signal, we also generate a random 
mutagenesis database using published APOBEC mutagenesis motifs ​[29,30,36]​. The APOBEC 
mutation database along with the MHC bound TE peptides is used for a complete analysis of 
druggable expression signatures using the probeAnalysis tool. The probeAnalysis tool 
generates a ranked list of MHC bound peptides and APOBEC kmers for each sample. We 
provide Python analysis routines for annotating these lists for precision medicine applications. 
 
Generation of LINE-1 Epitope Database 

L1HS is the youngest transposable element in the human genome and is one of the few 
classes of TEs that is autonomous.  We hypothesized that L1HS would be strongly repressed in 
somatic tissue and thus would be an ideal target for developing antitumor vaccine therapies. As 
the youngest class of TE, L1HS is the most potent at becoming activated in the dysregulated 
state with cancer cells since these elements have conserved regulatory sequences and coding 
regions. Despite the strong conservation, there is sufficient variation for L1HS elements to show 
differential expression across individuals due to differences in transcriptional regulation at 
different loci, which makes it necessary to personalize vaccines to each tumor knowing that 
many of these peptides will be shared across individuals.  

Of the thousands of L1HS loci, the majority have become degraded and may not 
generate sufficient protein for vaccine development. We used the L1base2 database to prioritize 
full-length L1HS elements and L1HS loci with intact ORF2 sequences ​[37]​. We used the hg38 
genome annotation for generating L1HS ORFS. The generateORFs tool was used to identify 
protein-coding regions within L1HS elements. We then investigated the protein domains within 
ORFs using the Pfam tool ​[38]​. The netMHCpan-4.0 software was applied to the translated 
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L1HS ORFs for 2427 HLA genotypes. We investigated 8, 9, 10, and 11mers predicted to bind to 
at least one HLA allele with a minimum percentile rank of 2%. We then mapped these peptides 
back to the transcript kmers to create a database of corresponding probes which were used in 
downstream analyses.  
 
Generation of APOBEC kmer Database 

We next investigated the ability to quantify ​APOBEC​ associated RNA editing/DNA 
mutations using RNA-seq data as input. This is a novel approach that uses ​in silico mutated 
transcriptome kmers to detect heightened APOBEC activity, a sign of viral infection and TE 
element expression and an independent predictor of response to checkpoint blockade therapy 
[39,40]​. APOBEC3A is believed to be the main enzyme responsible for the cancer APOBEC 
signature ​[28,31,36,41]​. These enzymes are typically studied for their DNA mutagenesis 
signature, but APOBEC3A and 3G were recently found to have an RNA signature that is more 
specific than the C>T DNA mutagenesis signature. These APOBEC enzymes bind to a specific 
RNA secondary structure that can be computationally modeled to detect APOBEC activity from 
RNA-seq data. We investigated the ability to exploit this biological signature to identify additional 
patients who may benefit from checkpoint blockade therapy. 

APOBEC3A is the most active APOBEC in cancer and is involved in repressing viral and 
retroelement reintegration events in the human genome. APOBEC3A causes a C>T substitution 
across the genome at the DNA-level, but Sharma et al. (2016) identified a secondary structure 
preference and a [CT][CT][ATC][TC]​C​[GA] binding motif preference. Similarly, APOBEC3G was 
recently found to preferentially bind to a N[CGT]N[CT])​C​ motif. Sharma et al. (2016) found that 
an inverted repeat was found in 98% of confirmed APOBEC3G mRNA edits due to a hairpin 
structure that facilitates APOBEC3G binding to RNA. Using the Gencode V32 transcriptome 
reference ​[42]​, we synthetically mutated kmers containing this motif, filtering out kmers that 
match kmers in the normal transcriptome database as well as kmers related to common 
polymorphisms in the human population using the dbSNP resource ​[43]​. We then used the 
kmerCounter script to quantify the number of mutated and normal kmers in RNA-seq samples.  
 
Mass Spectrometry Approach for Identifying Targetable TE Peptides 
Current mass spectrometric approaches rely on protein databases for identifying peptides. One 
of the limitations of this approach is that peptides that are not present in the search database 
are not identified. Since the focus in the field has been on the identification of canonical 
proteins, there has been limited attention paid to potential targets from non-canonical protein 
coding genes, including genes within transposable elements. We have developed a novel 
approach for identifying potential vaccine targets by first precomputing a database of 
transposable element epitopes using the vaccinaTE software. We generated a mass spec 
peptide search database from the Immune Epitope Database (IEDB) ​[44]​ of known MHC bound 
peptides and the predicted L1HS peptides. We then used the MaxQuant software ​[45,46]​ to 
identify these peptides in publically available MHC peptide profiling data for a cohort of triple 
negative breast cancer patients (PRIDE accession: PXD009738). 
 
Results 
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Creation of LINE-1 peptide kmer database and APOBEC Signature 
In order to quickly quantify the expression of targetable L1HS and APOBEC signatures 

in healthy and cancer tissue samples, we generated a database of kmers using the Gencode 
V32 genome and transcriptome reference files and the L1base2.0 annotation for full length 
L1HS elements and L1HS elements with intact ORF2 sequences ​[37,42]​. This resulted in the 
generation of 38 unique ORF1 sequences at 56 unique ORF2 sequences. We then analyzed 
these ORF sequences for conserved protein domains using the Pfam software ​[38]​. We found 
that ORF1 contained conserved LINE-1 domains, including the L1 RNA Binding Domain 
(RBD)-Like domain, the double stranded RBD-like domain, and the L1 trimerization domain 
(SFig 1). ORF2 contained the endonuclease domain, the reverse transcriptase domain, and the 
domain of unknown function.  

We then generated all unique 8, 9, 10, and 11mer peptide sequences using the 
kmerTools ​generate ​function. This analysis yield 22,358 unique L1HS peptide kmers. We then 
used the netMHCpan-4.0 tool predict which of these peptides are likely to bind to at least one of 
the 2,427 available HLA genotypes. We identified 8,405 unique L1HS peptides predicted to bind 
to at least one HLA. We applied an additional filter to remove peptides that mapped to canonical 
proteins and translated open reading frames from the RepeatMasker database which resulted in 
a final set of 2,316 L1HS epitopes. Filtering for predicted MHC binders generated a preference 
towards 9mer epitopes (Fig 2A). There were 2,069 kmers that mapped to a single L1HS loci and 
247 kmers that mapped to more than 1 loci (SFile 1). The average overlap across HLA alleles 
was 12% with a single peptide predicted to bind to 407 different HLA alleles. Clustering HLA 
genotypes using the Gephi force model ​[47]​ found that most of the HLA genotypes clustered in 
a central mass with a small number of HLA types having a significant differences and clustering 
outside of the main cluster. For example, HLA-A03*02, HLA-A03:01, and HLA-A11:01 clustered 
separately from the majority of the HLA genotypes due to a small amount of overlap with all 
other HLAs. 

We next investigated hotspots within the L1HS ORFs for generating MHCI binding 
peptides  (Fig 2C & D). The average coverage across the ORF1 and ORF2 sequences was 16 
and 11 kmers, respectively. There were hotspots at the junction between the trimerization and 
RBD-like domain, at the junction between the RBD-like domain and the dsRBD-like domain, and 
across the sdRBD-like domain in ORF1 (Fig 2C). The similarity across ORF1 sequences was 
fairly constant across the length of the ORF. The endonuclease domain and the region between 
the reverse transcriptase and DUF domains were the most highly covered. Surprisingly, we 
found below average coverage for the reverse transcriptase domain (Fig 2D). The similarity 
across ORF2 sequences was high across the necessary endonuclease and reverse 
transcriptase domains, but dropped sharply towards the 3’ end of the element.  
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Fig 2. MHCI binding prediction identifies large number of potential L1HS cancer targets. 
(A) Barplot of netMHCpan-4.0 predicted L1HS epitope lengths. (B) Histogram of Jaccard 
similarity index values for pairwise comparison of 2,427 HLA alleles. (C & D) Coverage plots 
for predicted MHCI binders across consensus L1HS ORF1 and ORF2 sequences. Protein 
domains were annotated using Pfam software. Red line corresponds to  the sequence 
similarity across L1HS ORF multiple sequence alignment. 

 
 
MHC kmers expressed across developmental stages 

The strength of this approach relies on the ability to identify L1HS peptides that are 
almost never expressed in healthy tissue. This is a challenge to identify because access to 
healthy tissue is limited, but fortunately a database of healthy human tissue was recently 
published (N=310)  ​[48]​. The mammalian expression database is particularly useful because it 
includes 7 human tissue types sampled across 23 developmental timepoints.  

 Transposable expression is expected to be higher during embryonal human 
developmental stages because regions of the genome that are not usually expressed become 
activated to support early human development ​[21]​. We identified 1,649 L1HS epitope kmers 
with a count of at least 2 reads. There were 667 L1HS epitopes that were never detected across 
all 311 RNA-seq samples. We found 11 L1HS epitopes with decreasing expression across 
developmental stages and 36 kmers with increasing expression (Kruskal test: adjusted p-value 
< 0.05).  

Overall, we found consistently low expression of L1HS epitope kmers across 
developmental stages and tissue types (Fig 3). As expected, we found constant expression of 
L1HS epitope sequences in brain tissues across developmental stages ​[24]​. Similarly, we found 
constant expression across developmental stages in germline testis tissue ​[49]​, but we also 
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found constant expression in liver tissue (Kruskal test: p-value > 0.05). We found that 
extracranial tissue including heart and kidney had high levels of expression in the embryo, but 
significantly lower expression in postnatal samples (Kruskal test: p-value < 0.05). 

We found differential expression of several APOPBEC genes with the highest 
expression at embryonic stages (SFig 2). Interestingly, we observed a spike in L1HS expression 
and APOBEC expression in the school-age children samples. We found a similar expression 
pattern in synthetically mutated APOBEC3C kmers where embryonic tissue had the highest 
number of mutated kmers and later stages had lower expression.  
 

 

Fig 3. L1HS expression varies based on tissue and developmental stage. ​Box plots of 
the number of expressed L1HS epitope kmers per million RNA-seq reads across 6 tissue type 
and 4 developmental stages. 

  
 
L1HS peptides are presented on triple negative breast cancer cells but not matched normal 
cells 
Triple negative breast cancer (TNBC) is an aggressive disease that is resistant to multimodal 
therapy. Immunotherapy has recently been approved as a first-line treatment for TNBC, but 
response rates remain low and additional strategies are needed to improve durable response 
rates ​[50]​. Our analysis of RNA-seq identifies epitopes that are likely to be presented on MHC 
molecules, but there are additional regulatory mechanisms that may prevent some of these 
peptides from being efficiently processed and presented on the MHC. Recent improvements in 
the resolution of mass spectrometry equipment has allowed for the identification of short 
peptides, including MHC-bound peptides ​[51,52]​. Isolation of MHC peptides followed by 
high-resolution mass spectrometry identifies potential vaccine targets for TNBC.  

While it is known that TEs are overexpressed in cancer cells, there has been limited data 
presented to show that TE peptides are presented by cancer cell MHCs. We used our L1HS 
epitope database, Immune Epitope Database (IEDB), and a publicly available 
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immunopeptidome dataset for a cohort of TNBC tumor and matched normal samples investigate 
whether shared vaccine targets were presented on cancer samples but not matched normal 
samples (Table 1). Using the MaxQuant search algorithm for mass spectrum matching, we 
identified three L1HS peptides presented on 5 different patient tumor samples (Table 1). Two of 
the peptides were shared across different TNBC samples, suggesting that public antigens are 
similarly processed and presented across individuals with likely different HLA genotypes. This is 
the first evidence that L1HS peptides are identifiable in patient tumor samples using mass 
spectrometry analysis and further supports these molecules as viable vaccine targets for 
combination immunotherapy. Furthermore, we did not detect any L1HS peptides on matched 
normal tissue samples that were similarly analyzed by MHC peptidome profiling.  
 

Sample Peptide L1HS ORF Protein Domain 

Tumor 1 KIKGWRKI ORF2 Endonuclease domain 

Tumor 2 IKRNEQSL ORF1 Trimerization domain 

Tumor 3 IKRNEQSL ORF1 Trimerization domain 

Tumor 4 SFYEASIIL ORF2 Reverse transcriptase domain 

Tumor 5 SFYEASIIL ORF2 Reverse transcriptase domain 

Table 1. MHC-bound L1HS peptides on triple negative breast cancer tumor samples 
 

We then investigated L1HS epitope expression in the TCGA TNBC cohort (N=190). We 
found 1,428 L1HS epitope kmers with a count of at least 2 reads. There were 162 L1HS epitope 
sequences that were never detected in the healthy tissue compendium. The average number of 
expressed kmers per sample 72 and the average number of expressed kmers predicted to bind 
to one of the patient’s HLA alleles was 22. The average overlap in kmers across unrelated 
TNBC tumor samples with nonzero L1HS kmer expression was 6%. We then correlated the 
number of expressed HLA-matched L1HS epitope binders with the TNBC patient’s overall 
survival data and discovered a 58%​ ​decrease in the Cox proportional hazard ratio (95% CI: 
0.19-0.97, p < 0.05). The expression of L1HS epitopes may provide a survival benefit because 
these cells are more easily recognized by the host immune system, which limits tumor growth 
and extends survival. Further amplification of the anti-L1HS immune response may increase the 
anti-tumor attack and lead to further reduction in tumor growth and potentially immune-mediated 
destruction of the tumor. 
 
Shared L1HS epitope expression occurs across TCGA cancer types but not normal samples 
We then investigated whether the expressed L1HS epitopes were specific to cancer types or 
whether there were shared epitopes across diseases (Fig 4). L1HS epitopes were expressed 
higher in cancer tissue samples than the matched set of postnatal healthy control samples (Fig 
4A). We found that most of the epitopes were disease specific (Fig 4B), which is consistent with 
previous studies in cell-specific expression of permissive loci ​[49]​. There were 9 L1HS epitopes 
that were expressed in all four TCGA cancer types but not in the healthy control data set.  
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Fig 4. TCGA cancers express L1HS epitope sequences that are not expressed in 
healthy postnatal human samples. ​(A) Violin plot of overexpressed L1HS epitope 
sequences in postnatal healthy samples and four TCGA cancer types. (B) Venn diagram of 
recurrent (n > 5) L1HS epitopes across cancer types and healthy controls.  UCEC: 
uterine corpus endometrial carcinoma, SKCM: skin cutaneous melanoma, LUAD: lung 
adenocarcinoma, TNBC: triple negative breast cancer 

 
 
L1HS Kmers that Correlate with Checkpoint Blockade Response 
We propose using TE vaccine therapies in combination with checkpoint blockade therapy. To 
investigate the clinical efficacy of this approach, we correlated the number of predicted L1HS 
epitopes with response to checkpoint blockade therapy in a set of 129 melanoma tumor 
samples. We found that patients with a complete response to checkpoint blockade therapy had 
higher predicted MHC-bound LINE-1 peptides compared to samples with progressive disease or 
stable disease (Mann-Whitney U-test p-value < 0.05, Fig 4). Patients with a partial response had 
the second highest abundance of L1HS epitopes. Amplifying the immune response against 
these epitopes may increase the response rate to checkpoint blockade therapy. 
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Fig 5.​ ​MHC bound peptide burden correlates with complete response to checkpoint 
blockade therapy. ​(A) Box plot of the total L1HS epitope expression across melanoma 
checkpoint blockade response groups (N=73). (B) Gene set enrichment analysis of the Gene 
Ontology antigen processing and presentation of endogenous peptide gene set.  

 
 
Discussion 

Checkpoint blockade therapy has generated remarkable responses in a subset of cancer 
patients, but further research into combination therapies is needed to increase the number of 
patients who benefit ​[4,10,53]​. We have developed a computational framework for prioritizing 
transposable element (TE) epitopes for personalized cancer vaccine therapies. We hypothesize 
that combination TE vaccine immunization and checkpoint blockade therapy may tip the 
balance in favor of immune-mediated destruction of the tumor. A combination vaccine and 
checkpoint blockade therapy was used recently to treat glioblastoma and this study found that 
these therapies work synergistically ​[10]​. The power of the immune system to destroy cancer at 
a cellular level, throughout the body, and to maintain a memory against recurrence allows for 
this therapeutic approach to achieve durable response and potentially cure patients of their 
cancer.  

For this approach to be successful, we need to identify peptides that are expressed in 
cancer cells but not healthy cells. To address this concern, we applied our approach to a large 
cohort of 311 healthy RNA-seq datasets across 23 developmental stages and 7 tissue types. 
While we detected L1HS expression in these samples, we found that cancer cells express 
additional L1HS peptides that were never detected in the healthy control cohort. This suggests 
that it is possible to identify a subset of L1HS peptides that are only expressed in cancer cells, 
so amplification of an immune response against these peptides may not generate off-target 
effects that may be toxic to the patient. 

Much of the data on TE expression in the literature is based on RNA-seq data, but 
whether these elements generate peptides that are presented on human cancer cell MHCs has 
not been sufficiently investigated. We provide evidence that indeed L1HS peptides are 
presented by cancer cells in triple negative breast cancer tumors but not matched normal tissue 
samples. This shows that not only are these elements aberrantly expressed in cancer cells, but 
these the TE transcripts are translated into proteins and these proteins are properly processed 
and presented by MHC molecules. This further underscores that druggability of these vaccine 
targets. Moreover, we found that expression of predicted MHC bound TE peptides lead to a 
58% reduction in the Cox proportional hazards ratio for the TCGA TNBC cohort. This 
underscores the benefit of these molecules for treating cancer, since the expression of these 
molecules correlates with better patient outcomes, presumably since these molecules may 
induce immune responses that limit tumor growth.  

Lastly, we correlated L1HS epitopes expression with response to checkpoint blockade 
therapy in melanoma ​[54,55]​. Surprisingly, we found that the expression of L1HS epitopes 
correlated with the complete response group of melanoma patients. This suggests that these 
patients by chance had higher L1HS epitope expression and were naturally immunizing their 
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immune system against the cancer cells. Introduction of checkpoint blockade therapy may have 
then removed the immunosuppressive effect allowing cytotoxic T-cells to eradicate the tumor. 
Notably, the expression of these peptides were not zero in many of the non-responders or 
partial responders, but the balance between expression of these targets and the circulating 
T-cells able to recognize the cancer cells may not have been in these patients favor and thus 
there was no response or a limited response that the cancer cells quickly rebounded from.  

These results provide hope that further expansion of T-cells that are able to recognize 
cancer cells through identification of tumor-specific TE expression analysis may increase the 
number of patients that experience durable responses. One of the many strengths of this 
approach is that these peptides are shared across individuals. We propose a novel therapeutic 
paradigm for matching tumors to a repository of validated cancer vaccines for efficient 
distribution and administration of therapy. This includes the screening of large cancer RNA-seq 
data sets for the most commonly overexpressed epitopes, prioritizing epitopes that correlate 
with patient benefit. We then propose synthesizing, quality control, and validation of these 
peptides before mass production and distribution to treat cancer at scale.  
 
Conclusion 
Transposable elements make up ~40% of the human genome, encode viral like proteins, and 
are strongly repressed in somatic cells. This makes them attractive targets for cancer vaccine 
development, but the sequence similarity and complexity of the genome makes it difficult to 
identify which peptides to prioritize. We developed an exciting new computational framework 
based on unique expression of MHC bound peptide kmers. This approach was able to identify 
expression of druggable L1HS epitopes that correlated with better survival outcomes and 
complete response to checkpoint blockade therapy. Future research investigating whether 
expansion of the T-cell response to these peptides in cancer patients generates stronger 
antitumor responses.  
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Supplement 
 
 

 

SFig1. Predicted L1HS open reading frames contain 
expected protein coding domains 

 
 

 

SFig 2. APOBEC3C expression is highest in embryonic tissue. ​(A) Average APOBEC3 
expression across 7 tissue types and 23 developmental stages. (B) Average APOBEC3G 
kmer expression across the same cohort. 
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SFig 3. Process for prioritizing shared TE vaccine targets and matching patient tumor 
samples to repository of validated vaccine therapies. ​(A) Process for screening cancer 
RNA-seq data and defining subtype groups based on shared TE epitope expression. (B) 
Microarray diagnostic matches patient tumor samples to available vaccine therapies while 
also correlating TE expression with MHC presentation and APOBEC expression signatures. 
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Introduction

The development of novel therapies depends on the availability of preclinical models

of human disease. As it is unethical to test unproven therapies on patients, preclinical mod-

els like cell-lines and mouse models are used to validate novel therapies. One of the biggest

challenges in current drug development efforts is that most drugs that go into clinical trials fail

despite showing efficacy in preclinical models. This suggests that preclinical models do not ac-

curately reflect human diseases. To address this problem, I have developed a collaboration with

Alejandro Sweet-Cordero at UCSF, who is a leading clinical oncologist and expert in patient-

derived xenograft models (PDX). PDX models are generated by implanting human tumor tissue

into an immunosuppressed mouse. While it is thought that PDX models better reflect human

disease because they consist of human cancer tissue, it is unclear what changes occur in the

mouse that may influence tumor biology. I have designed and implemented a Bayesian hierar-

chical model to robustly learn the evolution of PDX-specific expression. This analysis found

that most genes (¿ 90%) are conserved in the PDX. The genes that are differentially expressed

are associated with expected changes in the PDX, including immune and stromal expression

markers. We have then used these genes to identify pathways that are differentially expressed

and will share these pathways with the PDX modeling community. The goal of this analysis is

to accelerate drug development by identifying pathways that are conserved in PDX models and

better reflect human disease.
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Chapter 6

Bayesian hierarchical modeling framework for

accelerating drug development using pediatric

patient derived xenografts

Introduction

Large patient-derived xenograft repositories provide a great resource for the preclini-

cal research community. However, there has been limited investigation into the biological fea-

tures of these models with respect to molecular data, including whole transcriptome sequencing

analysis. A Bayesian hierarcical modeling framework provides a method of analyzing data with

small sample sizes and biological similarities across related diseases.

Bayesian statistics is well-suited to building hierarchical models. The goal of Bayesian

inference is to learn the probability of the parameters given the data. To calculate the probability

of the parameters requires Bayes theorem
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P(θ|x) = P(x|θ)P(θ)
P(x)

where θ represents the parameters of your model and x represents the data. The prior

distribution P(θ) expresses your belief in the model before any data is observed. The likelihood

P(x|θ) expresses the probability of observing the data given your model. Bayes theorem updates

your belief in the system using the prior and likelihood distributions to generate the posterior

distribution P(θ|x). The posterior distribution can now be used as the prior when a new set of

data is generated. The marginal probability of the data P(x) is a normalizing constant, which

does not influence inference and so the posterior is often represented in an unnormalized form.

P(θ|x) ∝ P(x|θ)P(θ)

In a hierarchical model, the different levels of the model are encoded in the prior

distribution. Repeat application of conditional probability relates each level of the hierarchy

[10, 16].

P(θ,φ|x) ∝ P(x,θ|φ)P(φ)

= P(x|θ,φ)P(θ|φ)P(φ)

= P(x|θ)P(θ|φ)P(φ)

The prior for one level of the model is the likelihood for the next level in the hierarchy

and so on until the top of the model. The last equation is simplified because the likelihood of
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Figure 6.1: Models for the Treehouse analysis. Treehouse pan-cancer analysis is an example
of the complete pooling model. In a complete pooling model, distinct groups of data are not
modeled individually. Pan-cancer analysis does not account for different data features like
the age, cancer type, and gender. Pan-disease analysis is a form of no-pooling model where
each disease is modeled separately without considering information learned from other cancer
types. A hierarchical models is a compromise between the complete and no pooling model. In
a hierarchical model, separate parameters are learned for each data group while also sharing
information through prior distributions on the group specific parameters.

the data does not depend on the prior on θ. Here, I use weakly informative prior distributions

including the normal and half Cauchy distributions in order to improve compuational efficiency

for learning the model parameters [10].

One of the benefits of hierarchical modeling is shrinkage. To correct for sampling

errors that arise from using a small sample size, the hierarchical model pulls the data cluster’s

distribution closer to the population mean. Parameters shrink towards the population mean be-

cause the prior distribution is stronger than the likelihood. This is a valuable feature for the

Treehouse compendium because it helps control for erroneous inferences when the number of

samples is limited. Pediatric gene expression profiles are limited in the compendium, so data

shrinkage can be used to help control estimates for rare pediatric cancer. The shrinkage features

comes from adaptive regularization. The prior distributions learn the expected distribution of

parameters and samples that do not conform to the population level distribution are corrected.
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Therefore, the model does not exaggerate effects that result from small sample sizes. Reg-

ularizing priors introduce skepticism into the model so the model does overestimate when it

observes surprising data that may be due to errors in measurement [30]. As the number of pedi-

atric samples increases, the Treehouse hierarchical model becomes more confident in estimating

pediatric gene expression differences and the shrinkage effect relaxes.

6.0.0.1 Varying intercept and slope models to predict pediatric gene expression

Genes are expressed at different levels for different tissues. In addition to tissue spe-

cific expression, there are also biological features that influence gene expression across individ-

uals. For example, age and gender are correlated with expression of some genes. A varying

effects model where the mean and the effect of biological features change depending on the

tissue can be used to make better predictions of gene expression. For example, a hierarchical

model can identify sex-linked expression, but the current pan-cancer and pan-disease analy-

ses are not able to detect sex-linked expression. An example of sex-linked expression that has

been associated with cancer is the XIST gene [45]. XIST controls X-chromosome silencing

in females and is not usually expressed in males (Figure ??). This is a clear example where

assuming male and female gene expression comes from the same distribution leads to an ex-

aggerated estimation of the outlier threshold. It is therefore difficult to identify potential cases

where under-expression of XIST in females may contribute to their cancer. While the incidence

of cancer is equal across boys and girls, boys tend to respond worse to therapy. An investigation

into sex-linked gene expression may yield insights into the differences in response to cancer

therapies for boys and girls.
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By estimating disease and tissue specific parameters using biological features as pre-

dictors, I learned the expected gene expression as well as the influence these parameters have on

gene expression. The varying effects model can be used to identify gene expression outliers by

generating the posterior predictive distribution for that patient and determining if that patient’s

gene expression is an outlier. Alternatively, the hierarchical model can be used to infer latent

variables associated with cancer gene expression and classify patients into normal and abnor-

mal gene expression categories. The first normal linear model will be explored first and then a

hierarchical mixture model will be developed to better resolve cancer-associated expression.

The initial hierarchical model will be a normal linear models. There are many ways to

represent a linear model, but I prefer to use a representation that describes the sampling process.

Here, the data is sampled from a normal distribution and the mean of the normal distribution is

calculated as a linear combination of an intercept and slope term.

yi ∼N (µ,σ2)

µ = α+βxi

α∼N (0,100)

β∼N (0,100)

Here, the variance is known and we are trying to learn the mean µ and the parameters

for describing µ which are α and β. There are prior distributions on α and β that do not provide

any strong information, so the model will learn these values from observing the data. As written,

this model describes a complete pooling linear model. An alternative model is the varying slopes
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and intercepts model which learns separate α and β parameters for each data cluster.

Varying intercepts allow different data clusters to have different mean values. For

the Treehouse compendium, each disease cluster can have its own mean expression level. The

varying slopes allow predictors to influence the expected gene expression differently for differ-

ent data clusters. For instance, the effect of being pediatric may be stronger for some tissues

than others. Varying intercept and slope models can be used to learn how biological and clinical

features influence expression for different disease classes.

Even relatively simple Bayesian models require solving complex integrals. This is

one reason Bayesian models have not been more widely adopted. Complex integrals can be

approximated using Markov Chain Monte Carlo sampling methods. Probabilistic programming

closes the gap between statistical modeling and computer programming. Now, the computa-

tional framework for inference is expressed in a form that is close to the mathematical rep-

resentation. The probabilistic programming environment handles MCMC sampling from the

posterior distribution. The two most popular probabilistic programming libraries are STAN and

PyMC3. STAN developed its own probabilistic programming language, but has interfaces in

common programming languages like R and Python. PyMC3 is another probabilistic program-

ming language that uses the widely adopted Python language and optimizes gradient calcula-

tions using the Theano library.

As a proof of concept experiment, I developed a CDK4 varying intercept model for

the Treehouse compendium using the PyMC3 library (Model 6.1). Each cancer type in the Tree-

house compendium gets its own intercept in the hierarchical model. The prior for the intercept

is shared across all cancer types, so cancer types with a limited number of samples shrink to-

114



wards the pan-cancer mean. This model is equivalent to the no-pooling pan-disease model, but

there is shrinkage for diseases that have a low number of samples. This varying intercept model

is the first level of a more complex hierarchical model. For instance, the posterior distributions

for this model will be used to model clinical features at the next level.

ydisease ∼N (µdisease,σ
2) (6.1)

µdisease ∼N (µgene,σ
2
gene)

µgene ∼N (0,100)

σgene ∼ HalfCauchy(5)

σ∼ HalfCauchy(5)

In this manuscript, I describe a Bayesian hierarchical model I developed to learn

which genes are differentially expressed between pediatric sarcoma PDXs and matched patient

tumors. This was the first study of matched pediatric PDX tumors, and the results showed that

PDXs capture the tissue-of-origin signal better than cell lines. I also proposed a framework for

developing PDX models that better reflect patient tumors using the tumor microenvironment

signal to prioritize tumors.
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Abstract 
Molecularly targeted therapies inhibit specific cancer pathways and have fewer harmful side 
effects than broadly toxic chemotherapies. However, the development of targeted therapies for 
childhood cancers has lagged behind that of adult cancers. One factor influencing this is the 
lack of accurate preclinical models for validating novel drug targets. Cancer cell lines are the 
first line of validation studies, but cancer cell lines do not capture the full complexity of a human 
tumor. Patient derived xenografts (PDXs) are presumed to be more accurate models, but there 
has not been sufficient research into how well these models reflect human cancer, particularly 
with respect to differences in gene expression. We have developed a novel gene expression 
framework for evaluating PDX models. We show that PDX gene expression better reflects 
patient disease populations than cancer cell lines using TumorMap analysis. We then apply a 
Bayesian hierarchical model to a cohort of pediatric sarcoma PDXs to infer consistently 
differentially expressed genes between PDXs and matched patient samples. We found that the 
majority of genes are not differentially expressed (>90%) and that removing differentially 
expressed genes from analysis causes osteosarcoma PDXs and unmatched osteosarcoma 
samples to cluster, suggesting that we have identified the genes that differentiate osteosarcoma 
PDXs from patient samples. Lastly, we provide two examples for how this database can be 
used to accelerate the development of novel therapies for pediatric cancers.  
 
Introduction 

While pediatric cancers generally have high survival rates, patients who relapse have 
few treatment options and a low rate of survival ​[1,2]​. The development of novel therapies 
depends on the availability of accurate preclinical models ​[3]​. Before a new drug is tested in 
humans, the drug is first introduced to a preclinical model, including cancer cell lines and mouse 
models. Preclinical models are used as a surrogate for human subjects and the results of 
preclinical experiments are used as preliminary data for the investigational new drug application, 
which is a necessary step towards opening clinical trials in humans. 

 Preclinical models are used to test for toxicity and efficacy, but it has become clear that 
the results of these experiments can be misleading ​[3]​. Only 5% of new drugs finish phase III 
clinical trials, despite showing efficacy in preclinical models ​[4–6]​. The current drug development 
paradigm wastes time and money, and is a major factor contributing to the high cost of drugs 
[7]​. The identification of preclinical models that better reflect the patients entering clinical trials 
may accelerate the development of effective cancer therapies since the efficacy in preclinical 
models will more likely correlate with efficacy in human subjects.  
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One of the most widely used preclinical models for testing anticancer therapies is the 
cancer cell line ​[8]​.  Cell lines reduce the complexity of the cancer system by decreasing 
heterogeneity as well as the effect of the host immune and stromal cells ​[9]​. Cell lines are easy 
to distribute across laboratories which allows for cross-institutional analysis. Cancer cell lines 
also grow quickly and can be expanded to support a large number of experiments. Despite the 
experimental conveniences of cancer cell lines, there are several challenges that make these 
models less accurate for modeling cancer.  

Cancer cell lines are challenging to create for individual patients because it requires the 
cancer cells to be able to grow in culture, which is a significantly different environment 
compared to the tumor microenvironment. The success rate for generating cell lines is around 
~20% ​[8]​, so most tumors will not generate a cancer cell line.  There may also be selective 
pressure for particular tumor subtypes, which biases downstream validation experiments 
towards particular tumor subtypes. The tumor subtypes that are more likely to generate cancer 
cell lines may be relatively rare in the disease population, leading to low success rates in clinical 
trials ​[5,10]​. Cancer cell lines adapt to the growing in culture and may lose important genetic 
and transcriptomic features of the original tumor sample ​[11]​. For example, cancer cell lines are 
suspended in medium and thus lose cell-cell interactions that are known to play important roles 
in cancer  ​[12]​.  

Patient-derived xenografts (PDXs) are an alternative preclinical model that is thought to 
more accurately reflect human tumors. PDXs are created by transplanting human cancer tissue 
into an immunosuppressed mouse model. The PDX supports the human cancer cell growth and 
allows for PDX tumors to be passaged to additional mice to maintain the original tumor. 
Contrary to traditional mouse models where mutations are engineered into the mouse line to 
induce a specific cancer phenotype, PDXs use human cancer cells in a controlled tumor 
microenvironment and may better reflect human cancer ​[13]​.  

While PDXs are presumed to be more accurate, there has been limited investigation into 
the accuracy of these models. PDX tumors are comprised of human cancer cells, but these cells 
grow in a significantly different microenvironment than the original human tumor sample. 
Ben-David et al. (2017) discovered mouse-specific evolution of copy number alterations in the 
PDX that correlated with response to targeted therapies ​[14]​. In addition to copy number 
changes, it is known that human immune and stromal cells cannot proliferate in the mouse 
model, so these cells are quickly replaced with mouse counterparts ​[15,16]​. 

 How the exchange of immune and stromal cells influence PDX tumors is currently 
unknown, but the lack of selective pressure imposed on the cancer cells by the human immune 
system may accelerate the accumulation of mutations and the downregulation of regulatory 
immune mechanisms. Tumor heterogeneity can also dramatically change in response to the 
changing microenvironment such that some cancer cell clones are lost and others become more 
abundant ​[16]​. While these changes are likely associated with differences in selective pressure 
within the PDX, it is unclear if there are patient tumor subtypes that may be more accurately 
modeled in the PDX system. Identification of these subtypes would facilitate the validation of 
specific therapies for cancer subtypes, which is becoming a widely adopted strategy for treating 
cancer ​[13]​. 
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The tumor microenvironment plays an essential role in tumor biology and is a feature 
that has been overlooked in previous PDX credentialing studies. PDX mice do not have a fully 
functional immune system, which allows the human cancer cells to grow unchecked. This, 
however, may influence the selective pressure placed on PDX tumors and lead to mouse 
specific evolution. Comparing PDXs in the context of the tumor microenvironment is a novel 
approach for evaluating the accuracy of PDX models and may yield novel insights into how to 
best generate and interpret results from PDX models. Here, we describe a novel framework for 
comparing gene expression between matched PDX and patient tumor samples. Our analysis 
identifies the known differences between PDXs, while also proposing a novel preclinical 
modeling strategy that uses the database of differentially expressed genes to prioritize patients 
and models for pediatric drug development.  
 
Materials & Methods 
PDX Generation 

We initially implant tumor fragments in the subrenal capsule to establish PDXs, followed 
by orthotopic implantation.  All mice are monitored for 1 year to determine if the PDX was 
successful. Mice carrying primary PDXs will be sacrificed, PDXs will be removed and ½ will be 
used to FACs sort tumor cells and separate them from the mouse stroma in preparation for 
sequencing.  
Pediatric Preclinical Testing Consortium and UCSC Treehouse Gene Expression Data 

We downloaded the publicly available TARGET and Pediatric Preclinical Testing 
Consortium (PPTC) gene expression data from the pediatric cBioportal website ​[17,18]​. We also 
downloaded PDX and matched patient samples available through the UCSC Treehouse gene 
expression compendium ​[19]​ published on the UCSC Xena browser ​[20,21]​. Gene expression 
transcript per million mapped read values (TPM) were normalized using a log2(TPM + 1) 
transformation. 
Clustering Analysis  

TumorMap allows interactive exploration of large cancer datasets and the visualization of 
individual tumors in the context of other cancers ​[22]​. We used TumorMap analysis to identify 
similarities between large cohorts of PDXs and related human tumor samples. We included all 
genes with a mean expression greater than 1 log2(TPM + 1). 
Gene Expression Analysis 

Complete pooling maximally underfits and no-pooling maximally overfits data, but 
hierarchical modeling strikes a balance between the two ​[23]​. In a hierarchical model, each data 
cluster is modeled separately, but information is shared across levels of the hierarchy. We 
developed a Bayesian hierarchical model to learn statistically significant differences between 
PDXs and matched patient samples. The genewise differences for each gene was modeled as 
a normal distribution, with a prior over the global difference between PDX and human tumor 
samples. We performed a power analysis to determine the number of samples needed to 
identify 80% of differentially expressed genes with a mean difference of 1 log2(TPM + 1).  

We performed gene set enrichment analysis (GSEA) ​[24,25]​ using the estimated 
differences between inferred from the hierarchical model. This created a database of 
differentially expressed pathways, which we visualized using the EnrichmentMap software ​[26]​. 
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Clusters of related gene sets were manually annotated to highlight biological features that are 
differentially expressed between PDX and human tumors. 

We developed a novel GSEA approach that uses a mixture model to infer reference 
distributions for each osteosarcoma gene. We then normalize expression to this reference 
distribution to amplify the detection of subtype expression. We applied this method to the 
osteosarcoma PDX and patient samples. The recent tumor microenvironment subtypes 
identified by the hydra method where used to compare osteosarcoma patient tumor samples 
and their matched PDXs.  
 
Results 
TumorMap analysis shows that PDXs cluster near to patient tumors with same diagnosis 

To investigate differences in gene expression between PDXs and their corresponding 
tumor samples, we first use the genomic dimensionality reduction tool known as TumorMap to 
reduce the feature space and identify relationships across samples. ​We applied the TumorMap 
algorithm to the PPTC and TARGET gene expression data to assess whether PDXs cluster with 
patients with the same diagnosis (Fig 1). ​We found that in general PDXs cluster near to related 
disease cohorts, but none of the well-represented PDXs (N > 10) actually merged into the 
patient cluster. We found that the TumorMap algorithm will cluster small clusters, but once the 
PDX cohort becomes sufficiently large, this cluster will separate from the patient cluster (SFig 
1). 

T-cell ALL was the only PDX that did not cluster near to the related patient tumors.​ As a 
comparison, we also did the same analysis on unmatched cancer cell lines and patient samples 
found that the cell lines clustered very far away from patient samples. ​We then compared this 
clustering pattern to a similar analysis using the Cancer Cell Line Encyclopedia (CCLE) and The 
Cancer Genome Atlas (TCGA) data, which was available on the UCSC Xena browser. We 
found that the cell lines clustered separately from the patient tumors, suggesting that cell lines 
capture less of the original tissue of origin signal than PDXs (SFig 2). The significant difference 
in expression may be one of many factors leading to the low attrition rate in drug development 
despite ample evidence in cell line models. PDXs did not cluster with patient samples, but the 
TumorMap algorithm found enough similarity to link them with the appropriate diseases. This 
may suggest that PDXs are a more accurate model than cell lines and perhaps can be improved 
to make PDXs even more accurate model of human cancer. 
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Figure 1: PDX tumors cluster near to human tumors of the same diagnosis. ​TumorMap 
visualization of PPTC PDX and related TARGET gene expression profiles. Circles group PDX 
and human gene expression clusters with related diagnoses.  

 
 
Multilevel Differential Expression Analysis 

120



 

We hypothesized that credentialing of PDX models could be improved if systematic 
changes that occur in all PDXs were identified. The high dimensionality of genomic data and 
small sample sizes pose challenges for genome-wide credentialing of PDX models. Bayesian 
statistics incorporate prior knowledge to improve inferences and can reduce the problems 
introduced by small sample size ​[27]​. We developed a Bayesian hierarchical model that 
propagates information across gene-level parameters to improve inferences for all genes (Fig 
2). We performed a power analysis to determine the number of patient/PDX pairs needed to 
robustly detect differentially expressed genes. The hierarchical model becomes well-powered 
(>80%) to detect a mean difference of 1 log2(TPM + 1) with 8 patient/PDX pairs. 
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Figure 2: Hierarchical Bayesian model identifies significant expression similarity 
between patient tumor gene expression and matched patients. 

 
We applied the hierarchical model to a cohort of matched pediatric PDX/primary tumor 

samples (8 osteosarcoma, 1 rhabdomyosarcoma, 1 Ewing sarcoma and 1 synovial sarcoma). 
Our model identified 334 genes with consistently higher and 780 genes with consistently lower 
expression in PDXs compared to matched primary tumor samples. The majority of genes were 
not systematically differentially expressed in PDX (~93%), suggesting that most expression 
effects are preserved, which is consistent with our PDX TumorMap analysis. We then 
investigated whether coordinated expression of biological pathways was observed in the 
hierarchical PDX analysis. We ranked genes by their estimated expression differences and 
performed gene set enrichment analysis ​[24,25]​ using the EnrichmentMap gene set database 
[26]​. 

We found statistically significant upregulation of X gene sets and downregulation of Y 
gene sets (adjusted p-value < 0.05, SFile 1).  As expected, we identified downregulation of 
immune and stromal pathways, but also identified upregulation of cancer-associated functions, 
including spliceosome, cell cycle, and transcriptional regulation pathways (Fig 3). We generated 
an EnrichmentMap to visualize higher-level relationships across enriched gene sets ​[26]​. We 
found a large network of related immune gene sets influencing innate and adaptive immune 
expression gene sets. We also found downregulation of MHC presentation and extracellular 
organization pathways, which may be associated with the lack of selective pressure from the 
host immune system and thus there is no longer a survival benefit to expressing MHC genes. 

While most of the gene sets were associated with downregulation, a small number of 
gene sets were upregulated. These gene sets were associated with expected biological 
functions, including upregulation of cell cycle expression, which is likely associated with the 
enrichment for cancer cells in PDX tumors. We were surprised to see that TNF-alpha signalling 
gene sets were expressed higher in PDXs, but it is unclear how this pathway may be functioning 
differently in the PDX. We speculate that the TNF-alpha expression may be associated with a 
wound healing response in the PDX that may be reflected by the cancer cells ​[28]​. 
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Figure 4: Differentially expressed genes in PDX are associated with immune and cell 
cycle regulation. 

 
 

Removing sarcoma expression differences causes clustering of osteosarcoma PDX and 
patients samples 

We clustered data from the TARGET project and the Pediatric Preclinical Testing 
Consortium (PPTC) and used TumorMap to visualize relationships across this large multivariate 
datasets. Initially, the osteosarcoma PDXs clustered separately from the TARGET 
osteosarcoma patient samples (Fig 1), but removing PDX-specific expression identified through 
the Bayesian hierarchical approach described above improved the rank correlation and led to 
the osteosarcoma PDX clusters merging with the TARGET osteosarcoma cluster (Fig. 3). Thus, 
osteosarcoma expression features were preserved in the PDX after accounting for global 
PDX-specific expression differences. This correction had the greatest impact on osteosarcoma, 
suggesting disease-specific differences between PDXs and primary tumors. We have found that 
having matched PDX and patient samples is essential for isolating the PDX-specific differences, 
since heterogeneity across cancer types may not be properly balanced in the cohort and 
differences between subtypes may confound differences between PDX and patient tumors.  
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Figure 3: Excluding osteosarcoma PDX expression differences rescues clustering with 
osteosarcoma patient tumors but does not rescue clustering for other pediatric cancer 
types. 

 
Mixture model approach for matching gene expression subtypes in patient and PDX tumors 
After identifying global differences between PDXs and matched osteosarcoma samples, we 
wanted to develop a framework for subtyping patient samples and PDXs that may facilitate the 
development of new therapies. We assume that PDX models that share gene set enrichment 
signatures may be better able to reflect the druggable features of patient tumors. We first 
developed a mixture model approach for identifying differential expression within the TARGET 
osteosarcoma cohort. This analysis transformed all genes from a multimodal distribution to a 
univariate that can be used to amplify the subtype expression that may be used for subtyping 
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tumors (​SFig 2​). We then applied this approach to matched PDX and patient tumor samples. 
We found that PDX tumors that were derived from patient tumors with low immune and stromal 
expression had better conserved gene expression enrichment than PDX tumors derived from 
immune-active tumors (Fig 6). 

 
 

 

Figure 6: Top and bottom 10 enriched gene sets for a matched patient and PDX pair 
clustering with the proliferative osteosarcoma subtype. ​NES: normalized enrichment 
score 

 
Differentially Expressed Genes Correlate with Response to Targeted Therapies in PDX 
We then applied UCSC Treehouse outlier analysis to a cohort of PDX samples. We found 
druggable genes in each of the samples and the gene expression leads correlated with the 
CNV-based predictions of Sayles et al. (2019) in 7 out of the 9 PDXs with drug response data 
[29]​. The PDXs that did not correlate were not tested with the gene expression lead, so it is 
unknown whether the PDX would have responded.  

An additional PDX was identified for which CNV analysis did not identify an actionable 
lead, but gene expression analysis found over-expression of the FGFR1 gene. The RTK 
inhibitor pazopanib led to a reduction in tumor growth compared to a vehicle control (Fig 7A). 
We then looked in our database for evidence that the FGFR1 pathway is differentially expressed 
in the PDX and found that the FGFR1 expression pathway is preserved in the sarcoma PDXs. 
We similarly analyzed a Ewing sarcoma and found overexpression of JAK1, but the JAK1 
inhibitor  momelotinib did not cause a difference in tumor growth (Fig 7B). We then investigated 
the differentially expressed pathways in pediatric sarcoma PDXs and found the JAK signaling 
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pathways were significantly downregulated in PDX models, which may confound preclinical 
validation studies that attempt to target this pathway. 
 

PDX Expression Target CNV Target Drug Target TGI 

PSS085 MYC MYC CDK9 104.6 

PSS089 MYC MYC CDK9 83.9 

PSS112 CDK7 CDK2 CDK2 57% 

PSS004 CDK4 CDK4 CDK4 82.7 

PSS018 CDK4 CDK4 CDK4 66 

PSS077 FGFR1/VEGF VEGF VEGF 76.5 

PSS050 AKT1 AKT1 AKT1 66 

PSS008 DNMT1 PTEN AKT1 60.8 

PSS078 FGFR1 FOXM1 CDK4 112.4 

Table 1.​ ​Gene expression and copy number analysis correlate with drug response 
for 7 out of 9 PDXs tested with a CNV identified lead. ​The tumor growth index (TGI) is 
a measure of the tumor growth relative to a control experiment. A larger TGI value 
signifies a better response to the targeted inhibitor. A value greater than 60 is considered 
significant. 

 

 

Fig 7. Gene expression outlier analysis predicts response to RTK but not JAK 
inhibitors.  
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Pathway NES Adjusted P-value 

HALLMARK IL6 JAK STAT3 SIGNALING -3.22 0.003 

REGULATION OF JAK-STAT CASCADE -2.62 0.003 

POSITIVE REGULATION OF JAK-STAT 
CASCADE -2.57 0.003 

Table 2. JAK1 signaling is downregulated in PDX. 
 
 
Discussion 

Patient arrived xenografts (PDXs) are important preclinical models for the drug 
development industry. It is presumed that PDXs are more accurate models of human cancer, 
but there has been limited research into the molecular evolution that occurs when human 
cancer tissue is implanted into an immunosuppressed laboratory mouse. To address this 
challenge, we developed a computational framework for inferring consistent differences in gene 
expression and identifying coordinated expression of differentially expressed genes that 
participated in known biological pathways. Significant differences in gene expression may 
confound validation experiments that rely on consistent expression of particular biological 
pathways. We have provided a database of differentially expressed genes and pathways for 
researchers to reference when designing drug validation assays. By creating a knowledge base 
for specific diseases, we will facilitate the development of therapies that better reflect the human 
disease population. Significant differences in gene expression may lead to differences in the 
response to particular therapies.  

The small sample sizes and statistical noise associated with cancer gene expression 
data led us to develop a novel Bayesian hierarchical model to infer differential gene expression 
[30]​. The patient-to-patient heterogeneity within cancer types makes inferring differentially 
expressed genes between unmatched samples of patients and PDXs complicates statistical 
analysis. We studied differential expression across matched patient and PDX tumor gene 
expression to emphasize differences in gene expression associated with the PDX system. This 
model was well powered to detect significant differences in gene expression while also 
introducing statistical shrinkage to decrease the detection of false positive differences ​[27]​. 

Our analysis of PDX gene expression differences found that most genes are not 
differentially expressed in the PDX model. Initial TumorMap analysis showed that PDXs share 
enough similarity in gene expression that the TumorMap algorithm was able to group related 
diseases close to each other but there were sufficient differences such that none of the PDX 
clusters merged with the patient tumor clusters. For comparison, we performed the same 
analysis for CCLE and TCGA gene expression and found that cell lines cluster separately from 
patient tumor samples, which suggests that they share fewer similarities with related patient 
tumors. 
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The inferred differences in PDX expression were associated with expected differences in 
the PDX models, including loss of immune and stromal expression. PDXs showed higher 
expression of TNF-alpha signaling, which has not been previously reported, but may be 
associated with the engraftment of the human tumor tissue in the mouse ​[31,32]​. We also found 
enrichment of cell cycle pathway genes, which may have resulted from enrichment for cancer 
cells within the PDX tumor. We found that a significant number of differentially expressed genes 
were also among the known druggable genes. Knowledge of these differences may help in 
prioritizing drugs that may better reflect responses in human tumors.  

Removing differentially expressed genes in osteosarcoma PDXs from the PPTC and 
TARGET gene expression compendia rescued clustering of osteosarcoma PDXs and human 
tumors, but did not improve clustering of other cancer types. This suggests there are disease 
specific differences in PDXs that need to be accounted for in future PDX credentialing 
experiments. Furthermore, we recommend that future PDX model generation attempt to 
generate matched RNA-seq data from the original tumor sample. This is challenging since 
tumor tissue is limited and a larger tissue section has a better chance of creating a viable PDX, 
but this work is necessary to create useful PDX data.  

We provide a database of differentially expressed genes pathways which includes many 
of the druggable genes investigated for precision medicine applications. Our hope is that this set 
of pathways and genes can facilitate validation of therapies in the PDX. There may be genes 
and pathways that behave differently in the PDX and thus the results of the validation study is 
inconclusive. As an example, we showed that overexpression of FGFR1 and FGFR1 signaling 
pathways predicted response in a PDX and that these results may be more accurate since the 
FGFR1 pathway is not differentially expressed in the PDX.  

The JAK1 signaling pathway was differentially expressed in the PDX, so an experiment 
that targets the JAK1 pathway in PDXs may have inaccurate conclusions since many genes 
involved in this pathway show differences in the PDX. We tested this hypothesis by targeting 
overexpression of JAK1 in the PDX despite the JAK1 signaling pathway being strongly 
downregulated in the PDX. A JAK1 inhibitor assay resulted in no significant difference in tumor 
growth, but it is not clear if this is due to JAK1 not being a good target or if the JAK1 pathway 
behaves differently in the PDX.  

It is becoming increasingly clear that the tumor microenvironment contributes 
significantly to cancer biology and gene expression measurements ​[12,33–35]​. We used the 
recently published ​hydra​ gene expression subtypes of osteosarcoma to better understand PDX 
evolution. We found that despite the original patient tumors showing significant heterogeneity in 
tumor microenvironment expression patterns, the PDX tumors all showed expression signals 
associated with the tumor microenvironment associated with low immune infiltrate and stromal 
expression. There has been significant development into humanized PDX models with active 
human immune components, but these models need further investigation using a method 
similar to the framework presented here. Another approach is to use the many PDX models that 
have already been developed and to match the results of these experiments to patients with a 
similar tumor microenvironment state (SFig 3).  
 
Conclusion 
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There is increased focus on developing more accurate preclinical models, but there has 
been limited research into using the models we already have more effectively. Here, we 
describe a framework of credentialing available PDX models to identify the most accurate PDX 
and patient tumor pairs for developing novel therapies. The influence of the host immune 
system on tumor evolution is lost in the PDX, so we have proposed prioritizing PDXs derived 
from immune-silent tumors since these tumors have strongly correlated gene enrichment.  
 
Supplement 
 
 

 

SFig 1. Cancer Cell Line Encyclopedia and The Cancer Genome Atlas Gene Expression 
TumorMap.  
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SFig 2. Mixture model approach for identifying cancer subtype expression pathways. 
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SFig 3. Patient tumor microenvironment effects are lost in PDX, but may support more 
accurate modeling of immune-silent patient tumors. 
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Figure 6.2: Trace and scatter plots for preliminary partial pooling model. The top trace plot
shows the posterior distribution for global CDK4 expression and the lower trace plot shows
the disease specific posterior distributions for mean CDK4 expression. The bottom scatter plot
shows the no-pooling CDK4 model in blue and the partial pooling model in green. Note that
the partial pooling model shrinks towards the population mean value.
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Chapter 7

Genomic Profiling of Childhood Tumor

Patient-Derived Xenograft Models to Enable

Rational Clinical Trial Design

Introduction

For the Pediatric Preclinical Testing Consortium (PPTC), I developed a hierarchical

model that groups cancers by the tissue of origin (Model ??). This model will facilitate learning

pediatric cancer effects in situations where children and adults do not develop the same kind of

cancer. For example, bone cancer is much more common in children than adults, but linking

these cancers through a shared bone-specific prior distribution will better model the biological

effects of pediatric bone cancer.
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Figure 7.1: Hierarchical model for Treehouse compendium. Each tissue is modeled separately
using a pan-tissue prior distribution. Cancer types are then associated with the tissue of origin.
This hierarchical model takes advantage of similar expression patterns between cancers of the
same tissue type. Grouping related data decreases the amount of variation and uncertainty in
the model. Predictions from the hierarchical model can be used to identify abnormal expression
for new patients. The model also learns varying effects on expression related to age, gender,
and metastatic tissue samples that could influence gene expression.
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SUMMARY

Accelerating cures for children with cancer remains
an immediate challenge as a result of extensive
oncogenic heterogeneity between and within histol-
ogies, distinct molecular mechanisms evolving be-
tween diagnosis and relapsed disease, and limited
therapeutic options. To systematically prioritize and
rationally test novel agents in preclinical murine
models, researchers within the Pediatric Preclinical
Testing Consortium are continuously developing pa-
tient-derived xenografts (PDXs)—many of which are
refractory to current standard-of-care treatments—
from high-risk childhood cancers. Here, we genomi-

cally characterize 261 PDX models from 37 unique
pediatric cancers; demonstrate faithful recapitula-
tion of histologies and subtypes; and refine our un-
derstanding of relapsed disease. In addition, we
use expression signatures to classify tumors for
TP53 and NF1 pathway inactivation. We anticipate
that these data will serve as a resource for pediatric
oncology drug development and will guide rational
clinical trial design for children with cancer.

INTRODUCTION

An estimated 15,780 children and adolescents (<20 years) are

diagnosed with cancer in the United States each year, and these
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diverse entities are the leading cause of disease-related deaths

in children (American Childhood Cancer Organization, 2014).

Despite five-year survival rates for pediatric cancers now

exceeding 80%, survivors frequently have lifelong side effects

from cytotoxic therapy, and survival outcomes for children with

certain types of tumors remain dismal. The relative rarity of pedi-

atric cancers, molecular and mechanistic heterogeneity of sub-

types within and across histologies, genetic and molecular

distinction from adult malignancies, tumor evolution in the face

of cytotoxic standard therapies, and lack of targeted therapeutic

agents all posemajor challenges to improving outcomes for chil-

dren with cancer. Indeed, there are very few drugs with specific

labeled indications for pediatric malignancies, and most stan-

dard therapies are largely empiric.

Preclinical testing of new therapeutic anti-cancer agents is

essential in the field of pediatric oncology due to the relative

rarity of the condition and the need to prioritize agents for

early-phase clinical trials. Over the past 15 years, the Pediatric

Preclinical Testing Consortium (PPTC), previously known as

the Pediatric Preclinical Testing Program (Houghton et al.,

2002, 2007), has developed over 370 patient-derived xenograft

(PDX) models from high-risk childhood cancers. In collaboration

with pharmaceutical and academic partners, the PPTC system-

atically screens novel therapeutic agents for anti-tumor efficacy

in order to help prioritize those that will move to the clinic. Previ-

ous studies have characterized subsets of pediatric xenograft

models, often with limited numbers of specific histologies and/or

genomic assays (Brabetz et al., 2018; El-Hoss et al., 2016; Stew-

art et al., 2017; Townsend et al., 2016; Whiteford et al., 2007).

Here, we present a comprehensive genomic characterization

of 261 models from 29 unique pediatric cancer malignancies.

RESULTS

Genomic Analysis Workflow and Histological Summary
of Pediatric PDX Tumors
Figure 1 depicts the overall workflow of our study, including

model histologies, site of tumor specimen, phase of therapy,

and molecular assays performed. The PDX generation methods

are described in the STAR Methods. We performed whole-

exome sequencing (WES) on 240 childhood cancer PDXmodels,

whole-transcriptome sequencing (RNA sequencing [RNA-seq])

on 244 models, and SNP microarrays on 252 models (Figures

1 and S1; Table S1), and we performed short tandem repeat

(STR) profiling on all 261 models (Table S2). Of the 261 models

profiled, 82 had available references that are also included in Ta-

ble S2.

Figure S1 describes the analysis workflow (see STAR

Methods for details). Of the 240 models on which WES was

performed, 69 models were previously sequenced through

efforts of the PPTP (dbGAP: phs000469.v17.p7), and we

harmonized these data. For WES (Figure S1C) and RNA-seq

(Figure S1D), we performed competitive mapping to a hybrid

human-mouse reference (hg19-mm10) and used human-spe-

cific BAM files as input for downstream analyses. We vali-

dated this biochemically with qPCR by calculating the ratio

of human:mouse DNA in a subset of 35 PDX tumors. We found

a significant correlation between the percent of human reads

following WES hybrid mapping and the percent of human

DNA in the tumor extract (Figure S1B; Pearson correlation

R = 0.943, F = 272.5, df = 34, p value < 2.2e�16). A mutation

annotation format (MAF) file of common germline variation

was created if a variant was present in more than five normal

samples from The Cancer Genome Atlas (TCGA) patients

(n = 809). The remaining variants, comprising both somatic

and rare germline alterations, were collated into the ‘‘somatic’’

MAF file. Artifactual sequencing variants were removed as

described in the STAR Methods. Common germline SNP dis-

tributions (allele frequency > 0.005 in any one of the three da-

tabases: Exome Aggregation Consortium, 1,000 genomes, or

the NHBLI Exome Sequencing Project) were plotted for each

model and visually inspected for a negatively skewed distribu-

tion to assess DNA cross-contamination in WES data. To

identify potential misidentification, RNA variant calling was

performed, and variant allele frequencies were correlated

between WES and RNA. Models whose variants did not corre-

late were deemed misidentified and removed (STAR

Methods). Within this cohort, five pairs of models were derived

from tissue at the phase of therapy (Table S1). Thus, as

additional quality control (QC), we correlated somatic

mutation allele frequencies between each pair and found a

high concordance of mutation frequencies (data on Figshare;
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STAR Methods), confirming the biological reproducibility of

creating PDX models within a center. Mutation variation is

summarized per model in Table S3.

SNP arrays were processed for segmentation, focal copy

number, and ethnicity inference (STAR Methods; Figures

S1A and S2). As reported ethnicities were only available

for a small proportion of the models, we used SNP array

genotypes to infer approximate ethnicities using HapMap

genotype frequencies. We assigned models to African,

East Asian, European, and South Asian/Hispanic ethnicities

(Figure S2; Table S1). Overall, 71% of models are of

predicted European descent, 11.5% South Asian/Hispanic,

9.1% African, 5.5% mixed or unknown ethnicity, and 2.4%

East Asian.

Figure 1. Study and Sample Overview

(A and B) Diversity of the 261 childhood tumors collected (A) and demographics and genomic assays performed by histology (B). Assays performed were whole-

exome sequencing (n = 240), whole transcriptome (n = 244), and SNP array copy number analysis (n = 252). Each genomic assay was performed once per

biological tumor sample.

See Figure S1 for analysis pipelines, Table S1 for model metadata, and Table S2 for STR profiles.
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Following rigorous assessment for contamination, misidentifi-

cation, and sample mislabeling, 26 full models were excluded,

and 3 RNA samples were excluded. The remaining 261 models

used herein were shown to be free of detectable levels of DNA

contamination (STAR Methods).

PDX Models Recapitulate the Mutation and Copy-
Number Landscape of Childhood Cancers
We highlight hallmark alterations in key pediatric tumor driver

genes (Behjati et al., 2017; Eleveld et al., 2015; Gröbner et al.,

2018; Liu et al., 2017; Ma et al., 2018; Pugh et al., 2013; Shern

et al., 2014; Zhang et al., 2012) in Figure 2 and demonstrate faith-

ful disease recapitulation across PDX models.

Acute Lymphoblastic Leukemias

Figure 2A depicts oncoprints for 90 acute lymphoblastic leuke-

mia models.

BCP ALLs

A total of 45%–48% of B cell precursor acute lymphoblastic leu-

kemia (BCP-ALL) PDX models contain canonical focal deletions

of the tumor suppressors on chromosome 9p, CDKN2A or

CDKN2B (Figures 2A and S4B), the majority of which are homo-

zygous. The BCP-ALL models were enriched for alterations in

the RAS pathway (KRAS mutated in 30%, NRAS mutated in

18%) and the JAK-STAT pathway (JAK2/3 altered in 15%), and

15% have altered KMT2D. These pathways, along with PI3K/

AKT, TNFa, and TP53 signaling, were all significantly enriched

in gene expression data (Figure 5B). Finally, we detected fusion

transcripts in 78% of BCP-ALL models (25/33), many of which

contain ETV6 (27%; 88% of these partner with RUNX1), PAX5

(18%), and CRLF2 (6%) (Table S5).

ETP and T-ALLs

Early T cell precursor-ALL (ETP-ALL) and T cell-ALL (T-ALL)

models are predominantly characterized by CDKN2A/B focal

deletions (72%–76%; Figure S4B) and/or a NOTCH1 mutation

(68%). Genes within the JAK-STAT pathway are also frequently

altered with concurrent pathway enrichment (Figure 5B). JAK1

or JAK2 lesions were observed in 24% of the models, and 4%

of the models contain lesions in STAT5B. We detected onco-

genic fusion transcripts in nearly half (48%) of these models,

many partnering with the following genes: TRBC2 (16%),

TRBC1 (12%), ABL1 (8%), IGH (8%), LMAN2 (4%), LMO1

(4%), LMO2 (4%), and ETV6 (4%).

Ph-like and Ph+ ALLs

We confirmed the presence of a BCR-ABL1 fusion in all three

Ph+-ALL models (ALL-04, ALL-55, and ALL-56). Eight Ph-like

ALL models (42%; 10/19) contain a canonical CRLF2 fusion;

seven partner with P2RY8 and one with IGHM. Additional

frequently rearranged genes include JAK2 (55%; 12/22) and

PAX5 (23%; 5/22). In both Ph+ and Ph-like ALLmodels, focal de-

letions of CDKN2A/B (45%, 10/22; Figure S4B) are predominant.

Frequently altered pathways include Ras and JAK-STAT (Figures

2A and 5B).

MLL-ALLs

All mixed lineage leukemia-ALL (MLL-ALL) models contain a ca-

nonical KMT2A fusion and have relatively silent genomes with

minimal copy number alterations (Figure S4B). The majority of

these models were derived from children <1 year of age

(Table S1).

Molecular Subtyping and Genomic Landscape of CNS
Tumors
Models derived from CNS and extracranial rhabdoid tumors

were further molecularly classified using pathology reports or

genomic features from WES, RNA, and SNP arrays (Figure 1;

Table S1). Atypical teratoid rhabdoid tumor (ATRT) models rep-

resented both Sonic hedgehog (SHH; n = 3) and MYC (n = 3)

subgroups, with two models unclassified. To classify medullo-

blastoma models, we developed and applied a classifier for

RNA-seq data (STAR Methods). The 20 medulloblastoma

models in this cohort span all broad subtypes: SHH (n = 7),

WNT (n = 2), group 3 (n = 7), and group 4 (n = 3), and one model

without RNA-seq remained unclassified. Other CNS embryonal

tumors were classified into embryonal tumor with multi-layer ro-

settes (ETMR; n = 3), CNS Ewing with CIC alteration (CNS EFT-

CIC; n = 2), ependymoblastoma (n = 1), or CNS embryonal not

otherwise specified (CNS embryonal not otherwise specified

[NOS]; n = 1). Astrocytoma models comprised pleomorphic xan-

throastrocytomas (PXA; n = 2), MYCN subtype (n = 2), glioblas-

tomas (IDH-wild-type; n = 5), histone H3-wild-type diffuse

intrinsic pontine glioma (DIPG; n = 2), and a histone H3-wild-

type astrocytic tumor (n = 1). Ependymal tumors were classified

into supratentorial RELA positive (ST-EPN-RELA; n = 2), supra-

tentorial YAP1 positive (ST-EPN-YAP; n = 2), posterior fossa

type A (PF-EPN-A; n = 1), or posterior fossa type B (PF-EPN-B;

n = 1), and one remained unclassified.

All ATRT and extracranial rhabdoid models harbor inactivating

alterations (focal deletion, frameshift deletion, or nonsense

mutation) in the hallmark tumor suppressor, SMARCB1, and/or

SMARCA4. Hedgehog, TNFɑ, and p53 signaling were enriched

in these models (Figure 5B). Interestingly, three astrocytic tu-

mors harbored SMARCB1 hemizygous deletions, which have

not been reported but are present in multiple pediatric high-

grade glioma cohorts (Mackay et al., 2017: 6.7%, n = 834; Ijaz

et al., 2019: 7.5%, n = 93) and may warrant further investigation.

One astrocytic model, IC-1621GBM, was generated from a pa-

tient with DNA mismatch repair deficiency syndrome and

showed 124 somatic mutations per medulloblastoma (MB)

(Table S3). We confirmed multiple mutations in mismatch repair

genes PMS1, MSH2, MSH5, and POLE (non-exonuclease

domain mutation). The likely oncogenic drivers are the nonsense

mutations in PMS1 (Q316*) andMSH2 (G721*), which disrupt the

DNA mismatch repair protein domain and the MutS domain,

respectively (Figure S3C). NCH-MN-1was derived from a patient

diagnosed with an anaplastic rhabdoid meningioma with the

clinical suspicion of an ATRT; however, this model had no evi-

dence of an inactivating SMARCB1 alteration. Rather, it harbors

a BRAF V600E mutation and focal CDKN2A/B deletion, classi-

fying thismodel as a high-grade glioma, herein denoted as an as-

trocytoma. Not surprisingly, astrocytoma and glioblastoma

models had similar pathway enrichment: estrogen response,

hedgehog signaling, protein secretion, TNFɑ, and p53 pathway

(Figure 5B).

IC-2664PNET was derived from a patient diagnosed with a

primitive neuroectodermal tumor (PNET) but was further molec-

ularly classified as a MYCN-subtype high-grade glioma.

IC-2664PNET has a focal amplification of MYCN and a hemizy-

gous SMARCB1 deletion, but it retains mRNA expression of
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Figure 2. PDX Models Recapitulate the Mutational Landscape of Childhood Cancers

(A–C) Oncoprints of somatic alterations (homozygous deletions, amplifications, SNVs, and fusions) in hallmark driver genes for PDX models for which exome

sequencing was performed (n = 240, top 20 genes per histology shown). Oncoprints are grouped by acute lymphoblastic leukemias (A), CNS and rhabdoid tumors

(B), and extracranial solid tumors (C).

(A) From left to right are B cell precursor ALLs (n = 33), T cell ALLs (n = 25), Philadelphia chromosome positive (Ph+) ALLs (n = 3), mixed lineage leukemias

(MLL, n = 10), early T cell precursor (ETP) ALLs (n = 6), and Philadelphia chromosome-like (Ph-like) ALLs (n = 19).

(B) From left to right are atypical teratoid rhabdoid tumors (ATRTs; n = 8), medulloblastomas (MBs; n = 8), astrocytomas (n = 7), non-MB/non-ATRT CNS

embryonal tumors (n = 7), ependymomas (n = 5), and extracranial rhabdoid tumors (n = 4).

(C) From left to right are neuroblastomas (n = 35), osteosarcomas (n = 34), Wilms tumors (n = 13), Ewing sarcomas (n = 10), fusion negative rhabdomyosarcomas

(n = 6), fusion positive rhabdomyosarcomas (n = 6), and rare solid tumors (n = 7). Clinical annotations for all models include histology, patient phase of therapy

fromwhich PDX was derived, and sex. CNS tumors were also annotated with molecular subtype. Hemizygous deletions in TP53 are annotated for osteosarcoma

models, in CDKN2A for leukemia models, and in WT1 for Wilms tumor models. Focal homozygous deletions correspond to loss of expression (FPKM < 1) in

models for which RNAwas available. For fusions, only the 50 partner is shown. Total mutations (log10) per model are plotted above each oncoprint and colored by

mutation type. Each genomic assay was performed once per biological tumor sample.
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SMARCB1. ICb-S1129MB, ICb-1343ENB, and IBs-2373PNET

were classified as ETMRs due to an amplification of C19MC,

an overexpression of LIN28A, and/or TTYH1 fusions. ICb-

9850PNET and IC-22909PNET-rIII, a diagnosis-relapse pair,

were genetically classified as CNS EFT-CIC, as the diagnostic

tumor contains a CIC-DUX4 fusion. The two DIPG models

were profiled with RNA-seq and SNP arrays and thus are not

shown in the oncoprint. We confirmed both IBs-P1215DIPG

and IBs-W0128DIPG have high expressions of H3F3A and

H3F3B (FPKM > 50), genes encoding the histone H3.3 variant,

and lack expressions of HIST1H3B or HIST1H3C, genes encod-

ing the histone H3.1 variant.While we did not detect H3.1 or H3.3

histone mutations in these models, RNA variant calling revealed

IBs-W0128DIPG contained predicted damaging (PolyPhen)

missense mutations in NRAS (p.G13R, 0.41), CIC (p.C102Y,

0.44), and KMT2C (p.C988F, 0.45). We did not detect any hall-

mark damaging mutations in IBs-P1215DIPG.

Extracranial Solid Tumors
Neuroblastomas

Amplification of the MYCN oncogene was the most frequent

alteration observed across all models (66%) and, as expected,

was largely mutually exclusive of 11q deletion. Gene set enrich-

ment analysis (GSEA) confirmed the enrichment of MYC targets

in these models (Figure 5B). A majority (77%) of models had 1p

deletion and 17q gain (97%; collapsed profiles are shown in Fig-

ure S4A). Consistent with previous reports (Pugh et al., 2013), we

find ALK to be the most frequently mutated gene (37% of all

models contain hotspot mutations) with additional, less frequent

alterations in hallmark genes such as TP53 (11%), PTPN11 (9%),

NF1 (9%), BRAF (3%), CIC (3%), and KRAS (3%). The nonsense

and frameshift deletions inNF1 correspond with ablated expres-

sions in COG-N-590x and NB-1771, respectively, but NB-1643

retains expression.

Osteosarcomas

The hallmark of osteosarcomas is TP53 inactivation, and using a

classifier trained on RNA expression data from TCGA, we found

all osteosarcoma models with available RNA-seq data (n = 32)

were predicted to have non-functional TP53 (described below).

Thus, as expected, TP53 was the most commonly altered gene

(82%) in osteosarcoma PDX models (Figure 2C), which also

demonstrate global copy number changes, consistent with the

high prevalence of complex genomic rearrangements found in

this tumor type (Figure S4).

Ewing Sarcomas

The canonical EWSR1-FLI1 fusion was found in all Ewing sar-

coma models profiled with RNA-seq (NCH-EWS-1 was not pro-

filed), andCHLA-258 contained an additional FLI1 fusion partner:

RP11-9L18.2 (Table S5; Figure 2C). TP53 mutations are present

in seven cases (70%), with six showing allele frequencies at or

near 1.0 due to copy-neutral loss of heterozygosity (cnLOH,

ES-6, EW-8, and SK-NEP-1) or loss of heterozygosity (LOH)

from a chromosomal arm deletion (EW-5, ES-8, and TC-71). Ho-

mozygous CDKN2A/B loss (60%) was mutually exclusive to

STAG2 mutations (20%), as expected (Tirode et al., 2014). We

observe canonical (Tirode et al., 2014) broad gain of whole chro-

mosomes 8 and 12, as well as focal 1q gain and 16q loss, in

Ewing sarcomas (Figure S4A).

Wilms Tumors

The mutational and copy number landscapes of Wilms tumor

(n = 13) PDX models are depicted in Figures 2C and S4A. The

WT1 gene located at 11p13 was mutated in one PDX model

(NCH�WT�6�S13�1506), but we observed hemizygous dele-

tions of WT1 in 61% of Wilms models, many of which had

LOHs of the entire 11p13 region. The 11p15.5 region, which con-

tains imprint control regions (ICRs) 1 and 2, often undergoes loss

of imprinting (LOI) either due to maternal DNA methylation or

maternal LOH/paternal uniparental disomy (pUPD) in aWilms tu-

mor. The 11p15.5 region harbored LOHs in 69% (9/13) of Wilms

tumors, consistent with previous reports (Scott et al., 2012). Two

models (15%) harbored hemizygous deletions of AMER1

(formerly known as WTX and/or FAM123B). KT-9 is the only

model annotated as coming from a patient with bilateral disease,

and although it does not harbor a WT1 mutation, interestingly, it

has two hits in TP53: a TP53-FXR2 fusion and a partial homozy-

gous deletion. The Wilms models (15%; KT-6 and NCH-WT-6-

S13-1506) with CTNNB1 mutations were mutually exclusive to

WTX alterations, consistent with previous reports (Scott et al.,

2012). Gains of the 1q arm, 1p LOH, and 16q LOH—adverse

prognostic biomarkers for Wilms tumors (Pan et al., 2017;

Segers et al., 2013; Spreafico et al., 2013)—were observed in

31% (4/13), 8% (1/13), and 23% (3/13) of models, respectively

(Figure S4).

Rhabdomyosarcomas

All Fusion+ rhabdomyosarcoma (RMS) models harbored a hall-

mark PAX3-FOXO1 fusion (Figure 2C; Table S1), and the median

patient age of Fusion+ RMS patients (16 years) was higher than

that of Fusion� RMS patients (5 years) (Table S3). As expected,

we also observed focal amplifications ofMYCN andCDK4. Inter-

estingly, the amplification of CDK4 was not retained in Rh-30R

(relapse tumor paired with Rh-30; SNPs and STRs confirm iden-

tity). Ras pathway mutations (NRAS, HRAS, KRAS, and NF1) are

typically observed in one-third of Fusion� RMS cases and here,

Ras mutations were observed in 3/6 models (Rh-12 with NF1

T2335fs, NCH�ERMS�1�NCH�RMS�1 with NRAS Q61Kmu-

tation, and Rh-36 with HRAS Q61K). Of note, all models except

for IRS-68 overexpress the common rhabdomyosarcoma

biomarker, MYOD1.

Rare Histologies

Seven PDX models were derived from rare tumor types and are

depicted in Figure 2C. Three models (43%) contained alterations

in TP53; of note, an in-frame hemizygous deletion of TP53

evolved at the relapse in NCH-CA-2 (not present in diagnostic

model, NCH-CA-1). The canonical ASPSCR1-TFE3 fusion was

detected in both alveolar soft part sarcoma (ASPS)

models. NCH-CA-1 and NCH-CA-2 harbored deleterious

SMARCA4 mutations, and NCH-CA-3 harbored a deleterious

NF1 nonsense mutation; each had a concurrent loss of mRNA

expression and, as such, thesemay be potential drivers of onco-

genesis in these tumors. NCH-HEP1 contained a likely onco-

genic WNT pathway mutation (CTNNB1 p.D32G).

Breakpoint Density
We calculated the total number of breakpoints per sample

and breakpoint density within chromosomes, the latter as a

surrogate measure of putative chromothripsis events
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(STAR Methods). Consistent with pediatric cancer genomics

literature, we observed very few breakpoints per sample in

hematologic malignancies, compared to those in solid tumors

(median = 3 breakpoints per sample in CNS embryonal NOS to

median = 154.5 breakpoints per sample in osteosarcoma; Fig-

ure S4C; Table S3). We found 25% (64/252) of models profiled

have a high breakpoint density (HBD) across one or more chro-

mosomes (Figure S4D; Table S3), consistent with a recent

pan-cancer chromothripsis report (Cortes-Ciriano et al., 2018).

Specifically, 97% (33/34) of osteosarcomas had HBDs; 30%

(10/33) of these contained HBDs on four or fewer chromosomes

indicative of localized chromothripsis events, while the remain-

ing 70% (23/33) contained HBDs on five or more chromosomes,

supporting the globally rearranged genomes prevalent in this tu-

mor type (Lorenz et al., 2016). In neuroblastoma samples, 17%of

models contained HBDs on chromosomes 2, 5, 16, 17, and 19.

Chromothripsis events on chromosomes 2, 5, and 17 in neuro-

blastoma tumors have been previously reported to be associ-

ated with MYCN amplification, TERT rearrangements, and 17q

gain, respectively (Molenaar et al., 2012; Boeva et al., 2013).

Recurrent loci with HBDs in medulloblastoma were chromo-

somes 2, 8, 14, and 17, consistent with recent reports (Rausch

et al., 2012). In summary, PDX models faithfully recapitulate

important prognostic copy number alterations of pediatric

tumors.

Mutational Landscape of Models Derived from Tumors
at Relapse
The majority of the PDX models were established at diagnosis

(63%), but 6% were derived from surgical resection specimens

after neoadjuvant therapy, 27% were from a relapsed specimen

(14% of those were neuroblastomas from a large volume blood

draw obtained immediately after death from disease progres-

sion), and 4% did not have the phase of therapy annotated. In

addition, 12 pediatric cancer patients had either two or three

models created across the spectrum of their therapy

(Table S1). Here, we compare mutation frequencies and

tumor mutation burdens (TMBs) for histologies with paired diag-

nosis-relapse cohorts with group N R 6: BCP-ALL (Ndiagnosis =

19/nrelapse = 14), T-ALL (ndiagnosis = 11/nrelapse = 8), osteosarcoma

(ndiagnosis = 25/nrelapse = 6), and neuroblastoma (ndiagnosis =

12/nrelapse = 23). Across all four histologies, there is an increased

frequency of key hallmark gene alterations in relapsed disease,

as indicated by the oncoprint frequencies (Figure 3A). Using so-

matic missense and nonsense mutations, we calculated the

TMB for each PDX model (STAR Methods). The median TMB

across all models was 2.66 somatic mutations per megabase

(Mut/Mb; Figure S3B; Table S3). The TMBs across this cohort

of PDX models are likely higher than those in previous reports

for twomain reasons. First, 37%of the PDXmodels were derived

from a patient tumor at a phase of therapy other than diagnosis,

and it is now known that tumors acquire significantly more so-

matic mutations post-therapy and following a relapse (Eleveld

et al., 2015; Ma et al., 2015; Padovan-Merhar et al., 2016;

Schleiermacher et al., 2014; Schramm et al., 2015). Second,

without paired normal samples, rare germline and private vari-

ants could not be reliably removed from the ‘‘somatic’’ MAF.

Thus, the TMB reported here is likely inflated, but the trends

across histologies and phase of therapy should accurately

reflect TMBs determined with a paired germline sample. In

fact, we observe an overall significantly higher TMB in PDX

models derived from relapse tissue (3.08 Mut/Mb) compared

to those derived at diagnosis (2.57 Mut/Mb, Wilcoxon

p = 2.2e�5; Figure 3B). When compared to diagnostic tumors

within a histology, the TMB was higher at relapse in BCP-ALL

(Wilcoxon p = 0.054) and significantly higher at relapse in neuro-

blastoma (Wilcoxon p = 0.016) and T-ALL (Wilcoxon p = 0.0081),

but it was not different between the diagnosis and relapse for os-

teosarcoma (Wilcoxon p = 0.42). Finally, we compared TMBs be-

tween paired diagnosis-relapse models and found a significantly

higher TMB in models derived from relapse tumors (Figure 3B;

median of 98.0 versus 27.5 mutations; Wilcoxon p = 0.0083).

This PDX cohort recapitulates relapsed disease and provides a

model for further studying tumor progression and therapeutic

resistance.

Expression Signatures Classify Pediatric PDX Models
for TP53 and NF1 Inactivation
A recent study used TCGA data to classify tumors for TP53 inac-

tivation status and found that alterations in multiple genes phe-

nocopy TP53 inactivation, indicating that TP53 mutation status

alone is not necessary to infer the inactivation of the pathway

(Knijnenburg et al., 2018). We applied a machine learning algo-

rithm to infer TP53 inactivation, NF1 inactivation, and Ras

pathway activation using PDX tumor transcriptomes. These

classifiers were previously trained using gene expression data

from TCGA PanCanAtlas (STAR Methods) (Knijnenburg et al.,

2018; Way et al., 2017, 2018). The TP53 (area under the receiver

operator characteristic [AUROC] = 0.89) and NF1 (AUROC =

0.77) classifiers are both accurate compared to a shuffled

gene expression baseline, but performance of the Ras classifier

(AUROC = 0.55) was relatively poor (Figure 4A), which may be

attributed to differences in Ras pathway signatures in pediatric

compared to adult tumors. Classifier scores >0.5 predict the

inactivation of TP53 or NF1 (Table S5), and TP53 scores are

significantly higher (Wilcoxon p < 2.2e�16) in models with a

TP53 alteration (mean score = 0.790) compared to those without

alterations (mean score = 0.419) (Figure 4B). Manymodels anno-

tated as wild-type TP53 have high TP53 inactivation scores (Fig-

ure 4B). We found models with alterations in genes such as

MDM2 and RB1 also have high TP53 inactivation scores. These

alterations may phenocopy TP53 alterations (Figure 4C; genes

chosen as primary or secondary interactors of TP53 defined by

the TP53 KEGG signaling pathway). In Figure 4D, we plot alter-

ations for each gene by variant classification. Notably, all types

of alterations within TP53 were associated with high classifier

scores, while the scores for other genes varied by type of

alteration.

As TP53 inactivation is a hallmark of osteosarcoma, we

focused on these models as a proof of concept. The classifier

predicted that all models profiled with RNA-seq except OS-55-

SBX had TP53 pathway inactivation. Many had a genetic alter-

ation in a TP53 pathway gene as supporting evidence (Figure 4E;

Table S4). However, the mechanisms of TP53 inactivation in

OS-34-SJ, OS-43-TPMX, and OS-51-CHLX are still unknown

andmay require whole-genome sequencing to detect. To ensure
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osteosarcomamodels were not driving the observed association

with TP53 scores, we removed the osteosarcoma models and

reanalyzed the data. We found a significantly higher TP53 classi-

fier score (Wilcoxon p = 1.0e�11) in models with alterations in

TP53 pathway genes (Figures S5A and S5B). We then evaluated

which types of variants were associated with high TP53 classifi-

cation scores and observed that models containing fusions had

highest classifier scores compared to wild types, followed by

models with single nucleotide variants (SNVs) and copy number

variants (CNVs). (Figure S5C; Kruskal-Wallis p = 9.8e�11). These

are broken down by gene in Figure S5D. Outside of osteosar-

comas, only one model contained a fusion in the TP53 pathway:

Wilms model KT-9 contained a TP53-FXR2 fusion. We found the

overall copy number burden (number of breakpoints calculated

A

B

Figure 3. Mutational Landscape of Models Derived from Tumors at Relapse

(A) For BCP-ALL, T-ALL, neuroblastoma, and osteosarcoma (histologies with N R 6 models and multiple phases of therapy), oncoprints comparing hallmark

alterations in models derived from diagnosis tumors to models derived from relapse tumors.

(B) Tumor mutation burden (TMB) is significantly (or near significantly) higher in relapse models, compared to models established at diagnosis for all histologies

collapsed (ndx = 151, nrel = 77,Wilcoxon p = 2.2e�5), BCP-ALL (ndx = 19, nrel = 14,Wilcoxon p = 0.051), neuroblastoma (ndx = 12, nrel = 23,Wilcoxon p = 0.016), and

T-ALL (ndx = 11, nrel = 8, Wilcoxon p = 0.0081). There was no difference between osteosarcoma models established at diagnosis and relapse (ndx = 25, nrel = 6,

Wilcoxon p = 0.42). For patients in which models were established at both diagnosis and relapse, there was a significant increase in mutational burden upon

relapse (ndx = 12, nrel = 13, p = 0.0083). All n’s denote biological replicates.
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from SNP array data; STARMethods), but not the TMB or shuffle

score, correlates significantly with the TP53 classifier score (Fig-

ure 4E; R = 0.51, p = 1.8e�17), supporting recent published ob-

servations (Knijnenburg et al., 2018). Genetic alterations

rendering TP53 inactive may contribute to copy number insta-

bility in these models. The use of gene expression classifiers

can guide preclinical studies: for example, therapeutically target-

ing the TP53 pathway in tumors with high TP53 inactivation

scores rather than those with altered TP53.

Expression Profiles of PDX Models Cluster by Tissue of

Origin and Contain Driver Fusions

We used the UCSC TumorMap (Newton et al., 2017) to visualize

clusters of expression profiles across PDX histologies (Fig-

ure 5A). We observed a clear separation among unrelated histol-

ogies and an overlapping clustering among related histologies.

For example, T-ALL and ETP-ALL cluster together as expected,

but distinctly from other ALL histologies. The leukemias clus-

tered by subtype and distinctly from solid tumors. Ewing sar-

coma, neuroblastoma, Wilms, and medulloblastoma form

distinct clusters. Osteosarcomas cluster with two ASPSmodels.

Fusion+ and Fusion- RMS cluster near each other but distinctly.

Brain tumor histologies cluster near each other with the excep-

tion of ATRTs, some of which cluster with extracranial rhabdoid

tumors near sarcoma samples. We identified histology-specific

expression differences using a Bayesian hierarchical model (Gel-

man, 2006), grouped related histologies under the same prior

distribution, ranked gene expression differences for each histol-

ogy, and performed GSEA. This demonstrated tissue-specific

enrichment within each histology, using GSEA and the Tissue-

Specific Gene Database in Cancer (TissGDB; Kim et al., 2018a)

and Tissue-Specific Gene Expression and Regulation Database

(TiGER; Liu et al., 2008) gene sets (Figure S5F). To investigate

pathway enrichment within histologies, we ran GSEA using the

MSigDB curated (C2) gene sets and plotted the normalized

enrichment scores (NESs) for the Hallmark pathway gene sets

in Figure 5B.

Next, we created a high-confidence fusion annotation pipeline

(Figure S1; STAR Methods) using four algorithms: defuse,

FusionCatcher, STARFusion, and SOAPFuse. A total of 50,796

unique fusions were called, and we defined 925 unique high-

confidence fusions and 92 unique known oncogenic driver fu-

sions defined by cytogenetics and literature (Figure 5C; Table

S5). Fusions were annotated for their frame and for whether a

gene partner is a known oncogene, kinase, or transcription factor

to identify oncogenic potential and functional relevance. We

found that PPTC PDXmodels largely maintain known oncogenic

A B C

D E

Figure 4. Expression and Mutational Signatures Classify Pediatric PDX Models for TP53 and NF1 Inactivation

(A) Only TP53 and NF1 classifiers performed well in our dataset (AUROCTP53 = 0.89, AUROCNF1 = 0.77, AUROCRas = 0.55). Solid lines represent real scores, and

dotted lines represent shuffled scores. For the samples measured (n = 244), 60 had TP53 alterations (24.6%); 30 had KRAS, HRAS, or NRAS alterations (12.3%);

and 11 had NF1 alterations (4.5%).

(B) TP53 scores are significantly higher (nWT = 120, nALT = 124,Wilcoxon p < 2.2 e�16) in models with genetic aberrations in TP53 (mean score = 0.790) compared

to those without alterations (mean score = 0.419).

(C) Classifier scores are plotted based on the TP53 pathway gene alteration present (nWT = 120, nTP53 = 72, nCDKN2A = 63, nMDM2 = 5, nGORAB = 1, nATM = 11,

nATR = 7, nRB1 = 16, nCHEK1 = 2, nCHEK2 = 3) or variant classification (n = 244 total samples).

(D) TP53 classifier scores across all histologies broken down by TP53 pathway gene (n = 240).

(E) In osteosarcoma models (n = 30), all scores, regardless of variant type or gene, were high and predicted pathway inactivation. Overall copy number burden

(number of breakpoints calculated from SNP array data; STARMethods) correlates significantly with TP53 classifier score (R = 0.51, p = 1.8e�17, n = 239). All n’s

denote biological replicates.
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driver fusions specific to their histologies: all alveolar rhabdo-

myosarcoma models harbored PAX3-FOXO1 fusions, all Ewing

sarcoma samples with RNA-seq data showed EWSR1-FLI1 fu-

sions, all Ph+ ALL tumors contained BCR-ABL1 fusions, and

KMT2A (MLL) fusions were detected in all MLL-ALL models

(Table S5). Osteosarcomas harbored TP53 fusions, and break-

points reside within intron one of the TP53 gene, a mechanism

of TP53 inactivation previously reported in osteosarcoma (Ribi

et al., 2015). In five diagnosis-relapse pairs, we detected four fu-

sions in the diagnostic PDX (PAX5-RP11-465M18.1, IGH-MYC,

CIC-DUX4, and TP53-TNR) that were undetected in their paired

relapse model, suggesting these specific gene fusions may have

been acquired after an alternative initiating event that was

retained.

DISCUSSION

Here, we used whole-exome, whole-transcriptome, SNP geno-

typing arrays, and STR profiling to characterize 261 pediatric

PDX models across 37 unique molecular subtypes. We used a

competitive mapping approach to remove mouse reads from

DNA or RNA-seq data and demonstrated high concordance

Figure 5. Expression Profiles of PDX Models Cluster by Histology and Contain Driver Fusions

(A) TumorMap rendition of PDX RNA-seq expression matrices by histology.

(B) Gene set enrichment analysis for Hallmark pathways for histologies with n R 4 samples demonstrates histology-specific biologic processes significantly

altered (adjusted p < 0.05 and NES > 2.0, N = 221). Samples were grouped by prior before GSEA (nbone sarcoma = 10, nbrain = 58, nleukemia = 90, nneuroblastoma =

35, nosteosarcoma = 36, nrenal = 14, nsoft sarcoma = 18).

(C and D) Venn diagram of RNA fusion overlap among four algorithms (C) and high-confidence fusion totals (D) demonstrates a higher overall number of fusions in

hematologic malignancies (boxplots are graphed as medians with box edges as first and third quartiles; detailed Ns in Table S3). n = 244 RNA samples used as

input, and all n’s represent biological replicates.
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between these pipelines and the orthogonal measurement of hu-

man:mouse DNA ratios. We showed a faithful recapitulation of

primary and relapsed disease within tumor of origin type through

analysis of somatic mutations, copy number alterations, RNA

expression, gene fusions, and oncogenic pathways. It is clear

that the models here are biased toward the most highly aggres-

sive pediatric cancers, which is reflective of the typical pediatric

phase 1 patient populations.

The data presented herein have immediate applications to

the prioritization of experimental agents for testing in pediatric

preclinical models, leading to eventual clinical testing. For

example, there are reports identifying specific genomic alter-

ations as predicting sensitivity to ATR inhibitors, including

ATM loss, ARID1A mutation, defective homologous recombina-

tion, and ATRX mutation associated with alternative length-

ening of telomeres (ALTs) (Lecona and Fernandez-Capetillo,

2018). Querying the PPTC data at PedcBioPortal can quickly

identify models with these characteristics, and the models

can then be used to test whether in vivo responsiveness to

ATR inhibitors is predicted by one or more of the molecular

characteristics. Similarly, PPTC RNA-seq data can be used to

identify models that show elevated gene expression for the tar-

gets of immunotherapeutics such as antibody-drug conjugates

and T-cell engagers. As examples, in the PPTC dataset, GPC2

and ALK are dramatically overexpressed neuroblastoma

models, as previously published (Bosse et al., 2017; Sano

et al., 2019), but also in multiple subsets of additional pediatric

cancer histotypes, allowing for a basket trial design for preclin-

ical testing. The PPTC RNA-seq dataset was also used to iden-

tify T-ALL as a target histology for an agent activated by the

aldo-keto reductase AKR1C3 (R.B. Lock et al., 2018, Mol.

Cancer Ther., abstract) and to identify ASPS xenografts as

intrinsically overexpressing CD274 (PD-L1), making ASPS a

target histology for the evaluation of checkpoint inhibition

(C.G. O’Sullivan et al., 2018, Connective Tissue Oncology Soci-

ety Annual Meeting, conference).

Further, we performedmachine learning to classify tumors into

TP53 and NF1 active or inactive, and we suggest that these

scores might be future biomarkers for drug response. These

classifiers have been used to identify tumors that may respond

to novel agents, including those that target tumors driven by

NF1 loss (Way et al., 2017). Although these machine learning al-

gorithms are not ready for the clinic, the next logical step is to use

PDX models to test the predictive nature of classifiers so that in

the future, interdisciplinary teams can identify tumors driven by

TP53 and/or NF1 loss, evaluate, and compare multiple therapies

in real time.

Our study also highlights additional opportunities for pan-pe-

diatric genomic characterization. We did not have available

models for acute myelogenous leukemia, juvenile myelomono-

cytic leukemia, lymphomas, retinoblastoma, melanoma, thyroid

malignancies, or histone mutant midline gliomas. Additionally,

although we covered 37 molecular subtypes, many of the

rare tumors had low numbers of models and could benefit

from the creation and sequencing of additional PDXs, and we

seek to generate these data and/or hope to merge our data

with future pediatric cancer PDX sequencing projects. Finally,

WES likely missed several pathogenic lesions, and DNA

methylation profiling is particularly relevant for pediatric brain

tumors. Future studies, perhaps in collaboration with ongoing

similar efforts by international colleagues, could address these

gaps.

We performed this project to provide a resource to the pediat-

ric cancer research community. To date, the pediatric cancer

genomic literature largely focuses on diagnostic samples, and

this study includes a large number of PDXs derived during or af-

ter intensive chemoradiotherapy. Thus, the frequency of many

genomic alterations is higher in these models compared to the

literature. By having a large number of PDXs obtained from sam-

ples at relapse or at autopsy, we can provide models that more

closely recapitulate the patients being enrolled in early-phase

clinical trials after extensive chemoradiotherapy. All models

and data are freely available for the cancer research community,

as described in the STAR Methods.

STAR+METHODS

Detailed methods are provided in the online version of this paper

and include the following:

d KEY RESOURCES TABLE

d LEAD CONTACT AND MATERIALS AVAILABILITY

d EXPERIMENTAL MODEL AND SUBJECT DETAILS

B Patient-Derived Xenograft Generation and Harvesting

d METHOD DETAILS

B Nucleic Acid Extractions and Quality Control

B Short Tandem Repeat (STR) Profiling

B Biochemical Measurement of Human DNA Content in

PDX Tumors

B Additional Quality Control for Cross-Contamination

and Mis-Identification

B Whole Exome Sequencing

B SNP Array Assay

B Whole Transcriptome Sequencing

d QUANTIFICATION AND STATISTICAL ANALYSIS

B Mouse Read Subtraction from WES Sequencing Data

B Whole Exome Mutation Analysis

B Tumor Mutation Burden Analysis

B ATRX Deletion Analysis

B Mutational Signatures Analysis

B Classifier Analysis

B mRNA Gene Expression Analysis

B mRNA Variant Calling, Filtering, and Comparison to

DNA Variants

B Copy Number Analysis

B Breakpoint Analysis

B Ethnicity Inference

B Fusion Transcript Analysis

B RNA Expression Clustering and Pathway Analyses

B Pediatric cBioPortal Data Processing

d DATA AND CODE AVAILABILITY

B Raw Data Availability

d INTERMEDIATE PROCESSED DATA AVAILABILITY

B Processed Data Availability

B Code Created or Modified for Analysis in This Paper

Have Been Deposited in GitHub
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Kluyver, T., Ragan-Kelley, B., Pérez, F., Granger, B.E., Bussonnier, M., Fred-

eric, J., Kelley, K., Hamrick, J.B., Grout, J., Corlay, S., et al. (2016). Jupyter

Notebooks-a publishing format for reproducible computational workflows. In

Positioning and Power in Acadmic Publishing: Players, Agents and Agendas,

F. Loizides and B. Scmidt, eds. (IOS Press), pp. 87–90.

Knijnenburg, T.A., Wang, L., Zimmermann, M.T., Chambwe, N., Gao, G.F.,

Cherniack, A.D., Fan, H., Shen, H., Way, G.P., Greene, C.S., et al.; Cancer

Genome Atlas Research Network (2018). Genomic and Molecular Landscape

of DNA Damage Repair Deficiency across The Cancer Genome Atlas. Cell

Rep. 23, 239–254.e6.

Lawrence, M.S., Stojanov, P., Polak, P., Kryukov, G.V., Cibulskis, K., Siva-

chenko, A., Carter, S.L., Stewart, C., Mermel, C.H., Roberts, S.A., et al.

(2013). Mutational heterogeneity in cancer and the search for new cancer-

associated genes. Nature 499, 214–218.

Lecona, E., and Fernandez-Capetillo, O. (2018). Targeting ATR in cancer. Nat.

Rev. Cancer 18, 586–595.

Lee, S., Lee, S., Ouellette, S., Park, W.-Y., Lee, E.A., and Park, P.J. (2017).

NGSCheckMate: software for validating sample identity in next-generation

sequencing studies within and across data types. Nucleic Acids Res. 45, e103.

Lek, M., Karczewski, K.J., Minikel, E.V., Samocha, K.E., Banks, E., Fennell, T.,

O’Donnell-Luria, A.H., Ware, J.S., Hill, A.J., Cummings, B.B., et al.; Exome Ag-

gregation Consortium (2016). Analysis of protein-coding genetic variation in

60,706 humans. Nature 536, 285–291.

Li, B., and Dewey, C.N. (2011). RSEM: accurate transcript quantification

from RNA-Seq data with or without a reference genome. BMC Bioinformatics

12, 323.

Li, H., and Durbin, R. (2010). Fast and accurate long-read alignment with Bur-

rows-Wheeler transform. Bioinformatics 26, 589–595.

Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G.,

Abecasis, G., and Durbin, R.; 1000 Genome Project Data Processing Sub-

group (2009). The Sequence Alignment/Map format and SAMtools. Bioinfor-

matics 25, 2078–2079.

Liem, N.L.M., Papa, R.A., Milross, C.G., Schmid, M.A., Tajbakhsh,M., Choi, S.,

Ramirez, C.D., Rice, A.M., Haber, M., Norris, M.D., et al. (2004). Characteriza-

tion of childhood acute lymphoblastic leukemia xenograft models for the pre-

clinical evaluation of new therapies. Blood 103, 3905–3914.

Liu, X., Yu, X., Zack, D.J., Zhu, H., and Qian, J. (2008). TiGER: a database for

tissue-specific gene expression and regulation. BMC Bioinformatics 9, 271.

Liu, Y., Easton, J., Shao, Y., Maciaszek, J., Wang, Z., Wilkinson, M.R.,

McCastlain, K., Edmonson, M., Pounds, S.B., Shi, L., et al. (2017). The

genomic landscape of pediatric and young adult T-lineage acute lympho-

blastic leukemia. Nat. Genet. 49, 1211–1218.

Lock, R.B., Liem, N., Farnsworth, M.L., Milross, C.G., Xue, C., Tajbakhsh, M.,

Haber, M., Norris, M.D., Marshall, G.M., and Rice, A.M. (2002). The nonobese

diabetic/severe combined immunodeficient (NOD/SCID) mouse model of

childhood acute lymphoblastic leukemia reveals intrinsic differences in bio-

logic characteristics at diagnosis and relapse. Blood 99, 4100–4108.

Lorenz, S., Barøy, T., Sun, J., Nome, T., Vodák, D., Bryne, J.-C., Håkelien,
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STAR+METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Critical Commercial Assays

KAPA HiFi DNA Polymerase Kapa Biosystems KK2612

Agencourt AMPure XP beads Beckman Coulter A63882

SeqCap EZ HGSC VCRome Kit v 2.1 Roche 06266380001

TruSeq SBS kit v3 HS Illumina FC-401-3001

Oligo(dT)25 Dynabeads Life Technologies 61002

ERCC spike-in mix #1 Ambion, Life Technologies 4456740

NEBNext RNA First Strand Synthesis Module New England Biolabs E7525S

NEBNext Ultra Directional RNA Second

Strand Synthesis Module

New England Biolabs E7550S

Uracil-DNA Glycosylase New England Biolabs M0280L

Phusion High-Fidelity PCR Master Mix New England Biolabs M0531L

Infinium OmniExpress-24 Kit Illumina WG-315-1101

GenePrint24 System for STR Typing Promega B1870

Investigator Quantiplex Kit QIAGEN 387018

PrimeTime Gene Expression 2x qPCR mix IDT 1055772

Deposited Data

WES human and mouse BAM files This paper dbGAP phs001437

RNA-Seq human and mouse BAM files This paper dbGAP phs001437

Intermediate files This paper https://figshare.com/projects/Genomic_

landscape_of_childhood_cancer_patient-

derived_xenograft_models/38147

Processed data – somatic mutations, gene

expression, RNA fusions, segmentation files,

focal copy number

This paper https://pedcbioportal.org/login.jsp#summary

Processed data – SNP array-associated analyses

files, FPKM matrix, WES MAF files

This paper Figshare

HapMap 3 draft release 2 International HapMap project ftp://ftp.ncbi.nlm.nih.gov/hapmap/genotypes/

latest_phaseIII_ncbi_b36/plink_format/

Experimental Models: Organisms/Strains

261 pediatric PDX models This paper Table S1

Oligonucleotides

Human PTGER2 qPCR FWD primer, 50-GCT

GCTTCTCATTGTCTCGG-30
IDT custom

Human PTGER2 qPCR REV primer, 50-GC

CAGGAGAATGAGGTGGTC-30
IDT custom

Human pTGER2 qPCR probe, 50-FAM-CAG

TGTCATTCTCAACCTCATCCGCA-IOWA-

BLACK-30

IDT custom

Mouse pTGER2 qPCR FWD primer, 50-AC
ATCAGCGTTATCCTCAACC-30

IDT custom

Mouse pTGER2 qPCR REV primer, 50-GC

TACTGCCAGACAATCCG-30
IDT custom

Mouse pTGER2 qPCR probe, 50-TXRED-
TCATTCGCATGCACCGTCGGA- IOWA-

BLACK-30

IDT custom

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and Algorithms

FusionCatcher 0.99.7b Nicorici et al., 2014 https://github.com/ndaniel/fusioncatcher

STAR-Fusion 1.1.0 Haas et al., 2017 https://github.com/STAR-Fusion

STAR 2.5.2b Dobin et al., 2013 https://github.com/alexdobin/STAR

RSEM 1.2.28 Li and Dewey, 2011 https://github.com/deweylab/RSEM

TumorMap 1.0 Newton et al., 2017 https://tumormap.ucsc.edu/

Stan 2.16.0 Carpenter et al., 2017 https://github.com/stan-dev/cmdstan

Fgsea 1.5.1 Sergushichev, 2016 https://bioconductor.org/packages/release/

bioc/html/fgsea.html

Pandas 0.23.0 McKinney, 2010 https://pandas.pydata.org/

R, various R Core Team http://www.R-project.org/

Python 3.6.5 Python Core Team https://www.python.org/

Jupyter 1.0.0 Kluyver et al., 2016 https://jupyter.org/index.html

Seaborn 0.8.1 Seaborn Core Team https://seaborn.pydata.org/

Maftools 2.0.15 Mayakonda et al., 2018 https://github.com/PoisonAlien/maftools

R 3.4.3 R Core Team http://www.R-project.org/

ComplexHeatmap 2.1.0 Gu et al., 2016 https://www.bioconductor.org/packages/3.7/

bioc/html/ComplexHeatmap.html

deconstructSigs 1.8.0 Rosenthal et al., 2016 https://github.com/raerose01/deconstructSigs

Nexus 8.0 Biodiscovery https://www.biodiscovery.com/

GISTIC 2.0.23 Mermel et al., 2011 https://www.broadinstitute.org/node/358411

MutSigCV 1.3.01 Lawrence et al., 2013 http://software.broadinstitute.org/cancer/

software/genepattern/modules/docs/MutSigCV

HGSC Mercury 3.2 Reid et al., 2014 https://www.hgsc.bcm.edu/software/mercury

BWA 0.7.17-r1188 Li and Durbin, 2010 http://bio-bwa.sourceforge.net/

GATK 3.8.1 McKenna et al., 2010 https://www.broadinstitute.org/gatk/

PLINK 1.9 Chang et al., 2015 https://www.cog-genomics.org/plink/1.9/

PLINK 1.07 Purcell et al., 2007 http://zzz.bwh.harvard.edu/plink/

Samtools 1.9 Li et al., 2009 http://samtools.sourceforge.net/

Sambamba 0.6.6 Tarasov et al., 2015 https://github.com/biod/sambamba

Picard 2.18.14-0 2018 https://github.com/broadinstitute/picard

Cufflinks 2.2.1 Trapnell et al., 2010 https://github.com/cole-trapnell-lab/cufflinks

RNA-SeQC 1.1.8 Deluca et al., 2012 https://github.com/broadinstitute/rnaseqc

AlignStats 0.3 BCM-HGSC https://github.com/jfarek/alignstats

SOAPFuse 1.26 Jia et al., 2013 https://sourceforge.net/projects/soapfuse/

HTSeq 0.9.1 Anders et al., 2015 https://github.com/simon-anders/htseq

Pindel 0.2.5b5 Ye et al., 2009 https://github.com/genome/pindel

deFuse 0.7.0 McPherson et al., 2011 https://github.com/amcpherson/defuse

Bamutil 1.0.14 Jun et al., 2015 https://github.com/statgen/bamUtil

Trinity 2.5.1 Grabherr et al., 2011 https://github.com/trinityrnaseq/trinityrnaseq

Strelka 2.9.2 Kim et al., 2018b https://github.com/Illumina/strelka

NGSCheckmate 1.0 Lee et al., 2017 https://github.com/parklab/NGSCheckMate

Other

TARGET pediatric tumors RNA-sequencing

dataset

The TARGET Consortium https://ocg.cancer.gov/programs/target/

data-matrix

GTEx normal tissues RNA-sequencing

dataset

The GTEx Consortium. 2013 http://www.gtexportal.org/home/index.html

Exome Aggregation Consortium 0.3.1 Lek et al., 2016 http://exac.broadinstitute.org/
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LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to, and will be fulfilled by, the Lead Contact, John M.

Maris (maris@email.chop.edu). All PDX models are available through the Pediatric Preclinical Testing Consortium with a completed

Material Transfer Agreement.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Patient-Derived Xenograft Generation and Harvesting
Patient-derived xenograft models from the Pediatric Preclinical Testing Program (PPTP) were generated as described (Houghton

et al., 2002, 2007; Whiteford et al., 2007). Briefly, for solid tumors, C.B-Igh-1b/IcrTac-Prkdcscid (Taconic Farms, Germantown

NY), were subcutaneously flank-engrafted into male or female mice (Table S1) and passaged once tumors reached 200 mm3. For

CNS tumors, patient tumors were stereotactically-transplanted into anesthetized (50 mg/kg sodium pentobarbital) RAG2,

NOD.129S7(B6)-Rag1tm1Mom/J, or RAG1tm1Mom/J mouse brains in the diagnosis-specific orthotopic locations noted in

Table S1 (Yu et al., 2010). PDX tumor cells (1 3 105) were suspended in 2 ul of culture media and slowly injected through a burr

hole using a 10 ul, 26 gauge syringe into the brain region of interest. Once moribund, or displaying neurological deficit symptoms,

mice were euthanized and whole murine brains containing visible tumors were aseptically removed and transferred to the tissue

culture laboratory. Tumors were microscopically dissected from surrounding brain tissue, mechanically dissociated into cell suspen-

sions, and filtered. Single tumor cells were subsequently injected into the brains of SCID mice as described above. Sub-transplan-

tation process was repeated to complete a total of five tumor passages. All animal experiments were conducted according to an

Institutional Animal Care and Use Committee-approved protocol. All leukemia animal experimentation was approved by the Animal

Care and Ethics Committee, UNSW Sydney (Sydney, Australia). Experiments used continuous PDXs established previously in 20-

25 g female non-obese diabetic/severe combined immuno-deficient (NOD.CB17-Prkdcscid/SzJ, NOD/SCID) or NOD/SCID/inter-

leukin-2 receptor g–negative (NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ, NSG) mice. Leukemia cells were inoculated intravenously into

6-8 week-old NOD/SCID or NSG mice (Australian BioResources, Moss Vale, NSW, Australia) and leukemia burden monitored via

enumeration of human CD45+ (%huCD45+) cells versus total CD45+ leukocytes (human plus mouse) in the peripheral blood (PB)

and tissues, as reported (Liem et al., 2004; Lock et al., 2002). The continuation of xenograft lines was accomplished through harvest-

ing human leukemia cells from the spleens of the engraftedmice. Harvesting requiredmore than 33 108 leukemia cells per spleen, at

85% purity. Additional details per model including sex, age, and mass are included in Table S1.

METHOD DETAILS

Nucleic Acid Extractions and Quality Control
PDX samples were submitted from Children’s Cancer Institute, Children’s Hospital of Philadelphia, Greehey Children’s Cancer

Research Institute, and Montefiore Medical Center to the Nationwide Children’s Hospital Biospecimen Core Resource at �190�C
using an MVE cryoshipper. Cytospins and H&E frozen sections were prepared from leukemia and solid tissue PDX specimens,

respectively. Slides were assessed by board-certified pathologists to determine blast percentage in leukemia PDX samples, and

percent tumor nuclei and necrosis of the solid PDX samples. DNA and RNA were co-extracted from the PDXs using a modification

of the DNA/RNA AllPrep kit (QIAGEN). The flow-through from the QIAGENDNA columnwas processed using amirVanamiRNA Isola-

tion Kit (Ambion). DNA was quantified by PicoGreen assay and RNA samples were quantified by measuring Abs260 with a UV spec-

trophotometer. DNA specimens were resolved by 1% agarose gel electrophoresis to confirm high molecular weight fragments. RNA

was analyzed via the RNA6000 Nano assay (Agilent) for determination of an RNA Integrity Number (RIN). The PPTC study committee

reviewed the pathology and molecular QC data and selected DNA and RNA aliquots for sequencing.

Short Tandem Repeat (STR) Profiling
Each tumor DNA sample was subjected to STR profiling performed by Guardian Forensic Sciences. DNA samples were quantified

using QIAGEN Investigator Quantiplex Kit (Cat# 387018) on a QIAGEN RotorGene Q instrument. The GenePrint24 System for STR

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

The International Genome Sample Resource

and 1000 genomes project

Birney and Soranzo, 2015 https://www.internationalgenome.org/

NHBLI Exome Sequencing Project (ESP) Exome Variant Server, NHLBI

GO Exome Sequencing Project

(ESP), Seattle, WA (URL:

http://evs.gs.washington.edu/EVS/)

[date (month, year) accessed].

http://evs.gs.washington.edu/EVS/
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profiling (Promega, Cat#B1870) was used to amplify 0.05 ng of template DNA in a 12.5 mL volume using the following conditions: 96�C
for 1 minute, 27 cycles of {94�C for 10 s, 59�C for 1 minute, 72�C for 30 s}, 60�C for 10 minutes using the RotorGene Q instrument.

Samples were injected into the Applied Biosystems ABI 310 Genetic Analyzer and profiles were interpreted by forensic biologists.

Only those samples deemed not misidentified and free of contamination were used in this study.

Biochemical Measurement of Human DNA Content in PDX Tumors
To determine the composition of human and mouse DNA within PDX tumors, PDX DNA samples were amplified using modified

version of the published pTGER2 (prostaglandin E receptor 2) qPCR assay (Alcoser et al., 2011). Depending upon sample availability,

2-20 ng of PDX tumor DNA were added to 500 nM each human- and mouse-specific forward primers, reverse primers, probes (se-

quences in resource document) and 1X IDT PrimeTime Gene Expression 2XMastermix (Integrated DNA Technologies) in a total of 20

uL. Reactions were thermalcycled at 95�C for 8 min and 42 cycles of {95�C for 15 s, 64�C for 1 min}. Five-point standard curves were

performed using a mixture of CHLA-90 and COG-N-603 neuroblastoma cell lines as human-specific template and pooled liver/

spleen/muscle DNA from a naive NU/NU mouse as the mouse-specific template to confirm each primer efficiency was between

90%–110%. The DNA equivalent of one diploid copy of eithermouse or human template was run as a reference template. Three tech-

nical replicates were performed for each standard and sample. Average CT values of the reference DNA samples were used as

‘‘ground truth’’ CT values for one DNA copy. To estimate relative copy number, 2-DCT values were calculated for each unknown

for each species: 2�DCT = 2�ðCT of Unknown�CT of RefererenceÞ. To estimate percent human content, the following equation was used:

%Human content = ðRelative human genome copies 3 100 =Relative mouse genome copiesÞ.

Additional Quality Control for Cross-Contamination and Mis-Identification
Common germline SNP distributions (allele frequency > 0.005 in any one of the three databases: Exome Aggregation Consortium,

1000 genomes, or the NHBLI Exome Sequencing Project) were plotted for eachmodel and visually inspected for a negatively skewed

distribution to assess DNA cross-contamination in WES data. To identify potential mis-identification, RNA variant calling was per-

formed and variant allele frequencies correlated between WES and RNA. Models whose variants did not correlate were deemed

mis-identified and removed (STAR Methods). For remaining models, NGScheckmate was performed between WES and RNA

data. All models except for ICb-2002EPN had correlation values of R 0.61 at depths of R 10, deeming these models matched as

recommended by Lee et al. (2017). ICb-2002EPN had a borderline correlation of 0.6025 at a depth of 14.51, but deemed matched

fromWES-RNAmutation correlations. Within this cohort, five pairs of models were derived from tissue at phase of therapy (Table S1).

Thus, as additional QC, we correlated somatic mutation allele frequencies between each pair and found high concordance of

mutation frequencies (data on Figshare, STARMethods), confirming biological reproducibility of creating PDXmodels within a center.

Mutation variation is summarized per model in Table S3.

Whole Exome Sequencing
Illumina paired-end pre-capture libraries were constructed from PDX DNA samples according to the manufacturer’s protocol

(Illumina Multiplexing_SamplePrep_Guide_1005361_D) modified as described in the BCM-HGSC Illumina Barcoded Paired-End

Capture Library Preparation protocol. The complete protocol including oligonucleotide sequences used as adaptors and blockers

are accessible from the HGSC website https://www.hgsc.bcm.edu/sites/default/files/documents/Protocol-Illumina_Whole_

Exome_Sequencing_Library_Preparation-KAPA_Version_BCM-HGSC_RD_03-20-2014.pdf. The DNA sequence production is

briefly described below.

Library Preparation

500 ng (or 250 ng if sample quantity was limiting) of DNA in 50ul volumewere sheared into fragments to an average size of 200-300 bp

in a Covaris plate with E220 system (Covaris, Inc. Woburn, MA) followed by end-repair, A-tailing and ligation of the Illumina multiplex-

ing PE adaptors. Pre-capture LigationMediated-PCR (LM-PCR) was performed for 6-8 cycles using the Library Amplification Ready-

mix containing KAPA HiFi DNA Polymerase (Kapa Biosystems, Inc.). Universal primer LM-PCR Primer 1.0 and LM-PCR Primer 2.0

were used to amplify the ligated products. Reaction products were purified using 1.8X Agencourt AMPure XP beads (Beckman

Coulter) after each enzymatic reaction. Following the final 1.2X Agencourt XP beads purification, quantification and size distribution

of the pre-capture LM-PCR product was determined using Fragment Analyzer capillary electrophoresis system (Advanced Analytical

Technologies, Inc.).

Capture Enrichment

Four pre-capture libraries were pooled together (�750 ng/sample, 3 ug/pool) and then hybridized in solution to the HGSC VCRome

2.1 design1 (Bainbridge et al., 2011) according to the manufacturer’s protocol NimbleGen SeqCap EZ Exome Library SR User’s

Guide (Version 2.2) with minor revisions. Probes for exome coverage across > 3,500 clinically relevant genes that are previously <

20X (�2.72Mb) is supplemented into the VCRome 2.1 probe. Human COT1 DNA was added into the hybridization to block repetitive

genomic sequences. Blocking oligonucleotides fromSigma (individually sequence specifically synthesized) or xGenUniversal Block-

ing oligonucleotides (Integrated DNA Technologies) were added into the hybridization to block the adaptor sequences. Hybridization

was carried out at 560C for �16h. Post-capture LM-PCR amplification was performed using the Library Amplification Readymix

containing KAPA HiFi DNA Polymerase (Kapa Biosystems, Inc.) with 12 cycles of amplification. After the final AMPure XP bead

purification, quantity and size of the capture library was analyzed using the Agilent Bioanalyzer 2100 DNA Chip 7500. The efficiency
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of the capture was evaluated by performing a qPCR-based quality check on the four standard NimbleGen internal controls. Success-

ful enrichment of the capture libraries was estimated to range from a 6 to 9 of DCT value over the non-enriched samples.

DNA Sequencing

Library templates were prepared for sequencing using Illumina’s cBot cluster generation system with TruSeq PE Cluster Generation

Kits (Illumina) according to the manufacturer’s protocol. Briefly, these libraries were denatured with sodium hydroxide and diluted to

6-9 pM in hybridization buffer in order to achieve a load density of�800K clusters/mm2. Each library pool was loaded in a single lane

of a HiSeq flow cell, and each lanewas spikedwith 1%phiX control library for run quality control. The sample libraries then underwent

bridge amplification to form clonal clusters, followed by hybridization with the sequencing primer. Sequencing runs were performed

in paired-endmode using the Illumina HiSeq 2000 platform. Using the TruSeq SBSKits (Illumina), sequencing-by-synthesis reactions

were extended for 101 cycles from each end, with an additional 7 cycles for the index read.With sequencing yields averaging 12.1 Gb

per sample, samples achieved an average of 97.64% of the targeted exome bases covered to a depth of 20X or greater.

Primary Data Analysis

Initial sequence analysis was performed using the HGSCMercury analysis pipeline (Challis et al., 2012; Reid et al., 2014). In summary,

the. bcl files produced on-instrument were first transferred into the HGSC analysis infrastructure by the HiSeq Real-time Analysis

module. Mercury then ran the vendor’s primary analysis software (CASAVA) to de-multiplex pooled samples and generate sequence

reads and base-call confidence values (qualities), followed by the mapping of reads to the GRCh37 Human reference genome

(https://www.ncbi.nlm.nih.gov/projects/genome/assembly/grc/human/) using the Burrows-Wheeler aligner (Li and Durbin, 2010).

The resulting BAM (binary alignment/map) file underwent quality recalibration using GATK, and where necessary the merging of

separate sequence-event BAMs into a single sample-level BAM. BAM sorting, duplicate read marking, and realignment to improve

in/del discovery all occur at this step. Next, Atlas-SNP and Atlas-indel from the Atlas2 suite (Shen et al., 2010) were used to call

variants and produce a variant call file (VCF). Finally, annotation data was added to the VCF using a suite of annotation tools

‘‘Cassandra’’ (https://www.hgsc.bcm.edu/software/cassandra) that brings together frequency, function, and other relevant informa-

tion using AnnoVar with UCSC and RefSeq gene models, as well as a host of other internal and external data resources.

SNP Array Assay
In brief, 200 ng of genomic DNA were denatured with NaOH, followed by isothermal whole genome amplification at 37�C for 20-24

hours. The amplified DNA was enzymatically fragmented and hybridized to the BeadChip for 16-24 hours at 48�C (24 samples were

processed in parallel for each BeadChip). After a series of washing steps to remove unhybridized and non-specifically hybridized

DNA fragments, allele-specific single-base extension reactions were performed to incorporate labeled nucleotides into the bead-

bound primers. A multi-layer staining process was conducted to amplify signals from the labeled extended primers, and then the

coated beads were imaged with the Illumina iScan system.

Chip types used were humanomniexpress-24-v1-1-a.bpm and InfiniumOmniExpress-24v1-2_A1.bpm.

Whole Transcriptome Sequencing
Whole-transcriptome RNA sequencing (RNA-seq) was performed using total RNA extracted as described above. Strand-specific,

poly-A+ RNA-seq libraries for sequencing on the Illumina platform were prepared using manufacturer guidelines with minor modifi-

cations described herein (Peters et al., 2015; Wang et al., 2015). RNA Integrity was confirmed (RIN > 7.0) on a Bioanalyzer (Agilent).

Briefly, poly-A+ mRNA was extracted from 1 mg total RNA using Oligo(dT)25 Dynabeads (Life Technologies), to which 4 mL of 1:100

dilution of the ERCC spike-in mix 1 (Ambion, Life technologies) was already added (Baker et al., 2005). There are a total of 92 poly-

adenylated transcripts in this mix that are used to monitor sample and process consistency. mRNA is then fragmented by heat at

94�C for 15minutes or less depending on sample RIN. First strand cDNAwas synthesized using NEBNext RNA First Strand Synthesis

Module (New England BioLabs) and during second strand cDNA synthesis, dNTPmix containing dUTPwas used to introduce strand-

specificity with NEBNext Ultra Directional RNA Second Strand Synthesis Module (New England BioLabs). For Illumina paired-end

library construction, the resultant cDNA is processed through end-repair and A-tailing, ligated with Illumina PE adapters, and then

digestedwith 10 units of Uracil-DNAGlycosylase (NewEngland BioLabs). Libraries are prepared on the BeckmanBioMek FXp robots

and amplification of the libraries was performed for 13 PCR cycles using the Phusion High-Fidelity PCR Master Mix (New England

BioLabs); 6-bp molecular barcodes that were also incorporated during this step. Libraries were purified with Agencourt AMPure

XP beads (Beckman Coulter) after each enzymatic reaction, and after PCR amplification, and were quantified using Fragment

Analyzer electrophoresis system. Libraries were pooled in equimolar amounts (4 libraries/pool). Library templates were prepared

and sequenced exactly as described above for DNA Sequencing. Sequencing runs generated approximately 300-400 million suc-

cessful reads on each lane of a flow cell, yielding 75-100M reads per sample.

QUANTIFICATION AND STATISTICAL ANALYSIS

Mouse Read Subtraction from WES Sequencing Data
Raw fastq files (n = 240) fromWhole exome sequencing data were aligned to a combined hybrid genome of human hg19 and mouse

mm10 genomes using the Burrows-Wheeler transformation algorithm (BWA v0.7.17-r1188). Reads overlapping specifically to either

the human or mouse genome were extracted and separated in corresponding human andmouse bam files using Samtools v1.9. The
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mouse subtracted bam files containing reads specific to human genome were then sorted by name and only paired reads were kept

using the Samtools parameter -f 1. Following this, duplicated reads were marked using Sambamba v0.6.6. The resulting bam files

were then used as input for local realignment around indels using IndelRealigner and base quality score recalibration using BaseRe-

calibrator utilities from GATK v3.8.1.

Whole Exome Mutation Analysis
Many of these PDXmodels have been established decades ago, thusmatched primary and/or normal tissue either were not collected

or is not currently available. To filter common germline variation from these tumor models, we used a panel of 809 normal samples

supplied from TCGAWBC tissue to generate consensus germline variant calls. Rare germline variation was retained and defined as <

0.005 minor allele frequency in any one of the three databases: Exome Aggregation Consortium (ExAC) (Lek et al., 2016), 1000 ge-

nomes, or the NHBLI Exome Sequencing Project (ESP). Filtered variants also present in COSMIC were scavenged back. We

performed MutSigCV (Lawrence et al., 2013) analysis on the entire cohort to identify and remove false positive variants. With the

exception of known oncogenes and tumor suppressors, novel significantly mutated genes (SMGs) common across all histologies

should be rare. We manually inspected the top 100 SMGs and found that most novel genes harbored a high number of private mu-

tations and thus were not removed. Other novel variants were false positives due to germline inclusion or sequencing/mapping errors

(data on FigShare, link below). Data were thus split into germline MAF and somatic MAF files, the latter of which retained private

variants.

Tumor Mutation Burden Analysis
Using the maftools R package (Mayakonda et al., 2018), total number of mutations per variant type per model were

calculated. We defined tumor mutation burden using only mononucleotide substitutions resulting in amino acid

changes:ðSðsomatic nonsynonymous + missense variantsÞ =45:1 MbÞ. The denominator was the 45.1 Mb size of the Roche Nimble-

gen VCRome v. 2.1 capture panel.

ATRX Deletion Analysis
The ATRX locus on chromosome X contains too few probes in OmniExpress arrays to accurately assess deletion, even in cases of

known sex. Thus, fromWES bam files, total read base counts for ATRX exons were calculated using Samtools v1.9 bedcov utility and

total library size was calculated using Samtools v1.9 flagstat utility. To convert exon read counts to Fragments per kilobase permillion

reads (FPKM), the library sizes were first transformed to per million scaling factors. Following this, raw read counts of each exon were

normalized using the per million scaling factors and the corresponding exon length.

Mutational Signatures Analysis
The deconstructSigs R package with the COSMIC 30 signature reference was used. We ran this workflow onmodels withR 50 total

somatic mutations. We chose a cosine similarity value cutoff at 0.1 and plotted the proportion of signatures in each model as a

stacked barplot.

Classifier Analysis
We applied models derived from three supervised machine learning algorithms to all PDX models with available RNA-Seq data

(n = 244). The models were previously trained on RNaseq, copy number, and mutation data across 33 different adult cancer-types

from The Cancer Genome Atlas PanCanAtlas project (Cancer Genome Atlas Research Network et al., 2013). Briefly, the algorithm

was an elastic net penalized logistic regression classifier that took FPKM and z-score normalized RNaseq data as input and, in three

independent classifiers, was trained to predict Ras pathway activation, NF1 inactivation, and TP53 inactivation using mutation and

copy number alteration status of corresponding samples. The Ras pathway and NF1 classifiers and the overall method were

described in more detail in Way et al. (2018). The application and validation of the TP53 classifier was described in Knijnenburg

et al. (2018).

To assess performance of the TCGA trained classifiers applied to the PDX data, we used orthogonal evidence of gene alterations in

each PDX sample. Specifically, we used samples with observed missense, nonsense, frameshift, and splice site mutations in ALK,

BRAF, CIC, DMD, HRAS, KRAS, NF1, NRAS, PTPN11, and SOS1 as samples with possible Ras pathway activation. We used sam-

ples with only non-silent NF1mutations for theNF1 classifier, and samples with deleterious TP53mutations, copy number deletions,

and fusions for the TP53 classifier. We assessed model performance using receiver operating characteristic (ROC) and precision

recall (PR) curves using these samples as the positive set and all others as the negative set. We also applied the classifiers to shuffled

PDX gene expression matrices and compared performance to the real data to assess potential model bias. The reproducible analysis

pipeline can be viewed at https://github.com/marislab/pdx-classification and the software is archived on Zenodo at https://doi.org/

10.5281/Zenodo.1475249.

mRNA Gene Expression Analysis
Raw fastq files (n = 244) from RNA-sequencing data were aligned to a combined hybrid genome of human hg19 and mouse mm10

genomes using the STAR aligner v2.5.3a. Reads overlapping specifically to either the human or mouse genome were extracted and
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separated in corresponding human andmouse bam files using Samtools v1.9. Themouse subtracted bam files containing reads spe-

cific to human genome were then sorted by name and only paired reads were kept using the Samtools parameter -f 1. Following this,

duplicated reads were marked using Sambamba v0.6.6. The resulting bam files were used to extract and separate reads into paired-

ended fastq files using the SamToFastq utility of Picard v2.18.14-0. The resulting paired-ended fastq files obtained after mouse

subtraction were re-aligned to human genome hg19 using STAR aligner andmarked for duplicate reads using PicardMarkDuplicates.

Gene expression was quantified in terms of Fragments Per Kilobase of transcript per Million mapped reads (FPKM) using HTSeq

v0.9.1 and Cufflinks v2.2.1. We also processed RNA-sequencing patient data from TARGET (ALL, n = 533; AML, n = 364; NBL,

n = 169; RT, n = 70; OS, n = 87; WT, n = 136) and PPTC PDX data (n = 244) using STAR alignment and RSEM normalization using

hg38 as reference genome and Gencode v23 gene annotation to get transcript per million (TPM) expression values. For PPTC

PDX data, human bam files generated from the mouse subtraction pipeline were used in order to generate input fastq files.

mRNA Variant Calling, Filtering, and Comparison to DNA Variants
Variant calling for RNA-seq samples was performed with Strelka v2.9.2 germline indels calling pipeline using hg19 primary assembly

reference fasta and default parameters. VCFs were converted to MAF and variants were filtered for those that passed VEP and were

non-silent (! = Silent or Intron). Variant allele frequencies for all non-silent, VEP-passed RNA variants were calculated. For eachmodel

on which both WES and RNA-Seq were performed, WES variants with RNA evidence were matched in the DNA MAF and VAF cor-

relations were plotted and are stored in the QC folder of the FigShare project: https://figshare.com/projects/Genomic_

profiling_of_childhood_tumor_patient-derived_xenograft_models_to_enable_rational_clinical_trial_design/38147.

Copy Number Analysis
SNP arrays were processed at the HGSC using the Illumina Infinium HTS Assay according to the manufacturer’s guidelines. Human

OmniExpress arrays (Illumina, catalog No. WG-315-1101) were used, interrogating 741 thousand SNP loci with a MAF detection limit

of 5%. SNP calls were collected using Illumina’s GenomeStudio software (version 1.0/2.0) in which standard SNP clustering and gen-

otyping were performed with the default settings recommended by the manufacturer. Data from samples that met a minimum SNP

call rate of 0.9 were considered passing andwere included in subsequent analyses. Output files fromGenome Studio containing BAF

and LRR were used as input for Nexus 8.0. Quadratic systematic correction was performed using a custom file (Figshare repository,

below) containing common snp probes from the two chip types. The significance threshold was reduced to 13 10�8 to reduce back-

ground noise. Segmentation was performed using Nexus’s SNPRANK algorithm. To extract segments, gain was set to 0 and loss

to �1 3 10�11. The output table was reformatted to segmentation file format for input to GISTIC2.0, which was used to calculate

broad and focal, hemizygous gene-level copy number events. Relevant arm and band level alterations were used in oncoprints. Since

normal DNAwas not available for paired analyses, sex chromosomeswere removed. Focal homozygous deletions and amplifications

were annotated using the segmentation file created post-Nexus analysis. A cutoff of LRR > = (0.538578182) was used for amplifica-

tions and > = (�1.739) for deletions. Cutoffs were determined by assessing histogram splits for MYCN amplification, SMARCB1 dele-

tion, and CDKN2A/B deletions. Homozygous deletions remained only if mRNA FPKM was < 5 or if RNA-Seq for a sample was not

available. Manual inspections were performed to confirm alterations for SMARCB1, TP53, WT1, MYCN, C19MC, CDKN2A/B and

edited when necessary (see code).

Breakpoint Analysis
We defined breakpoint regions as regions with 10% copy number change between adjacent segments. These were tabulated per

autosome permodel and plotted by histology in Figure S4C. To defined regions of high breakpoint density (HBD) asR 10 breakpoints

per chromosome (Figure S4D; Table S3).

Ethnicity Inference
Approximate genomic ancestries for each PDX model were inferred through principal component analysis of SNP array genotypes.

Illumina-designated plus-strand genotypes were exported from GenomeStudio and processed using PLINK 1.9. Sex chromosomes

and SNPs with minor allele frequency < 1%, call rate < 90%, or a deviation from Hardy-Weinberg equilibrium surpassing p = 0.00005

were excluded. The PDX dataset was then merged with HapMap 3 (draft release 2), restricting to only the intersecting SNPs. This set

was pruned to remove highly correlated SNPs using a window size of 50 variants, step size of 5 variants, and pairwise r2 threshold of

0.1. The 39,544 remaining SNPswere used to calculate the top 20 principal components. Approximate ethnicities were inferred using

the first two components. Individuals were classified into four broad population groups: European (including HapMap CEU and TSI

population samples), African (ASW, LWK, MKK, and YRI), East Asian (CHB, CHD, and JPT), and South Asian or Hispanic

(GIH and MXL).

Fusion Transcript Analysis
Weused four different fusion callers: STAR-Fusion v1.1.0, FusionCatcher v0.99.7b, deFuse and SOAPFuse on RNA-sequencing data

of the PDXmodels (n = 244). A total of 50,796 unique fusions were predicted with the following breakdown: STAR-Fusion (n = 9,496),
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FusionCatcher (n = 3,822), deFuse (n = 30,393), and SOAPFuse (n = 7,085). To reduce the number of false positives, we used

two parallel approaches: first to keep all fusions predicted as in-frame and second to keep all fusions where the 50 or 30 gene fuses

promiscuously with multiple partners within the same histology. To filter out unreliable predictions, we further filtered the in-frame

fusions by keeping fusions that were recurrently predicted in two or more models within the sample histology or fusions that were

supported by at least two fusion callers. We removed any fusions where expression of both genes in the gene pair was found to

be < 1 TPM value across all models or it was not reported by the gene quantification algorithm. We then combined the lists from

the two approaches discussed above and filtered out any fusions that were predicted inmore than one histology. To remove spurious

fusions, we filtered all fusions annotated as ‘‘read-through’’ as a result of fusions between adjacent or neighboring genes. We further

removed fusions identified in non-cancer tissues and cells as per GTEx in order to remove chimeric RNA that is normally found in

healthy tissue. Next, we scavenged and annotated fusions that have been identified as ‘‘driver’’ fusions in literature and fusions

that were validated using cytogenetics. Finally, we annotated the gene fusion partners with oncogenes from COSMIC, kinases

from Kinase.com, and transcription factors from AnimalTFDB to identify any oncogenic potential and functional relevance.

RNA Expression Clustering and Pathway Analyses
The UCSC TumorMap analysis was used to visualize clusters of expression profiles across PDX histologies (Newton et al., 2017). The

expression values were transformed into log2(TPM + 1) space. We removed genes where more than 80% of the samples had no

measurable expression and we applied a variance filter to remove the 20% least varying genes. This generated a gene by sample

matrix containing 28,482 genes and 244 PDX samples. The expression values and PDX annotations were uploaded to the TumorMap

portal for analysis. A Bayesian hierarchical model was used to infer differences in expression across PDX histologies. We used a

hierarchical modeling strategy to leverage similarities across related tissues and to improve inferences for histologies with small sam-

ple sizes (Ji and Liu, 2010). The hierarchical model was implemented using the Stan statistical programming language (Carpenter

et al., 2017).

We inferred the biological function of histology-specific expression by ranking the expression differences for each histology and

performing gene-set enrichment analysis (GSEA). GSEA was performed using the fgsea software (Sergushichev, 2016). Statistically

significant enrichment was defined as having an adjusted p value less than 0.05 and a normalized enrichment score greater than 2.0.

Statistically insignificant enrichment scores were set to zero for heatmap visualization. The normalized enrichment scores were visu-

alized using the seaborn clustermap software for tissue database scores and R for Hallmark pathway scores.

Pediatric cBioPortal Data Processing
All processed data: RNA-sequencing expression values (FPKM and Z-score), RNA fusions, mutation calls in Mutation Annotation

Format (MAF), segmentation, and focal copy number values were formatted using the current cBioPortal v1.2.2 file format

documentation.

DATA AND CODE AVAILABILITY

Raw Data Availability
Mouse and human separated DNA and RNA BAM files have been deposited into dbGAP under accession number phs001437.v1.p1.

INTERMEDIATE PROCESSED DATA AVAILABILITY

Variant files, SNP array files, contamination assessment files:

https://figshare.com/projects/Genomic_landscape_of_childhood_cancer_patient-derived_xenograft_models/38147

Processed Data Availability
WES mutations, mRNA expression, RNA fusions, segmentation, and gene copy number has been deposited into the publicly-avail-

able pediatric cBioportal at: https://pedcbioportal.org/study?id=pptc#summary

Code Created or Modified for Analysis in This Paper Have Been Deposited in GitHub
PDX mouse subtraction: https://github.com/marislab/pdx-mouse-subtraction

NGSCheckmate analysis: https://github.com/d3b-center/ngs_checkmate_wf

Correlation analyses: https://github.com/marislab/create-pptc-pdx-corplots

PDX pie chart (Figure 1): https://github.com/marislab/create-pptc-pdx-pie

Oncoprint generation (Figures 2 and 3): https://github.com/marislab/create-pptc-pdx-oncoprints

Medulloblastoma classification (Figure 2): https://github.com/PichaiRaman/MedulloClassifier

Tumor mutation burden (Figures 3 and S3): https://github.com/marislab/pptc-pdx-tmb

Cell Reports 29, 1675–1689.e1–e9, November 5, 2019 e8

161



Gene classification (Figure 4): https://github.com/marislab/pdx-classification

Classifier analysis (Figures 4 and S5): https://github.com/marislab/pptc-pdx-classifier-analysis

RNA clustering and heatmaps (Figure 5): https://github.com/marislab/pptc-pdx-RNA-Seq-clustering

RNA fusion analysis (Figure 5): https://github.com/marislab/pptx-pdx-fusion-analysis

Ethnicity inference (Figure S2): https://github.com/marislab/pptc-pdx-ethnicity-inference

Mutational signatures (Figure S3): https://github.com/marislab/pptc-pdx-mut-sigs

Copy number, breakpoint, and SV (ATRX deletion) analysis (Figure S4): https://github.com/marislab/pptc-pdx-copy-

number-and-SVs
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Figure S1. Analysis pipeline for somatic mutations, gene expression, RNA fusions, and copy number profiling in pediatric 
PDX tumors, Related to Figures 1-5. Figure S1 displays an overview of analysis methods utilized. Genomic DNA from PDX tumors 
was used for SNP array copy number analysis (A, N = 252), short-tandem repeat identity testing (B, N = 261), quantitative PCR to 
assess human:mouse DNA content (B, N = 35 samples with N = 3 technical replicates), and whole exome sequencing (C, N = 
240).  Total RNA from PDX tumors was used for whole transcriptome sequencing (D, N = 244). See Table S1 for Ns per assay per 
histology and Table S2 for STR profiles. Unless otherwise noted, Ns denote biological replicates. 
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Figure S1. Analysis pipeline for somatic mutations, gene expression, RNA fusions, and copy number profiling in pediatric PDX tumors, Related to Figures 1-5. Figure S1 
displays an overview of analysis methods utilized. Genomic DNA from PDX tumors was used for SNP array copy number analysis (A, N = 252), short-tandem repeat identity 
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Figure S2. Ethnicity prediction, Related to Figure 1. Principal components analysis grouping of European, African, East Asian, and 
South Asian/Hispanic HapMap reference populations used to predict PDX ethnicities (A). The first two principal components 
calculated from SNP array genotypes for PDX models (circles, N = 252) are plotted alongside HapMap reference samples (triangles, 
N = 1,184). Dashed boxes represent the cutoffs used to classify PDXs into four broad population groups: European (including 
HapMap CEU and TSI population samples), African (ASW, LWK, MKK, and YRI), East Asian (CHB, CHD, and JPT), and South 
Asian or Hispanic (GIH and MXL). Tabulated counts and frequencies of ethnicities in PDX cohort (B) and a comparison table of 
reported versus inferred ethnicities in the PDX cohort (C). Ns represent biological replicates. 

African American European Hispanic or Latino Mixed Non-Hispanic Other Unknown
African 5 1 0 0 2 0 14

EastAsian 0 0 0 1 0 0 5
European 3 25 3 0 10 1 139

Mixed or Unknown 0 0 1 0 0 1 12
SouthAsianOrHispanic 0 0 12 0 2 0 15

Reported Ethnicity

Inferred 
Ethnicity

Figure S2, related to Figure 1
A                                                                                       

B 

C

Number of Models % of Total
European 181 71.8%
African 22 8.7%
East Asian 6 2.4%
South Asian or Hispanic 29 11.5%
Mixed or Unknown 14 5.6%
Total 252 100%

Figure S2. Ethnicity prediction, Related to Figure 1. Principal components analysis grouping of European, African, East Asian, and South Asian/Hispanic HapMap reference 
populations used to predict PDX ethnicities (A). The first two principal components calculated from SNP array genotypes for PDX models (circles, N = 252) are plotted alongside 
HapMap reference samples (triangles, N = 1,184). Dashed boxes represent the cutoffs used to classify PDXs into four broad population groups: European (including HapMap 
CEU and TSI population samples), African (ASW, LWK, MKK, and YRI), East Asian (CHB, CHD, and JPT), and South Asian or Hispanic (GIH and MXL). Tabulated counts and 
frequencies of ethnicities in PDX cohort (B) and a comparison table of reported versus inferred ethnicities in the PDX cohort (C). Ns represent biological replicates.
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Figure S3. Mutational signatures and tumor mutational burden, Related to Figure 2. Mutational signatures per model displayed 
as proportion of signatures in a stacked barplot (A) Models with ≥ 50 mutations are depicted (Nleukemia = 82, Nbrain = 32, Nsolid = 98). Tumor 
mutation burden by histology across N = 240 models on which WES was performed (B, STAR methods). Histologies are plotted in 
rank order by median (y-intercept) and Ns per histology are listed. Lollipop plots for oncogenic mutations in DNA repair genes, PMS1 
and MSH2 for hypermutated model, IC-1621GBM (C). Ns represent biological replicates. 
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Figure S4. Copy number and breakpoint density. Related to Figure 2. Plotted are genome-wide copy-number profiles for 
histologies with N ≧ 10 models (Panel A, solid tumors: Ewing sarcoma, N = 10; Medulloblastoma, N = 18; Neuroblastoma, N = 
35;  Osteosarcoma, N = 34; Wilms, N = 12 and Panel B, leukemias: BCP-ALL, N = 32; MLL-ALL, N = 10; Ph+ or Ph-like ALL, N = 
22; T-ALL, N = 19). Canonical broad and focal lesions are annotated by histology. Breakpoints per histology are plotted in C 
(boxplots are graphed as medians with box edges as first and third quartiles; detailed Ns in Table S4) and breakpoint density across 
histologies is plotted in D (displayed as % of models per histology with N/total; details in Table S4). Ns represent biological 
replicates. 

Figure S4, related to Figure 2
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Figure S4. Copy number and breakpoint density. Related to Figure 2. Plotted are genome-wide copy-number profiles for histologies with N ≧ 10 models (Panel A, solid tumors: Ewing 
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Figure S5. Classifier scores and mutational signature correlations, Related to Figure 4. With osteosarcoma models removed from 
analysis, TP53 classifier scores were still significantly higher (NWT = 180, NALT = 34, Wilcoxon p = 1e-11) in models with a TP53 
alteration (A), but alterations in other pathway genes don’t consistently phenocopy TP53 inactivation (B). Models containing fusions 
had highest classifier scores, followed by models with SNVs and CNVs, respectively (C, Kruskal-Wallis p = 9.8e-11, NWT = 120, 
NFUSIONS = 14, NSNV = 81, NCNV = 85). Post hoc Wilcoxon p-values and group comparisons are displayed. Panel D breaks down the data in 
C by gene. Validation of mutational signatures via Pearson correlation matrix: Signatures 2 and 13 correlate strongly (R = 0.6,  p= 
6.5e-25, N = 260), Signature 1 is inversely correlated with impaired DNA repair mutational signatures, 3 (R = -0.41, p = 3.29e-11 , N 
= 260) and 6 (R = -0.54, p = 8.12e-20, N = 260) (E). Hierarchical clustering depicts tissue-specific enrichment within each histology 
(F, N = 244, NES = normalized enrichment score). All Ns denote biological replicates. 
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Figure S5 Classifier scores and mutational signature correlations, Related to Figure 4. With osteosarcoma models removed from analysis, TP53 classifier scores 
were still significantly higher (NWT = 180, NALT = 34, Wilcoxon p = 1e-11) in models with a TP53 alteration (A), but alterations in other pathway genes don’t 
consistently phenocopy TP53 inactivation (B). Models containing fusions had highest classifier scores, followed by models with SNVs and CNVs, respectively (C, 
Kruskal-Wallis p = 9.8e-11, NWT = 120, NFUSIONS = 14, NSNV = 81, NCNV = 85). Post hoc Wilcoxon p-values and group comparisons are displayed. Panel D breaks 
down the data in C by gene. Validation of mutational signatures via Pearson correlation matrix: Signatures 2 and 13 correlate strongly (R = 0.6,  p= 6.5e-25, N = 260), 
Signature 1 is inversely correlated with impaired DNA repair mutational signatures, 3 (R = -0.41, p = 3.29e-11 , N = 260) and 6 (R = -0.54, p = 8.12e-20, N = 260) (E). 
Hierarchical clustering depicts tissue-specific enrichment within each histology (F, N = 244, NES = normalized enrichment score). All Ns denote biological replicates.
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Part V

Conclusion
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This work was motivated by the exigent need for new pediatric and adult cancer ther-

apies. The UCSC Treehouse Childhood Cancer Initiative is an innovator in gene expression

analysis and has led the way for bringing these technologies into the clinic in California. There

are many facets to developing precision pediatric oncology methods. This thesis was concerned

with the identification of tumor subtypes for the development of immunotherapies and the vali-

dation of therapies in preclinical models.

Unsupervised clustering of pediatric gene expression using the hydra method identi-

fied recurrent expression subtypes associated with the tumor microenvironment. The infiltration

of immune cells correlated with chromatin remodeling, specifically increasing euchromatic state

across normally silenced regions of the genome as a result of loss of ATRX functions. This led

to the hypothesis that expression of the dark matter of the genome may be related to immune

infiltration.

Progress in targeting cancer using immunotherapy has been impeded by current ap-

proaches relying on a single molecular target. This selects for subclones that do not express

these targets. However, dysregulation of transcription and translation is a hallmark of cancer,

so a combination cancer vacccine approach with checkpoint blockade may prevent subclones

from evading the attack. We showed that the expression of the transposable element L1HS cor-

related with complete response to checkpoint blockade therapy in melanoma. This is evidence

that our vaccination model may work since the complete responders were already predisposed

to overexpressing the epitopes and their T-cell repertoire was already prepared to recognize and

destroy the tumor. By preimmunizing against tumor TE epitopes, the T-cells circulating the

body may be biased towards activation by cancer cells, tipping the balance in favor of response

170



to checkpoint blockade therapy.

These studies into cancer subtypes and potential therapeutic targets depend on the

availability of preclinical models for validating these leads before testing in human subjects.

The third and last main theme of this thesis was to develop analysis methods to evaluate an

important preclinical model, the patient-derived xenograft, for its ability to reflect molecular

features of the tumor of origin. This resulted in a new framework for designing PDX experi-

ments that simplifies the interpretation of results and prioritizes models and tumor subtypes that

are more accurately modeled in the PDX.

The scope of this thesis addresses related problems whose solutions will help facili-

tate the advancement of precision pediatric oncology. This work has initiated several ongoing

collaborations and has impacted the trajectory of several research projects. In doing this work,

I have developed essential research skills and will continue to advance my career based on the

experience I had in writing this thesis. I am grateful for the students and mentors that I have

worked with and look forward to fostering additional collaborations with the UCSC research

community as I advance in my career in drug development.

While at UCSC, I have taken advantage of the interdisciplinary training offered by the

Baskin School of Engineering. I have tailored my coursework to complement my background

in biochemistry with graduate-level courses in bioinformatics, machine learning, and Bayesian

statistics. I have excelled in my studies, achieving a 3.72 GPA. For my academic performance, I

was awarded an NHGRI graduate training fellowship. I represented UCSC at the 2017 NHGRI

training conference and was presented with an award for my poster presentation. Finally, I was

award the 2019 BSOE Dissertation Fellowship which allowed me to expand the scope of my
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dissertation and include several achievements that would not have been possible without this

support. Training opportunities within the Baskin School of Engineering have expanded my

skill set and allowed me to achieve my research goals.

My research addressed challenges that many clinical researchers are facing today. I

have been invited to present research posters at the American Association for Cancer Research

(AACR) Pediatric Cancer Research Conference, the TGen Precision Pediatric Oncology Con-

ference, and the American Society of Clinical Oncology (ASCO) Conference. I was given a

travel award to present my work at the TGen meeting and was one of the few researchers from

UCSC to be invited to present at the high-profile ASCO meeting. My unique training at UCSC

has allowed me to make progress on difficult problems in the computational analysis of cancer

gene expression data.

Scientific publications has been another important component of my education at

UCSC. I have contributed to several manuscripts from an early point in my graduate train-

ing. My significant contributions have been acknowledged in the Toil manuscript [41], the

Treehouse gene expression outlier manuscript [40], and the ProTECT manuscript (in review). I

have also contributed to manuscripts with collaborators at UCSF and the University of Pennsyl-

vania. I contributed a neoepitope burden analysis of a patient who had an exceptional response

to checkpoint blockade therapy at UCSF (in review). I also contributed to a pediatric preclinical

modeling paper in collaboration with John Maris lab at the University of Pennsylvania [34].

I also have a first author publication accepted in the high-profile PloS Computational Biology

journal describing the hydra computational analysis for precision oncology research.

In addition to scientific publications, I have also written significant portions of grants
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that have been funded to support future research at UCSC. I collaborated with Dr. Alejandro

Sweet-Cordero at UCSF to develop a novel framework for evaluating pre-clinical models. We

co-wrote an National Cancer Institute grant that was recently funded and will go into effect

June 2020 and will support several researchers at UCSC. The hydra method was also featured

in a Treehouse grant to fund undergraduate research to improve subtyping of acute myeloid

leukemia.

Lastly, I have been an effective mentor to high school and undergraduate students,

and have helped my mentees achieve recognition for their research. I was invited to co-author

the BD2K Summer Research Workshop and presented the workshop for two summers. The

workshop focuses on computational tools for biomedical research and has prepared college

students for research at UCSC. I have mentored high school students as part of the UCSC

Science Internship Program. These students have been invited to present their research at the

AMIA High School Scholar and Sigma Xi Student Research Conferences. I am grateful for

the opportunity to mentor students and prepare them to be effective contributors in the field of

biomedical research.
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