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August 6, 2002



ABSTRACT

The purpose of this project is to extend and integrate existing results on fault diagnostics and fault
management for passenger vehicles used in automated highway systems (AHS). These results have
been combined to form a fault diagnostic and management system for the longitudinal and lateral
control systems of the automated vehicles which has a hierarchical framework that complements
the established PATH control system. Furthermore, the fault diagnostic module effectively moni-
tors the sensors and actuators required for longitudinal and lateral control, while the fault handling
module corrects for any detected faults via controller reconfiguration and degraded modes of opera-
tion. “Soft” faults such as tire/road conditions variations have also been investigated in this project.
Based on a dynamic friction tire/road model, an emergency braking control law has been developed.
Simulation and limited experimental results are provided to validate the design and development.
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Fault diagnostics, fault handling, automated highway systems (AHS), fault observers/filters, LuGre
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Executive Summary

Since the NAHSC 1 demonstration in 1997, PATH and Caltrans have been focusing increasingly
on Automated Highway System (AHS) deployment related issues such as safety and reliability.
Fault accommodation and handling is a key safety related issue. This report presents an integrated
approach to the design of a vehicle centered fault tolerant system for the PATH AHS architecture.
The bulk of the research presented in this report was done as part of PATH-Caltrans MOU 373.

The research documented in this report primarily focuses on fault management in the regulation
layer of the PATH AHS architecture. The regulation layer consists of the lateral and longitudinal
control laws that interact directly with the sensors and actuators on-board the PATH vehicles. In
addition, this report presents the coordination layer fault management issue of emergency braking
control. Fault management in the longitudinal control system was addressed in a mostly ad-hoc
manner during preparations for Demo 97. Basic fault detection and diagnosis for the lateral control
system components was addressed prior to Demo 97. The research effort documented in this report
was aimed at developing on these starts made towards the development of a comprehensive failure
management system for the PATH AHS.

Since the lateral and longitudinal dynamics of the vehicles are vastly different in their behavior,
different approaches have been adopted for fault management systems of each of these subsystems.
Fault tolerance in the lateral control subsystem is realized mainly through the use of fault tolerant
lateral control laws (refer Chapter 3) whereas a “classical” approach for fault tolerant control design
was used for the longitudinal control system (refer Chapter 4). “Soft” faults detection and handling,
particularly the tire/road interactions and emergency braking maneuvers, have also been investigated
(refer Chapter 5).

One of the major contributions of this research is the successful design and implementation of a
comprehensive failure management system for the regulation layer of the PATH AHS architecture.
In this report, fault tolerant lateral control laws, failure detection filters for the lateral and longi-
tudinal control subsystems have been developed and tested in the simulation and also in limited
experiments both at low and high speeds on the Buick LeSabre vehicles at PATH. In the project
Task Order 4207, we will demonstrate extensively experimental verification of these control laws.
These failure management modules safeguard the vehicles against certain failures (chosen based
on experience and physical construction of the vehicle) that may occur during operation. The design
methodologies and results of this effort in conjunction with the results of MOU 384/TO 4204 (Vehi-
cle Lateral Control under Fault in the Front/Rear Sensors) are aimed for use in the development of
fault tolerant lateral and longitudinal control systems (TO 4205, TO 4206) for heavy vehicles to be
used in Demo 2003.

Another major contribution of this research is the introducing a dynamic friction model to the
1National Highway Systems Consortium.
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tire/road interactions and then building connections between friction model parameters and physical
factors. We explore the use of a LuGre dynamic friction model (Canudas de Wit et al., 1995)
of tire/road interactions. An emergency braking controller is designed using the wheel angular
velocity and longitudinal acceleration information. Analytically it is shown that the observer and
the adaptive controller are asymptotically stable. It is shown that underestimation of maximum
friction coefficient and slip can be achieved. This is a very desirable feature for the deployment
of AHS or ITS, where it is of primary importance to ensure safe operation. For the purpose of
safety, the information provided by the on-line tire/road identification scheme in this project may
be very useful for on-line safe spacing calculations in vehicles running under AHS or intelligent
cruise control algorithms. The information can also be used by the roadside infrastructure to adjust
on-ramp metering control.

iii
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Chapter 1

Introduction

Over the last ten years, PATH’s Advanced Vehicle Control System effort has made impressive strides
in the modeling, control design and implementation of several vehicle control laws. Since the 1997
NAHSC 1 demonstration on the I-15 lanes in San Diego, PATH’s research focus has shifted towards
deployment related issues encountered in Automated Highway Systems (AHS) development such
as safety and reliability.

To satisfy requirements of safety, the AHS should be designed such that the automated vehicles
function safely under nominal operating conditions as well as under “abnormal”or faulty conditions
that arise during highway operation. The nominal operating environment assumes the faultless op-
eration of the system components and benign environmental conditions. The abnormal operating
conditions are caused by faults. For the purposes of this report, a fault is defined as: an abnormal
that affects system performance adversely. We classify the faults as Lygeros et al. (2000) and God-
bole et al. (2000):

1. Hard Faults: these include failures or faults in one of the control system components, such as
mechanical failures in the vehicles, failures in sensing, communication, control and actuation
both on the vehicle and the roadside.

2. Soft Faults: these include adverse environmental conditions, such as rain, fog, snow, etc. and
the loss of performance due to gradual wear of AHS components.

In the past, AHS design has addressed accommodating these two classes of operating conditions
either by switching between two general modes of operation: normal mode, which gives optimal
performance under nominal conditions, and several degraded modes, which ensure safety and at-
tempt to minimize performance degradation under abnormal conditions.

Several prior and on-going research efforts (Demo 97 preparations, MOU 384, MOUs 288/312,
etc.) at PATH have dedicated a great deal of effort towards the design of a robust controllers for both
modes of operation. Normal mode control laws at the regulation, coordination and link layer have
been developed and tested in simulations and experiments. Fault detection algorithms for the on-
board sensor and actuator critical to automated control have been developed and tested in simulations
and experiments (Garg, 1995; Chung et al., 1996; Chung et al., 1997; Patwardhan, 1994; Agogino
et al., 1997; Rajamani et al., 1997; Rajamani et al., 2001; Yi et al., 2001). At the same time, fault
handling schemes using new maneuvers and control laws have been designed for degraded modes of

1National Highway System Consortium.
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operation to ensure that the safety of the AHS is maintained and the performance loss is minimized
in abnormal situations (Lygeros et al., 2000; Godbole et al., 2000; Chen et al., 1997; Yi et al.,
2001). In addition, these fault handling schemes have been successfully tested in the SmartPATH
and SmartAHS simulation program (Carbaugh et al., 1997; Yi et al., 2001).

The goal of this project is to extend and improve these developments in the areas of fault diag-
nostics and fault handling with the existing control hierarchy (Varaiya, 1993) to produce a complete
fault tolerant AHS control system that can be implemented on the vehicles and the roadway. The
project concentrates on the design of a fault tolerant AHS control system that can detect and handle
both hard and soft faults in the lateral and longitudinal control systems. However, acts of nature,
such as earthquakes, floods, etc. and obstacles on the road are not considered in order to limit the
scope of the project. In other words, the project intends to develop and implement subsystems that
fit into the the overall structure of a fault tolerant AHS control system as shown schematically in
Fig. 1.1. The project primarily focuses on development related to the regulation layer namely the
lateral and longitudinal control subsystems.
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Figure 1.1: Extended hierarchical fault tolerant AHS controller

1.1 Fault Tolerant System Design

In this section, we propose the overarching design framework that has governed our approach to-
wards the development of a comprehensive failure management and handling system for the regula-
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Figure 1.2: Fault Tolerant Design Framework

tion layer of the PATH AHS. In doing so, we shall also highlight this research effort is linked to past
and on-going research at PATH.

Fig. 1.2 depicts the fault tolerant system design framework. The fault tolerant design framework
attempts to incorporate fault tolerance apriori into system design. The framework is based on
the argument that important design decisions (such as those shown in Fig. 1.2) made during the
design process of an automated system have a direct bearing on the fault tolerance of the resulting
automated system. Therefore, each design decision needs to be judiciously made based on, amongst
other considerations, the issue of fault tolerance of the resulting system.

We now mention where relevant past/present research activity at PATH fit in into this overall
design framework.

• Demo 97: Longitudinal and lateral control design, rudimentary failure detection and diagnosis
issues associated with the radar

• MOU 289, MOU 313, MOU 385: Lateral control design for heavy vehicles

• MOU 292, MOU 314, MOU 372: Longitudinal control design for heavy vehicles

• MOU 288, MOU 312, MOU 373, TO 4207: failure detection and diagnosis systems for the
longitudinal control system, fault tolerant control schemes for the lateral control system, soft
fault handling: tire-road friction estimation and emergency braking control.

• MOU 383, TO 4208: Development of integrated meso/micro-scale traffic simulation software
for testing fault detection and handling in AHS.

• MOU 384, TO 4204: Degraded mode control schemes for lane-keeping control under failure
of the front/rear magnetometers

3



• TO 4205, TO 4206: Sensor placement and integration of all prior research aimed at a fault
tolerant design framework for lateral and longitudinal control subsystems to be implemented
on buses

• TO 4209: Testing and evaluation of robust fault detection and identification for a fault tolerant
automated highway system (AHS).

1.2 Organization of Report

Chapter 2 deals with the preliminaries and background required to appreciate the research that this
report documents. Chapter 3 deals with the motivation, synthesis and experimental evaluation of
fault tolerant lateral controllers. Chapter 4 deals with the design and experimental evaluation of the
detection and diagnosis system for the longitudinal control components. Chapter 5 deals with han-
dling of soft faults in the coordination layer. Specifically, it deals with tire-road friction estimation
and its application to emergency braking control.

For the lateral control system, a new approach to failure management (in its components) has
been adopted. This deals with the design of fault tolerant controllers which are insensitive to certain
faults that may occur during operation of the vehicles. In other words, implementation of fault
tolerant controllers guarantee that even in the event of certain failures in the components of the lateral
control system, the vehicle can be steered satisfactorily without switching to degraded modes of
operation. This design methodology has been adopted for the lateral control system because of the
sensitive nature of the lateral control dynamics which necessitate “quick” steering action. Chapter 3
deals with a detailed description of this methodology.

For the longitudinal control system, a classical approach to fault tolerant control design was taken
because of the proven performance and robustness of the existing nominal controller. Fault tolerance
of the controller is provided by the addition of the fault diagnostic system and fault management
system as shown in Fig. 1.3. The fault diagnostic system monitors the condition of the vehicle
via sensor measurement and command inputs, and communicates the current status to the fault
management system. The fault management system uses this information, as well as the current
mode of operation and other control objectives, to decide what corrective action should be taken
when a fault has been declared. This framework is ideal for the longitudinal control system because
it allows for modular design of each system and added fault tolerance while remaining essentially
transparent to the nominal control system.

The fault diagnostic system developed in this project relies on a mathematical model of the
controlled vehicle to provide analytical redundancy for the sensors and actuators used in the longitu-
dinal control system. This model-based fault diagnostic system is composed of two main stages: the
residual generator and the residual processor. The residual generator uses current knowledge about
the state of the system to create a set of signals, called residuals, which are sensitive to the occur-
rence of faults. These residuals are a designer-defined set of comparisons between the various types
of information known about the system, such as sensor measurements, command inputs, as well as
state and output estimates based on a model of the system (Beard, 1971; Willsky, 1976). The choice
of which types of information to use and the specific residuals formed depend on both the system
model, as well as the type of faults to be detected. For the purposes of this project, an additive fault
model is used to represent time-varying biases in the sensors and actuators (org., n.d.). Based on
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Figure 1.3: Fault Tolerant Longitudinal Control System

this fault model, the residual generator uses a combination of parity equations (Gertler, 1988) and
state observers (Frank, 1990) to form the residual vector. The second stage of the diagnostic sys-
tem processes the residual vector to determine when a fault has occurred and to identify the faulty
component based on the vector’s characteristics. This processing is generally a complex task that
can incorporate a variety of disciplines including change detection (Basseville and Nikiforov, 1993),
pattern recognition (Bow, 1992), and reasoning (Ross, 1995). The residual processor for this project
uses least squares estimation and decision logic to detect, identify, and estimate the fault magni-
tude. A more detailed description of the fault diagnostic system and each of it’s subsystems will be
presented in Chapter 4.

In Chapter 5, tire/road interaction forces and moments are first introduced. We then review the
literature on tire/road friction estimation and identification. In particular, we discuss empirical and
physical models in detail. We give a description of the friction models used in this project. In this
first part of this chapter, we investigate a tire/road friction estimation scheme using a LuGre dynamic
friction model. This model was recently proposed and it captures dynamic properties of the friction
characteristics. Compared with the pseudo-static tire/road friction model developed in MOU 312,
the LuGre dynamic friction model is easy to identify and use for simulation and control purposes. we
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initially assume that the vehicle longitudinal velocity is known and an adaptive emergency braking
control law is designed for various tire/road conditions. We then relax this assumption with the use
of an observer-based controller design that uses only wheel angular velocity information. Analytical
and simulation results show that the proposed scheme can estimate the tire/road friction and achieve
emergency braking near the maximum deceleration capability of the vehicle, even though the es-
timated velocity and relative velocity do not converge to their true values quickly. In the second
part of the chapter, we enhance the design by assuming that the vehicle acceleration is measurable
as well as the wheel angular velocity, in order to overcome the drawback of slow convergence of
estimated vehicle velocity and relative velocity. A generalized LuGre dynamic friction model is
employed with an assumption that several model parameters are unknown. An adaptation law for
the tire/road friction parameters is proposed and an emergency braking control law is designed. A
stability proof is presented, and quick convergence of the estimated parameters as well as the esti-
mates of vehicle velocity and relative velocity is guaranteed by appropriate choice of observer and
parameter adaptation gains.
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Chapter 2

Preliminaries

This chapter will describe the existing AHS framework developed at PATH. It’s purpose is to provide
a detailed overview of the past research on which the fault tolerant control system is based. First, the
hierarchical PATH AHS architecture will be covered in section 2.1. The mathematical modeling and
controller design for the lateral and longitudinal motions of the vehicle will be then be developed in
sections 2.2 and 2.3, respectively. Finally, section 2.5 will give a description of the experimental test
vehicles on which the controllers have been implemented and tested.

2.1 PATH AHS Architecture

The AHS control architecture proposed in (Varaiya, 1993) consists of five hierarchical layers: the
network, link, coordination, regulation and physical layers. A schematic of this hierarchy is shown in
Fig. 2.1. Each layer provides a different function within the AHS according to it’s relative position
in the hierarchy, with the higher levels controlling traffic flows and density and the lower levels
controlling platoons and individual vehicles.

The two highest layers of the architecture are concerned with traffic density and flow within the
AHS. The network layer controls the entire highway system and tries to maximize the throughput of
the highway system, while the link layer monitors the traffic flow of several sections of highway and
broadcasts commands to all vehicles within these sections. The link layer also attempts to maximize
the traffic capacity within these sections and deals with incidents on the highways. Both network and
link layers are located within a roadside system and interact with the vehicles via communication.

The three lowest layers of the architecture are concerned with the behavior of platoons and indi-
vidual vehicles within the AHS. The coordination layer receives the commands from the link layer
and is responsible for coordinating the maneuvers of vehicles within a platoon through communica-
tions with other vehicles. The regulation layer converts the maneuver commands into continuous
time control signals used to dictate the desired vehicle motion trajectory. Finally, the physical layer
contains the vehicle sub-system controllers for the physical hardware of each vehicle such as the
control of the brakes, throttle and steering. These lower layers of control are contained within the
on-board control system of each automated vehicle.

Within the regulation and physical layers, there is a further division into the control of the lateral
and longitudinal dynamics of the vehicle. The following two sections will present an overview of
the existing lateral and longitudinal control systems developed for the PATH AHS architecture.
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Figure 2.1: PATH AHS Architecture

2.2 Lateral Control at the Physical Layer

In this section, the lateral control system at the physical layer of PATH AHS architecture is described.
Specifically, we present the salient features of the lateral dynamics exhibited by front wheel steered
vehicles within the context of lane-keeping control. Fig. 2.3 tries to capture the intuition behind this
problem. The vehicle can be regarded as an inertia moving forward, while the task of lane-keeping
control is to ensure that this inertia follows the road centerline. This can be done by applying the
appropriate lateral forces to the inertia. The problem becomes complicated because these lateral
forces have to be generated through tire-road interaction (which depend primarily on the slip angle
1).

2.2.1 Lateral Dynamics

We use the bicycle model for lane-keeping control analysis and design purposes. In deriving the
bicycle model, the lateral vehicle motion is modeled as that of a two-wheeled bicycle. (Fig. 2.2
shows a pictorial representation of this reduction). The major assumptions made in deriving this
model are:

• Negligible roll and pitch
1Slip angle is the angle between the orientation of the tire and direction of travel of the CG of the tire
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• Small steering angles

• Small relative yaw angles (refer Fig. 2.2)

• Lateral force on tire ∝ slip angle

The attractions of the bicycle model are that it is simple and yet captures the most releavant lateral
dynamic characteristics. We direct the reader to references (et al, 1978), (P., 1997) for a more
detailed description of the bicycle model.

If the vehicle longitundinal velocity is treated as a varying parameter, the bicycle model yields
linearized dynamics. The transfer function from the steering input (δf ) to the lateral accelaration
(ÿs) at the location of the sensor is:

ÿs = V (s)δf(s) (2.1)

where,

V (s) =
N(s)

D(s)

N(s) = µCfv
[
(MLfds + Iz)s

2v + µCrl(v + (ds + lr)s)]

D(s) = IzMv2s2 + µv(Iz(Cf + Cr) +

M(Cf l
2
f + crl

2
r))s+ µMv2(Crlr − Cf lf ) +

µ2CfCrl
2

Table 2.1 describes the parameters used in the bicycle model and their values used for design in this
paper.
In the linearized setting, the transfer function V (s) captures the tire-road interaction (refer to Fig.
2.3). A system analysis of the above model is presented by Patwardhan et al, 1997 (et al, 1997).
It is observed that the lateral dynamics change significantly with the longitudinal velocity and the
distance of the sensor from the CG, ds (refer Table 2.1). “In general”, V (s) exhibits the following
properties:

1. Increased phase lag with increase in longitudinal velocity, v
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Table 2.1: Parameters used in the Bicycle Model

Param. Description Values
M Mass of the vehicle 1700-2100 kg
Iz Yaw moment of inertia ≈ 2870 kg m2

lf CG-front axle dist. 0.9 - 1.2 m
lr CG-rear axle dsit 1.5 - 1.8 m
Cf Cor. stiff. - Front tire ≈ 70000 N/rad
Cr Cor. stiff. - Rear tire ≈ 130000 N/rad
v Forward vel. of vehicle 0- 35 m/s
ds Dist. of sensor from CG -3 to 10 m
µ Tire - Road Fric. Coeff 0.5-1.0

2. Increased phase lead for larger ds

3. Poorly damped zero pairs for smaller ds

2.2.2 Lane-keeping Controller Design

The above three properties of the lateral dynamics of vehicles govern the design of the lateral con-
troller. It is useful to consider the lateral control system to be comprised of three principal com-
ponents (Fig. 2.3) which include a double integrator, a force generation mechanism, V (s), and the
controller. Robust stability considerations of the closed loop require that the open loop character-
istics have sufficient phase margin around the gain cross over frequency. The phase lead required
to provide this phase margin around the gain crossover frequency has to be “provided” either by
V (s) or by the controller (The Dual-Roles Concept: See Guldner et al, 1997 (et al, 1996)). From
the behaviour of V (s) as explained above, it is clear that at higher longitudinal velocities and small
values of ds the controller needs to provide large phase leads to provide sufficient phase margin
which is difficult to achieve in practice. Moreover, weakly damped zeros for small ds and high
longitudinal velocities discourage high gain control at high longitudinal velocities. The above two
problems illustrate the inherent difficulty and non-trivial nature of vehicle lateral control design at
high longitudinal velocities as those encountered on highways.

Large values of ds are impossible to realize since it is infeasible to place the front set of magne-
tometers any further the front bumper of the vehicles. PATH engineers developed an ingenious way
of working around this problem. They suggested a scheme such that if two independent lateral error
measurements are made, then by geometrical extrapolation (under some valid assumptions) one can
construct the lateral error at any location ahead of the vehicle. This second measurement is obtained
from the magnetometers mounted under the rear bumper. This scheme, used in Demo’97, has proved
to be immensely successful. Details of this scheme, referred to as the variable look-ahead scheme, is
discussed in Guldner et al (et al, 1996). In summary, for lane-keeping control at high speeds, larger
values of ds lead to better yaw rate damping characteristics and consequently better ride comfort.
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Figure 2.3: Block diagram for control model

A(s) : Actuator Dynamics

C(s) : Controller

δ : Steering angle at the steering wheel

δfw : Steering angle at the frontwheel

Rref : Radius of curvature of road

ÿref : Acceleration due to road curvature

2.3 Longitudinal Control at the Physical Layer

While the lateral controller uses a linear control theory to track the roadway, the longitudinal con-
troller at the physical layer is based on a nonlinear control technique called sliding mode control.
While the details of this design technique are beyond the scope of this work, the interested reader
is referred to (Khalil, 1996; Slotine and Li, 1991) for more information. This controller has been
successfully implemented and thoroughly tested on the experimental vehicles at PATH, and thus
represents the default physical layer controller which will used for the remainder of this report.

The longitudinal control at the physical layer has several distinct control tasks, so a hierarchical
control architecture is used to address each of these in turn. The hierarchical controller is composed
of three levels of control as shown in Fig. 2.4.

At the top level, feedback linearization is used to determine the desired engine torque required to
track the desired acceleration given by the regulation layer (Swaroop et al., 1996; Gerdes, 1996). The
middle level of the longitudinal controller is a switching logic which decides whether acceleration
or braking is required based on the current state of the vehicle and the desired torque (Gerdes, 1996).
If acceleration is required, the desired torque is subsequently passed on to the throttle controller to
determine the throttle actuator command. Similarly, if deceleration is required, the desired torque is
subsequently passed on to the brake controller to determine the brake actuator command (Maciuca,
1997). Both of these bottom level controllers use a sliding mode control algorithm known as dynamic
sliding surface control (Swaroop et al., 1996) to meet the desired torque.

The remaining parts of this section will cover the vehicle model used for the controller design,
the key relations describing the resulting three levels of the physical layer controller, how the desired
acceleration is chosen by the regulation layer, and the sensor’s and actuator’s required for the given
control system.
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2.3.1 Simplified Vehicle Model for Control

The longitudinal controller was developed using the simplified longitudinal vehicle model described
in (Gerdes, 1996; Swaroop et al., 1996). The vehicle model is derived by making the following
assumptions:

1. The slip between the tires and the road surface is negligible.

2. The torque converter is locked.

3. The actuator dynamics are fast compared to the vehicle dynamics.

Under these assumptions, the longitudinal velocity of the vehicle ẋ is proportionally related to
the angular velocity of the engine ωe through the gear ratio R∗ and tire radius h as follows

ẋ = R∗hωe

The dynamics relating engine speed ωe to the net combustion torque Tnet, brake torque Tbr, and
aerodynamic losses can be modeled by

Jeω̇e = Tnet(ma, ωe)− cxR
∗3h3ω2

e −R∗(Trr + Tbr(Pwheel))

where Je is the effective inertia of the vehicle and powertrain, cx is the aerodynamic coefficient of
the vehicle, and Trr is the rolling resistance. Finally, the brake torque is defined as

Tbr(Pwheel) = Kb(Pwheel − Ppo)
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where Kb and Ppo are the brake torque constant and pushout pressure, respectively (Maciuca, 1997).
By applying the conservation of mass to the intake manifold, the mass of air in the manifold is

defined by
ṁa = MAX TC(α)PRI(ma) + ṁao(ωe, ma)

2.3.2 Upper Level of the Physical Layer Controller: Torque Control

The main goal of the physical layer longitudinal controller is to effectively linearize the vehicle
dynamics through feedback such that the vehicle dynamics become

ẍ = uisl

where uisl is the synthetic input, or desired acceleration, given by the regulation layer. This allows
the designer to completely specify the dynamic behavior of the vehicle via the choice of the synthetic
input. However, notice that direct control of ẍ is not possible since the control inputs (the throttle
angle α and the brake pressure Pwheel) do not directly affect it. The control objective can only be
achieved by controlling the net torque Tnet and the brake torque Tbr. In addition, the use of the
brakes and throttle should be mutually exclusive to minimize actuator usage and wear and tear on
the vehicle. Therefore, considering the net torque and brake torque as new pseudo-inputs, the goal
above can be achieved by choosing

Tnet(ma, ωe) =
Je
R∗h

uisl + cxR
∗3h3ω2

e +R∗(Trr + Tbr(Pwheel))

when throttle control is required and

Tbr(Pwheel) =
Je
R∗h

uisl − Tnet(ma, ωe) + cxR
∗3h3ω2

e +R∗Trr

when the brakes are needed. These terms are not true control inputs, since dynamics exist between
the torques and the actual control inputs, namely the throttle angle and brake pressure. Therefore,
another level of control is required to attain these desired torques using the true control inputs.
However, a methodology for choosing between throttle and brake control will be discussed next.

2.3.3 Middle Level of the Physical Layer Controller: Switching Logic

As mentioned above, the throttle and brake commands should be mutually-exclusive to reduce actu-
ation and system wear (ie. a human driver rarely uses both the throttle and brakes at the same time).
However, some type of switching logic is required to decide when each type of control should be
used (Gerdes and Hedrick, 1995). Intuitively, the brakes should be used only when the natural
braking forces on the vehicle, such as aerodynamic drag, rolling resistance, and engine braking, are
not sufficient to achieve the desired synthetic input. Written more mathematically, this idea can be
expressed as

uisl − ares > λu ⇒ throttle

uisl − ares < λl ⇒ brake

λl ≤ uisl − ares ≤ λu ⇒ wait
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where a hysteresis region has been added to reduce chattering around the switching line uisl−ares =
0 (Gerdes and Hedrick, 1995). Also, the residual acceleration ares of the vehicle is

ares =
R∗h
Je

(Tengbrk(ma, ωe)− cxR
∗3h3ω2

e − R∗(Trr + Tbr(Pwheel))

2.3.4 Lower Level of the Physical Layer Controller: Throttle Control

Once the decision has been made to use the throttle, the desired value of the pseudo-inputTnet(ma, ωe)
is clearly defined by

Tnet(m̄a, ωe) =
Je
R∗h

uisl + cxR
∗3h3ω2

e +R∗(Trr + Tbr(Pwheel))

where m̄a is the mass of air in the intake manifold necessary to achieve this desired net torque,
which can be determined explicitly by inverting the nonlinearity Tnet(m̄a, ωe). Now, we will design
a dynamic surface controller (Swaroop et al., 1996) to force ma to track m̄a, which subsequently
forces ẍ to track uisl. Let’s define the surface S1 such that

S1 = ma −ma,des

Then choosing the surface dynamics as

Ṡ1 = −K1S

and using the manifold dynamics presented in Section 2.3.1 the following relationships for the com-
manded throttle angle αc and the desired mass of air ma,des can be determined

αc = TC−1

(
ṁao(ma, ωe) + ṁa,des −K1S1

MAX PRI(ma)

)
τ1ṁa,des +ma,des = m̄a

A similar derivation will now be performed for the accompanying brake controller.

2.3.5 Lower Level of the Physical Layer Controller: Brake Control

Once the decision has been made to use the brake, the desired value of the pseudo input Tbr(Pwheel)
is clearly defined by

Tbr(P̄wheel) =
Je
R∗h

uisl − Tnet(ma, ωe) + cxR
∗3h3ω2

e +R∗Trr

Therefore, the required brake pressure at the wheel P̄wheel are found to be

P̄wheel =
1

Kb
(
Je
R∗h

uisl − Tnet(ma, ωe) + cxR
∗3h3ω2

e +R∗Trr + Ppo)

Now, define the surface S2 to be
S2 = Pwheel − Pwheel,des
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and the surface dynamics to satisfy
Ṡ2 = −K2S

then the resulting commanded master cylinder pressure Pmcc and the desired brake pressure at the
wheel Pwheel,des is described by

Pmcc =

(
Pwheel +∆pb if (Ṗwheel,des −K2S2) > 0
Pwheel −∆pb otherwise

∆pb =
(Ṗwheel,des −K2S2)

2

C2
q

τ2Ṗwheel,des + Pwheel,des = P̄wheel

2.4 Longitudinal Control at the Regulation Layer: Synthetic
Acceleration

As stated in section 2.3.2, the physical layer controller results in direct specification of the vehicles
acceleration via the synthetic input uisl. In the case of the PATH AHS, the synthetic input is then
chosen by the regulation layer so that the vehicle performs a specific maneuver specified by the
coordination layer, such as merging into a platoon or become the leader of a new platoon. For the
purposes of the fault diagnostics, the vehicle is assumed to only perform the “follower” maneuver,
that is the vehicle attempts to maintain a given intervehicle spacing.

In addition, the follower control law must ensure that the platoon is string stable. String stability
guarantees that any spacing error due to the current vehicle is not amplified by the vehicles farther
back in the platoon. Swaroop (Swaroop, 1994) demonstrated that for a constant spacing policy,
then velocity and acceleration information about the lead and previous vehicles in the platoon are
sufficient to provide string stability. For the purposes of this report, we will consider only the
follower control law currently used on the experimental test vehicles for the second vehicle in the
platoon. This control law is as follows:

uisl = aprev − 2ζωmε̇− ω2
mε (2.2)

where aprev is the previous vehicles acceleration, ε̇ is the relative velocity between the current and
previous vehicle, ε is the spacing error of the current vehicle, and ζ and ωm are controller design
parameters.

2.5 Experimental Vehicles

The lateral and longitudinal controllers presented in the previous sections have been successfully
implemented and tested on a fleet of nine Buick LeSabre by researchers and staff at PATH. These
experimental vehicles have been outfitted with additional hardware to provide the capability of auto-
mated control. A drawing of the vehicles with the added hardware is shown in Fig. 2.5. Each vehicle
uses a ruggedized 166 MHz Pentium running the QNX operating system to run the both the lateral
and longitudinal control software. The control software accesses the communications, sensor mea-
surements and actuator commands via a publish/subscribe database which provides the information
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every 21 msec. Interaction with the hardware itself is handled by separate software tasks in order to
simplify development. The interested reader is referred to (Staff, 1998) for a more detailed descrip-
tion of the hardware and software used in the experimental vehicles. The next two subsections will
describe the hardware essential to the operation of the lateral and longitudinal control systems.

Figure 2.5: Cutaway Drawing of the PATH Experimental Vehicles

2.5.1 Lateral Control Hardware

In this subsection, we describe the lateral control system and it’s associated hardware developed
as part of PATH’s automated highways initiative. Fig. 2.6 shows a schematic of this system. A
magnet-magnetometer based system is used to realize lane-keeping. Magnets are laid out along the
center of lanes. The lane-keeping control problem then boils down to ensuring that vehicles follow
the series of magnets which represent the lane centerline. The vehicles in turn, have a set of sensors
(referred to as magnetometers in the rest of the paper) that measure the lateral deviation of their
location with respect to the magnets (road centerline). The lateral error information is processed by
the on-board computer to generate the steering angle required to follow the road centerline. PATH’s
passenger vehicle hardware architecture consists of two sets of magnetometers mounted under the
front and rear bumpers of the vehicle. Each magnetometer set consists of three magnetometers.
These magnetometers are used to increase the range of measurement to about 0.5 m. The other
sensors show in Fig. 2.6 are used for lane-changing and other purposes.

2.5.2 Longitudinal Control Hardware

Having reviewed the longitudinal controller design in section 2.3, there are seven sensors and two
actuators required for the longitudinal controller at the physical layer. In addition, a communication
system will be required to receive information about the lead and previous vehicles in the platoon.
The following table summarizes the sensors and actuators which are required. In addition, the
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Figure 2.6: Schematic of the lateral control system developed by PATH

standard deviation of normally distributed noise for each of the sensors after filtering is also included
in the table, as well as the average time constants for first order actuator dynamics.

Table 2.2: Sensor and Actuator Characteristics
Sensors & Actuators Typical Variance

Radar 2.5 cm in range,
Accelerometer 0.1 m/sec2

Wheel Speed Sensor 0.03 m/sec
Throttle Angle Sensor 0.1 degrees
Brake Pressure Sensor 70 KPa
Manifold Pressure Sensor 0.25 KPa
Engine Speed Sensor 1 rpm
Throttle Actuator (Stepper Motor) 0.01 sec
Brake Actuator (Hydraulic System) 0.1 sec

2.6 Conclusions

This chapter presented the underlying heirarchical structure of the PATH AHS architecture, the
design of the existing lateral and longitudinal controllers at the physical layer of this hierarchy, and
a brief overview of the experimental vehicles used to realize the AHS. These topics should give
the reader a good indication of the framework in which the fault tolerant control system must be
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incorporated, as well as the experimental test bed in which it will be verified. Furthermore, the
vehicle models and control laws developed above will be directly used in the development of fault
tolerant control system in the subsequent chapters.
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Chapter 3

Design and Testing of Fault Tolerant
Lane-keeping Controllers

This chapter documents the design and results of experimental testing of fault tolerant controllers
for the lane-keeping control system of PATH’s passenger vehicles. We would like to clarify, early
in this discussion, that by fault tolerant controllers we mean, controllers that are insensitive to cer-
tain faults that may occur in the system. In other words, implementation of fault tolerant controllers
guarantee that even in the event of certain failures in the components of the lateral control system,
the vehicle can be steered satisfactorily without switching to degraded modes of operation.

The following questions arise naturally. What are the faults that might typically occur that we
would like to make our control system insensitive to? Why do we need fault-insensitive lateral
control action? What are possible design techniques that could be used to design these fault toler-
ant controllers? How effective are these controllers in practice? These questions, and others, are
addressed in the sections of this chapter.

3.1 What Are the Failures?

In this section we address the question: What are the faults that we would like to make the lane-
keeping control system insensitive to? It is clear, from the outset, that it will not be practically
feasible to design control algorithms that are insensitive to all possible faults in the lateral control
system. Two reasons come to mind. First, it is a practical nightmare to list all possible faults that
might occur in a system. Second, even if it were possible to list all faults, one can expect that the
system dynamics exhibited by each of the faulty states will be so drastically different that one sin-
gle control algorithm will not fit all these situations. We, therefore, limit our attention to a few faults.

To address the question of what faults we would like the lane-keeping control system to be in-
sensitive to, we need to understand the faults that can typically occur in the lane-keeping control
system of the passenger vehicles. For this purpose, we revisit the lateral control system architec-
ture. (For a more detailed discussion, refer Chapter 2). The lateral control system consists of two
sets of magnetometers mounted on the front and rear bumpers of the vehicles, one steering actuator
mounted on the steering column, a yaw rate gyro and an accelerometer mounted at the vehicle CG
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(approximately!), an encoder that measures the motion of the steering actuator (mounted near the
steering wheel) and a potentiometer that measures the actual motion of the tire. The components
used for lane-keeping control are the two sets of magnetometers, the steering actuator and the inner-
loop components. Failure of the steering actuator is a severe problem. In most situations, it would
necessitate bringing the affected vehicle to a halt as soon as possible.

In this chapter, we will focus on the failure of the magnetometers. Each set of magnetometers
consists of three magnetometers (three magnetometers are used to increase the range of measurement
to 0.5 m). Magnetometer failures that will be addressed in this chapter include:

• Fault 1: DC bias in the sensor reading: This is regarded as a failure when the bias reaches large
magnitudes (of the order of the measurement). Under “normal” operation, from experience
we typically see a bias of the order of 2-3 cm.

• Fault 2: Hardware failure in the magnetometers: This is detected by a magnetometer mon-
itoring signal built into the magnetometers used in the PATH vehicles (supplied by Applied
Physics Systems). In the event that the magnetometer monitor detects a failure, the magene-
tometer output is set to maximum

• Fault 3: Sensor electrical disconnection due to severance of wires, clogging due to snow etc.
We shall model this as the magnetometer output returning a zero.

We restrict our attention to these faults since all these failures have been experienced before during
experimental testing of various PATH vehicles.

3.2 Motivation for Fault Tolerant Control

Naturally, the first thing to do is to investigate if the “current” lateral control algorithm (used in
Demo ’97) is capable of handling the faults described above. (See Chapter 2 for details regarding
the existing lateral control algorithm). In the interest of brevity, we mention only the results of our
study in this direction. The lateral control scheme (described in Chapter 2) used currently can handle
significant amounts of bias (fault #1) but cannot handle situations arising out of faults #2 and #3.

As mentioned earlier, we are interested in the design and testing of fault tolerant controllers
(controllers that are insensitive to the faults described in the previous section). Another way of
handling a faulty situation is to first detect and identify the faulty component and then switch to a
degraded mode of action. We choose the former strategy for the following reasons.

1. The lateral dynamics exhibited by passenger vehicles necessitate high bandwidth control ac-
tion i.e., quick steering action is required to control the vehicle. This means that significant
delays in the lateral control loop cannot be tolerated. Experiments have shown that at a cruise
speed of 50 mph, a delay of more than 0.3 sec can start to have an influence on the lateral
control performance. Any reliable failure detection and identification (FDI) system will have
an inherent delay built into it which may cause the vehicle to go unstable during the detection
and identification process.
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2. Since fault tolerant control strategies guarantee stability, a reliable FDI scheme followed by
a suitable reconfiguration strategy can form a layer on top of the fault tolerant control frame-
work. (Development of degraded mode lateral control strategies is the focus of MOU 384/TO
4204).

In the next two sections we shall detail the procedures used to design fault tolerant lateral control
algorithms for passenger vehicles. Two approaches are presented. The first based on simultaneous
stabilization theory and the second based on the concept of an observer based look-ahead. The first
scheme can, currently, be used to handle fault #3. The second scheme can be used to handle faults
#1, #2 and #3.

3.3 Fault Tolerant Lane-Keeping Control Based on Simultane-
ous Stabilization

Every physical system (faulty or non-faulty) demonstrates certain dynamic behavior. It is the job
of the controller to generate suitable inputs to the dynamic system in order that the system behaves
satisfactorily (in our case the dynamic system is the lateral dynamics of passenger vehicles).

It is natural, therefore, to formulate the effect of a fault as a transition from one dynamic system
(or plant) to the other. Fig. 3.1 illustrates this idea. Note that the faulty and non-faulty plants may
behave drastically differently. Viewed in this perspective, the problem of designing a fault tolerant
controller boils down to the design of a control algorithm that guarantees simultaneous stability (and
performance) of the non-faulty plant with each one of the faulty modes.

Mode 

Non−Faulty

Faulty

Mode #1Fault #1
Occurs

Faulty

Faulty

Mode #2

Mode #3

Occurs

Occurs

Fault #2

Fault #3

Figure 3.1: Formulation of Effects of Fault as a Finite State Machine

Simultaneous stabilization theory provides a framework to design such control algorithms. In
this section, we will first provide a brief background into the history of the theoretical develop-
ment of this problem. Included in this will be a description of the design technique developed by
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Suryanarayanan et al. (et al, 2000). This design technique will then be applied to make the control
algorithm insensitive to magnetometer disconnection failure.

3.3.1 History of simultaneous stabilization theory

Over the last two decades, the problem of simultaneous stability has received considerable attention.
The problem (LTI case) reads as: Given a finite number of LTI plants P1, P2, · · · , Pk does there exist
a single LTI controller, C, such that each of the feedback interconnections (Pi, C) (i = 1, 2, · · · , k)
is internally stable? Though simply stated, this problem has been found to be extremely difficult to
solve for the general case.

The simultaneous stability problem can be interpreted as a robust control problem where the un-
certainty in the plant is described in a finite way. Finite descriptions of uncertainty appear naturally
in practical situations. For example, the k systems may a represent nominal system and many of
its failed modes (E., 1983), a system that has several operating points (J., 1985) or a multivariable
system with possible loss of sensors or actuators (A., 1983). We refer the reader to the monograph
by J. (1985) for many more illustrative examples of applications of simultaneous stabilization.

The first explicit statement of the problem of finding necessary and sufficient conditions for
the existence of a simultaneously stabilizing controller was made by R. and J. (1982). Necessary
and sufficient conditions for the existence of a simultaneously stabilizing controller for two plants
were developed by M. and N. (1982) (also by R. and J. (1982). However, the problem of finding
necessary and sufficient conditions for the existence of simultaneously stabilizing controllers for
three or more plants remained unsolved for more than a decade. In a series of papers in the early
90’s (V., 1991; et al., 1993; V and M., 1993), Blondel showed that the problem of determining nec-
essary and sufficient conditions for simultaneous stability of three or more plants is undecidable
through rational operations on the coefficients of the polynomials in the transfer functions that de-
scribe the LTI plants. These papers by Blondel virtually brought the search for (tractable) necessary
and sufficient conditions for simultaneous stabilizability of three or more plants to a standstill.

Throughout the development of the theory of simultaneous stabilization, few efforts have focused
on the practical schemes for the design of simultaneously stabilizing controllers. Design schemes
developed thus far have been of pedagogical nature. In this manuscript, we present a design tech-
nique for simultaneously stabilizing controllers developed by et al (2000) which lends itself nicely
to the problem under consideration, namely making the control system insensitive to fault #3. We
would like to mention at this point that theory of simultaneous stability allows us to handle more
than one fault. However, the design technique for such controllers is still under development.

3.3.2 Design of simultaneously stabilizing controllers

In this subsection, we present the mathematics behind the design of simultaneously stabilizing con-
trollers. First, we present the expression of a sufficient condition for simultaneous stability for a
strictly proper linear-time invariant plants as an LMI constraint. (In the interest of brevity, we do
not include proofs here). We then show that, with the help of this LMI constraint the design of
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a simultaneously stabilizing controller (that guarantees satisfactory performance for the non-faulty
mode) can be cast as a standardH∞ control problem.

Sufficient condition for simultaneous stability as an LMI

NOTATION/PRELIMINARIES

Complex Plane

• R, C are the sets of real and complex numbers. ∞ is the point at infinity

• C∞ := C U∞ is the extended complex plane. R∞ is defined similarly

• 
(s) and �(s) are the real and imaginary parts of complex number s

• C+ := {s ∈C:
(s) ≥ 0}
Sets of Functions

• R(s): set of proper real rational functions in the the variable s

• S(s): set of proper real rational functions with no poles in C+ (called stable rational functions)

• U(s) ∈ S(s): set of stable rational functions such that for every u(s) ∈ U(s), 1
u(s)

∈ S(s)

Definitions

• For P (s), C(s) ∈ R(s), the feedback interconnection (P (s), C(s) is said to be internally
stable if each of G1 := PC

1+PC
, G2 := C

1+PC
and G3 := P

1+PC
belong to S(s) interconnection

(P (s), C(s)) is internally stable

• P1(s), P2(s), · · · , Pk(s) ∈ R(s) are said to be simultaneously stabilizable if there exists
C(s) ∈ R(s) such that each of the feedback interconnections (Pi(s), C(s)), (i = 1, 2, · · · , k)
is internally stable

Theorem 3.1 (Saeks and Murray, 1982) P0 = N0

D0
, P1 = N1

D1
∈ R(s) are simultaneously stabiliz-

able iff the following three conditions hold.

1. D1D0 takes constant sign at all zeros of P1 − P0 on the real axis in C+

2. N1N0 takes constant sign at all common poles of P0 and P1 on the real axis in C+

3. Two signs obtained above are the same

Theorem 3.2 (Vidyasagar and Viswanadham, 1982) Let the coprime factorizations of the two plants,
Pi(s) (i = 0, 1) over S(s) be

Pi = NiD
−1
i = D̃−1

i Ñi (i = 0, 1) (3.1)
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Then there exist Xi, Yi, X̃i and Ỹi such that(
Yi Xi
−Ñi D̃i

)(
Di −X̃i
Ni Ỹi

)
=

(
I 0
0 I

)
(3.2)

(
Di −X̃i
Ni Ỹi

)(
Yi Xi
−Ñi D̃i

)
=

(
I 0
0 I

)
(3.3)

Define
V := Y0D1 +X0N1, W := −Ñ0D1 + D̃0N1. (3.4)

Then the class of all simultaneously stabilizing controllers (∈ R(s)) is given by

Csim =
{
(Y0 −QcÑ0)

−1(X0 +QcD̃0), Qc ∈M
}

(3.5)

where
M = {Qc : Qc ∈ S, V +QcW ∈ U} (3.6)

Lemma 3.1 (Suryanarayanan et al, 2000a) Let P0, P1 be two SISO linear time-invariant systems.
Then ∃Ni, Di, Xi, Yi ∈ S (i = 0, 1) such that Pi =

Ni

Di
and XiNi + YiDi = 1.

Define V := Y0D1 + X0N1 and W := −N0D1 + D0N1. If P0 and P1 are strictly proper, then
1
V
∈ S(s).

Now define, R := WV −1. If R ∈ S(s), then P0 and P1 are simultaneously stabilizable if ‖QcR‖∞ <
1.

Proof: : The proof of this lemma derives its basis from theorem 3.2. Refer (et al, 2000) for details.

Design problem formulation

Now consider the problem: Design a controller which optimizes a performance measure during
non-faulty operation (P0) while guaranteeing simultaneous stability of P0 and P1. Applying the
LMI condition (sufficient) for simultaneous stability, we restate the problem mathematically as:

min
Qc

‖Wy(Y0 −N0Qc)D0G0‖∞subject to‖QcR‖∞ < 1

where R, Y0, N0, N0 are as defined in Theorem 3.1, G0 represents the disturbance dynamics and Wy

is a weighting function that weights the controlled output in the appropriate frequency ranges.

For SISO plants, the above problem can be treated as a standard H∞ problem. Fig. 3.2) shows
why this is so. The augmented plant acts as the “generalized plant” and Qc as the “stabilizing con-
troller” for the generalized plant. The cost function to be minimized may be interpreted as the H∞
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Figure 3.2: Augmented Plant for the design of Qc

norm from signal d to z1 and z2.

In general, H∞ control synthesis technique can yield an unstable controller, in this case, Qc.
This leads to the failure in the achievement of the design goals. However, it turns out that in most
cases, the stabilizing controller is itself stable.

We now summarize the entire design procedure for the design of simultaneously stabilizing con-
trollers for two strictly proper plants, P0 and P1.

• Step 1: Decide on co-prime factorizations of P0 and P1 which yield stable R

• Step 2: Specify the weighting function Wy

• Step 3: Find the solution Qc ∈ S(s) for the aboveH∞ control problem

• Step 4: If ‖QcR‖∞ ≥ 1, then modify Wy (for eg. reduce the gain and/or cutoff frequency)
and go to Step 2.

3.3.3 Application to lane-keeping control

In this subsection, we shall demonstrate the application of results from simultaneous stabilization
theory and the design technique detailed above to the problem of design of a lane-keeping controller
which is insensitive to magnetometer disconnection (fault #3). We wish to mention again that we
model magnetometer disconnection as the output of the disconnected magnetometer going to zero
and remaining at zero thereafter. We will use the geometric look-ahead scheme for lane-keeping
control and use the bicycle model for control design purposes.

The state equation that describes the 4-state bicycle model for front wheel steered passenger
vehicles are:

ξ̇ = Aξ +Bδ +Wρ (3.7)
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Figure 3.3: Geometric Look-Ahead Scheme

where, ξ=[ycg ˙ycg εr ε̇r](refer Fig. 3.3 for variable definitions)

A =




0 0 0 0
0 −a11

ẋ
a11

a12
ẋ

0 0 0 1
0 −a41

ẋ
a41

a12
ẋ


B =




0
b21

0
b41


W =




0
w21

0
w41




a11 = (φ1 + φ2), a12 = φ1(ds − lf) + φ2(ds + lr), a41 =
lfCf−lrCr

Iz

a42 =
lfCf (ds−lf )+lrCr(ds+lr)

Iz
, b21 = φ1, b41 =

lfCf

Iz
, w21 = − l21Cf +l22Cr

Iz
, w41 = φ2lr − φ1lf − ẋ2

φ1 = Cf

(
1
M

+
lfds

Iz

)
, φ2 = Cr

(
1
M
− lrds

Iz

)
δ is the steering angle and ρ = ε̇d

ẋ
is the curvature of the road at the point on the road nearest the

center of gravity. Table 3.1 explains the symbols that are used in the above equations.

Table 3.1: Parameters used in the Bicycle Model

Param. Description Values
M Mass of the vehicle 1700-2100 kg
Iz Yaw moment of inertia ≈ 2870 kg m2

lf CG-front axle dist. 0.9 - 1.2 m
lr CG-rear axle dsit 1.5 - 1.8 m
Cf Cor. stiff. - Front tire ≈ 70000 N/rad
Cr Cor. stiff. - Rear tire ≈ 130000 N/rad
v, ẋ Forward vel. of vehicle 0-35 m/s
ds Dist. of sensor from CG -3 to 10 m
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The lateral errors measured at the location of the magenetometers are:

yfs = Cfsx = (1 0 lf 0)x (3.8)

yrs = Crsx = (1 0 − lr 0)x (3.9)

where lf , lr are distances of the front and rear magnetometers from the vehicle CG.
For small relative yaw angles, the error at the location of the virtual sensor (which is at a distance ds
from the vehicle CG) is:

yc = C0x ≈ {(lr + ds)Cfs + (lf − ds)Crs}
(lf + lr)

x (3.10)

The above equation changes to:

yc = C1fx =
(lf − ds)Crs
(lf + lr)

x (3.11)

for the loss of the front magenetometer (yfs = 0) and,

yc = C1rx =
(lr + ds)Cfs
(lf + lr)

x (3.12)

for the loss of the rear magnetometer (yrs = 0).

Then Pnom =
(lf−ds)Crs

(lf +lr)
(sI−A)−1B, Pf =

(lr+ds)Cfs

(lf +lr)
(sI−A)−1B and Pr =

(lf−ds)Crs

(lf +lr)
(sI−A)−1B.

The problem is to design a simultaneously stabilizing controller that stabilizes (Pnom, Pf) and
(Pnom, Pr). We now apply Theorem 3.1 to determine conditions for simultaneous stability.

Property 1: Consider the case that we “lose” the front magnetometer. In this case Pnom and Pr are
simultaneously stabilizable if and only if ds ≤ lf .

Property 2: Consider the case that we “lose” the rear magnetometer. In this case Pnom and Pf are
simultaneously stabilizable if and only if ds ≥ −lr.

The proof of the two properties is a straight forward application of Theorem 3.1.

The implications of the properties are worth commenting on. The properties say that if we
have to make the lane-keeping control system insensitive to sensor disconnection of any of the two
magnetometers (and use the geometric look-ahead scheme), then we would need to restrict ds to
−lr ≤ ds ≤ lf . This implies that the largest look-ahead distance we can achieve is only as far as
the front magnetometers are in front of the CG (approximately 2m). We had alluded to earlier in
chapter 2 that at high speeds, larger ds values contribute towards better yaw damping characteristics
and consequently a more comfortable ride. Therefore, the requirement for fault tolerance poses a
limitation on achievable performance. This trade-off is something we should naturally expect.
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3.3.4 Controller characteristics and simulation results

The fault tolerant controller was designed based on the scheme described in the previous earlier.
(Note: ds is restricted so that −lr ≤ ds ≤ lf ).

The frequency characteristics of the controller and the design parameterQc are shown in Fig. 3.4.
Also shown is the sufficient condition of simultaneous stability (‖QcR‖∞ < 1) being satisfied. Note
that the controller has a “lead-lag” nature. Also the failure mode ≈ 1Hz is well captured in Qc’s
characteristics. ds value of 1.5m is used.
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Figure 3.4: Frequency characteristics of designed controller and Qc, ds=1.5m

Fig. 3.5 and Fig. 3.6 show the results for the cases when the system “loses” the front magnetome-
ter and rear magnetometer respectively. During the event of the fault, the vehicle is on a curve of
radius 800m. This is more serious than a fault occurring when the vehicle is on the straight section
of the highway. Noise of about 2cm (RMS) (experienced in practice) has been added to the output
of each magnetometer.

We observe in Fig. 3.5 that the lateral error is about 0.05m on a curve of radius 800m before the
fault occurs (t=15-20s). This is indeed a satisfactory level of performance during non-faulty oper-
ation. However, when the fault occurs the maximum lateral error increases to about 20cm(0.2m).
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Also, stability is maintained because the condition for simultaneous stability is satisfied. The failure
of the rear magnetometer (refer Fig. 3.6) does not affect the performance of the system significantly.
This is because the loss of the rear magnetometer does not affect the stability of the system for
positive look-ahead distances.
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Figure 3.5: Simulation of loss of front magnetometer at t=30s for v=25m/s
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Figure 3.6: Simulation of loss of rear magnetometer at t=30s for v=25m/s

3.4 Observer Based Look-Ahead Scheme for Fault Tolerant Lat-
eral Control

In this section, we will present a lane-keeping control scheme based on the concept of Observer
Based Look-Ahead. This scheme is proposed to deal with faults # 1, # 2 and # 3 (refer section 3.1).

Chapter 2 discussed the intricacies of the vehicle lane-keeping control problem and included a
description of the geometric-look ahead scheme (which formed the basis for the lane-keeping con-
troller implemented in Demo’97). In the previous section, we discussed how we could accommodate
fault #3 into the control design process. We obtained a powerful result which states that if the ge-
ometric look-ahead scheme is used, the condition for fault tolerance demands that the look-ahead
distance has to be limited to about 2m (location of the front set of magnetometers). Smaller look-
ahead distances result in reduced damping and therefore increased oscillations. The motivation to
develop an observer based look-ahead scheme is to investigate if we can achieve fault tolerance and
use larger look-ahead distances.

3.4.1 Observer based fault tolerant controller

The dedicated observer based architecture for the fault tolerant control design is shown in Fig. 3.7.
In this scheme the controller acts on the estimated error at the virtual sensor rather than the “actual”
error as generated by geometric scheme. The dedicated observer based on the front sensor has the
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Figure 3.7: Dedicated Observer Based Design Scheme

steering angle, δ, and lateral error at the location of the front sensor, yfs, as inputs. The dedicated
observer based on the rear sensor has the steering angle, δ and the lateral error at the location of the
rear sensor, yrs as the inputs. Note that each of these observers generates independent estimates of
the states of the bicycle model which are then combined to generate the estimates of the lateral error
at the location of the virtual sensors.

The motivation for such a scheme is now clear. The look-ahead generation algorithm can be
made robust to failure of one of the two magnetometers i.e., reliable estimates of the lateral error for
large look-ahead distances can be obtained.

Define
Lf := transfer function from δ to (ŷvs)f
Lr := transfer function from δ to (ŷrs)r

Claim: If Lf ≈ Lr =: L (say) and there exists a controller K such that,

1. 2LK is stable under unity feedback

2. LK is stable under unity feedback

then, the system is stable both in the non-faulty case and when one of the magnetometers is lost.
An Argument in Favour: Consider the non-faulty case. In this case if Lf ≈ Lr is satisfied the open
loop transfer function is given by 2LK. Condition (1) guarantees that the closed loop remains stable.
In the faulty case, one of the magenetometer outputs is assumed to drop to zero (i.e., yfs or yrs
becomes zero). Therefore if Lf ≈ Lr is satisfied, the open loop transfer function is given by
(1+α)LK. α captures the extent to which the faulty loop corrupts the estimation scheme. If α is
small and condition 2 is satisfied, we can expect the overall system to still be stable.
Comments:

• The condition Lf ≈ Lr can be achieved because of the freedom to choose the observer gains.
The condition Lf ≈ Lr can be written as:
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G1yf
Pf + dsG1δf

= G1yrPr + dsG1δr

G1yf
, G1yr , G1δf

, G1δr
can be chosen suitably by the designer

• The fault model considered here, namely the loss of information from one of the two magne-
tometers, essentially leads to a change in the open loop gain (from 2LK to LK). Since fault
models are never known precisely, it is necessary that the fault tolerant control algorithm be
robust to uncertainty in the fault model. The observer based fault tolerant control scheme
provides exactly this attractive robustness property. The desired robustness to fault model un-
certainty can be achieved by guaranteeing that the closed loop system remains stable for all
open loop gains βLK, where β belongs to some chosen range (say [-0.7, 2]) depending on the
level of confidence in the fault model.

3.4.2 Simulation results

The observer based fault tolerant control system was designed using the above scheme. In this
subsection we present simulation results. We show simulation results only for the case of fault #3.
Other situations also yield satisfactory results. (Experimental results pertaining to fault #2 are shown
in the next subsection).

Fig. 3.8 and Fig. 3.9 show the results for the cases when the system “loses” the front and rear
magnetometers respectively. During the event of the fault, the vehicle is on a curve of radius 800m.
This is more serious than a fault occurring when the vehicle is on the straight section of the highway.
Noise of about 2cm (RMS) (experienced in practice) has been added to the output of both the sensors.
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Figure 3.8: Simulation: Front magnetometer at t=30s for v=25m/s, ds=4m
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We observe in Fig. 3.8 and Fig. 3.9 that the lateral error is about 0.05m on a curve of radius 800m
before the fault occurs (at t=30s). This is indeed a satisfactory level of performance during non-faulty
operation when compared with experimental outputs as documented in et al (1996). However, when
the fault occurs, since information is available only from one sensor, the maximum lateral error is
less than 20cm(0.2m). Also the steering angle oscillations can be damped in practice by setting a
saturation limit on the steering angle rate.
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Figure 3.9: Simulation: Rear magnetometer at t=25s for v=25m/s, ds=4m

Note : A gain scheduling technique can be used to choose the observer gains for different longitudi-
nal velocities to achieve performance levels similar to those shown above.

3.5 Summary and Conclusions

This chapter presented the following:

1. Failures that the lane-keeping control system needs to be made insensitive.

2. Fault tolerant controller design based on simultaneous stabilization: It was shown that the
problem of fault tolerant controller design may be formulated as a simultaneous stabilization
problem. The design scheme for a simultaneously stabilizing controller that stabilizes the non-
faulty plant and one faulty mode and which guarantees performance in the non-faulty mode
was presented. The extension of this result to accommodate more faulty modes is currently
underway.
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3. Fault tolerant controller design based on the concept of observer based look-ahead: In the
observer based look-ahead scheme, the controller processes an estimate of the lateral error
at a location ds ahead of the vehicle CG. The scheme was proposed to accommodate faulty
conditions and at the same time maintain the benefits of large look-ahead distances.

We conclude the following from this research initiative.

1. It is possible to design practically realizable lane-keeping controllers that guarantee satisfac-
tory performance even under certain faults that may occur during the operation of the lane-
keeping control system.

2. Two schemes can be used to design such controllers.

(a) Simultaneous stabilization based scheme

(b) Observer based look-ahead based scheme

The simultaneous stabilization based scheme is a convex optimization based design technique.
It guarantees stability under chosen, well-modeled failures. However, the design problem is
difficult to solve and may yield conservative controllers. In contrast, the observer based look-
ahead scheme is a heuristic technique. No absolute guarantees of stability can be made when
this scheme is used. Also, the scheme is difficult to implement in practice since the lateral
dynamics change substantially for different longitudinal velocities. However, the scheme is
very intuitive and yields good experimental results.

3. The realization of a fault tolerant lane-keeping control system must involve investigation into
other design decisions such as appropriate placement of the magnetometers. The fault toler-
ance of the system can be greatly enhanced if the “rear” magnetometer set is placed in front
of the rear-axle. This issue is being investigated as part of TO4205 (Fault Tolerant Lateral
Control of Transit Buses and Trucks). We suggest that the “final” control system design con-
figuration consist of two sets of magnetometers: one mounted under the front bumper of the
vehicles and the other mounted about 2m behind the front set.

In summary, if the sensors are placed in the “correct” locations and the fault tolerant control
algorithms are used, we can achieve highly precise and safe lane-keeping control action.
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Chapter 4

Fault Diagnostic System for the Longitudinal
Control System

This chapter will present the detailed design of the fault diagnostic system for the longitudinal
controller using such model-based techniques. First, a brief description of the fault model used
in the design will be presented in Section 4.1. Then the residual generator and residual processor
will be describe in Sections 4.2 and 4.3, respectively. Finally, experimental results for the complete
diagnostic system will be covered in Section 4.4.

4.1 Fault Modeling

Although several types of fault models exist in the literature, this project considers only faults in the
system components which can be modeled as additive terms to the residual vector. More technically,
let the set of residuals be defined by the vector r ∈ 
n. In the case of no faults and an exact model of
the monitored system, the vector r would be exactly zero. However, the residual vector has nonzero
components when sensor noise and modeling uncertainties are considered. This nonzero value of
the residual vector under nominal conditions will be denoted rnom ∈ 
n. The relationship between
these vectors and the faults to be considered can be written in the form

r(t) = rnom(t) + Fµ(t) (4.1)

where the last term represents the effects of the different faults which the diagnostic system will
attempt to detect. Each fault is represented by two parts: the fault signature matrix F ∈ 
nxp,
whose columns describe the directional characteristics of the p faults, and the fault mode µ(t), which
is a (possibly time-varying) vector describing the fault magnitude at time t. This project will only
consider the occurrence of a single fault in the physical layer control components at any given time,
thus restricting µ(t) to have only one nonzero element corresponding to the column of F which
models the specific fault.

For the residual processor to correctly identify faults in the monitored system, the effect of
each fault on the set of residuals must be unique. If this criteria is met, the faults are said to be
isolatable. While this criteria theoretically guarantees that the identification of each fault is possible,
the isolation of faults is generally not very robust to noise and unmodeled dynamics. A stronger
condition can be achieved if the fault signatures f ∈ Col(F ) are linearly independent in the residual
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space. Diagnostic systems which satisfy this condition are said to have structured or directional
residuals (org., n.d.).

4.2 Residual Generator

The residual generator relies on ten sensors, inter-vehicle communication, and the throttle and brake
actuator commands to form a residual vector which is sensitive to faults in all of the vehicle’s sensors
and actuators. The specific components which are monitored by this system include the magnetome-
ter and the components listed in Table 2.2. Although the magnetometer is not directly used in the
longitudinal controller, it must also be monitored because the magnetometer is used in the fault di-
agnostic system. Diagnosis of faults in the communications system are beyond the scope of this
project, however several other PATH projects are addressing this issue ().

In addition to this raw information about the vehicle’s condition, several observers have been
designed to provide analytical redundancy for the physical components. An interesting characteristic
of the hierarchical structure of the longitudinal control system is that the diagnostics can effectively
be decoupled between those components involved in the regulation layer and the physical layer
control laws. This allows for a compartmentalized design of the diagnostics for each level of control.
The remaining parts of this section will discuss the separate residuals that compose the residual
vector, as well as the specific state observers used.

4.2.1 Inter-vehicle spacing residuals

If the physical layer is operating correctly, then the use of the dynamic surface controller results in
an overall linear vehicle model as seen by the regulation layer. By rearranging terms in the follower
control law presented in Chapter 2, the resultant vehicle model is as follows:

δ̈(t) + 2ζωmδ̇(t) + ω2
mδ̂(t) = ω2

mu(t)

where δ(t) is the current range to the previous vehicle in the platoon, u(t) = δdes is a known input
to the linearized vehicle dynamics, and the constants ζ and ωm are chosen controller gains. Note
that the follower control law uses a simple first order observer is used to estimate the range δ̂(t) to
improve the quality of the range measurement. The observer has the following form;

˙̂
δ(t) = δ̇(t) + k1(δ(t)− δ̂(t))

where k1 is the observer gain chosen to make the error dynamics stable. The observer is included
in the linear vehicle model because the time constant of the observer is within the same order of
magnitude of the follower control law, and thus has a significant impact on the vehicle dynamics.

By combining the follower control law and the observer dynamics, the SISO system can be
rewritten in the following state space form as:

ẋ =


 0 1 0
0 −2ζωm −ω2

m

k1 1 −k1


x+


 0
ω2
m

0


u (4.2)
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where the state is defined as x =
[
δ δ̇ δ̂

]T
. In addition, this system is observable from the

radar range, accelerometer, magnetometer and wheel speed sensor measurements independently.
Therefore, the four possible measurement equations can be written as,

yδ =
[
1 0 0

]
x (4.3)

ynmag =
[−1 0 0

]
x+ (nmag,prev − L) (4.4)

yωw =
[
0 −1 0

]
x+ vprev (4.5)

ya =
[
0 2ζωm ω2

m

]
x+ aprev (4.6)

where L is the vehicle length, nmag,prev, vprev and aprev are known via inter-vehicle communica-
tion, and thus can be viewed as additional inputs.

Four dedicated observers were constructed to estimate the inter-vehicle range using the linear
model described above. A dedicated observer uses only one of the available sensors to estimate the
entire state vector. This setup is quite attractive for use in fault diagnostics, because ideally only one
of the observer estimates would be affected by a specific fault in the sensors, thus allowing for the
diagnosis of multiple faults (org., n.d.). These four observers have the following form,

˙̂x =


 0 1 0
0 −2ζωm −ω2

m

k1 1 −k1


 x̂+


 0
ω2
m

0


u+Ki(yi − Cix̂) (4.7)

δ̂i =
[
1 0 0

]
x̂ (4.8)

where i indicates the specific sensor used for the correction term, i.e. nmag, ωw, δ or a. The observer
gain matricesKI are chosen via a Luenberger design procedure (Brogan, 1991). The range estimates
of these four observers are then used to form the first six elements of the residual vector as follows

r1 = δ̂δ − δ̂nmag

r2 = δ̂δ − δ̂ωw

r3 = δ̂δ − δ̂a

r4 = δ̂nmag − δ̂ωw

r5 = δ̂nmag − δ̂a

r6 = δ̂ωw − δ̂a

4.2.2 Command signal residuals

The next three residuals are simple parity equations that compare the commanded throttle, brake
pressure, and acceleration to the appropriate sensor measurements. These residuals are written as

r7 = a− uisl

r8 = α− αc

r9 = Pwheel − Pmcc
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4.2.3 Engine dynamics residuals

The last three residuals are used to diagnose faults in the sensors and actuators involved the physical
layer control laws based on the nonlinear vehicle model presented in Chapter 2. First, two second
order nonlinear observers are proposed to estimate both the engine speed and mass of air from engine
speed measurements using the methodology developed in the attached paper (Howell, 2002) and the
nonlinear vehicle model used for the longitudinal controller design. Both observers use the engine
speed measurement for the correction term, while one observer uses the throttle and brake pressure
sensors as inputs and the other uses the actuator commands. The first observer has the form

˙̂ωe =
1

Je
(Tnet(ω̂e, m̂a)− cxR

∗3h3ω̂2
e − R∗Trr −R∗Tbr(Pwheel) +Ks1(ωe − ω̂e)

˙̂ma = MAX TC(α)PRI(m̂a)− ṁao(ω̂e, m̂a) +Ks2(ωe − ω̂e)

while the second observer can be written as

˙̂ωe =
1

Je
(Tnet(ω̂e, m̂a)− cxR

∗3h3ω̂2
e − R∗Trr − R∗Tbr(Pmcc) +Kc1(ωe − ω̂e)

˙̂ma = MAX TC(αc)PRI(m̂a)− ṁao(ω̂e, m̂a) +Kc2(ωe − ω̂e)

Finally, under the assumption that the torque converter is locked, then the engine speed and
wheel speed are linearly related via the current gear ratio as

ωw = R∗ωe

This relationship can be used to form a simple parity equation comparing the engine and wheel
speed measurements.

The residuals for the two observers and speed parity equation form the last three elements in the
residual vector, specified as

r8 =
Vman

RairTman
Pman − m̂a(ωe, Pwheel, α)

r9 =
Vman

RairTman
Pman − m̂a(ωe, Pmcc, αc)

r10 = ωw − R∗ωe

It is important to note that although the observer residuals will be nonlinearly related to the sensor
measurements and actuator commands, the linear fault model given in Equation 4.1 is still applicable
since the residuals can be shown to remain close to a linear system using the same argument as
in (Garg, 1995).

4.3 Residual Processor

For the diagnostics of the longitudinal control system, a combination of weighted least squares
estimation and thresholding is used to detect and identify faults. A more complex residual processing
scheme based on fuzzy logic was previously pursued, however this residual processing technique
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was not chosen because it’s increased computational complexity made it impractical for real-time
implementation (Howell and Hedrick, 1999).

The first part of the residual processor provides a weighted linear least squares estimate of the
fault mode vector. Next, each element of the estimate is compared to a threshold, and a fault is
declared when one or more thresholds are crossed. Finally, classical logic is used to identify the
faulty component based on the thresholds that are crossed. Each of these tasks will now be addressed
in more detail.

4.3.1 Estimation of the fault mode vector via weighted least squares estima-
tion

The first task performed by the residual processor is to estimate the magnitude of the fault mode
vector using the current value of the residual vector. This estimation of the fault mode is quite useful
for both fault diagnosis and fault management. In terms of fault diagnostics, the resulting estimate
has a very intuitive relationship with the system dynamics and simplifies the choice of thresholds
for fault detection. A fault management system could also potentially benefit from the estimate by
choosing different methods of reconfiguration based on both the type of fault and it’s magnitude.

Using the fault model described in Equation 4.1, the residual and fault mode vectors are related
by the linear matrix equation

r(t)− rnom = Fµ(t)

where rnom is assumed to be constant with respect to time for simplicity. A weighted least squares
solution for µ(t) can now be performed, where the residual vector is weighted by the matrix W − 1

2 to
reduce scaling problems. The resulting estimate µls(t) can be calculated by the following equation

µls(t) = F †(r(t)− rnom)

where F † = (F TW−1F )−1F TW−1 is the weighted pseudo-inverse of F . Notice that F † and rnom
can be determined a priori, so that only a vector addition and a matrix multiplication are required to
calculate the estimate given the residual vector.

4.3.2 Thresholding and decision logic

The final task of the residual processor involves the choice of an appropriate threshold for each ele-
ment of the fault mode vector, and the identification of the faulty component based on the thresholds
exceeded. If the residual generator had structured residuals, then each fault would affect only one
element of the fault mode estimate vector. The detection of a fault would then be a simple matter
of choosing a threshold for each estimate element, and declaring a fault when one of the thresholds
was exceeded. Identification would also be trivial, since the exceeded threshold would determine
the component with the fault.

Unfortunately, the residual generator for the longitudinal controller is only isolatable, which
makes identification slightly more complicated. The isolatability property only guarantees unique-
ness of the fault signatures, however some signatures may be linear combinations of others. The
qualitative effects of each fault on the fault mode estimate have been summarized in Table 4.1,
where H represents a “high” or a large increase in the estimate element, M represents a “medium“
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or moderate increase in the estimate element, and L represents a “low” or no increase in the par-
ticular estimate element. The table shows that although many of the faults cause several elements
to increase, they each have a unique effect on the fault mode vector. Since only single faults are
being considered, the each fault can be uniquely identified by the pattern of increased elements.
Furthermore, the processing of the residual vector can effectively be decoupled between the sensors
monitored using the inter-vehicle spacing and the sensors and actuators monitored via the nonlinear
engine dynamics. For simplicity in the remaining sections of the chapter, these two groups will be
termed the regulation and physical layer control components, respectively.

Table 4.1: Fault mode vector estimate µls under component faults

Faulty Sensor / Actuator µ1 µ2 µ3 µ4 µ5 µ6 µ7 µ8 µ9 µ10

radar H M M M L L L L L L
magnetometer M H M M L L L L L L
wheel speed sensor M M H M M L L L L L
accelerometer M M M H L L L L L L
engine speed sensor L L M L H M M M M M
manifold pressure sensor L L L L M H M M M M
throttle angle sensor L L L L M M H M M M
throttle actuator L L L L M M M H M M
brake pressure sensor L L L L M M M M H M
brake actuator L L L L M M M M M H

4.4 Experimental Results

The fault diagnostic system presented in the previous two sections was implemented in the C pro-
gramming language as an addition to the longitudinal control software developed for the 1997
NAHSC Demonstration (Staff, 1998). This longitudinal control code has been extensively tested
and used by PATH, and provided much of the underlying software structure needed by the diagnos-
tic system, such as access to the publish-subscribe database and the command inputs calculated by
the controller.

The fault diagnostic code was tested under two scenarios; low-speed real-time tests on a single
car at Richmond Field Station (RFS) and emulation using data from both low and high-speed tests
on a platoon of three vehicles on I-15 in San Diego. This section will focus on results using the data
from I-15, since the single-vehicle tests at RFS were used primarily to debug and verify the timing
latencies of the additional fault diagnostic software.

The experimental tests conducted on I-15 used a platoon of three Buick LeSabre, where the lead
vehicle followed a desired velocity profile and the two following vehicles attempted to maintain
a constant distance from the preceding vehicle. For the experimental data shown in this report,
the cruise speed was set to 60 mph with a desired spacing of 12 meters. To simplify the testing
procedure, no additional maneuvers were performed during any of the tests.

To eliminate the need for hardware modifications, the occurrence of faults in the control compo-
nents were simulated in the longitudinal control software during the experimental runs. For example,
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sensor faults were simulated by adding a time-varying bias to the sensor reading before the control
calculations were performed. Similarly, actuator faults were simulated by adding a time-varying
bias to the actuator command after the control calculations were performed. The remainder of this
section will demonstrate the performance of the implemented diagnostic system under both normal
and faulty conditions.

4.4.1 Performance under no fault scenario

The performance of the longitudinal controller and diagnostic system when no faults are present
is shown in Figs. 4.1 through 4.7. The first two figures demonstrate that the existing longitudinal
controller provides excellent velocity and inter-vehicle distance tracking over the entire run. How-
ever, it should be noted that even under nominal conditions the controller can only track the desired
spacing to within about 1 meter. This is primarily due to the unmodeled gravitational force caused
by a steep dip at the end of the I-15 test track, as can be seen in Fig. 4.2 around 250 to 300 seconds.
Naturally, this limits the sensitivity of the diagnostic system with respect to faults in the regulation
layer control components.
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Figure 4.1: Controller performance in tracking velocity (top) and range (bottom)

Next, Figs. 4.3 through 4.5 show the estimation performance of the linear and nonlinear ob-
servers used in the residual generator. Obviously, all of the estimates converge to their true values,
however the effects of unmodeled dynamics is apparent in both sets of observers. First, the previ-
ously mentioned effects of grade noticeable affect the performance of the inter-vehicle range ob-
servers from 250 to 300 seconds into the run. To avoid false alarms due to this unmodeled force, the
thresholds for the fault estimates of the regulation layer components were limited to detect changes
larger than 1.2 meters.
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Figure 4.2: Commanded and measured control effort used in a normal run

The diagnostics related to the physical layer components are also limited by unmodeled behavior
of the vehicle due to the following four causes:

1. Grade also has an indirect effect upon the engine dynamics as well, in that as the vehicles
travel downhill less engine torque is required because of the additional gravitational force.
This causes the longitudinal controller to switch to brake control, while the engine’s power-
train control module (PCM) unlocks the torque converter and forces the engine to idle. Un-
fortunately, this combination of events effectively decouples the measured vehicle and engine
speeds which nullifies the validity of the vehicle model used.

2. The throttle actuator is bypassed when the engine is at idle, and a separate idle air control
valve (IAC) is used for control. (Gen, 1997).

3. Discrete changes in operating mode, i.e. gear shifts and switching between throttle and brake
control, have a severe impact on both the longitudinal controller and the diagnostic system.

Naturally, the fault diagnostic systems capabilities are limited when the engine is idling or
switching between operating modes. When the engine is idling, faults in the physical layer con-
trol components can be detected, but they can only be isolated into two groups; those occurring in
the brakes or those occurring in the throttle control. To compensate for changes in operating mode,
the residual processor is turned off for approximately 5 seconds after the change to allow for the
observers to converge to the new state. While these modifications seem very restrictive, these limi-
tations are expected due to the model simplifications, and fault diagnostic system otherwise performs
very well as seen in the next two subsections.

Finally, the magnitudes of the fault mode estimates computed by the residual processor for both
the regulation physical layer components are shown in Figs. 4.6 and 4.7. These estimates have
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Figure 4.3: Diagnostic system range estimates (top) and estimation errors (bottom) during a normal run
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run
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Figure 4.5: Diagnostic system manifold pressure estimates (top) and estimation errors (bottom) during a
normal run
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been normalized by their thresholds for clarity in comparing their sensitivity to the various faults
presented in the next section. From both figures, it can be seen that the estimates remain well below
their thresholds, shown by the dashed lines, except for a few points at the beginning of the run.
These false alarms occur during the period when the observers are converging to the true values, and
are thus ignored by the residual processor. It is also quite noticeable where the residual processor is
disabled, i.e. the fault mode estimates are set to zero, due to engine idling and switches in operating
mode.
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Figure 4.6: Diagnostic system normalized fault mode estimates for the regulation layer components
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Figure 4.7: Diagnostic system normalized fault mode estimates for the physical layer components
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4.4.2 Performance under faults in the physical layer control components

The next group of figures show experimental results for faults in the physical layer control compo-
nents using the same testing scenario as in the previous sections. The diagnostic system performs
extremely well at detecting, identifying, and correctly estimating the fault magnitudes for faults in
the engine speed sensor, throttle angle sensor, throttle actuator, and braking system. Of course, this
is subject to the limitations discussed in Section 4.4.1. Faults in the manifold pressure sensor are
also readily detected and identified, as seen in Figs. 4.10 and 4.11, however the estimation of the
fault magnitude is not as accurate. This is most likely caused by the approximation of a linear re-
lationship between the residuals and faults, but the estimate appears accurate enough to get a first
order approximation of the fault for use in control reconfiguration by the fault management system.
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Figure 4.8: Diagnostic system normalized fault mode estimates under an engine speed sensor fault

4.5 Conclusions

This chapter showed the development of the fault diagnostic system for the longitudinal control sys-
tem and it’s two primary components; the residual generator and the residual processor. The residual
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Figure 4.9: Fault identified (top) and fault mode estimate (bottom) under an engine speed sensor fault
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Figure 4.10: Diagnostic system normalized fault mode estimates under a manifold pressure sensor fault
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Figure 4.11: Fault identified (top) and fault mode estimate (bottom) under a manifold pressure sensor fault
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Figure 4.12: Diagnostic system normalized fault mode estimates under a throttle angle sensor fault
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Figure 4.13: Fault identified (top) and fault mode estimate (bottom) under a throttle angle sensor fault
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Figure 4.14: Diagnostic system normalized fault mode estimates under a throttle actuator fault
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Figure 4.15: Fault identified (top) and fault mode estimate (bottom) under a throttle actuator fault
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Figure 4.16: Diagnostic system normalized fault mode estimates under a brake system fault
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Figure 4.17: Fault identified (top) and fault mode estimate (bottom) under a brake system fault
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generator used the inherent analytical redundancy of the vehicle model to design a set of residual
signals sensitive to faults in the longitudinal control components. The residual processor monitors
these residuals to determine when a fault has occurred, identifies the faulty component, and provides
a least squares estimate of the fault magnitude. The complete system has been experimentally im-
plemented and shown to provide exceptional performance under conditions limited by the quality of
the underlying model. Further research into improving the vehicle model at idle and the diagnostic
system’s robustness to switched modes of operation is ongoing.
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Chapter 5

Soft Fault Diagnostics and Handling —
Tire/Road Friction Estimations and
Emergency Braking Control

In the previous chapter, we discussed “hard” fault diagnostics and management in the regulation
and coordination layers. In the rest of this report, we will focus on the “soft” fault diagnostics and
management. The most important “soft” fault that we consider here is the vehicle deceleration and
acceleration capabilities. It has been shown that spacing policies, in both independent vehicle and
platooning scenarios, need to be related to the maximum acceleration and braking capabilities of
neighboring vehicles (Alvarez, 1996). These capabilities, in turn, depend primarily on the forces of
contact between tires and ground. In this chapter, we give an introduction to tire/road friction char-
acteristics and review the literature on this topic. Then, we discuss the tire/road friction estimation
approach in this report.

5.1 Background

5.1.1 Tire forces and moments

Tire/road interaction is very important for vehicle dynamics and control. Fig. 5.1 illustrates the
tire/road interactions and Fig. 5.2 shows a SAE 1 standard representation of forces and moments gen-
erated by the tire/road interactions. In a general case, three forces, the longitudinal traction/braking
force Fx, lateral force Fy, and vertical (normal) force Fz, and three moments, the overturning mo-
ment Mx, rolling resistance moment My, and self-aligning torque Mz, are generated by the tire/road
contact.

To simplify the problem and focus more on the new model development for estimation and con-
trol purposes, in this and the next two chapters, we consider the case when the vehicle has only
longitudinal motion. An extended three dimensional tire/road friction model combining the longitu-
dinal and lateral motions was discussed in Claeys et al. (2001a) and Deur et al. (2001). Therefore,
we have the following assumptions

1SAE stands for Society of Automotive Engineering.
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Figure 5.1: A schematic of tire/road interaction

Figure 5.2: Tire/road contact forces and moments (SAE standard representation)

Assumption 5.1
1. The vehicle only moves longitudinally, i.e. tire slip angle α = 0 and steering angle ϑ = 0.

2. The vehicle does not have yaw motion, i.e. yaw angle φ = 0.

3. The tire plane is perpendicular to ground plane, i.e. tire camber angle γ = 0.

By Assumption 5.1, we have
Fy = 0, Mx = 0, Mz = 0.
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We will concentrate on the estimation of the longitudinal force Fx, i.e. longitudinal tire/road friction
characteristics.

5.1.2 Tire/road friction characteristics

The longitudinal tire/road friction coefficient µ, or coefficient of road adhesion, or normalized fric-
tion force, is defined as 2

µ =
Fx
Fz

=
Friction force
Normal force

. (5.1)

There is a significant amount of research in tire/road coefficient of friction estimation for indi-
vidual vehicles. In this section, we review some major approaches.

Common to most of this research is the fact that the models used to describe the tire/road coef-
ficient of friction employ the slip ratio of the wheel as the key variable to describe the underlying
phenomenon. The slip λ is defined as a non-dimensional index that describes the difference between
the longitudinal velocity of the vehicle, measured at the center of mass, and the longitudinal velocity
of the tires, measured at the point of contact between the tires and the road, i.e.

λ =

{
rω−v
rω

; in vehicle traction, ω �= 0
v−rω
v

; in vehicle braking, v �= 0,
(5.2)

where r is the effective rolling radius of the tire, v and ω are the linear speed of the tire center and
angular speed of the tire, respectively.

locked

µ

µmax

stable unstable

µs

λ

λmax
0.5o 1

Figure 5.3: A schematic of pseudo-static tire/road friction model for a specific vehicle velocity (braking case)

The pseudo-static relationship between µ and λ, usually called a pseudo-static curve, is shown
schematically in Fig. 5.3 for a given vehicle velocity and a set of tire/road conditions in the braking
case. For the braking case, pseudo-static means that the velocity for each point on the µ-λ curve is
fixed. By the definition of the longitudinal slip, it is easy to see that λ ∈ [0, 1]. When λ = 0, there

2In this report, we use µ to denote the longitudinal tire/road friction coefficient by default. We will explicitly use
other variables to denote the lateral friction coefficient if necessary.
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is no relative motion of the tire with respect to the ground and therefore the tire/road interaction
does not generate any traction/braking forces. When λ = 1, the wheel is locked. As shown in the
figure, the maximum friction coefficient µmax is achieved at a particular longitudinal slip, denoted as
maximum slip λmax ∈ (0, 1). When the vehicle slip satisfies λ ≤ λmax, the vehicle motion is stable;
otherwise, it is unstable. Moreover, the µ-λ curve varies under different tire/road conditions, vehicle
normal forces, velocities, etc. Therefore, the maximum friction coefficient µmax and maximum slip
λmax will change under varying environmental and vehicle conditions. Fig. 5.4 presents two curves,
obtained from Harned et al. (1969), that represent typical µ versus λ behavior under different road
conditions and vehicle velocities.
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Figure 5.4: Variation of tire/road friction coefficient µ with respect to longitudinal slip λ

Empirical model approach

The pseudo-static µ-λ relationship is observed in experiments. Bakker et al. (1987), Bakker et al.
(1989) and Burckhardt (1993) described two analytical models for tire/road interactions that are ex-
tensively used by researchers in the automotive industry. In these two models the friction coefficient
µ is mainly determined based on the wheel slip λ and some other parameters like speed and normal
load. The expression given by Bakker et al. (1987), also known as the “magic formula”, was derived
heuristically from experimental data to produce a good fit. As described by Bakker et al. (1987)
and Bakker et al. (1989), the friction force Fx is approximated by 3

Fx = C1 sin (C2 arctan (C3λ+ C4 arctan(C5λ))) , (5.3)

where model parameters Ci , i = 1, · · · , 5, are functions of normal load Fz and determined by
curve-fitting with the experimental data.

3If considering the combined longitudinal and lateral motions, the lateral force F y and self-aligning torque are given
by a similar formula.
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The friction model given by Burckhardt (1993) is 4

µ =
(
C1

(
1− e−C2λ

)− C3λ
)
e−C4λv
(
1− C5F

2
z

)
, (5.4)

where v is the vehicle longitudinal velocity. In the above tire/road friction model (5.4), model
parameters C1, C2 and C3 change for various tire/road conditions, parameter C4 modeles changing
of vehicle speed, and parameter C5 models changing of the normal load.

The empirical models (5.3) and (5.4) are derived by curve-fitting the observed experimental data.
It is convenient to use these models for vehicle dynamics simulation and studies. There are important
attempts to simplify these models, estimate the parameters of the simplified models, and use these
parameters for traction/brake control (Kiencke, 1993; Kiencke and Daiss, 1994; Gustafsson, 1997).
However, there are several disadvantages to using these two models for on-line estimation and con-
trol purposes:

1. First, the models are highly nonlinear in the model parameters. Therefore, it is difficult to
identify the model parameters (Ci’s) in real time. Once the tire or road conditions change, we
have to re-calibrate the model parameters off-line using the experimental data.

2. Since these models are purely empirical curve-fits of observations, there is no physical mean-
ing to the model parameters. It is difficult to interpret the variations of model parameters if
the physical conditions have changed. In other words, there is no connection between model
parameters and variations of physical conditions.

3. Finally, these models only capture the pseudo-static relationship between friction coefficient
µ and longitudinal slip λ. Dynamic friction behavior has not been represented by the models.
Moreover, for small slip situations, the models will not give a very accurate description of the
dynamics.

Physical model approach

In order to understand the tire/road interactions, several researchers have analyzed the forces gener-
ated by the contact patch. Two different types of friction models are discussed here: pseudo-static
(brush) and dynamic friction models.

(1). Pseudo-static (brush) models

The pseudo-static physical models assume that the friction dynamics between the tire and ground
reach their steady-state, and that vehicle velocity (for braking case) or wheel angular velocity (for
traction case) is constant. The basic idea of the physical model is to assume that the contact patch
between the tire and the ground can be divided into an adhesion region and a sliding region. In the
adhesion region, the interacting forces depend on the elastic properties of the tire; whereas in the
sliding region, the interacting forces depend on the adhesive properties of the tire/road interface.
Gim and Nikravesh (1990), Fancher and Bareket (1991), Wong (1993), and Fancher et al. (1997)
described such a physical model approach. Here we give a brief description.

4In Burckhardt (1993), the lateral force Fy is given by the same formula with different definition of slip λ.
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Assume that the tire/road sliding friction coefficient is µs. The tire/road contact patch is rect-
angular with length L and the normal load Fz is uniformly distributed on the patch. We can divide
the contact into two separate regions: adhesion and sliding regions; see Fig. 5.5. We can set up a
moving coordinate Oζ with the contact patch. We also assume that there is a critical length Lc ≤ L
such that for the adhesion region, 0 ≤ ζ < Lc and for the sliding region, Lc ≤ ζ ≤ L.

Sliding

Adhesion

O

Lc

L

v

v∆t

rω∆t

δ δ(ζ)

ζ

Figure 5.5: A brush model schematic of the tire contact deformation during traction.

Now we can calculate the sliding and adhesion forces:

1. In the sliding region, the friction force Fxs opposes to the movement of the tire. The sliding
force Fxs is given by the fraction of the load in sliding contact with the ground.

Fxs = µsFz

(
1− Lc

L

)
, (5.5)

where Lc/L is the fraction of the adhesion patch.

2. In the adhesion region, the friction force is linear with tire tread deformation. Assume that the
stiffness of the tire tread is Fz/L per unit length. Consider the traction case within time period
∆t illustrated in Fig. 5.5.

δ(ζ) = rω∆t− v∆t, and ζ = rω∆t.

Therefore, we obtain

δ(ζ) =
rω − v

rω
ζ = λζ , (5.6)

and the friction force can be calculated by

Fxa =

∫ Lc

0

dFxa =

∫ Lc

0

1

L

Fz
L
δ(ζ)dζ =

Fz
2

(
Lc
L

)2

λ = Csλ , (5.7)

where Cs = Fz

2

(
Lc

L

)2
is the longitudinal stiffness of the tire.

63



The total friction force Fx at the contact patch interface is the combination of these two effects
and is given by:

Fx = Fxs + Fxa = µsFz

(
1− Lc

L

)
+
Fz
2

(
Lc
L

)2

λ . (5.8)

The fraction Lc/L can be determined as the position where the adhesion force Fxa reaches its
critical value Fac = Csλc where sliding begins. It is easy to see that Lc/L = λc/λ and thus Eq. (5.8)
becomes

Fx = Fxs + Fxa = µsFz

(
1− λc

λ

)
+
Fz
2

λ2
c

λ
= µsFz

[
1 +

1

λ

(
λc − λ2

c

2

)]
, (5.9)

where λc = Fac/Cs.

pure rotating

Fx

Fxmax

µsFz
Fac

λ

λc

θ

Cs = tan(θ)

0.5o 1

Figure 5.6: Longitudinal force Fx of pseudo-static (brush) physical tire/road friction model for a specific
wheel angular velocity (traction case)

Fig. 5.6 illustrates the underlying physical meaning of model (5.9) for the traction case. When
longitudinal slip 0 ≤ λ ≤ λc, the friction force Fx is given by the adhesion portion and thus is linear
with slip λ. Once the slip λc < λ ≤ 1, the contact patch is also partially sliding and the total friction
force Fx is contributed to by both adhesion and sliding forces. When the wheel is purely rotating,
i.e. λ = 1, the friction force Fx ≈ µsFz is given by Eq. (5.9).

The same example could be applied to the lateral direction in order to calculate the lateral force
Fy (Gim and Nikravesh, 1990; Fancher and Bareket, 1991; Fancher et al., 1997).

(2) .Dynamic friction models

Although the brush models explain the physical deflections of the tire tread, they do not describe
the dynamic friction behavior of the tire/road interface because of the assumption that the deforma-
tion reaches its steady-state. However, the dynamic friction behavior is sometimes important for
studying vehicle dynamics and stability. For example, when the braking/traction torques change
significantly, we need to study the tire dynamics for large relative velocities.
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Recently, several dynamic friction models have been proposed and used to study and compensate
friction in mechanical and electromechanical systems. These dynamic friction models use hysteresis
models to describe the process of compression and expansion that takes place at the region of contact
between two surfaces. The first version of such a model is called Dahl friction model. Basically,
Dahl (1976) describes friction as a dynamical system. Let x be the relative displacement of the two
contact surfaces and v is the relative velocity between the two surfaces. The model is given by

dF

dx
= σ0

(
1− F

Fc
sign(v)

)α
, (5.10)

where σ0 is the stiffness coefficient, and α is a parameter that determines the shape of the stress-
strain curve. The value α = 1 is most commonly used. The friction force |F | will never be larger
than Fc if its initial value satisfies |F (0)| < Fc, where Fc is the maximal friction force (Coulomb
friction force). Bliman (1992), Bliman and Sorine (1991) and Bliman and Sorine (1995) extended
the Dahl friction model by using two internal friction states to capture different friction properties.
Canudas de Wit et al. (1995) proposed the so-called LuGre friction model 5 using only one internal
friction state to capture different friction characteristics. We will give a brief description of these
dynamic friction models in Chapter 5.2. For details about the LuGre dynamic friction model, readers
can refer to Olsson (1996).

One interesting property of using dynamic friction models to describe tire/road interaction is that
these models can reproduce the pseudo-static relationship between the friction coefficient µ and slip
λ (Bliman et al., 1995; Canudas de Wit and Tsiotras, 1999; Canudas de Wit and Horowitz, 1999; Yi
et al., 2000). Therefore, we can use these models to capture the tire/road friction characteristics. We
will discuss in detail the use of the LuGre dynamic friction model in tire/road friction estimation
and braking control in later chapters.

Other approaches of estimating the friction coefficient µ

There is a significant amount of research that focuses on determining the instantaneous value of
the coefficient of friction and using this value for control purposes, for example, Lee and Tomizuka
(1995), Ray (1997), Yi and Jeong (1998) and Yi et al. (1999). Pasterkamp and Pacejka (1997) and Pal
et al. (1994) proposed a neural network technique to estimate the friction coefficient. In Jansen et al.
(2000) and Sorine and Szymanski (2000), the dynamics of the tire belt are considered using a second-
order dynamic friction model; some simulation results are compared with the “magic formula”. In
the analytical and experimental work of Sakai (1982), Gim and Nikravesh (1990), and Dixon (1991),
the dynamical properties of the tire are discussed. Finite element methods have also been applied to
analyze the tire dynamical properties (Mastinu and Fainello, 1992; Tanner, 1996).

All of the above modeling work did not consider different environmental variations such as
rain, road conditions etc. The studies of Horne and Buhlmann (1983), Lenke and Graul (1986),
and Bareket and Fancher (1989) discussed the effect of different pavements. The effects of tire pres-
sure variations and distributions have been investigated analytically and experimentally in Lippmann
and Oblizajek (1974), Clark (1981) and Gim and Nikravesh (1990). There is little work that con-
siders the effect of temperature on the tire/road friction despite the fact that this is a very important

5The LuGre acronym comes from the two university names that authors are affiliated: Lund Institute of Technology
in Sweden and Laboratoire d’Automatique de Grenoble in France.
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factor. All of these physical models of the tire/road interface employed either mechanical analysis
of tire deflection (and/or finite element methods), or empirical curve-fitting to experimental data for
a particular type of tire on a specific road. Moreover, these models are very complicated and thus
are not attractive for estimation and vehicle control.

5.1.3 Tire/road friction models used in this project

In this project, we will focus on a tire/road friction estimation scheme using dynamic model ap-
proaches. In MOU 312, we proposed a new pseudo-static friction model and an adaptation scheme
was then presented to estimate the model parameters. Based on this friction model and the estimation
scheme, an emergency braking control law was designed. An attractive property of that controller
is that, by choosing appropriate initial conditions of adaptation parameters and gains, underestima-
tion of the maximum friction coefficient and slip can be guaranteed, which is very important for
vehicle operation safety. In this project, we investigate how the LuGre dynamic friction model can
be used for tire/road friction estimation and brake control system design. In particular, we consider
the design of an emergency braking maneuver. In Task Order 4207, we extend the dynamic friction
model systematically to capture more physical variations. Two specific models have been studied:
a three dimensional friction model combined longitudinal and lateral motions, and a tire friction
model under wet road conditions.

5.2 Adaptive Emergency Braking Control Using a Dynamic Tire/road
Friction Model

In MOU 312, we proposed an empirical pseudo-static tire/road friction model and an emergency
braking controller was designed based on this model. In this chapter, we explore a physical friction
modeling approach to the tire/road interaction. We first introduce a dynamic friction model, the
so-called LuGre model, and then apply it to the problem of tire/road interactions. Two emergency
braking controllers are designed using this dynamic friction model: the first one assumes that the
friction internal state and the vehicle velocity information is known while the second one relaxes
this assumption by constructing a state observer.

5.2.1 The LuGre dynamic friction model

Friction is an important issue in the control of electro-mechanical systems. Control strategies that
attempt to compensate the effects of friction, without resorting to high gain loops, require a suitable
friction model to predict and cancel its adverse effects. Most classical friction models, such as the
Coulomb and viscous friction models, describe the static relationship between the friction force and
the velocity (Armstrong-Hélouvry et al., 1994; Olsson, 1996). As pointed out in Canudas de Wit
et al. (1995), these classical models cannot explain certain observed phenomena, such as (1) the
hysteresis behavior that appears when studying friction for non-stationary velocities, (2) variations
in the break-away force with the experimental condition, and (3) small displacements that occur at
the contact interface during stiction 6. In order to capture these friction characteristics, it is necessary

6Sometimes this phenomena is also referred to as the Dahl effect (Dahl, 1976).
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to introduce dynamics into the friction model.
In Bliman and Sorine (1995), a two state variable dry friction model was presented with some

desired properties for control purposes. These properties permitted a unified description of kinetic
and static friction and suitably captured the Dahl and Stribeck effects and stick slip. The model
in Bliman and Sorine (1995) can be described as{

ẋ = |v̇|Ax +Bv̇

F = Cx +D sign(v̇) ,
(5.11)

where x = [x1, x2]
T is the internal state vector, v is the relative velocity between two sliding

surfaces, and

A = −1

ε

[
1
η

0

0 1

]
, B =

1

ε

[ f1
η

−f2

]
, C =

[
1 1
]
, D = 0 ,

η > 0 dimensionless, ε > 0 is a distance, f1 > 0 and f2 ≥ 0 are known forces. The Bliman
model (5.11) has been applied to the tire/road friction estimation by considering a distributed contact
patch between the tire and the ground. The case of longitudinal motion was treaded in Bliman et al.
(1995), while combined longitudinal and lateral motions was developed in Sorine and Szymanski
(2000). Due to its complexity, it is not convenient to apply this model to friction estimation and
automatic control.

Recently, a simpler dynamic friction model, the LuGre friction model, was proposed and has
been applied to friction compensations of various mechanical-electrical systems (Canudas de Wit
et al., 1995; Canudas de Wit and Lischinsky, 1997; Hirschorn and Miller, 1999). The LuGre friction
model can be described as {

ż = vr − σ0|vr |
h(vr)

z

F = (σ0z + σ1ż + σ2vr)Fn ,
(5.12)

where z is an internal friction state, vr is the relative velocity, h(vr) = µc+ (µst−µc)e
−| vr

vs
|1/2

, σ0 is
the stiffness coefficient, σ1 is the damping coefficient, σ2 is the viscous relative damping coefficient,
µst is the normalized static friction coefficient, µc is the normalized Coulomb friction, and vs is the
Stribeck relative velocity.

The LuGre friction model can be interpreted as describing the forces generated by the interaction
between two brush-like surfaces (see Fig. 5.7.) The bristles on the lower surface are assumed to
be rigid for simplicity. Each bristle on the upper surface transfers forces that are captured by the
spring/dumper model shown in Fig. 5.7. The LuGre model is obtained by aggregating their effects,
and introducing a viscous term (σ2v) (Canudas de Wit et al., 1995).

Note that we have the following properties for the LuGre model (5.12):

Property 5.1
1. µc ≤ µst and µc, µst ∈ [0, 1];

2. if |z(0)| < µst

σ0
, then |z(t)| < µst

σ0
, ∀t ≥ 0;

3. 0 < µc ≤ h(vr) ≤ µst <∞;

4. The change rate of the internal state z is proportional to the parameter σ0 and it converges
faster for large σ0.
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Figure 5.7: A schematic of bristle contact between two surfaces for LuGre friction model.

It has been shown that the LuGre model (5.12) can reduce to the Dhal model and, moreover, it
can capture the Stribeck effect, hysteresis, spring-like characteristics for stiction, and varying break-
away force (Canudas de Wit et al., 1995). One of the attractive properties of the LuGre model is that
all these friction phenomena are unified into a first-order nonlinear differential equation. However,
in order to use the LuGre model to predict and compensate the friction, we must construct a state
observer for the internal friction state z. Moreover, parameter estimation and adaptation schemes
are needed to accommodate the variations in physical conditions.

In the remainder of this chapter, we will explore the use of the LuGre dynamic friction model
to describe the tire/road interaction. Basically, we are trying to address two problems: estimation
of tire/road friction and emergency braking control under various conditions. In section 5.2.2, we
assume that the internal state z in the friction model and the vehicle longitudinal velocity v are known
and an adaptation scheme and a braking controller are then presented to achieve the maximum
deceleration. In section 5.2.3, we relax the assumption of availability of internal state z and velocity
v by construction of a model-based observer.

5.2.2 Adaptive emergency braking control with full information

The goal of the proposed scheme in this section is to design an on-line strategy for vehicles to
estimate their own tire/road friction characteristics and the overall gain of the braking system. We
will investigate the application of the LuGre dynamic friction model to the tire/road interaction for
the braking process. A distributed LuGre friction model is proposed and compared with the lumped
model. The wheel relative velocity that achieves maximum braking effort in a quasi-static LuGre
friction model solution is estimated on line, assuming that the tire/road friction model dynamics is
much faster than the vehicle braking dynamics. This information is used to design a controller that
achieves near-maximum braking effort.

A distributed LuGre tire/road friction model

Canudas de Wit and Tsiotras (1999) first applied the LuGre model to the tire/road interaction for a
vehicle traction case. In Canudas de Wit and Horowitz (1999), an estimation scheme of the tire/road
friction was proposed using only the wheel angular velocity information. Variations in the tire and
road were modeled in Canudas de Wit and Horowitz (1999) with an external model variable θ (> 0).
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The modified LuGre dynamic friction model is given by{
ż = vr − θ σ0|vr|

h(vr)
z

F = (σ0z + σ1ż + σ2vr)Fn ,
(5.13)

where vr = rω − v, r is the wheel radius, ω is the wheel angular velocity and v is the vehicle
longitudinal velocity. The introduction of the new model parameter θ into the dynamics (5.13)
can be taken as an exchange of the function h(vr) by h(vr)

θ
, due to the variations in tire and road

conditions 7.
The dynamic model in Eq. (5.13) is a lumped parameter model with only one internal state z,

i.e. point-to-point contact. As discussed in Canudas de Wit and Tsiotras (1999) it is also possible
to obtain a distributed friction dynamic model by assuming the existence of a contact patch between
tire and ground (see Fig. 5.8.)

Before preceding with the derivation of the model, we make the following assumptions:

Assumption 5.2
1. The vehicle has only longitudinal motion.

2. The contact patch between the tire and road is rectangular.

3. The pressure is uniformly distributed on the tire/road contact patch.

4. The wheel radius does not change during the braking process.

5. The dynamics of the tire rubber belt are not considered, i.e. we consider a rigid rubber belt.

L

O

Fx
Fn

v

ω

dFx

ζ

Figure 5.8: A schematic of one vehicle wheel with distributed force.

Based on the above assumptions and following the same procedures as those given in Canudas
de Wit and Tsiotras (1999) for the traction case, we can develop a quasi-static µ-λ curve for the
braking case. The distributed LuGre friction model is given as{

dδz
dt
(ζ, t) = vr − θ σ0|vr|

h(vr)
δz

Fx =
∫ L
0
(σ0δz + σ1δż + σ2vr)δFzdζ

(5.14)

7In fact, introducing only one parameter θ cannot capture the variations of all tire and road conditions. It can
possibly capture part of variations of tire/road conditions, for example, wet road condition, etc. However, to simplify
the estimation and control system design, we only consider one parameter θ for variations of tire and road conditions in
this chapter.
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with boundary conditions as

δz(0, t) = δz(L, t) = 0, ∀t ≥ 0, (5.15)

where δFz = Fz/L and L is the length of the patch which is assumed to be constant. Assume that v
and ω are constant and ∂δz

∂t
(ζ, t) = 0 within a small enough interval of time, essentially a quasi-static

condition. Then we have {
dδz
dζ

(ζ) = vr
rω
− θ σ0|vr/rω|

h(vr)
δz ζ ∈ (0, L)

δ(0) = δ(L) = 0 .
(5.16)

Defining η = vr/rω and solving the above equation for δz(ζ) with initial condition δz(ζ) = ζ = 0,
we obtain

δz(ζ) =



h(vr)
θσ0

(e−θ
σ0|η|
h(vr)

ζ − 1), 0 ≤ ζ ≤ L
2

h(vr)
θσ0

[
e
−θ σ0|η|

h(vr)
(L−ζ) − 1

]
, L

2
< ζ ≤ L .

Calculating the friction force term by term using Eq. (5.14) we obtain∫ L
0

δz(ζ)dζ = −h(vr)
θσ0

L

[
1 +

2h(vr)

θσ0L|η|(e
− θσ0|η|L

2h(vr) − 1)

]
∫ L

0

δż(ζ)dζ = −2vh(vr)

θσ0

(
1− e−

θσ0|η|L
2h(vr)

)
then for constant velocity v we have

Fx(η, v) = −Fzh(vr)
θ

[
1 + 2γ

h(vr)

θσ0L|η|(e
− θσ0L|η|

2h(vr) − 1)

]
− Fzσ2vr (5.17)

where

η =
vr
rω

=
λ

1− λ
, γ = 1− θσ1|η|

rωh(vr)
,

and λ = 1 − rω/v is the longitudinal slip ratio. This formula is similar to the traction case derived
in Canudas de Wit and Tsiotras (1999) that considers the angular velocity ω to be constant. λ ∈
[0, 1] is used in Canudas de Wit and Tsiotras (1999) while η ∈ (−∞, 0] is used here.

Remark 5.1 In the pseudo-static curve in Eq. (5.17) we assume constant velocity. If velocity
changes, the curve changes as well. However, by taking a look at the dynamic equation for the
internal state z we find that it changes much faster than the vehicle dynamics. Therefore, we can
make the assumption that, for each time step, this formula can be used to calculate the approximated
maximum peak value for the braking force produced by the tire/road friction.

Remark 5.2 The static curve in Eq. (5.17) is a function of longitudinal slip ratio λ. In the braking
case it has been defined as λ = v−rω

v
. When the vehicle’s velocity becomes very small, the relation-

ship does not have a physical interpretation. However, since we are interested in finding a controller
strategy for braking the car at fairly high speeds, we can use this approach for large velocities and
establish a lower bound vmin to obtain good braking.
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The distributed model given by Eq. (5.14) is consistent with the lumped model given by Eq. (5.13)
in the following sense: assuming that the patch region does not change with time and defining

z̄(t) =
1

L

∫ L
0

δz(ζ, t)dζ , (5.18)

we have

˙̄z(t) =
d

dt

(
1

L

∫ L
0

δz(ζ, t)dζ

)
=

1

L

∫ L
0

∂

∂t
(δz(ζ, t)) dζ , (5.19)

we know that

δż =
d

dt
(δz(ζ, t)) =

∂

∂t
(δz(ζ, t)) +

∂

∂ζ
(δz(ζ, t))ζ̇

=
∂

∂t
(δz(ζ, t)) + v

∂

∂ζ
(δz(ζ, t)) = vr − θ

σ0|vr|
h(vr)

δz(ζ, t) ,

then Eq. (5.19) becomes

˙̄z(t) =
1

L

∫ L
0

(
δż − v

∂

∂ζ
(δz(ζ, t))

)
dζ

=
1

L

∫ L
0

(
vr − θ

σ0|vr|
h(vr)

δz(ζ, t)

)
dζ − 1

L

∫ L
0

v
∂

∂ζ
(δz(ζ, t))dζ

=
1

L

∫ L
0

vrdζ − θ
σ0|vr|
h(vr)

1

L

∫ L
0

δz(ζ, t)dζ − v

L
[δz(L, t)− δz(0, t)]

= vr − θ
σ0|vr|
h(vr)

z̄ (5.20)

in the last step we use Eq. (5.15).
Similarly, we can find the friction force given by Eq. (5.14) using the state z̄ as

Fx =

∫ L
0

(σ0δz + σ1δż + σ2vr)δFzdζ = Fz

(
σ0z̄ + σ2vr +

σ1

L

∫ L
0

δżdζ

)
,

note that

1

L

∫ L
0

δżdζ =
1

L

∫ L
0

(
∂

∂t
(δz(ζ, t)) + v

∂

∂ζ
(δz(ζ, t))

)
dζ

=
1

L

∫ L
0

∂

∂t
(δz(ζ, t))dζ +

v

L
[δz(L, t)− δz(0, t)]

=
d

dt

(
1

L

∫ L
0

δz(ζ, t)dζ

)
= ˙̄z(ζ, t) ,

therefore

Fx = (σ0z̄ + σ1 ˙̄z + σ2vr)Fz (5.21)
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Remark 5.3 Comparing the lumped LuGre dynamic model in Eqs. (5.20) and (5.21) with the
lumped model in Eq. (5.13), we find that the lumped model for the tire/road dynamics can be ob-
tained by using the transformation in Eq. (5.18) and converting the PDE in Eq. (5.14) into the ODE
in Eq. (5.20).

Remark 5.4 In the above derivation of the equivalence between the lumped and the distributed
LuGre friction models, we used the simplifying assumption that the tire and road contact patch is
rectangular and the pressure is uniformly distributed on this patch. We thus defined the boundary
condition δz(L, t) = 0, and the distributed model was shown to be equivalent to the lumped model
by the transformation (5.18). If we consider a non-uniform pressure distribution and non-symmetric
deformations of the tire rubber belt on the contact patch, then δz(L, t) �= 0 and we cannot conclude
the equivalence between these two models (Deur, 2001). In Deur (2001), a modified equivalent
lumped LuGre model was derived as{

ż = vr −
(
θ σ0|vr|
h(vr)

+ κ
L
rω
)
z

Fx = (σ0z + σ1ż + σ2vr)Fz ,
(5.22)

where κ is the ratio of the deformation at the edge ζ = L to the average deformation along the contact
patch 8. In Deur (2001), κ is taken as a constant between a value of 1.1 and 1.4, i.e., κ ∈ [1.1 , 1.4].
With the modified lumped LuGre model (5.22), the estimation and control scheme developed in this
chapter can be easily modified since the wheel angular velocity ω is measurable. For simplicity, we
use the lumped LuGre model given by (5.13) in our design.

In order to see the consistence between the LuGre dynamic friction model with the pseudo-static
tire/road friction relationship, we compare the pseudo-static curve in Eq. (5.17) obtained from the
dynamical model, against the magic formula for one of the tested tires in Schuring (1976). Fig. 5.9
shows the results using the formula in Eq. (5.17). From the figure we see that the dynamic model
can fit the experimental data very well. The parameters for the LuGre dynamic model are listed in
Table 5.1.

Table 5.1: Parameters used for the static curve of Eq. (5.17).

Parameters Values Units

σ0 100 1/m

σ1 0.7 s/m

σ2 0.011 s/m

µst 0.5 –

µc 0.35 –

vs 10.0 m/s

L 0.25 m

8For more details about the definition of κ, reader is referred to Deur (2001) and Canudas de Wit et al. (2001).
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Figure 5.9: Comparison between the LuGre dynamic model and the “magic formula” for a tested tire in
braking case with v = 30 mph and θ = 1 in the model

System dynamics

In order to model and control the system dynamics using the LuGre friction model, we consider, in
addition to Assumption 5.2, the following assumptions regarding the wheel and vehicle dynamics.

Assumption 5.3
1. Normal forces on the tires are constant and evenly distributed.

2. The braking forces are equal on all tires.

3. The friction internal state z and the vehicle velocity v are known.

4. The wheel angular velocity ω is measurable.

5. The road is flat, i.e. the slope of the road is zero.

Based on the above assumptions, we consider the LuGre model together with vehicle dynamics
as: 


ż = vr − θ σ0|vr |

h(vr)
z

Jω̇ = −rFx − σωω − uτ

mv̇ = 4Fx − Fav ,

(5.23)

where σω is the coefficient of the viscous resistance moments, Fav = Cavv
2 is the aerodynamic

force, uτ is the traction/braking torque, and Fx is the traction/braking force given by the tire/road
contacting. The braking force Fx is given by

Fx = Fn(σ0z + σ1ż + σ2vr) .

Define the state variables as

x1 := z, x2 := v, , x3 := vr = rω − v
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and rewrite the system dynamics in Eq. (5.23) as

ẋ1 = ż = x3 − θ
σ0|x3|
h(x3)

x1 = x3 − θf(x3)x1 (5.24)

where f(x3) =
σ0|x3|
h(x3)

, h(x3) = µc + (µst − µc)e
−| x3

vs
|1/2

,

ẋ2 = g [σ0x1 + σ1(x3 − θf(x3)x1) + σ2x3]− Cavx
2
2 (5.25)

g is the gravity constant and Cavm = Cav/m. For the state variable x3 we have

ẋ3 = q [σ0x1 + σ1(x3 − θf(x3)x1)]− gσ2x3 + Cavx
2
2 −

rσω
J

(x2 + x3)− r

J
KbPb , (5.26)

where q = −
(
g + Fnr2

J

)
. In the above equation we use the same formula uτ = KbPb as the

previous chapter, where Kb is the brake coefficient gain and Pb the brake pressure which is the
controlled variable.

Controller design

The objective of an emergency braking maneuver is to bring the vehicle to a stop as quickly as
possible. We need to design a braking controller that achieves a vehicle longitudinal slip close
to λmax, while keeping the vehicle stable. In Tan and Tomizuka (1990), a traction control was
designed to force the slip to track λmax, assuming that λmax is known and fixed. In Drakunov et al.
(1995), a sliding mode controller and friction force observer achieve maximum friction force using
an extremum seeking technique.

In this section, we use the LuGre dynamic tire/road friction model to estimate the maximum slip
λmax by means of an equivalent pseudo-static model given in Eq. (5.17). Thus, assuming that v is
known, we can calculate the maximum slip λmax by solving for it numerically from the equivalent
pseudo-static model in Eq.(5.17):

λmax = argmax
λ

{
µ(η, v, θ̂)

}
. (5.27)

Note that the tire/road condition (θ) is unknown. If we can guarantee that θ̂ → θ, then we can
achieve the maximum deceleration.

Arrange the system dynamics (5.24), (5.25) and (5.26) as

ẋ1 = x3 − f1(x)θ

ẋ2 = f2(x)− [gσ1f1(x)] θ

ẋ3 = f3(x)− [qσ1f1(x)] θ − r
J
KbPb ,

(5.28)

where

f1(x) = f(x3)x1, f2(x) = g [σ0x1 + (σ1 + σ2)x3]− Cavmx
2
2

f3(x) = qσ0x1 + (qσ1 − gσ2)x3 + Cavmx
2
2 −

σω
J
(x2 + x3) .
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Define
s̃ := x3 − x3d(θ̂) = x3 + λmax(θ̂)x2 ,

where λmax(θ̂) is the peak value of the longitudinal slip λ under current conditions based on the
estimated parameter θ̂ given by Eq. (5.27). Differentiate s̃ to obtain

˙̃s = ẋ3 + ẋ2λmax + x2λ̇max = IKbPb + β1(x)θ + β2(x) , (5.29)

where

I = − r

J
, β1(x) = − [qσ1f1(x) + gσ1f1(x)λmax] , β2(x) =

[
f3(x) + x2λ̇max + λmaxf2(x)

]
.

Let Mb :=
1
Kb

be the adaptation variable and define the error variables

θ̃ := θ − θ̂, M̃b := Mb − M̂b .

Let the control input Pb be

Pb =
M̂b

I

[
−β1(x)θ̂ − β2(x)− ηs̃

]
, (5.30)

where η > 0 is a control gain. Then the dynamics for s̃ in Eq. (5.29) can be described as

˙̃s = KbM̂b

[
−β1(x)θ̂ − β2(x)− ηs̃

]
+ β1(x)θ + β2(x)

= β1(x)θ̃ − ηs̃+KbM̃b

[
β1(x)θ̂ + β2(x) + ηs̃

]
. (5.31)

Consider now the following Lyapunov candidate

V =
1

2
s̃2 +

1

2γ
θ̃2 +

1

2ξ
KbM̃

2
b ,

where γ > 0, ξ > 0 are gains. Then

V̇ = s̃ ˙̃s+
1

γ
θ̃ ˙̃θ +

1

ξ
KbM̃b

˙̃Mb

= s̃
[
β1θ̃ − ηs̃+KbM̃b(β1θ̂ + β2 + ηs̃)

]
+

1

γ
θ̃
˙̃
θ +

1

ξ
KbM̃b

˙̃Mb

= θ̃

[
β1s̃+

1

γ
˙̃
θ

]
+KbM̃b

[
˙̃Mb

ξ
+ s̃(β1θ̂ + β2 + ηs̃)

]
− ηs̃2 .

Letting

˙̂
θ = γβ1(x)s̃,

˙̂
Mb = ξs̃

[
β1(x)θ̂ + β2(x) + ηs̃

]
,

(5.32)

we obtain
V̇ = −ηs̃2 ≤ 0 .
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By Lyapunov’s theorem, (s̃ = 0, θ̃ = 0, M̃b = 0) is a stable equilibrium point and s̃, θ̃ and M̃b are
bounded. Notice that

V̈ = −2ηs̃ ˙̃s
is bounded. Thus, by Barbalat’s Lemma, s̃→ 0 as t→∞, and

x3 → −λmax(θ̂)x2 .

Remark 5.5 Even if we can calculate the dynamic surface by Eq. (5.17), we still need to compute
its time derivative. We approach this by numerical differentiation which can be easily implemented.
A low-pass filter is used to smooth the numerical noise in the input.

Simulation results

In the simulation we use the parameters from the LeSabre cars used in the California PATH program.
These parameters are: m = 1701.0 Kg, Cav = 0.3693 N · s2/m2, J = 2.603 Kg ·m2, r = 0.323m.
We also assumed the characteristic parameter to be θ = 1, and the brake coefficient gain Kb = 0.9,
therefore M = 1/Kb = 1.11.

We simulate a vehicle starting an emergency braking maneuver at the initial velocity v = 30m/s,
by applying the designed controller without an observer. Fig. 5.10 shows the vehicle’s velocity
change as well as the internal state z and the relative velocity (−vr).
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Figure 5.10: Vehicle velocity v (m/s), internal state z and relative velocity vr (m/s)

The controlled brake pressure and the sliding surface errors are illustrated in Fig. 5.11. The
adaptations of parameters θ and Kb are plotted in Fig. 5.12. From the simulation results we find that
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the vehicle stopped quickly with an almost constant deceleration (around 8m/s2) and both of the
parameters Kb and θ converge to the true values 0.9 and 1.0, respectively. Using this control, we can
achieve braking around its peak value at each transient time, and this can be seen from the Fig. 5.13,
which shows the friction coefficient and slip during the emergency braking. Note that the slip ratio
converges to the value estimated by the dynamic model.
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Figure 5.11: Brake pressure P (KPa) and sliding surface s̃

5.2.3 Observer-based adaptive emergency braking control with only wheel
angular velocity information

Motivation

In the previous section, we discussed the use of the LuGre dynamic friction model to describe the
tire/road interaction. An adaptive friction estimation scheme and an emergency braking controller
were investigated analytically and numerically with an assumption of availability of the internal
friction state z and the vehicle velocity v. However, since state z in the LuGre dynamic friction
model and the vehicle longitudinal velocity v are typically not measurable, an observer must be
constructed to estimate these state variables using only the measurable wheel angular velocity. In
this section, we explore the approach of the observer-based adaptive controller synthesis.
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Figure 5.12: Friction characteristic parameter θ and brake coefficient Kb (Nm/KPa)

System dynamics and control objectives

We will retain the system dynamics given by Eqs. (5.28) with the replacement of the quadratic
aerodynamic term Fav = Cavv

2 with a linear force of rolling resistance Fr = σvmgv, in order to
simplify the analysis 9. σv is the rolling resistance coefficient and g is the gravity constant (Wong,
1993). We define the following state variables

x1 := σ0z, x2 := v, , x3 := vr = v − rω .

For most vehicles, we can measure the angular velocity of each wheel, thus the output equation can
be obtained as

y = ω =
1

r
(x2 − x3) (5.33)

Rearrange the dynamics (5.28) and (5.33) as{
ẋ = Ax +B1θψ(x) +B2u

y = Cx
(5.34)

9Since both the aerodynamics coefficient Cav and the rolling resistance coefficient σv are tiny, the change of Fav

with Fr does not affect the system dynamics much. However, it changes the structure of the system dynamics to avoid
the singularity. We will discuss the convergence rate in section 5.2.3.
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Figure 5.13: Friction coefficient µ and slip λ during emergency braking

where

x =


x1

x2

x3


 , A =


0 0 −σ0

g −gσv −g(σ2 + σ1)

q −gσv −q(σ2 + σ1)


 , B1 =


 −σ0

−gσ1

−qσ1


 , B2 =


 0

0
r
J
Kb


 ,

C =
[
0 1

r
−1
r

]
, ψ(x) = x1f(x3), u = Pb .

Note that the internal friction state z and the vehicle longitudinal velocity v are assumed not to
be measurable, and the tire/road condition (θ) is unknown. It is therefore difficult to obtain λmax for
the current vehicle control design. It is necessary to construct an observer that guarantee v̂ → v and
θ̂ → θ, so that near maximum deceleration can be achieved around λ̂max. λ̂max can be determined
from the estimated velocity (v̂) and parameter (θ̂) as follows:

λ̂max = argmax
v̂,λ,θ̂

{
µ̂(λ, v̂, θ̂)

}
. (5.35)

Another important control objective, which is needed to preserve vehicle steering stability, is to
always underestimate the slip during an emergency braking maneuver, namely to ensure λ̂max(t) ≤
λmax(t).
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Observer-based braking controller design

In this section we formulate the design of a controller, based on the available angular velocity output.
We construct the following model-based nonlinear observer

˙̂x = Ax̂ + B1θ̂ψ(x̂) +B2u+ L2(y − Cx̂) +B1G , (5.36)

where G is a tuning function to be determined and L2 ∈ R is the observer gain.
The following assumptions are made for the system (5.34) and observer (5.36):

(i) (A, B1) is controllable and (A, C) is observable;
(ii) f(x3) is non-negative and bounded and f ′(x3) is bounded, i.e.

0 ≤ f(x3) ≤ fmax ≤ ρ2 <∞, |f ′(x3)| ≤ ρ3 <∞, ∀x3 ∈ R . (5.37)

(iii) The unknown parameter θ is bounded, i.e.

0 < θ ≤ θmax . (5.38)

(iv) The map w �→ ξ of the system {
ζ̇ = (A− L2C)ζ +B1w

ξ = Cζ
(5.39)

with (A− L2C) Hurwitz, is strictly passive; moreover, ∃ρ1 > 0 a constant, and ∃P = P T > 0
such that

(A− L2C)TP + P (A− L2C) + (ρ2
1 + ρ4)I < 0 (5.40)

as well as
PB1 = CT , (5.41)

where ρ4 = 2θmaxρ2
r

> 0.

Theorem 5.1 Under assumptions (i) – (iv) there exists an adaptive emergency braking controller
that achieves

λ̂→ λ̂max

asymptotically for the system (5.34) using the measured angular velocity ω, where the estimated
slip λ̂ := x̂3

x̂2
= v̂−rω̂

v̂
and λ̂max := λ̂max(v̂r, v̂) is the longitudinal slip corresponding to the esti-

mated maximum friction coefficient µ̂max in the pseudo-static relationship between µ and λ, given
by Eq.(5.17).

Proof: Define x̃ := x− x̂, ỹ := y− ŷ = Cx̃ and θ̃ := θ− θ̂, then the error dynamics for the system
is

˙̃x = (A− L2C)x̃ +B1

[
θψ(x)− θ̂ψ(x̂)

]
−B1G . (5.42)

Define the dynamic surface s̃ as

s̃ := x̂3 − λ̂maxx̂2
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and differentiate s̃:

˙̃s = ˙̂x3 − ˙̂x2λ̂max − ˙̂
λmaxx̂2

=
r

J
KbPb − σ1(q − gλ̂max)f(x̂3)θ̂ +

{
(q − gλ̂max) [x̂1 − (σ2 + σ1)x̂3

−(1− λ̂max)gσvx̂2

]
+ (l3 − l2λ̂max)ỹ

}
− σ1(q − gλ̂max)G − ˙̂

λmaxx̂2

= IKbPb + β1(x̂)θ̂ + β2(x̂) + β3(x̂)G (5.43)

where

I =
r

J
, β1(x̂) = −σ1(q − gλ̂max)f(x̂3)x̂1,

β2(x̂) = (q − gλ̂max) [x̂1 − (σ2 + σ1)x̂3] + (l3 − l2λ̂max)ỹ − ˙̂
λmaxx̂2 − (1− λ̂max)gσvx̂2,

β3(x̂) = −σ1(q − gλ̂max),

and l2, l3 are the second and third elements of the gain vector L2 ∈ R3.
Consider the following Lyapunov function candidate

V =
1

2
s̃2 +

1

2γ
θ̃2 + x̃TP x̃ ,

where γ > 0. Then

V̇ = ˙̃xTP x̃ + x̃TP ˙̃x + s̃ ˙̃s+
1

γ
θ̃ ˙̃θ

= x̃T
[
(A− L2C)TP + P (A− L2C)

]
x̃ + 2x̃TPB1

[
θψ(x)− θ̂ψ(x̂)

]
+

1

γ
θ̃ ˙̃θ + s̃ ˙̃s− 2x̃TPB1G .

Notice that
θψ(x)− θ̂ψ(x̂) = θ̃ψ(x̂) + θ [ψ(x)− ψ(x̂)]

and use fact (5.41) to obtain

V̇ = x̃T
[
(A− L2C)TP + P (A− L2C)

]
x̃ + 2ỹθ̃ψ(x̂) + 2x̃TPB1θ [ψ(x)− ψ(x̂)] +

1

γ
θ̃
˙̃
θ + s̃
[
IKbPb + β1(x̂)θ̂ + β2(x̂) + β3(x̂)G

]
− 2x̃TPB1G. (5.44)

Let the control input be

u = Pb =
1

IKb

[
−β1(x̂)θ̂ − β2(x̂)− β3(x̂)G − ξs̃

]
,

then Eq.(5.43) becomes
˙̃s = −ξs̃. (5.45)

Using (5.41) and (5.45) and letting

˙̂
θ = 2γỹψ(x̂) , (5.46)
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we obtain from Eq.(5.44)

V̇ = x̃T
[
(A− L2C)TP + P (A− L2C)

]
x̃ + 2x̃TPB1θ [ψ(x)− ψ(x̂)]− ξs̃2 − 2ỹG.

Note that

ψ(x)− ψ(x̂) = x1f(x3)− x̂1f(x̂3) = f(x3)x̃1 + x̂1f
′(x∗3)(x3 − x̂3) ,

where x∗3 is a value between x3 and x̂3 derived by applying the Mean Value Theorem to the smooth
function f(x) = x

h(x)
. Moreover, by Eqs. (5.37), (5.38) and (5.46)

V̇ ≤ x̃T
[
(A− L2C)TP + P (A− L2C)

]
x̃ + 2x̃TCT θmaxρ2x̃1 + 2ρ3θmax|ỹ||x̂1||x̃3| −

ξs̃2 − 2ỹG
= x̃T

[
(A− L2C)TP + P (A− L2C)

]
x̃ +

1

r
θmaxρ2(2x̃1x̃2 − 2x̃1x̃3) +

2ρ3θmax|ỹ||x̂1||x̃3| − ξs̃2 − 2ỹG
≤ x̃T

[
(A− L2C)TP + P (A− L2C)

]
x̃ + ρ4

(
x̃2

1 +
1

2
x̃2

2 +
1

2
x̃2

3

)
−

ρ4

2

(
|x̃3| − ρ3r

ρ2
|ỹx̂1|
)2

+
ρ4

2
x̃2

3 +
ρ4

2

(
ρ3r

ρ2

)2

x̂2
1ỹ

2 − ξs̃2 − 2ỹG
≤ x̃T

[
(A− L2C)TP + P (A− L2C) + ρ4I

]
x̃ − ξs̃2 −

ρ4

2

(
|x̃3| − ρ3r

ρ2

|ỹx̂1|
)2

+ ỹ

[
ρ4

2

(
ρ3r

ρ2

)2

x̂2
1ỹ − 2G

]

≤ −ρ2
1‖x̃‖2 − ξs̃2 − ρ4

2

(
|x̃3| − ρ3r

ρ2
|ỹx̂1|
)2

+ ỹ

[
ρ4

2

(
ρ3r

ρ2

)2

x̂2
1ỹ − 2G

]
.

If we choose G such that

G =
ρ4

4

(
ρ3r

ρ2

)2

x̂2
1ỹ (5.47)

then

V̇ ≤ −ρ2
1‖x̃‖2 − ξs̃2 − ρ4

2

(
|x̃3| − ρ3r

ρ2
|ỹx̂1|
)2

≤ 0 .

Using Barbalat’s Lemma, we can conclude that

s̃→ 0, x̃ → 0, as t→∞.

Thus, by definition of s̃ and λ we have

λ̂→ λ̂max as t→∞ .
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Remark 5.6 To compute the controlled input Pb we need to know λ̂max and ˙̂
λmax. We use Eq. (5.35)

to calculate the estimated maximum slip λ̂max under current estimated vehicle velocity and tire/road

conditions. ˙̂
λmax is then calculated numerically. The tuning function G given by (5.47) is a linear

function of ỹ and appears both in the observer and the control input. Compared with the tuning
function in Canudas de Wit and Horowitz (1999), Eq. (5.47) does not require switching in the control
input, and therefore produces a smoother control.

Remark 5.7 The adaptive nonlinear observer structure presented in this section is similar to the
scheme presented in Cho and Rajamani (1997), although the results in Cho and Rajamani (1997)
require an additional Lipschitz assumption on the function ψ(x), and condition (5.41) is replaced by
BT1 PC

⊥ = 0 where C⊥ is the projection onto null(C).

Assumptions (i) through (iv) must be satisfied by the system dynamics described by Eq. (5.34)
for the theorem to hold:

(1). Regarding assumption (i), we can calculate the observability matrix

O =




0 1
r

−1
r

g−q
r

0 a
r

qa
r

−gσva
r

(g−q)[q(σ2+σ1)2+σ0]
r




where a = (σ2 + σ1)(q − g), thus rank(O) = 3, and (A,C) is an observable pair. Similarly,

the controllability matrix C =
[
B1 AB1 A2B1

]
satisfies rank(C) = 3. Hence, assumption

(i) always holds;

(2). To see that assumption (ii) is always satisfied, we have

0 ≤ f(x3) =
x3

h(x3)
≤ x3

µc
≤ λmaxvmax

µc
= ρ2

and

|f ′(x3)| ≤ 1

µc

{
1 +

(
µst
µc
− 1

)[
1 +

1

2

(
vmax
vs

)1/2
]}

= ρ3 .

(3). Assumption (iv) is satisfied by construction. As for (iv), we must pick an observer gain L2 and
a positive symmetric matrix P such that following optimization problem is feasible


max ρ1

s.t.: (A− L2C)TP + P (A− L2C) + ρ2
1I + ρ4I < 0

PB1 = CT , P = P T > 0 and ρ1 > 0

This can be calculated by linear matrix inequality (LMI) algorithms, such as those presented
in El Ghaoui et al. (1995).
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Simulation results and discussion

In the following simulation example we use the parameters from the LeSabre cars used by the
California PATH program. These parameters are: m = 1701.0 Kg, σv = 0.005 N · s2/m2,
J = 2.603 Kg ·m2, r = 0.323m. We also take the LuGre road friction parameter in Eq (5.23) to be
θ = 1 and the braking gain Kb = 0.9. The nominal values of the parameters in the dynamic LuGre
friction model are the same as those in the previous section.

We simulate an emergency braking maneuver with a vehicle initial velocity of v = 30m/s
and the designed observer-based controller. The initial condition for the observer dynamics is
x̂(0) = [0 29.5 0]T and the true state is x(0) = [0 30 0.5]T ; namely we use the measurement rω
(=29.5m/s) as the initial condition for v̂. Fig. 5.14 shows the time responses of the real state vector
x and estimated state vector x̂, while Fig. 5.15(c) shows the time response of the estimated friction
parameter θ̂. Fig. 5.15(a) shows the time response of the controlled pressure P while Fig. 5.15(b)
shows the controlled sliding surface s̃. Fig. 5.15(d) illustrates the difference, ỹ, between the mea-
surement y and output of observer ŷ. From these figures we can see that the estimated state ẑ and
parameter θ̂ converge to their respective true values quickly, and that the controlled input (pressure
P ) remains within its feasible domain, enabling the vehicle to come to a quick halt (decelerating at
around 10m/s2). This example verifies the results of the previous section. However, the simulation
results also reveal that the estimated states v̂ and v̂r do not converge to their true states during the
braking process, remaining within a constant offset, even though the vehicle achieved its maximum
estimated deceleration level, which is based on estimated states, as shown by Fig. 5.15(b).

In what follows we present a formal explanation of the above simulation results.
From the state error dynamics (5.42) we find that

˙̃y = −1

r
[l2 − l3 + σ1(g − q)g]ỹ + f1(x̃), (5.48)

where f1(x̃) = (g − q)[(1 − σ1θf(x3)]x̃1 − σvx̃2 − (σ1 + σ2)x̃3 − σ1[θf(x3) − θ̂f(x̂3)]x̂1 and

g = ρ4
4

(
ρ3r
ρ2

)2
x̂2

1. In our example, we chose a relatively large value for the gain L2 with l2 > l3

(L2 = [−400 − 60 − 500]T ). As a consequence, ỹ → 0 quickly. Similarly, we can also assume that
θ̃ → 0 quickly, due to our choice of a high adaptation gain (γ = 200) and the presence of persistent
excitation, which we observed in the numerical example 10.

Using the approximation ỹ ≈ 0 and θ̃ ≈ 0, we now analyze the dynamics of the state errors
(5.42) and obtain

˙̃x = Ā(x3)x̃ , (5.49)

where

Ā(x3) =


 −σ0θf(x3) 0 0

g[1− σ1θf(x3)] −gσv −gσ2

q[1− σ1θf(x3)] −gσv −qσ2


 .

Notice that σ0 = 100, θ̂ ≈ 1 and v
µc
≥ f(x3) >

vr
µst

. We can therefore conclude that x̃1 → 0 quickly
with a decay rate of around σ0θf(x3) during the beginning of the braking process, due to the fact

10The conclusion for the case of in which we do not have persistent excitation is similar with a complicated analysis.
We only present a simplified analysis here.
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Figure 5.14: Estimated and real state variables.

that vr is large. This explains why the estimated state x̂1 converges quickly to the real state x1. In the
case of the state estimates x̂2 and x̂3, from Eq. (5.49) we find that the eigenvalues of matrix Ā(x3)
associated with these two states are

s2,3 =
−(gσv + qσ2)±

√
(gσv)2 + (qσ2)2 + 4g2σvσ2

2
.

Since σv and σ2 are very small,

−1� s2,3 < 0, ∀t ≥ 0 .

The rate of decay for x̃2 and x̃3 is small and the eigenvector associated with s2 is around w2 ≈
[0 1 1]T .

Fig. 5.16 shows a sketch of the trajectory of the approximate nonlinear system (5.49). For any
initial condition P0 = (x̃1(0), x̃2(0), x̃3(0)) ∈ R3, the flow trajectory will quickly approach the
x̃2 × x̃3 plane because of the rapid convergence of x̃1 (s1 is large). Moreover, the trajectory will
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Figure 5.16: A schematic trajectory plot for nonlinear system ˙̃x = Ā(x3)x̃.

converge to w2 on the x̃2 × x̃3 plane if x̃2(0) > 0 and x̃3(0) > 0, as shown in Fig. 5.16. Thus, if we
pick

x̃2(0) ≥ 0, x̃3(0) ≥ 0, (5.50)
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then
max{x̃2(0), x̃3(0)} ≥ x̃2(t) ≈ x̃3(t) ≥ 0, ∀ t ≥ t0 ,

where t0 is fairly small and depends on the convergence rate and initial conditions of x̃1(t).
When the wheel angular velocity is the only measurement available to the control system and a

state observer is designed, the angular velocity estimation error can be expressed as:

ω̃ = ω − ω̂ =
1

r
(x2 − x3)− 1

r
(x̂2 − x̂3) =

1

r
(x̃2 − x̃3) (5.51)

It should be noticed that ω̃ = 0 does not imply that x̃2 = x̃3 = 0 but that x̃2 = x̃3. Vector w2 in
Fig. 5.16 belongs to the surface where ω̃ = 0. It is important to remark that this limitation obeys the
relation between x2 and x3 and is not dependent on the dynamic friction model or observer structure
that was used in this section.

Note that, by Theorem 5.1, we obtained λ̂ → λ̂max and λ → λmax, due to the fact x̂ → x.
However, since the states x̂3 and x̂2 converge slowly, there will be some error between λ and λ̂. This
error can be estimated as follows.

0 < λ(t)− λ̂(t) =
x3

x2
− x̂3

x̂2
=

x2x̃3 − x3x̃2

x2x̂2

≈ (x2 − x3)x̃2

x2x̂2
=

(
1− x3

x2

)
x̃2

x̂2
(5.52)

≤ (1− λ(t))
λ(0)x2(0)

x̂2(t)
, ∀t ≥ t0 . (5.53)

Note that in general λ(0) ≤ 3% during normal driving conditions before braking. As a consequence,
the slip estimate error is small. Similarly, it can be shown that λmax − λ̂max will also be small after
the state x̃1 → 0. Therefore, the proposed control system will achieve a near maximum deceleration
level, in spite of the fact that state estimation errors x̃2 and x̃3 converge slowly.

Remark 5.8 It should be noticed that with this controller design, we can always guarantee an under-
estimation of longitudinal slip λ(t) as shown in Eq. (5.53). This is a very important property, which
helps to preserve vehicle safety and stability on the highway, since the safe inter-vehicle spacing
depends on the estimate of maximum acceleration and deceleration.

5.3 Adaptive Observer-based Emergency Braking Control with
Underestimation of Friction Coefficient

In the previous section, we discussed the use of the LuGre dynamic friction model in the estimation
of the tire/road friction coefficient and the design of an emergency braking controller. Using only
the wheel angular velocity, we analytically and numerically showed that an observer-based adaptive
emergency braking controller can achieve approximate maximum deceleration. However, we ob-
served that the convergence rate of the estimated vehicle and relative velocities is slow. Moreover,
in the previous chapter the variations of the tire and road conditions were modeled with a single
parameter θ, which is not realistic. In this chapter, we investigate an alternative enhancement to es-
timate the tire/road friction and design an emergency braking controller under various tire and road
conditions.
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5.3.1 Motivation

The goal of this chapter is to extend the approach of the previous chapter. In the previous chapter
we addressed the problem of the slow convergence of the estimated vehicle velocity and relative
velocity due to the structure of the system. It was also assumed that the friction parameters (σi’s,
i = 0, 1, 2) required by the LuGre dynamic friction model are known. In this chapter this assumption
is relaxed by the construction of a parameter adaptation law that, by using both the angular velocity
measurement of the wheel and vehicle longitudinal acceleration information, also overcomes the
slow convergence problem. Underestimation of the friction coefficient, a very desirable feature
from the safety point of view, is guaranteed by the proper choice of the parameter adaptation gains
and initial conditions of the estimated parameters.

5.3.2 System dynamics

In this chapter, we consider a vehicle system with the following assumptions:

Assumption 5.4
1. A lumped LuGre friction model is employed for tire/road friction. The model parameters σi

are unknown.

2. The normal forces acting on the tires are constant and evenly distributed, and the braking
forces are equal for all tires.

3. The friction internal state z and the vehicle velocity v are unknown. The wheel angular
velocity ω and the vehicle acceleration v̇ are measurable.

4. The road is flat, i.e. the slope of the road is zero.

A quarter vehicle model is used and a modified lumped LuGre friction model is considered as
follows:

ż = vr − σ0|vr|
h(vr)

z (5.54a)

Jω̇ = rFx − uτ (5.54b)

mv̇ = −4Fx − Fav , (5.54c)

where z is the friction internal state, vr = v − rω is the relative velocity, h(vr), µst, µc, vs are the
same model parameters as in the previous chapter and assumed known, uτ is the traction/braking
torque, Fx is the traction/braking force given by the tire/road contact, Fav the aerodynamic force, m
the vehicle mass, and J the tire rotational inertia. Compared with the dynamics (5.23), we neglect
the parameter θ used in the previous chapter. Instead, we consider a general approach with unknown
parameters σi’s 11.

The braking force Fx is given by

Fx = (σ0z + σ1ż + σ2vr)Fz , (5.55)

and similarly the aerodynamic force can be modeled as

Fav = Cavv
2.

11The parameter θ can be absorbed in σ0.
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Substituting above Equation into (5.54c) and considering vr = v − rω as the state variable, we can
rewrite Eqs (5.54b) and (5.54c) as

v̇ = −c µ− d v2 , (5.56a)

v̇r = −(a + c) µ− dv2 + e KbPb (5.56b)

with a = r2mg/4J , c = g, d = Cav/m and e = r/J . As in the previous chapter, the braking torque
is approximated by uτ = KbPb, where Kb is an overall braking system gain and Pb the master
cylinder pressure. We utilize the following assumptions for the compensator design:

Assumption 5.5
1. The brake system gain Kb is known.

2. The velocity v and relative velocity vr are uniformly continuous functions of time t.

5.3.3 Compensator design

Velocity observer

Assuming that the wheel angular velocity ω and vehicle longitudinal acceleration v̇ are known, it is
possible to propose an observer for the vehicle velocity v

˙̂v = −cµ − dv̂2 + L3ỹ2 , (5.57)

where ỹ2 := v̇ − ˙̂v = −dṽ(v + v̂) with ˙̂v := −cµ − dv̂2, and L3 ∈ R is the observer gain.
The velocity estimation error dynamics are

˙̃v = −dṽ(v + v̂)(1− L3) . (5.58)

Define the Lyapunov candidate function

W1 =
1

2
ṽ2 . (5.59)

Its time derivative is

Ẇ1 = ṽ ˙̃v = −dṽ2(v + v̂)(1− L3) ≤ 0 .

Lemma 5.1 Assume L < 0, then ṽ(0) < 0⇒ ṽ(t) < 0, ∀t ≥ 0 or ṽ(0) > 0⇒ ṽ(t) > 0, ∀t ≥ 0.

Proof: For any given value of v and v̂ the solution to Eq. (5.58) is of the form

ṽ(t) = ṽ(0)e−(1−L)
∫ t
0 d(v+v̂)dτ (5.60)

This term will never change sign, therefore if ṽ(0) < 0 ⇒ ṽ(t) < 0, ∀t ≥ 0 or if ṽ(0) > 0 ⇒
ṽ(t) > 0, ∀t ≥ 0

From Lemma 5.1, if L3 < 0, then ṽ(t) is the same sign as ṽ(0).

Remark 5.9 Lemma 5.1 implies Ẇ1 < 0 and asymptotic stability of ṽ = 0 follows. Moreover, if
we choose the observer gain |L3| large we can let the estimated velocity v̂ converge to the true value
v quickly.
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Internal state observer and parameter estimation

First notice that, by substituting Eq. (5.54a) into Eq. (5.55) and we obtain

µ = σ0z + σ1 [vr − σ0f(vr)z]− σ2vr = σ0z − σ3f(vr)z + σ4vr , (5.61)

where σ3 = σ0σ1, σ4 = σ1 − σ2 and f(vr) = vr/h(vr). This expression is linear in the parameters
σ0, σ3 and σ4, i.e.,

µ = [z − f(vr)z vr]


 σ0

σ3

σ4


 = VΞ , (5.62)

where V := [z − f(vr)z vr] and Ξ := [σ0 σ3 σ4]
T .

Consider the following observer for the internal state z

˙̂z = v̂r − σ̂0f(v̂r)ẑ (5.63)

and a gradient type parameter adaptation law

˙̃Ξ = −ΓV̂T µ̃ , (5.64)

where Γ = diag(γ0, γ3, γ4) > 0 is a diagonal matrix of adaptation gains, V̂ is the regressor in
Eq. (5.62) evaluated at the estimated quantities, i.e.

V̂ = [ẑ − f(v̂r)ẑ v̂r] ,

and µ̃ is defined by

µ̃ = VΞ− V̂Ξ̂ = V̂Ξ̃ + ṼΞ , (5.65)

with Ṽ = V− V̂. µ̃ = µ− µ̂ is defined as the error of the friction coefficient. Note that the friction
coefficient µ is calculated by the dynamics (5.54b) as

µ = −Jω̇ + eKbPb
f

, (5.66)

with f = mgr/4 and assumption that we can measure the angular acceleration and the braking
pressure.

Developing Eq. (5.65)

µ̃ = [ẑ − f(v̂r)ẑ v̂r]



σ̃0

σ̃3

σ̃4


+ [z̃ − f(vr)z + f(v̂r)ẑ ṽr]



σ0

σ3

σ4




= [σ0 − σ3f(vr)] z̃ + ẑσ̃0 − f(v̂r)ẑσ̃3 + v̂rσ̃4 + σ4ṽr − σ3ẑ [f(vr)− f(v̂r)] . (5.67)
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The term f(vr)− f(v̂r) can be expanded in a Taylor series about vr. This yields

f(vr)− f(v̂r) =
df(vr)

dvr
ṽr =

df(vr)

dvr
ṽ , (5.68)

where the last expression was derived using the fact that vr = v − rω and v̂r = v̂ − rω, therefore
ṽr = vr − v̂r = ṽ. Substituting Eq. (5.68) in Eq. (5.67)

µ̃ = [σ0 − σ3f(vr)] z̃ + ẑσ̃0 − f(v̂r)ẑσ̃3 + v̂rσ̃4 + [σ4 − σ3ẑf
′(vr)] ṽ (5.69)

with f ′(vr) = df(vr)/dvr.
The error dynamics of z̃ from Eqs. (5.54a) and (5.63) are given by

˙̃z = [1− σ0f
′(vr)ẑ] ṽ − σ0f(vr)z̃ − f(v̂r)ẑσ̃0 . (5.70)

Controller design

Note that the internal friction state z and the vehicle longitudinal velocity v are assumed not to be
measurable, and the model parameters σi, i = 0, 1, 2, are unknown. It is therefore difficult to obtain
λmax for the current conditions by Eq. (5.17) 12. By constructing an observer and an adaptation law
to estimate these variables, near maximum deceleration can be achieved around λ̂max. λ̂max can be
determined from the estimated velocity (v̂) and parameters (σ̂i’s), i.e.

λ̂max = argmax
v̂,λ,σ̂i

{µ̂(λ, v̂, σ̂i)} . (5.71)

if we can guarantee that v̂ → v and σ̂i → σi, i = 0, 3, 4.
To continue with the controller design, it is necessary to set the value for the pressure of the

master cylinder, Pb. For this purpose define

s̃ = v̂r − λ̂maxv̂ = v̂(1− λ̂max)− rω (5.72)

as the desired relative velocity for the emergency braking maneuver. In this expression s̃ = v̂r−Rω
and λ̂max is the estimated value of λmax by Eq. (5.17) based on the current estimation of Ξ̂ and v̂.
Taking the time derivative of Eq. (5.72)

˙̃s = ˙̂v(1− λ̂max)− rω̇ − v̂
˙̂
λmax

= ˙̂v(1− λ̂max) − rf

J
µ+

reKbPb
J

− v̂
∂λ̂max
∂v̂

˙̂v − v̂
∂λ̂max
∂ω

ω̇ . (5.73)

The partial derivatives of λmax can be calculated numerically. Choosing

Pb =
J

reKb

[
− ˙̂v(1− λ̂max) +

rf

J
µ+ v̂

∂λ̂max
∂v̂

˙̂v + v̂
∂λ̂max
∂ω

ω̇ − ζs̄

]
, (5.74)

where ζ > 0 a gain and substituting in Eq. (5.73) gives

˙̃s = −ζs̃ . (5.75)

12In this case, we should set θ = 1 in the Eq. (5.17) for estimation of λmax since θ is not introduced in this chapter.
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Define the following Lyapunov function candidate

W4 =
1

2
s̃2 (5.76)

Taking the time derivative of Eq. (5.76) and using Eq. (5.75)

Ẇ4 = −ζs̃2 ≤ 0. (5.77)

The asymptotic stability of s̃ = 0 follows.

Combined stability analysis

Consider, in addition to Eq. (5.59), the following set of Lyapunov function candidates

W2 =
1

2
z̃2 (5.78)

W3 =
1

2
Ξ̃TΓ−1Ξ̃ (5.79)

and define now the composite Lyapunov function candidate

W = W1 +W2 +W3 =

3∑
i=1

Wi . (5.80)

The time derivative of Eq. (5.80) can be written as

Ẇ =ṽ ˙̃v + z̃ ˙̃z + Ξ̃TΓ−1 ˙̃Ξ . (5.81)

Using the observer error dynamics and parameter adaptation law in Eqs. (5.58), (5.70) and (5.64),
Eq. (5.81) becomes

Ẇ =− d(v + v̂)(1− L)ṽ2 + z̃ [(1− σ0f
′(vr)ẑ)ṽ − σ0f(vr)z̃ − f(v̂r)ẑσ̃0]

− (Ξ̃T V̂T V̂Ξ̃ + Ξ̃T V̂T ṼΞ) . (5.82)

The term Ṽ can be expressed as

Ṽ = [0 − f ′(vr)ẑ 1]ṽ + [1 − f(vr) 0]z̃ = V1ṽ + V2z̃ , (5.83)

where V1 = [0 − f ′(vr)ẑ 1] and V2 = [1 − f(vr) 0]. Using Eq. (5.83), Eq. (5.82) can be written
as a quadratic form

Ẇ = −
[
Ξ̃ z̃ ṽ

]V̂
T V̂ V̂TV2Ξ V̂TV1Ξ

V3 σ0f(vr) −(1− σ0f
′(vr)ẑ)

0 0 d(1− L3)(v + v̂)




Ξ̃z̃
ṽ


 = −ΦTMΦ , (5.84)
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where Φ =
[
Ξ̃ z̃ ṽ

]T
=
[
σ̃0 σ̃4 σ̃4 z̃ ṽ

]T
, V3 = [f(v̂r)ẑ 0 0] and

M =




ẑ2 −ẑ2f(v̂r) ẑv̂r w1ẑ w2ẑ

−ẑ2f(v̂r) ẑ2f 2(v̂r) −ẑf(v̂r)v̂r −w1ẑf(v̂r) −w2ẑf(v̂r)

ẑv̂r −ẑf(v̂r)v̂r v̂2
r w1v̂r w2v̂r

ẑf(v̂r) 0 0 σ0f(vr) −w3

0 0 0 0 w4




with w1 = σ0 − σ3f(vr), w2 = σ4 − σ3f
′(vr)ẑ, w3 = 1− σ0f

′(vr)ẑ and w4 = d(1− L3)(v + v̂).
Note that

M =
M + MT

2
+

M−MT

2
= M1 + M2 ,

where M1 = MT
1 = M+MT

2
is a symmetric matrix and M2 = −MT

2 = M−MT

2
is a skew-symmetric

matrix. Thus, Eq. (5.84) becomes

Ẇ = −ΦTM1Φ−ΦTM2Φ = −ΦTM1Φ .

The last equality comes from the fact that ΦTM2Φ = 0. It can be directly shown that the symmetric
matrix M1 is positive semi-definite:

M1 =




ẑ2 −ẑ2f(v̂r) ẑv̂r
1
2
ẑ(w1 + f(v̂r))

1
2
ẑw2

−ẑ2f(v̂r) ẑ2f 2(v̂r) −ẑf(v̂r)v̂r −1
2
ẑw1f(v̂r) −1

2
w2ẑf(v̂r)

ẑv̂r −ẑf(v̂r)v̂r v̂2
r

1
2
w1v̂r

1
2
w2v̂r

1
2
ẑ(w1 + f(v̂r)) −1

2
ẑw1f(v̂r)

1
2
w1v̂r σ0f(vr) −1

2
w3

1
2
ẑw2 −1

2
w2ẑf(v̂r)

1
2
w2v̂r −1

2
w3 w4



≥ 0

(5.85)

by the fact that

detM1(1, 1) = ẑ2 > 0, detM1(1 : j, 1 : j) = 0, for j = 2, 3, 4, 5.

From Eq. (5.85) we know that
Ẇ = −ΦTM1Φ ≤ 0 ,

which corresponds to Eq. (5.84) being positive semi-definite. The stability of ṽ = 0, z̃ = 0 and
Ξ̃ = 0 follows. Moreover, v̂, ẑ and Ξ̂ are bounded. Using Barbalat’s Lemma it is possible to
show that limt→∞ ṽ(t) = 0. Convergence of z̃ = 0 and Ξ̃ = 0 cannot be guaranteed if there is no
persistence of excitation. In this case the reachable equilibria satisfy

σ0z̃

(
w1

σ0
− 1

)
− ẑf(vr)σ̃3 + v̂rσ̃4 = 0 , (5.86)

z̃ +
ẑ

σ0

σ̃0 = 0 . (5.87)

The above equilibria are calculated through error dynamics of state variables Ξ̃ and z̃ given by
Eqs. (5.64), (5.68), and (5.69), assuming quick convergence of estimate of vehicle velocity, i.e.
ṽ = 0.
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Remark 5.10 In the above combined stability analysis we did not include the controller Lyapunov
candidate W4 because the controlled target error s̃ given by (5.72) is decoupled from the observer
and parameter adaptation errors Ξ̃, z̃, and ṽ. Therefore, we analyze the stability of the controller
separately from the observers and the parameter estimators.

5.3.4 Underestimation of the friction coefficient

A very desirable feature to be attained with the observer and adaptive scheme in Eqs. (5.58), (5.64)
and (5.70) is the underestimation of the maximum coefficient of friction, µmax. This underestimation
provides conservative estimates for the inter-vehicle distance that will yield safe emergency braking
maneuvers.

From Eq. (5.61) it is clear that

σ̃0(t) ≥ 0, σ̃3(t) ≤ 0, and σ̃4(t) ≥ 0 (5.88)

will produce this desired underestimation of µmax, i.e. µ̂max(t) ≤ µmax(t) provided that

Assumption 5.6
1. The estimated state variables v̂ and ẑ converge to the true states quickly and

2. z ≥ 0, vr ≥ 0 and f(vr) ≥ 0.

Remark 5.11 To justify the first condition in Assumption 5.6, we recall the error dynamics of state
variables ṽ and z̃ given by Eqs. (5.58) and (5.69), respectively. By choosing a large observer gain
L3 we can guarantee the quick convergence of v̂ by Lemma 5.1. The quick convergence rate of
estimated state ẑ follows from Eq. (5.69), and facts that σ0 is large, ṽ → 0 and ẑ, Ξ̂ are bounded.
The second condition in Assumption 5.6 follows directly from the definition of vr, f(vr) and Prop-
erty 5.1.

In this section we assume that

Assumption 5.7
1. σ̃0(0) > 0, σ̃3(0) < 0 and σ̃4(0) > 0.

2. v(t) ≥ vmin, ∀t ≥ 0

Under these assumptions, the structure of the system composed by σ̃0, σ̃3 and σ̃4 is

˙̃σ0

˙̃σ3

˙̃σ4


 =


−γ0ẑ

2 γ0f(vr)ẑ
2 −γ0ẑvr

γ3f(vr)ẑ
2 −γ3f

2(vr)ẑ
2 γ3f(vr)ẑvr

−γ4ẑvr γ4f(vr)ẑvr −γ4v
2
r





σ̃0

σ̃3

σ̃4


 . (5.89)

For simplicity, consider the system in Eq. (5.89) as time invariant in order to find an approximate
condition for underestimation of friction coefficient µ. The solution, with initial conditions σ̃0(0),
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σ̃3(0) and σ̃4(0), is

σ̃0(t) =
1

β

[
(γ0ẑ

2e−βt + γ3ẑ
2f 2(vr) + γ4v

2
r )σ̃0(0)+

(1− e−βt)γ0ẑ
2f(vr)σ̃3(0) + (1− e−βt)γ4v

2
r σ̃4(0)
]

(5.90a)

σ̃3(t) =
1

β

[
(1− e−βt)γ3ẑ

2f(vr)σ̃0(0) + (αγ0ẑ
2 + γ4v

2
r + γ3ẑ

2f 2(vr)e
−βt)σ̃3(0)−(

(1− e−βt)γ3γ4v
2
r/γ0

)
σ̃4(0)
]

(5.90b)

σ̃4(t) =
1

β

[
(1− e−βt)γ0ẑ

2σ̃0(0)− (1− e−βt)γ0ẑ
2f(vr)σ̃3(0) + (γ0ẑ

2+

γ3ẑ
2f 2(vr) + γ4v

2
re

−βt)σ̃4(0)
]
, (5.90c)

where β = γ0ẑ
2 + γ3ẑ

2f 2(vr) + γ4v
2
r .

Lemma 5.2 Assume that Lemma 5.1 and Assumption 5.7 hold, then there exist gains γ0, γ3 and γ4

such that if the following conditions are satisfied(
γ0 + γ4

v2
r

ẑ2

)
|σ̃3(0)| ≥ γ3f(vr)σ̃0(0) ≥ γ0|σ̃3(0)| , (5.91)

then σ̃0(t) ≥ 0, σ̃3(t) ≤ 0 and σ̃4(t) ≥ 0, ∀t ≥ 0.

Proof: First assume that t is close to 0, then the evolution of σ̃0(t), σ̃3(t) and σ̃4(t) is dominated by
σ̃0(0) > 0, σ̃3(0) < 0 and σ̃4(0) > 0 because the term (1− e−βt) can be neglected. Now assume the
worst possible case, which happens if t! 0. In this situation for σ̃0(t) to remain positive, according
to Eq. (5.90a), it is necessary that(

γ3ẑ
2f 2(vr) + γ4v

2
r

)
σ̃0(0) + γ4v

2
r σ̃4(0) ≥ γ0ẑ

2f(vr)|σ̃3(0)| . (5.92)

Ineq. (5.92) will hold if

γ3ẑ
2f(vr)σ̃0(0) ≥ γ0ẑ

2f(vr)|σ̃3(0)| , (5.93)

which is precisely the second inequality in Ineq. (5.91). Similarly, according to Eq. (5.90b), for
σ̃3(t) to remain negative it is necessary that

(
γ0ẑ

2 + γ4v
2
r

) |σ̃3(0)|+ γ3γ4

γ0
v2
r σ̃4(0) ≥ γ3ẑ

2f(vr)σ̃0(0) . (5.94)

Ineq. (5.94) will hold in turn if(
γ0ẑ

2 + γ4v
2
r

) |σ̃3(0)| ≥ γ3ẑ
2f(vr)σ̃0(0) , (5.95)

which is the first inequality in Ineq. (5.91). According to Eq. (5.90c), σ̃4(0) will always remain
positive.

Finally, the main result of this chapter is stated in the following theorem:
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Theorem 5.2 Consider Assumption 5.7 and Lemmas 5.1 and 5.2, then under the observer and
adaptation laws in Eqs. (5.57), (5.63) and (5.64) the equilibrium ṽ = 0, z̃ = 0 and Ξ̃ = 0 is
stable. Moreover, the maximum coefficient of friction µmax is underestimated and limt→∞ ṽ(t) = 0,
limt→∞ z̃(t) = 0 and limt→∞ Ξ̃ = 0.

Proof: The choice of z̃(0) < 0, σ̃0(0) > 0, σ̃3(0) < 0 and σ̃4(0) > 0 together with Lemma 5.2
implies that V̂Ξ̃ ≥ 0 and therefore that that the product Ξ̃T V̂T V̂Ξ̃ does not vanish, except when
Ξ̃ = 0.

Choose Lyapunov function candidate V as

V = h1W1 + h2W2 + h3W3 =

3∑
i=1

hiWi

with h1, h2 and h3 are positive numbers. The time derivative of V satisfies, similar as (5.84),

V̇ = −
[
Ξ̃ z̃ ṽ

]h3V̂
T V̂ h3V̂

TV2Ξ h3V̂
TV1Ξ

h2V3 h2σ0f(vr) −h2(1− σ0f
′(vr)ẑ)

0 0 h1d(1− L3)(v + v̂)




Ξ̃z̃
ṽ


 . (5.96)

Eq. (5.96) can be bounded by

V̇ ≤ −
[
‖Ξ̃‖ |z̃| |ṽ|

]
h3‖V̂T V̂‖ h3‖V̂TV2Ξ‖ h3‖V̂TV1Ξ‖
h2‖V3‖ h2σ0f(vr) −h2(1− σ0f

′(vr)ẑ)

0 0 h1d(1− L3)(v + v̂)





‖Ξ̃‖
|z̃|
|ṽ|




= −1

2
ΨT (HS + STH)Ψ , (5.97)

where Ψ =
[
‖Ξ̃‖ |z̃| |ṽ|

]T
, H = diag{h3, h2, h1} and

S =


‖V̂

T V̂‖ ‖V̂TV2Ξ‖ ‖V̂TV1Ξ‖
‖V3‖ σ0f(vr) −(1− σ0f

′(vr)ẑ)

0 0 d(1− L3)(v + v̂)


 . (5.98)

According to Khalil (1996) a necessary and sufficient condition for the existence of scalar h1, h2

and h3 that will make Eq. (5.97) negative definite is that the principal minors of the matrix S are
positive definite. The first two minors are proven directly to be positive, the third one, given by

d(1− L3)(v + v̂)ẑ2f 2(vr)σ3 (5.99)

will be greater or equal to zero provided that conditions on Lemmas 5.1 and 5.2 are satisfied. This
proves asymptotic stability and therefore that limt→∞ ṽ(t) = 0, limt→∞ z̃(t) = 0 and limt→∞ Ξ̃ = 0.

The underestimation of µmax follows directly from Eq. (5.61) and Lemma 5.2.
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5.3.5 Simulation results

In this section we will test the design of the previous section. In the simulation we use the pa-
rameters from the LeSabre cars used in the California PATH program: m = 1701.0 Kg, Cav =
0.3693 N · s2/m2, J = 2.603 Kg · m2, r = 0.323m and the brake coefficient Kb = 0.9 as
nominal values. Wheel angular velocity and vehicle longitudinal acceleration are used to design
an observer-based emergency braking controller. Fig. 5.17 shows the convergence of the dynamic
surface for emergency braking maneuver. Fig. 5.18 illustrates the estimated vehicle velocity and
relative velocity. From Fig. 5.18, we found that the estimated vehicle relative velocity and vehicle
velocity converge to their true values. The estimated internal friction state z is shown in Fig. 5.19.
Fig. 5.20 shows the friction coefficient and braking pressure during the emergency braking maneu-
ver. Fig. 5.21 illustrates the estimated friction parameters Ξ̂. During the simulation we observed
that all of these parameters converged to their true values.
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Figure 5.17: Dynamic surface s̃.

The estimated relative velocity and longitudinal vehicle velocity converge to their true values
using the observer design in section 5.3.3. This design overcomes the drawback given in the previous
chapter using vehicle longitudinal acceleration in addition to the wheel angular velocity.

5.4 Conclusions

In this chapter we discussed emergency braking control under unknown tire/road conditions and
brake conditions, based on a dynamic friction model. Throughout the discussion, we used the LuGre
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Figure 5.18: Estimated velocity (v̂), relative velocity (v̂r) and output error (ỹ2).

dynamic friction model, which was applied to the tire/road interaction. We first explored designs
for controlling brake pressure by assuming that the vehicle velocity and the internal state were
measurable. We used the static maximum slip as an approximation for the maximum deceleration
when the vehicle has fairly high longitudinal speed. The simulation results showed that the vehicle
can be stopped as quickly as possible by application of this controller.

In the second part of this chapter, we relaxed the assumption of the availability of the friction
internal state and the vehicle velocity and assumed only the angular velocity of the wheel is available.
The braking pressure controller was determined based on the estimation of system state variables
and the unknown friction parameter. The simulation results showed that the vehicle can be stopped
quickly with near maximum deceleration by applying this controller. The asymptotic convergence of
the estimated states and parameter estimates has been proven using the Lyapunov function approach
and a LMI technique. Moreover, it was also shown that the friction properties can be estimated and
near maximum deceleration achieved, in spite of the slow convergence rate of the vehicle velocity
and wheel relative velocity error estimates. Fortunately, both automated highway systems (AHS)
and manual traffic applications rely on various other measurements to guarantee safety; (e.g. radar
sensors and human perception). Thus, the control system does not need an accurate estimate of the
vehicle velocity. Simulation tests conducted so far suggest that the proposed control scheme, based
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Figure 5.19: Estimated internal state (ẑ) and its derivative (˙̂z)

on an observed dynamic friction model, achieves near maximum deceleration in a faster and more
stable manner than previous static approaches.

In the last part of this chapter, we considered additional longitudinal acceleration measurement as
well as the measurement of wheel angular velocity, in order to overcome the slow convergence rate
problem. The braking pressure controller was determined based on the estimation of system state
variables and the unknown friction parameter. The asymptotic convergence of the estimated states
and parameter estimates has been proven under a proper selection of adaptation gains and initial
estimation errors. Moreover, a property of underestimation of the maximum friction coefficient can
also be achieved by a proper choice of the adaptation gains and initial conditions of the estimated
parameters. The simulation results show that the vehicle can be stopped quickly with near maximum
deceleration by applying this controller.
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