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RESEARCH Open Access
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Ed S. Lein1 and Richard H. Scheuermann3,5*

From The first International Workshop on Cells in ExperimentaL Life Science, in conjunction with the 2017 International Con-
ference on Biomedical Ontology (ICBO-2017)
Newcastle, UK. 13 September 2017

Abstract

Background: A fundamental characteristic of multicellular organisms is the specialization of functional cell types
through the process of differentiation. These specialized cell types not only characterize the normal functioning of
different organs and tissues, they can also be used as cellular biomarkers of a variety of different disease states and
therapeutic/vaccine responses. In order to serve as a reference for cell type representation, the Cell Ontology has
been developed to provide a standard nomenclature of defined cell types for comparative analysis and biomarker
discovery. Historically, these cell types have been defined based on unique cellular shapes and structures, anatomic
locations, and marker protein expression. However, we are now experiencing a revolution in cellular
characterization resulting from the application of new high-throughput, high-content cytometry and sequencing
technologies. The resulting explosion in the number of distinct cell types being identified is challenging the current
paradigm for cell type definition in the Cell Ontology.

Results: In this paper, we provide examples of state-of-the-art cellular biomarker characterization using high-
content cytometry and single cell RNA sequencing, and present strategies for standardized cell type representations
based on the data outputs from these cutting-edge technologies, including “context annotations” in the form of
standardized experiment metadata about the specimen source analyzed and marker genes that serve as the most
useful features in machine learning-based cell type classification models. We also propose a statistical strategy for
comparing new experiment data to these standardized cell type representations.

Conclusion: The advent of high-throughput/high-content single cell technologies is leading to an explosion in the
number of distinct cell types being identified. It will be critical for the bioinformatics community to develop and
adopt data standard conventions that will be compatible with these new technologies and support the data
representation needs of the research community. The proposals enumerated here will serve as a useful starting
point to address these challenges.

Keywords: Cell ontology, Single cell transcriptomics, Cell phenotype, Peripheral blood mononuclear cells, Neuron,
Next generation sequencing, Cytometry, Open biomedical ontologies, Marker genes
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Background
Cells in multicellular organisms acquire specialized
functions through the process of differentiation. This
process is characterized by changes in gene expres-
sion through the actions of sequence-specific tran-
scription factors and chromatin remodeling that
results in a cell type-specific collection of messenger
RNA transcripts expressed from a subset of genes in
the organism’s genome. This transcriptional profile is
then translated into a cell type-specific collection of
proteins that corresponds to the functional parts list
of the specialized cell.

A history of the cell ontology
In order to compare experimental results and other in-
formation about cell types, a standard reference nomen-
clature that includes consistent cell type names and
definitions is required. The Cell Ontology (CL) is a
biomedical ontology that has been developed to provide
this standard reference nomenclature for in vivo cell
types, including those observed in specific developmen-
tal stages in the major model organisms [1]. The seman-
tic hierarchy of CL is mainly constructed using two core
relations – is_a and develops_from – with is_a used to
relate specific cell subtypes to a more general parent cell
type, and develops_from used to represent developmental
cell lineage relationships.
CL is a candidate for membership in the Open Biomedical

Ontology Foundry (OBO Foundry) [2] of reference ontol-
ogies. The OBO Foundry is a collective of ontology devel-
opers and stakeholders that are committed to collaboration
and adherence to shared principles and best practices in
ontology development. The mission of the OBO Foundry is
to support the development of a family of interoperable
biomedical and biological ontologies that are both logically
well-formulated and scientifically accurate. To achieve this,
OBO Foundry participants adhere to and contribute to the
development of an evolving set of principles, including open
use, collaborative development, non-overlapping and strictly-
focused content, and common syntax and relations.
Masci et al. proposed a major revision to the CL using

dendritic cells as the driving biological use case [3]. This
revision grew out of a U.S. National Institute of Allergy
and Infectious Disease (NIAID)-sponsored “Workshop
on Immune Cell Representation in the Cell Ontology,”
held in 2008, where domain experts and biomedical
ontologists worked together on two goals: (1) revising
and developing terms for T lymphocytes, B lymphocytes,
natural killer cells, monocytes, macrophages, and
dendritic cells, and (2) establishing a new paradigm for a
comprehensive revision of the entire CL. The original
CL contained a multiple inheritance structure with cell
types delineated by a number of different cellular qual-
ities, e.g. “cell by function”, “cell by histology”, “cell by

lineage”, etc. The resulting asserted multiple inheritance
structure became unsustainable as newly-identified cell
types were being added. It was realized that, at least for
cells of the hematopoietic system, cells were often
experimentally-defined based on the expression of
specific marker proteins on the cell surface (e.g. receptor
proteins) or internally (e.g. transcription factors), and
that these characteristics could be used as the main
differentia for the asserted hierarchy using the has_part
relation from the OBO Relation Ontology to relate cell
types to protein terms from the Protein Ontology.
Masci et al. developed an approach in which is_a clas-

sification comprises a single asserted hierarchy based on
expressive descriptions of the cellular location and level
of expression of these marker proteins using expanded
short-cut relations (e.g. has_plasma_membrane_part,
lacks_plasma_membrane_part, and has_high_plasma_-
membrane_amount) defined in terms of the has_part re-
lation [3]. To capture additional information from the
original multiple inheritance hierarchy, they used for-
mally defined, property-specific relations, such as has_-
function, has_disposition, realized_in, and location_of to
construct logical axioms which could subsequently be
used by reasoning to computationally produce a richer
inferred hierarchy. The end result is a logically coherent
asserted framework for defining cell types based on the
expression levels of marker proteins, while still capturing
important anatomic, lineage, and functional information
that might be important characteristics of specific cell
types through inference and reasoning. Diehl et al. applied
this approach first to cell types of the hematopoietic sys-
tem and then later to the full CL [4, 5].
In 2016, Diehl et al. reported on the most recent update to

the CL in which the content was extended to include a larger
number of cell types (e.g. cells from kidney and skeletal tis-
sue) and strategies for representing experimentally-modified
cells in vitro [6]. As of June 2016, the CL contained ~2200
cell type classes, with 575 classes within the hematopoietic
cell branch alone.
The CL is used as a reference annotation vocabulary for

a number of research projects and database resources, in-
cluding the ENCODE [7] and FANTOM5 (e.g. [8]) pro-
jects, and the ImmPort [9] and SHOGoiN/CELLPEDIA
[10] databases. Perhaps more importantly, a software
package, flowCL, has recently been developed that allows
for the automated mapping of cell populations identified
from high-dimensional flow and mass cytometry assays to
the structured representation of cell types in the CL [11].

Challenges of extending the cell ontology to
accommodate high content single cell phenotyping
assays
The pace at which new cell types are being discovered is
on the verge of exploding as a result of developments in
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two single cell phenotyping technologies – high dimen-
sional cytometry and single cell genomics. On the
cytometry side, the recent development of mass cytome-
try provides measurements of over 40 cellular parame-
ters simultaneously at single cell resolution (e.g. [12]),
dramatically increasing our ability to monitor the ex-
pression and activation state of marker proteins in a var-
iety of cellular systems. On the genomics side, single cell
RNA sequencing is allowing for the quantification of
complete transcriptional profiles in thousands of individ-
ual cells (e.g. [13]), revealing a complexity of cell pheno-
types that was unappreciated only a few years ago. In
addition, major new research initiatives, like the Human
Cell Atlas (www.humancellatlas.org) supported by the
Chan Zuckerberg Initiative, are driving the rapid pace of
discovery.
As a result, several major challenges have surfaced that

are limiting the ability of the knowledge representation
community to keep pace with the output from these
emerging technologies. First, in the case of targeted phe-
notyping technologies that interrogate specific subsets of
markers, as with flow and mass cytometry, the lack of
standardization of which markers should be used to
identify which cell types makes it difficult to directly
compare the results from different laboratories using dif-
ferent staining panels. Second, in the case of single cell
RNA sequencing technologies that interrogate all detect-
able transcripts in an unbiased fashion, the difficulty in
quantitatively and statistically comparing the resulting
transcriptional profiles challenges our ability to recognize
if we are observing the same cell type or not. In this paper,
we will provide examples of how data being generated by
these high content experimental platforms are used to
identify novel cell types in both blood and brain, propose
strategies for how these data can be used to augment the
CL, and discuss approaches that could be used to statisti-
cally compare quantitative cell type definitions to deter-
mine cell type identity.

Methods
Automated cell population identification from high
dimensional cytometry analysis
The Human Immunology Project Consortium (www.im-
muneprofiling.org) was established by the U.S. National
Institute of Allergy and Infectious Diseases to study
well-characterized human cohorts using a variety of
modern analytical tools, including multiplex transcrip-
tional, cytokine, and proteomic assays, multiparameter
phenotyping of leukocyte subsets, assessment of
leukocyte functional status, and multiple computational
methods. Our group has focused on the development of
computational methods to analyze flow and mass cytom-
etry data in order to objectively quantify and compare
known leukocyte cell types, and to discover novel cell

subsets. Once these novel cell types are discovered, our
philosophy has been to collaborate with the developers
of the CL to augment the CL by inclusion of these novel
cell types, and then to annotate our results with stand-
ard CL terms.
Figure 1 shows an example of a traditional manual gat-

ing hierarchy used to define a subset of myeloid cell sub-
types from the peripheral blood of a healthy human
donor. In this case, peripheral blood mononuclear cells
were stained with a panel of fluorescently-conjugated
antibody reagents that recognize a set of cell surface
markers that are differentially expressed in a subset of
myeloid cell subtypes. A gating hierarchy was established
by the investigative team as depicted at the top. From a
practical perspective, this gating hierarchy can be
thought of as corresponding to the cell type definitions.
Applying the cell type names used by the investigative
team, the cell type definitions derived from the gating
hierarchy would then be:

� Population #18: Monocytes – a PBMC that
expresses HLA-DR and CD14, and lacks CD19 and
CD3

� Population #19: Dendritic cell (DC) – a PBMC that
expresses HLA-DR, and lacks CD14, CD19, and
CD3

� Population #20: mDC2 – a dendritic cell that
expresses CD141, and lacks CD123

� Population #22: pDC – a dendritic cell that
expresses CD123, and lacks CD141 and CD11c

� Population #24: CD1c-CD16- mDC1 – an mDC that
expresses CD11c, and lacks CD1c and CD16

� Population #25: CD1c +mDC1 – an mDC that
expresses CD11c and CD1c, and lacks CD16

� Population #26: CD16+ mDC – an mDC that
expresses CD11c and CD16, and lack CD1c

We attempted to match these experimental cell popula-
tion definitions to cell types contained in the CL. Figure 2
shows the semantic hierarchy of two major branches in
CL for monocytes (A) and dendritic cells (B). Definitions
for four of the major relevant cell types from the CL are
as follows:

� Monocyte - Morphology: Mononuclear cell,
diameter, 14 to 20 μM, N/C ratio 2:1-1:1. Nucleus
may appear in variety of shapes: round, kidney,
lobulated, or convoluted. Fine azurophilic granules
present; markers: CD11b (shared with other myeloid
cells), human: CD14, mouse: F4/80-mid, GR1-low;
location: Blood, but can be recruited into tissues;
role or process: immune & tissue remodeling;
lineage: hematopoietic, myeloid. Myeloid
mononuclear recirculating leukocyte that can act as
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a precursor of tissue macrophages, osteoclasts and
some populations of tissue dendritic cells.

� CD14-positive monocyte - This cell type is
compatible with the HIPC Lyoplate markers for
‘monocyte’. Note that while CD14 is considered a
reliable marker for human monocytes, it is only

expressed on approximately 85% of mouse
monocytes. A monocyte that expresses CD14 and
is negative for the lineage markers CD3, CD19,
and CD20.

� Dendritic cell - A cell of hematopoietic origin,
typically resident in particular tissues, specialized in

Fig. 1 Identification of myeloid cell subtypes using manual gating and directed automated filtering. A gating hierarchy (a series of iterative two-
dimensional manual data partitions) has been established by the investigative team in which peripheral blood mononuclear cells (PBMC) are
assessed for expression of HLA-DR and CD3, CD3- cells (Population #5) are assessed for expression of CD19 and CD14, CD19- cells (Population #7)
are then assessed for expression of HLA-DR and CD16, HLA-DR+ cells (Population #10) are assessed for expression of HLA-DR and CD14, CD14-
cells (Population #19) are assessed for expression of CD123 and CD141, CD141- cells (Population #21) are assessed for expression of CD11c and
CD123, and CD11c + cells (Population #23) are assessed for expression of CD1c and CD16. Manual gating results are shown in the top panel;
directed automated filter results using the DAFi method, a modified version of the FLOCK algorithm [21] are shown in the bottom panel

Fig. 2 Cell type representations in the Cell Ontology. a The expanded is_a hierarchy of the monocyte branch. b The expanded is_a hierarchy of
the dendritic cell branch. c An example of a cell type term record for dendritic cell. Note the presence of both textual definitions in the
“definition” field, and the components of the logical axioms in the “has part”, “lacks_plasma_membrane_part”, and “subClassOf” fields
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the uptake, processing, and transport of antigens to
lymph nodes for the purpose of stimulating an
immune response via T cell activation. These cells
are lineage negative (CD3-negative, CD19-negative,
CD34-negative, and CD56-negative).

� Myeloid dendritic cell – A dendritic cell of the
myeloid lineage. These cells are CD1a-negative,
CD1b-positive, CD11a-positive, CD11c-positive,
CD13-positive, CD14-negative, CD20-negative,
CD21-negative, CD33-positive, CD40-negative,
CD50-positive, CD54-positive, CD58-positive,
CD68-negative, CD80-negative, CD83-negative,
CD85j-positive, CD86-positive, CD89-negative,
CD95-positive, CD120a-negative, CD120b-positive,
CD123-negative, CD178-negative, CD206-negative,
CD207-negative, CD209-negative, and TNF-alpha-
negative. Upon TLR stimulation, they are capable
of producing high levels of TNF-alpha, IL-6,
CXCL8 (IL-8).

The CL monocyte definition includes information about
cellular and nuclear morphology, for which we have no in-
formation from our flow analysis. The definition of the
CD14-positive monocyte is very close to the monocyte
cells identified in the flow cytometry experiment in that
they are CD14+, CD3- and CD19-. However, since CD20
expression was not evaluated in the panel, we cannot be
absolutely certain if the experimental cells represent an
exact match to the CL counterpart. Likewise, we cannot
determine if the experimental dendritic cell populations
match any of the CL dendritic cell populations because
CD56 (a.k.a. neural cell adhesion molecule 1) expression
was not used in the gating hierarchy. Thus, even with
semantic assertions of marker protein expression used to
formally define cell types (Fig. 2c), exact matching is not
possible. Finally, the details of the myeloid dendritic cell
definition in CL would be virtually impossible to exactly
match since it not only includes a large number of marker
expression assertions, but also describes dispositional
properties that are difficult to ascertain experimentally.
These findings illustrate a major challenge in the use of

automated methods, like flowCL [11], for population
matching, which is related to 1) the lack of adoption of stan-
dardized staining panels for identification of well-defined
hematopoietic cell populations by the research community,
even though such staining panels have been proposed [14],
and 2) the inconsistent use of experimentally reproducible
criteria for cell type definition in CL. A solution to this “par-
tial marker matching” problem is sorely needed.

Cell population identification from single cell
transcriptional profiling
While flow cytometry relies on detection of a pre-selected
set of proteins to help define a cell’s “parts list”,

transcriptional profiling uses unbiased RNA detection and
quantification to characterize the parts list. Recently, the
RNA sequencing technology for transcriptional profiling
has been optimized for use on single cells, so-called single
cell RNA sequencing (scRNAseq). The application of
scRNAseq on samples from a variety of different normal
and abnormal tissues is revealing a level of cellular com-
plexity that was unanticipated only a few years ago. Thus,
we are experiencing an explosion in the number of new
cell types being identified using these unbiased high-
throughput/high-content experimental technologies.
As an example, our group has recently completed an

analysis of the transcriptional profiles of single nuclei
from post-mortem human brain using single nucleus
RNA sequencing (snRNAseq). Single nuclei from cor-
tical layer 1 of the middle temporal gyrus were sorted
into individual wells of a microtiter plate for snRNAseq
analysis, and specific cell type clusters identified using it-
erative principle component analysis (unpublished). A
heatmap of gene expression values reveals the differen-
tial expression pattern across cells from the 11 different
neuronal cell clusters identified (Fig. 3a). Note that cells
in all 11 clusters express GAD1 (top row), a well-known
marker of inhibitory interneurons. Violin plots of se-
lected marker genes for each cell cluster demonstrate
their selective expression patterns (Fig. 3b). For example,
GRIK3 is selectively expressed in the i2 cluster.
In order to determine if the distinct cell types reflected

in these snRNAseq-derived clusters have been previously
reported, we examine the neuronal branch of the CL
(Fig. 3c) and found that the cerebral cortex GABAergic
interneuron is probably the closest match based on the
following relevant definitions:

� cerebral cortex GABAergic interneuron - a
GABAergic interneuron that is part_of a cerebral
cortex.

� GABAergic interneuron – An interneuron that uses
GABA as a vesicular neurotransmitter.

� interneuron – Most generally any neuron which is
not motor or sensory. Interneurons may also refer to
neurons whose axons remain within a particular
brain region as contrasted with projection neurons
which have axons projecting to other brain regions.

� neuron - The basic cellular unit of nervous tissue.
Each neuron consists of a body, an axon, and
dendrites. Their purpose is to receive, conduct, and
transmit impulses in the nervous system.

Given these definitions, it appears that each of the cell
types defined by these single nuclei expression clusters
represents a novel cell type that should be positioned
under the cerebral cortex GABAergic interneuron parent
class in the CL.
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Cell types versus cell states
A fundamental issue has also emerged in considering
how to distinguish between discrete cell types and more
fluid cell states. It is clear that, in addition to the pro-
grammed process of cellular differentiation, cells are
constantly responding and adapting to changes in their
environment by subtly changing their phenotypic states.
In the case of the hematopoietic system, cells are fre-
quently responding to their environment to activate spe-
cific effector functions in order to re-establish normal
homeostasis. The question is, does the phenotypic cellu-
lar change that characterizes this response represent a
new cell type or not?

Results and Discussion
These examples of cell population identification using
two different single cell phenotyping technologies
have illustrated a number of challenges emerging with
these high-throughput/high-content assay platforms,
including:

� matching cell populations identified using assay
platforms focused on molecular expression with cell
types represented in the reference CL ontology that
have been defined using other non-molecular
characteristics;

� matching cell populations identified using
overlapping but non-identical marker panels;

� adding new cell populations being rapidly
identified with these high-throughput assay
platforms to a reference ontology in a timely
fashion;

� determining what kind of validation would be
required to add a novel cell type to a reference
ontology;

� determining if a standard naming and definition
convention could be developed and adopted;

� distinguishing between truly discrete cell types and
responsive cell states.

We conclude by presenting a series of proposals
for consideration to address these challenges.

1. Establish a new working group – We propose the
establishment of a new working group composed of
CL developers and representatives of the Human
Cell Atlas group and other stakeholder communities
to develop strategies for naming, defining, and
positioning new cell types identified through high
throughput experiments in the CL.

2. Molecular phenotype-based definitions – The
community should continue to focus cell type
definitions in the CL on precisely describing the

Fig. 3 Cell type clustering and marker gene expression from RNA sequencing of single nuclei isolated from layer 1 cortex of post-mortem human
brain. a Heatmap of CPM expression levels of a subset of genes that show selective expression in the 11 clusters of cells identified by principle
component analysis (not show). An example of the statistical methods used to identify cell clusters and marker genes from single cell/single
nuclei data can be found in [13]. b Violin plots of selected marker genes in each of the 11 cell clusters. c The expanded is_a hierarchy of the
neuron branch of the Cell Ontology, with the interneuron sub-branch highlighted
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phenotype of the cells, molecular and otherwise,
using a series of necessary and sufficient conditions
expressed as logical axioms.

3. Evidence requirements for inclusion in CL - The CL
developers should consider the development of
policies regarding the veracity of support required
for the addition of a new cell type into the CL
reference ontology, including whether a single report
is sufficient, or whether some form of independent
validation should be required.

4. Provisional CL - If independent validation is
required, the CL developers should consider the
establishment of a “CL provisional ontology” that
could be used to hold provisional cell type
assignments while they are being fully validated
using the criteria defined in addressing Proposal #3.

5. Inclusion of experimental context - As cell type
discovery experiments become more and more
sophisticated, it will be essential to capture
information about the experimental context in
which the cells were initially identified. Thus,
cell type definitions should also include “context
annotations” in the form of standardized
experiment metadata along the lines of the
MIBBI [15] and OBI [16] minimum
information and vocabulary standards,
respectively.

6. Incomplete overlapping of assessed phenotypes - In
the case of similar cell types identified by
overlapping staining panels in flow and mass
cytometry experiments, identify the most common
parent class and define the child classes based on
the specific markers that were actually evaluated in
the experiment. For example – the “CD14+, HLA-
DR+, CD19-, CD3-, peripheral blood mononuclear
cell monocyte” identified in the above experiment
would be positioned as a child of a new “CD14+,
CD19-, CD3- monocyte” parent, and as a sibling to
the current “CD14-positive monocyte” defined in the
CL, whose name and definition would need to be
changed to “CD14+, CD20+, CD19-, CD3- mono-
cyte”, since we don’t know about the expression
of CD20 in the former or the expression of HLA-
DR in the latter.

7. Cell types from single cell transcriptomics - Given the
rapid expansion in the application of single cell
transcriptional profiling for novel cell type
identification, it will be critical to develop
conventions for cell type naming and definition
using data from transcriptional profiling
experiments. For example, the 11 new cell types
identified in Fig. 3 could be named by combining
marker genes selectively expressed by the cells
with the parent cell class and the context (tissue

specimen and species source) in which the cell
types were identified, as shown in Fig. 4.

8. Selection of useful marker genes - When cell types
are identified using gene expression-based clustering
approaches, it is useful to select a set of marker
genes that are informative for cell type identification
in a given dataset. Several different approaches have
been used to select genes for cell type clustering,
including simple approaches like genes with the
highest variance across a dataset, or more
sophisticated methods like the genes contributing to
the top principle components in a PCA analysis, or
genes that serve as the most useful features in a
machine learning-based classification model. For
example, in a recent method used to test cell lines
for pluripotency [17], Muller et al. proposed the use
of non-negative matrix factorization to select out
multi-gene features for characterizing the stem cell
phenotype. These marker genes can then be used to
specify the cell type definition.

9. Marker gene selectivity - The naming and definition
convention presented in Fig. 4 derives from the
computational analysis of experimental data to
identify marker genes that show “specific”
expression in each of the cell type clusters. In this
case, “specific” is a relative, rather than absolute,
term indicating that the marker gene is expressed at
a significantly different level in one cell type than in
the other cell types assessed in the experiment. In
addition, we will often have incomplete knowledge
about the expression of this marker gene in all other
cell types in the complete organism. Thus, we have
included in the definition the “selectively” qualifier
to indicate relative specificity, and the starting
source material (i.e. cortical layer 1) to indicate the
subsystem evaluated in the experiment.

10.Necessary and sufficient conditions – Ideally, each
cell type would be defined by the necessary and
sufficient conditions that uniquely distinguish the
cell type from all other cell types in the complete
organism. In the proposed definitions described in
Fig. 4, we selected a single positive marker gene for
each of the 11 cell type clusters identified, and
include a statement about the relative absence or
presence of all marker genes in each cell type
definition. However, it is not clear if it is
necessary to explicitly include the absence of
expression of all ten negative marker genes; it
may be sufficient, at least for some cell types, to
state the selective expression of one positive
marker gene and the absence of expression of one
negative marker gene to adequately define the cell
type in question. Some further exploration on
how best to determine the necessary and
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sufficient conditions of marker gene expression
for cell type definitions is required.

11.Use of negative assertions through “lacks expression
of ” – For many cell types, providing necessary and
sufficient conditions requires asserting that the
cell type does not express a molecule. Consistent
with the approach taken by the CL ontology, we
have used “lacks expression of ” in our natural
language definitions (Fig. 4). In formal assertions,
the CL uses the relation lacks_part. The “lacks”
relations are considered “shortcut” relations that
must be translated to formal expressions that can
be interpreted appropriately by logical reasoners
[18, 19]. Thus, the CL translates “X lacks_part Y”
to the OWL expression “X subClassOf has_part
exactly 0 Y” [5].

12.Cell type matching - The informatics community
will also need to develop statistically-rigorous
methods for the comparison of datasets to match
equivalent cell types identified in independent
experiments. For example, our group has described
the implementation and use of the Friedman-Rafsky
statistical test in the FlowMap-FR tool for cross-
sample cell population matching from flow
cytometry data [20]. This type of approach could be
explored for comparing multivariate expression
profiles to determine how similar they are to each
other. An alternative strategy has been proposed by
Muller et al. [17] in which the results from two
complementary logistic regression classifiers are
combined for sample classification against a

reference database of relevant cell type expression
data. As the field moves forward, these types of
statistically-rigorous approaches for expression data-
based comparative classification will be essential.

13.Cell types versus cell states - Our intuition is that
there is a distinction between discrete cell types that
might be generated as a result of programmed
differentiation and more subtle changes in cell states
experienced by a given cell type in response to
changes in its environment. The challenge is to
come up with a coherent and consistent approach
for making this distinction. Although new cell types
and new cell states reflect phenotypic changes that
occur through temporal processes, we propose that
the distinction relates to the stability and
reversibility of the new cellular phenotype. Thus, the
generation of a distinct cell type through the process
of programmed differentiation is not only stable but
also irreversible under normal circumstances. In
contrast, a change in cell state is only stable in a
certain environment and is reversible with a change
in that environment. As an example, the transition
from a naïve to memory T cell is an example of a
change in cell type through differentiation, in that it
reflects a stable and irreversible change (once you’ve
experienced antigen, there’s no going back). In
contrast, activating a memory T cell in response to
antigen exposure would be considered a change in
state, in that once the stimulus has been eliminated,
the memory T cell would return back to its initial
state. Thus, an activated memory T cell would be

Fig. 4 Proposed cell type names and definitions for cell types identified from the snRNAseq experiment shown in Fig. 3
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considered a change in state of a memory T cell
rather than a new cell type.

Conclusions
The advent of high-throughput/high-content single cell
technologies is leading to an explosion in the number of
distinct cell types being identified. This development is
resulting in several significant challenges in efforts to re-
producibly describe reference cell types for comparative
analysis. Over the next couple of years, it will be critical
for the bioinformatics community to develop and adopt
data standard conventions that will be compatible with
these new technologies and support the data representa-
tion needs of the research community. The proposals
enumerated here should serve as a useful starting point
for this work.
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