
Lawrence Berkeley National Laboratory
Lawrence Berkeley National Laboratory

Title
High-Precision Computation and Mathematical Physics

Permalink
https://escholarship.org/uc/item/6nh6x6pc

Author
Bailey, David H.

Publication Date
2009-09-22

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6nh6x6pc
https://escholarship.org
http://www.cdlib.org/


High-Precision Computation and Mathematical

Physics

David H. Bailey ∗ Jonathan M. Borwein †

July 6, 2009

Abstract

At the present time, IEEE 64-bit floating-point arithmetic is sufficiently accurate
for most scientific applications. However, for a rapidly growing body of important
scientific computing applications, a higher level of numeric precision is required.
Such calculations are facilitated by high-precision software packages that include
high-level language translation modules to minimize the conversion effort. This pa-
per presents a survey of recent applications of these techniques and provides some
analysis of their numerical requirements. These applications include supernova sim-
ulations, climate modeling, planetary orbit calculations, Coulomb n-body atomic
systems, scattering amplitudes of quarks, gluons and bosons, nonlinear oscillator
theory, Ising theory, quantum field theory and experimental mathematics. We con-
clude that high-precision arithmetic facilities are now an indispensable component
of a modern large-scale scientific computing environment.

1 Introduction

Virtually all present-day computer systems, from personal computers to the largest
supercomputers, implement the IEEE 64-bit floating-point arithmetic standard,
which provides 53 mantissa bits, or approximately 16 decimal digit accuracy. For
most scientific applications, 64-bit arithmetic is more than sufficient, but for a
rapidly expanding body of applications, it is not. In these applications, portions of

∗Computational Research Dept., Lawrence Berkeley National Laboratory, Berkeley, CA 94720,
dhbailey@lbl.gov. Supported in part by the Director, Office of Computational and Technology Re-
search, Division of Mathematical, Information and Computational Sciences, U.S. Department of Energy,
under contract number DE-AC02-05CH11231.

†School of Mathematical And Physical Sciences, University of Newcastle, NSW 2308 Aus-
tralia, and Faculty of Computer Science, Dalhousie University, Halifax, NS, B3H 2W5, Canada,
jonathan.borwein@newcastle.edu.au, jborwein@cs.dal.ca. Supported in part by NSERC
and the Canada Research Chair Programme.

1



the code typically involve numerically sensitive calculations, which produce results
of questionable accuracy using conventional arithmetic. These inaccurate results
may in turn induce other errors, such as taking the wrong path in a conditional
branch.

Exacerbating these difficulties is the proliferation of very large-scale highly paral-
lel computer systems, as as exemplified by the Top500 list (see http://www.top500.org).
One inescapable consequence of the greatly increased scale of these calculations is
that numerical anomalies which heretofore have been minor nuisances are now much
more likely to have significant impact. At the same time, the majority of persons
performing these computations are not experts in numerical analysis, and thus are
more likely to be unaware of the potential numerical difficulties that may exist.
Thus, while some may argue that numerically sensitive calculations can be reme-
died by using different algorithms or coding techniques, in practice it is usually
easier, cheaper and more reliable to employ high-precision arithmetic to overcome
them.

One concrete illustration of these difficulties is provided by the following exam-
ple. Consider the very simple 1-D differential equation y′′(x) = −f(x) for some
function f(x). Discretization of this system immediately leads to the matrix

























2 −1 0 0 · · · 0
−1 2 −1 0 · · · 0
0 −1 2 −1 · · · 0
· · · · · ·
0 · · · −1 2 −1 0
0 · · · 0 −1 2 −1
0 · · · 0 0 −1 2

























.

The condition number of this matrix (namely the quotient of the largest eigenvalue
to the smallest eigenvalue) is readily seen to be approximated by

κ(n) ≈ 4(n + 1)2

π2
,

where n×n is the size of the linear system above (the authors are indebted to Bastian
Pentenrieder of ETH Zurich for this observation). Note that even when n = 107,
which is a fairly modest size compared to some being attempted in current high-end
computing, the condition number is sufficiently large that the system (depending
on the nature of function f(x)) cannot be reliably solved using conventional IEEE
64-bit floating-point arithmetic.

2 High-Precision Software

Algorithms for performing high-precision arithmetic are fairly well known [19], and
software packages implementing these schemes have been available since the early

2



days of computing. However, many of these packages require one to rewrite a scien-
tific application with individual subroutine calls for each arithmetic operation. The
difficulty of writing and debugging such code has deterred all but a few scientists
from using such software. But in the past few years, high-precision software pack-
ages have been produced that include high-level language interfaces, making such
conversions relatively painless. These packages typically utilize custom datatypes
and operator overloading features, which are now available in languages such as
C++ and Fortran-90, to facilitate conversion. Even more advanced high-precision
computation facilities are available in the commercial products Mathematica and
Maple, which incorporate arbitrary-precision arithmetic in a natural way for a wide
range of functions. However, these products do not provide a means to convert
existing scientific programs written in other languages.

Some examples of high-precision arithmetic software packages that are freely
available on the Internet are the following, listed in alphabetical order. The ARPREC,
QD and MPFUN90 packages are available from the first author’s website:
http://crd.lbl.gov/~dhbailey/mpdist.

• ARPREC. This package includes routines to perform arithmetic with an ar-
bitrarily high level of precision, including many algebraic and transcendental
functions. High-level language interfaces are available for C++ and Fortran-
90, supporting real, integer and complex datatypes.

• GMP. This package includes an extensive library of routines to support high-
precision integer, rational and floating-point calculations. GMP has been pro-
duced by a volunteer effort and is distributed under the GNU license by the
Free Software Foundation. It is available at http://gmplib.org.

• MPFR. The MPFR library is a C library for multiple-precision floating-point
computations with exact rounding, and is based on the GMP multiple-precision
library. Additional information is available at http://www.mpfr.org.

• MPFR++. This is a high-level C++ interface to MPFR. Additional informa-
tion is available at http://perso.ens-lyon.fr/nathalie.revol/software.html.
A similar package is GMPFRXX, available at
http://math.berkeley.edu/~wilken/code/gmpfrxx.

• MPFUN90. This is equivalent to ARPREC in user-level functionality, but is
written entirely in Fortran-90 and provides a Fortran-90 language interface.

• QD. This package includes routines to perform “double-double” (approx. 31
digits) and “quad-double” (approx. 62 digits) arithmetic. High-level language
interfaces are available for C++ and Fortran-90, supporting real, integer and
complex datatypes. The QD package is much faster than using arbitrary
precision software when 31 or 62 digits is sufficient.

Using high-precision software increases computer run times, compared with using
conventional 64-bit arithmetic. For example, computations using double-double
precision arithmetic typically run five times slower than with 64-bit arithmetic.

3



This figure rises to 25 times for the quad-double arithmetic, to more than 50 times
for 100-digit arithmetic, and to more than 1000 times for 1000-digit arithmetic.

3 Applications of High-Precision Arithmetic

Here we briefly mention a few of the growing list of scientific computations that
require high-precision arithmetic, and provide some analysis of their numerical re-
quirements.

3.1 Supernova Simulations

Recently Edward Baron, Peter Hauschildt, and Peter Nugent used the QD package,
which provides double-double (128-bit or 31-digit) and quad-double (256-bit or 62-
digit) datatypes, to solve for the non-local thermodynamic equilibrium populations
of iron and other atoms in the atmospheres of supernovae and other astrophysical
objects [15, 24]. Iron for example may exist as Fe II in the outer parts of the
atmosphere, but in the inner parts Fe IV or Fe V could be dominant. Introducing
artificial cutoffs leads to numerical glitches, so it is necessary to solve for all of
these populations simultaneously. Since the relative population of any state from
the dominant stage is proportional to the exponential of the ionization energy, the
dynamic range of these numerical values can be very large.

In order to handle this potentially very large dynamic range, yet at the same
time perform the computation in reasonable time, Baron, Hauschildt and Nugent
employ an automatic scheme to determine whether to use 64-bit, 128-bit or 256-
bit arithmetic in both constructing the matrix elements and in solving the linear
system.

3.2 Climate Modeling

It is well-known that climate simulations are fundamentally chaotic—if microscopic
changes are made to the present state, within a certain period of simulated time
the future state is completely different. Indeed, ensembles of these calculations are
required to obtain statistical confidence in global climate trends produced from such
calculations. As a result, computational scientists involved in climate modeling
applications have resigned themselves that their codes quickly diverge from any
“baseline” calculation, even if they only change the number of processors used to
run the code. For this reason, it is not only difficult for researchers to compare
results, but it is often problematic even to determine whether they have correctly
deployed their code on a given system.

Recently Helen He and Chris Ding investigated this non-reproducibility phe-
nomenon in a widely-used climate modeling code. They found that almost all of the
numerical variation occurred in one inner product loop in the atmospheric data as-
similation step, and in a similar operation in a large conjugate gradient calculation.

4



He and Ding found that a straightforward solution was to employ double-double
arithmetic for these loops. This single change dramatically reduced the numerical
variability of the entire application, permitting computer runs to be compared for
much longer run times than before [25].

3.3 Planetary Orbit Calculations

One central question of planetary theory is whether the solar system is stable over
cosmological time frames (billions of years). Planetary orbits well known to exhibit
chaotic behavior. Indeed, as Isaac Newton once noted, “The orbit of any one planet
depends on the combined motions of all the planets, not to mention the actions of
all these on each other. To consider simultaneously all these causes of motion and
to define these motions by exact laws allowing of convenient calculation exceeds,
unless I am mistaken, the forces of the entire human intellect.” [22, pg. 121].

Scientists have studied this question by performing very long-term simulations
of planetary motions. These simulations typically do fairly well for long periods,
but then fail at certain key junctures, such as when two planets pass fairly close
to each other. Researchers have found that double-double or quad-double arith-
metic is required to avoid severe numerical inaccuracies, even if other techniques
are employed to reduce numerical error [26].

3.4 Coulomb n-Body Atomic System Simulations

Numerous computations have been performed recently using high-precision arith-
metic to study atomic-level Coulomb systems. For example, Alexei Frolov of Queen’s
University in Ontario, Canada has used high-precision software to solve the gener-
alized eigenvalue problem (Ĥ − EŜ)C = 0, where the matrices Ĥ and Ŝ are large
(typically 5, 000×5, 000 in size) and very nearly degenerate. Until recently, progress
in this arena was severely hampered by the numerical difficulties induced by these
nearly degenerate matrices.

Frolov has done his calculations using the MPFUN90 package, with a numeric
precision level exceeding 100 digits. Frolov notes that in this way “we can consider
and solve the bound state few-body problems which have been beyond our imagi-
nation even four years ago.” He has also used MPFUN90 to compute the matrix
elements of the Hamiltonian matrix Ĥ and the overlap matrix Ŝ in four- and five-
body atomic problems. As of this date, Frolov has written a total of 21 papers
based on high-precision computations. Two illustrative examples are [13] and [23].

3.5 Studies of the Fine Structure Constant of Physics

In the past few years, significant progress has been achieved in using high-precision
arithmetic to obtain highly accurate solutions to the Schrodinger equation for the
lithium atom. In particular, the nonrelativistic ground state energy has been calcu-
lated to an accuracy of a few parts in a trillion, a factor of 1500 improvement over

5



the best previous results. With these highly accurate wavefunctions, Zong-Chao
Yan and others have been able to test the relativistic and QED effects at the 50
parts per million (ppm) level and also at the one ppm level [30]. Along this line,
a number of properties of lithium and lithium-like ions have also been calculated,
including the oscillator strengths for certain resonant transitions, isotope shifts in
some states, dispersion coefficients and Casimir-Polder effects between two lithium
atoms.

Theoretical calculations of the fine structure splittings in helium atoms have now
advanced to the stage that highly accurate experiments are now planned. When
some additional computations are completed, a unique atomic physics value of the
fine structure constant may be obtained to an accuracy of 16 parts per billion [32].

3.6 Scattering Amplitudes of Quarks, Gluons and Bosons

An international team of physicists, in preparation for the Large Hadron Collider
(LHC), is computing scattering amplitudes involving quarks, gluons and gauge vec-
tor bosons, in order to predict what results could be expected on the LHC. By
default, these computations are performed using conventional double precision (64-
bit IEEE) arithmetic. Then if a particular phase space point is deemed numerically
unstable, it is recomputed with double-double precision. These researchers expect
that further optimization of the procedure for identifying unstable points may be
required to arrive at an optimal compromise between numerical accuracy and speed
of the code. Thus they plan to incorporate arbitrary precision arithmetic, using ei-
ther the MPFUN90 or ARPREC packages, into these calculations. Their objective
is to design a procedure where instead of using fixed double or quadruple preci-
sion for unstable points, the number of digits in the higher precision calculation is
dynamically set according to the instability of the point [21].

In a related study, various checks of instabilities are employed, such as by com-
paring gluon amplitudes with known analytic values whenever possible. If a given
point is deemed unstable by these tests, the researchers employ the QD package
to re-evaluate the unstable points using higher precision (double-double or quad-
double as needed). Because only a few points have to be re-computed to higher
precision, they find that their average evaluation time is not significantly increased
[16].

Two other recent examples of employing high-precision arithmetic in fundamen-
tal physics calculations of this type are [27] and [20].

3.7 Nonlinear Oscillator Theory

Quinn, Rand, and Strogatz recently described a nonlinear oscillator system by
means of the formula

0 =
N
∑

i=1

(

2
√

1 − s2(1 − 2(i − 1)/(N − 1))2 − 1
√

1 − s2(1 − 2(i − 1)/(N − 1))2

)

.

6



They noted that for large N , s ≈ 1 − c/N , where c = 0.6054436... These re-
searchers asked the present authors and Richard Crandall to validate and extend
this computation, and challenged us to identify this limit if it exists. By means of
a Richardson extrapolation scheme, implemented on 64-CPUs of a highly parallel
computer system, we computed (using the QD software)

c = 0.6054436571967327494789228424472074752208996 . . .

This led to a proof that the limit c exists and is the root of a Hurwitz zeta function
ζ (1/2, c/2) = 0, where ζ(s, a) :=

∑

n≥0 1/(n + a)s. As a bonus, we obtained some
asymptotic terms [8].

3.8 Experimental Mathematics

High-precision computations have proven to be an essential tool for the emerging
discipline of “experimental mathematics,” namely the utilization of modern com-
puting technology as an active agent of exploration in mathematical research [17][5].
One of the key techniques used here is the PSLQ integer relation detection algo-
rithm [10]. An integer relation detection scheme is a numerical algorithm which,
given an n-long vector (xi) of real numbers (presented as a vector of high-precision
floating-point values), attempts to recover the integer coefficients (ai), not all zero,
such that

a1x1 + a2x2 + · · · + anxn = 0

(to available precision), or else determines that there are no such integers (ai) such

that the Euclidean norm
√

a2
1 + a2

2 + · · · + a2
n < M for some bound M . The PSLQ

algorithm operates by developing, iteration by iteration, an integer-valued matrix A
which successively reduces the maximum absolute value of the entries of the vector
y = Ax (where x is the input vector mentioned above), until one of the entries of
y is zero or within an “epsilon” of zero. With PSLQ or any other integer relation
detection scheme, if the underlying integer relation vector of length n has entries of
maximum size d digits, then the input data must be specified to at least nd-digit
precision (and the algorithm must be performed using this precision level) or else
the true relation will be lost in a sea of spurious numerical artifacts.

Perhaps the best-known application of PSLQ in experimental mathematics is
the 1996 discovery of what is now known as the “BBP” formula for π:

π =
∞
∑

k=0

1

16k

(

4

8k + 1
− 2

8k + 4
− 1

8k + 5
− 1

8k + 6

)

.

This formula has the remarkable property that it permits one to calculate binary or
hexadecimal digits beginning at the n-th digit, without needing to calculate any of
the first n− 1 digits, using a simple scheme that requires very little memory and no
multiple-precision arithmetic software [4][17, pg. 135-143]. Since 1996, numerous

7



other formulas of this type have been found, using the PSLQ-based computational
approach, and then subsequently proven [17, pg. 147–149].

In an unexpected turn of events, it has been found that these computer-discovered
formulas have implications for the age-old question of whether (and why) the digits
of constants such as π and log 2 are statistically random [11][17, pg. 163–174]. This
same line of investigation has further led to a formal proof of normality (statisti-
cal randomness in a specific sense) for an uncountably infinite class of explicit real
numbers. The simplest example of this class is the constant

α2,3 =
∞
∑

n=1

1

3n23n ,

which is provably 2-normal: every string of m binary digits appears, in the limit,
with frequency 2−m [12][17, pg. 174–178].

3.9 Ising Integrals

Several recent applications of high-precision computation have attempted to recog-
nize definite integrals (typically arising in mathematical physics applications) using
the methods of experimental mathematics. These computations have required the
evaluation of integrals to very high precision, typically 100 to 1000 digits. In our
studies, we have used either Gaussian quadrature (in cases where the function is well
behaved in a closed interval) or the “tanh-sinh” quadrature scheme due to Takahasi
and Mori [29] (in cases where the function has an infinite derivative or blow-up
singularity at one or both endpoints). For many integrand functions, these schemes
exhibit “quadratic” or “exponential” convergence – dividing the integration interval
in half (or, equivalently, doubling the number of evaluation points) approximately
doubles the number of correct digits in the result.

The tanh-sinh scheme is based on the observation, rooted in the Euler-Maclaurin

summation formula, that for certain bell-shaped integrands (namely those where
the function and all higher derivatives rapidly approach zero at the endpoints of
the interval), a simple block-function or trapezoidal approximation to the integral
is remarkably accurate [2, pg. 180]. This principle is exploited in the tanh-sinh
scheme by transforming an integral of a given function f(x) on a finite interval such
as [−1, 1] to an integral on (−∞,∞), by using the change of variable x = g(t),
where g(t) = tanh(π/2 ·sinh t). The function g(t) has the property that g(x) → 1 as
x → ∞ and g(x) → −1 as x → −∞, and also that g′(x) and all higher derivatives
rapidly approach zero for large positive and negative arguments. Thus one can
write, for h > 0,

∫ 1

−1

f(x) dx =

∫ ∞

−∞

f(g(t))g′(t) dt ≈ h
N
∑

j=−N

wjf(xj),

where the abscissas xj = g(hj), the weights wj = g′(hj), and N is chosen large
enough that terms beyond N (positive or negative) are smaller than the “epsilon”

8



of the numeric precision being used. In many cases, even where f(x) has an infinite
derivative or an integrable singularity at one or both endpoints, the transformed in-
tegrand f(g(t))g′(t) is a smooth bell-shaped function for which the Euler-Maclaurin
argument applies. In these cases, the error in this approximation decreases more
rapidly than any fixed power of h.

In a recent study, the present authors together with Richard Crandall applied
tanh-sinh quadrature, implemented using the ARPREC package, to study the fol-
lowing classes of integrals [7]. The Dn integrals arise in the Ising theory of mathe-
matical physics, and the Cn have tight connections to quantum field theory.

Cn =
4

n!

∫ ∞

0

· · ·
∫ ∞

0

1
(

∑n
j=1(uj + 1/uj)

)2

du1

u1

· · · dun

un

Dn =
4

n!

∫ ∞

0

· · ·
∫ ∞

0

∏

i<j

(

ui−uj

ui+uj

)2

(

∑n
j=1(uj + 1/uj)

)2

du1

u1

· · · dun

un

En = 2

∫

1

0

· · ·
∫

1

0





∏

1≤j<k≤n

uk − uj

uk + uj





2

dt2 dt3 · · · dtn,

where (in the last line) uk =
∏k

i=1 ti.
Needless to say, evaluating these n-dimensional integrals to high precision presents

a daunting computational challenge. Fortunately, in the first case, we were able to
show that the Cn integrals can be written as one-dimensional integrals:

Cn =
2n

n!

∫ ∞

0

pKn
0 (p) dp,

where K0 is the modified Bessel function [1]. After computing Cn to 1000-digit
accuracy for various n, we were able to identify the first few instances of Cn in
terms of well-known constants, e.g.,

C3 = L−3(2) =
∑

n≥0

(

1

(3n + 1)2
− 1

(3n + 2)2

)

C4 =
7

12
ζ(3),

where ζ denotes the Riemann zeta function. When we computed Cn for fairly large
n, for instance

C1024 = 0.63047350337438679612204019271087890435458707871273234 . . . ,

we found that these values rather quickly approached a limit. By using the new edi-
tion of the Inverse Symbolic Calculator, available at http://ddrive.cs.dal.ca/~isc,
this numerical value can be identified as

lim
n→∞

Cn = 2e−2γ ,

9



where γ is Euler’s constant. We later were able to prove this fact—this is merely
the first term of an asymptotic expansion—and thus showed that the Cn integrals
are fundamental in this context [7].

The integrals Dn and En are much more difficult to evaluate, since they are
not reducible to one-dimensional integrals (as far as we can tell), but with certain
symmetry transformations and symbolic integration we were able to reduce the
dimension in each case by one or two. In the case of D5 and E5, the resulting 3-D
integrals are extremely complicated, but we were nonetheless able to numerically
evaluate these to at least 240-digit precision on a highly parallel computer system.
In this way, we produced the following evaluations, all of which except the last we
subsequently were able to prove:

D2 = 1/3

D3 = 8 + 4π2/3 − 27L−3(2)

D4 = 4π2/9 − 1/6 − 7ζ(3)/2

E2 = 6 − 8 log 2

E3 = 10 − 2π2 − 8 log 2 + 32 log2 2

E4 = 22 − 82ζ(3) − 24 log 2 + 176 log2 2 − 256(log3 2)/3 + 16π2 log 2 − 22π2/3

E5
?
= 42 − 1984Li4(1/2) + 189π4/10 − 74ζ(3) − 1272ζ(3) log 2 + 40π2 log2 2

−62π2/3 + 40(π2 log 2)/3 + 88 log4 2 + 464 log2 2 − 40 log 2,

where Li denotes the polylogarithm function. In the case of D2, D3 and D4, these
are confirmations of known results. We tried but failed to recognize D5 in terms of
similar constants (the 500-digit numerical value is available if anyone wishes to try).
The conjectured identity shown here for E5 was confirmed to 240-digit accuracy,
which is 180 digits beyond the level that could reasonably be ascribed to numerical
round-off error; thus we are quite confident in this result even though we do not
have a formal proof.

In a follow-on study [9], we examined the following generalization of the Cn

integrals:

Cn,k =
4

n!

∫ ∞

0

· · ·
∫ ∞

0

1
(

∑n
j=1(uj + 1/uj)

)k+1

du1

u1

· · · dun

un
.

Here we made the initially surprising discovery—now proven in [18]—that there are
linear relations in each of the rows of this array (considered as a doubly-infinite
rectangular matrix), e.g.,

0 = C3,0 − 84C3,2 + 216C3,4

0 = 2C3,1 − 69C3,3 + 135C3,5

0 = C3,2 − 24C3,4 + 40C3,6

0 = 32C3,3 − 630C3,5 + 945C3,7

0 = 125C3,4 − 2172C3,6 + 3024C3,8.

10



In yet a more recent study, co-authored with physicists David Broadhurst and
Larry Glasser [6], we were able to analytically recognize many of these Cn,k integrals—
because, remarkably, these same integrals appear naturally in quantum field theory
(for odd k). We also discovered, and then proved with considerable effort, that with
cn,k normalized by Cn,k = 2n cn,k/(n! k!), we have

c3,0 =
3Γ6(1/3)

32π22/3
=

√
3π3

8
3F2

(

1/2, 1/2, 1/2
1, 1

∣

∣

∣

∣

∣

1

4

)

c3,2 =

√
3π3

288
3F2

(

1/2, 1/2, 1/2
2, 2

∣

∣

∣

∣

∣

1

4

)

c4,0 =
π4

4

∞
∑

n=0

(

2n
n

)4

44n
=

π4

4
4F3

(

1/2, 1/2, 1/2, 1/2
1, 1, 1

∣

∣

∣

∣

∣

1

)

c4,2 =
π4

64

[

4 4F3

(

1/2, 1/2, 1/2, 1/2
1, 1, 1

∣

∣

∣

∣

∣

1

)

−3 4F3

(

1/2, 1/2, 1/2, 1/2
2, 1, 1

∣

∣

∣

∣

∣

1

)]

− 3π2

16
,

where pFq denotes the generalized hypergeometric function [1]. The corresponding
odd values are c3,1 = 3L−3(2)/4, c3,3 = L−3(2) − 2/3, c4,1 = 7ζ(3)/8 and c4,3 =
7ζ(3)/32 − 3/16.

Integrals in the Bessel moment study were quite challenging to evaluate numer-
ically. As one example, we sought to numerically verify the following identity that
we had derived analytically:

c5,0 =
π

2

∫ π/2

−π/2

∫ π/2

−π/2

K(sin θ)K(sinφ)
√

cos2 θ cos2 φ + 4 sin2(θ + φ)
dθ dφ ,

where K denotes the elliptic integral of the first kind [1]. Note that this function
has blow-up singularities on all four sides of the region of integration, with par-
ticularly troublesome singularities at (π/2,−π/2) and (−π/2, π/2) (see Figure 1).
Nonetheless, after making some minor substitutions, we were able to evaluate (and
confirm) this integral to 120-digit accuracy (using 240-digit working precision) in a
run of 43 minutes on 1024 cores of the “Franklin” system at LBNL.

4 Conclusion

We have presented here a brief survey of the rapidly expanding applications of high-
precision arithmetic in modern scientific computing. It is worth noting that all of
these examples have arisen in the past ten years. Thus we may be witnessing the
birth of a new era of scientific computing, in which the numerical precision required
for a computation is as important to the program design as are the algorithms and

11



Figure 1: Plot of c5,0 integrand function.

data structures. We hope that our survey and analysis of these computations will
be useful in this process.

Efforts to analyze integrals that arise in mathematical physics have underscored
the need for significantly faster schemes to produce high-precision values of 2-D, 3-D
and higher-dimensional integrals. Along this line, the “sparse grid” methodology
has some promise [28][31]. Current research is aimed at evaluating such techniques
for high-precision applications.

References

[1] M. Abramowitz and I. A. Stegun, ed., Handbook of Mathematical Functions,
Dover, New York, 1972.

[2] K. E. Atkinson, Elementary Numerical Analysis, John Wiley & Sons, 1993.

[3] D. H. Bailey, “Integer relation detection,” Comp. in Science and Engineering,
Jan-Feb., 2000, 24–28.

[4] D. H. Bailey, P. B. Borwein, and S. Plouffe, “On the rapid computation of
various polylogarithmic constants,” Math. of Computation, vol. 66, no. 218
(Apr 1997), 903–913.

[5] D. H. Bailey and J. M. Borwein, “Experimental mathematics: Examples, meth-
ods and implications,” Notices of the AMS, vol. 52, no. 5 (May 2005), 502-514.

12



[6] D. H. Bailey, J. M. Borwein, D. Broadhurst and M. L. Glasser, “Elliptic integral
evaluations of Bessel moments,” J. Physics A: Math. and Gen., vol. 41 (2008),
205203.

[7] D. H. Bailey, J. M. Borwein and R. E. Crandall, “Integrals of the Ising class,”
J. Physics A: Math. and Gen., vol. 39 (2006), 12271-12302.

[8] D. H. Bailey, J. M. Borwein and R. E. Crandall, “Resolution of the Quinn-
Rand-Strogatz constant of nonlinear physics,” Exp. Mathematics, to appear,
http://crd.lbl.gov/~dhbailey/dhbpapers/QRS.pdf.

[9] David H. Bailey, David Borwein, Jonathan M. Borwein and Richard Crandall,
“Hypergeometric forms for Ising-class integrals,” Exp. Mathematics, vol. 16
(2007), no. 3, 257-276.

[10] D. H. Bailey and D. Broadhurst, “Parallel integer relation detection: Tech-
niques and applications,” Math. of Computation, vol. 70, no. 236 (2000), 1719–
1736.

[11] D. H. Bailey and R. E. Crandall, “On the random character of fundamental
constant expansions,” Exp. Mathematics, vol. 10, no. 2 (June 2001), 175–190.

[12] D. H. Bailey and R. E. Crandall, “Random generators and normal numbers,”
Exp. Mathematics, vol. 11, no. 4 (2004), 527–546.

[13] D. H. Bailey and A. M. Frolov, “Universal variational expansion for high-
precision bound-state calculations in three-body systems. Applications to
weakly-bound, adiabatic and two-shell cluster systems,” J. Physics B, vol. 35,
no. 20 (28 Oct 2002), 42870–4298.

[14] D. H. Bailey, X. S. Li and K. Jeyabalan, “A comparison of three high-precision
quadrature schemes,” Exp. Mathematics, vol. 14 (2005), no. 3, 317–329.

[15] E. Baron and P. Nugent, personal communication, Nov. 2004.

[16] C. F. Berger, Z. Bern, L. J. Dixon, F. Febres Cordero, D. Forde, H. Ita,
D. A. Kosower and D. Maitre, “An automated implementation of on-shell
methods for one-loop amplitudes,” Phys. Rev. D, vol. 78 (2008), 036003,
http://arxiv.org/abs/0803.4180.

[17] J. M. Borwein and D. H. Bailey, Mathematics by Experiment: Plausible Rea-

soning in the 21st Century.

[18] J. M. Borwein and B. Salvy, “A proof of a recursion for Bessel moments,” Exp.

Mathematics, vol. 17 (2008), 223–230.

[19] R. P. Brent and P. Zimmermann, Modern Computer Arithmetic, book
manuscript, to appear, 2008.

[20] M. Czakon, “Tops from light quarks: Full mass dependence
at two-Loops in QCD,” Phys. Lett. B, vol. 664 (2008), 307,
http://arxiv.org/abs/0803.1400.

13



[21] R. K. Ellis, W. T. Giele, Z. Kunszt, K. Melnikov and G. Zanderighi, “One-loop
amplitudes for W+3 jet production in hadron collisions,” manuscript, 15 Oct
2008, http://arXiv.org/abs/0810.2762.

[22] T. Ferris, Coming of Age in the Milky Way, HarperCollins, New York, 2003.

[23] A. M. Frolov and D. H. Bailey, “Highly accurate evaluation of the few-body
auxiliary functions and four-body integrals,” J. Physics B, vol. 36, no. 9 (14
May 2003), 1857–1867.

[24] P. H. Hauschildt and E. Baron, “The numerical solution of the expanding
Stellar atmosphere problem,” J. Comp. and Applied Math., vol. 109 (1999),
41–63.

[25] Y. He and C. Ding, “Using accurate arithmetics to improve numerical repro-
ducibility and stability in parallel applications,” J. Supercomputing, vol. 18,
no. 3 (Mar 2001), 259–277.

[26] G. Lake, T. Quinn and D. C. Richardson, “From Sir Isaac to the Sloan survey:
Calculating the structure and chaos due to gravity in the universe,” Proc. of

the 8th ACM-SIAM Symp. on Discrete Algorithms, SIAM, Philadelphia, 1997,
1–10.

[27] G. Ossola, C. G. Papadopoulos and R. Pittau, “CutTools: a program im-
plementing the OPP reduction method to compute one-loop amplitudes,” J.

High-Energy Phys., vol. 0803 (2008), 042, http://arxiv.org/abs/0711.3596.

[28] S. Smolyak, “Quadrature and interpolation formulas for tensor products of
certain classes of functions,” Soviet Math. Dokl., vol. 4 (1963), 240243.

[29] H. Takahasi and M. Mori, “Double exponential formulas for numerical integra-
tion,” Pub. RIMS, Kyoto University, vol. 9 (1974), 721–741.

[30] Z.-C. Yan and G. W. F. Drake, “Bethe logarithm and QED shift for Lithium,”
Phys. Rev. Letters, vol. 81 (12 Sep 2003), 774–777.

[31] C. Zenger, “Sparse grids,” in W. Hackbusch, ed., Parallel Algorithms for Partial

Differential Equations, vol. 31 of Notes on Numerical Fluid Mechanics, Vieweg,
1991.

[32] T. Zhang, Z.-C. Yan and G. W. F. Drake, “QED corrections of O(mc2α7 ln α)
to the fine structure splittings of Helium and He-Like ions,” Phys. Rev. Letters,
vol. 77, no. 26 (27 Jun 1994), 1715–1718.

14




