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Summary. In this article, we study the problem of testing the mean vectors of high dimensional data in both one-sample and
two-sample cases. The proposed testing procedures employ maximum-type statistics and the parametric bootstrap techniques
to compute the critical values. Different from the existing tests that heavily rely on the structural conditions on the unknown
covariance matrices, the proposed tests allow general covariance structures of the data and therefore enjoy wide scope of
applicability in practice. To enhance powers of the tests against sparse alternatives, we further propose two-step procedures
with a preliminary feature screening step. Theoretical properties of the proposed tests are investigated. Through extensive
numerical experiments on synthetic data sets and an human acute lymphoblastic leukemia gene expression data set, we
illustrate the performance of the new tests and how they may provide assistance on detecting disease-associated gene-sets.
The proposed methods have been implemented in an R-package HDtest and are available on CRAN.

Key words: Feature screening; High dimension; Hypothesis testing; Normal approximation; Parametric bootstrap;
Sparsity.

1. Introduction

The problems of comparing a particular sample to a hypothet-
ical population with known prior information or comparing
two parallel groups, such as a control group and a treat-
ment group, have both important applications in modern
genomics and bio-medical research and become the foun-
dation of scientific discoveries. They have been employed
widely for identifying biologically interesting gene-sets for
drug design, evolutionary studies, and mutation detection.
Our interests in these problems are motivated by a microarray
study on human acute lymphoblastic leukemia (Chiaretti et
al., 2004). This study consists of 75 patients of B-lymphocyte
type leukemia, who were classified into two groups: 35 patients
with BCR/ABL fusion and 40 patients with cytogenetically
normal NEG. It is known that genes tend to work collectively
in groups to achieve certain biological tasks. Our analysis
focuses on such groups of genes (gene sets) defined with the
gene ontology (GO) framework, which are referred to as GO
terms. Identifying disease-relevant GO terms based on their
average expression levels provides information on differential
gene pathways associated with the leukemia. Many GO terms
contain a large number of (in the data, as many as 3145) genes
with very complex gene-wise dependence structures. The large
dimension of data and the complex dependency among genes
make the problem of comparing population means extremely
challenging.

Let X and Y be two p-dimensional random vectors
with means μ1 = (μ11, . . . , μ1p)

T and μ2 = (μ21, . . . , μ2p)
T,

covariance matrices �1 = (σ1,k�)1≤k,�≤p and �2 = (σ2,k�)1≤k,�≤p,
respectively. It is then of general interest in testing the
hypotheses

� (One-sample problem) H
(I)
0 : μ1 = μ0 versus H

(I)
1 : μ1 �= μ0

for a specified p-dimensional vector μ0, which, without loss
of generality, is equivalent to

H
(I)
0 : μ1 = 0 versus H

(I)
1 : μ1 �= 0; (1.1)

� (Two-sample problem)

H
(II)
0 : μ1 = μ2 versus H

(II)
1 : μ1 �= μ2. (1.2)

When p is fixed, traditional tests have been extensively
studied for testing both (1.1) and (1.2). For example,
the properties for both the one-sample and two-sample
Hotelling’s T 2 tests have been examined under normality
assumption (Anderson, 2003). We refer to Liu and Shao
(2013) for a moderate deviation result in the absence of
normality.

Generally, the sum of squares-type and the maximum-type
statistics are used to test the hypotheses (1.1) and (1.2) in
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the high dimensional settings. The sum of squares-type statis-
tics aim to mimic the weighted Euclidean norms, |Aμ1|22 or
|A(μ1 − μ2)|22 for certain linear transformation A, and the
corresponding tests are powerful for detecting relatively dense
signals (Bai and Saranadasa, 1996; Chen and Qin, 2010).
Statistics of the maximum-type, on the other hand, are prefer-
able for detecting relatively sparse signals (Cai et al., 2014)
and have been used in a variety of applications including
the medical image problem (James et al., 2001) and gene
selections (Martens et al., 2005).

Most existing testing procedures for (1.1) and (1.2) rely
on the derivation the pivotal limiting distribution of test
statistics, from which the critical value is approximated. In
the high dimensional scenarios, various structural assump-
tions on the unknown covariance matrices have been imposed
(Zhong et al., 2013; Cai et al., 2014). However, in many
applications, these assumptions can be very restrictive or
difficult to be verified, and therefore limit the scope of appli-
cability for the limiting distribution calibration approach.
First, the existence of a pivotal asymptotic distribution
relies heavily on the structural assumptions on the unknown
covariance/correlation structures, which may not be true in
practice. For example, it is very common that the expres-
sion levels are highly correlated for genes regulated by the
same pathway (Wolen and Miles, 2012) or associated with
the same functionality (Katsani et al., 2014), which results in
a complex and non-sparse covariance structure. These empir-
ical evidences indicate that the strong structural assumptions
on the covariance matrices may sometimes be unrealistic
in real-world applications. Another concern, as pointed out
by Cai et al. (2014), is that the convergence rate to the
extreme value distribution of maximum-type statistics is usu-
ally slow. Taking the extreme distribution of type I as an
example, the convergence rate is of order O{log(log n)/ log(n)}.
Although the convergence rate may be improved by
using suitable intermediate approximations, still its valid-
ity relies on the dependence structure of the underlying
distribution.

Driven by the above two concerns, we revisit the prob-
lem of testing hypotheses (1.1) and (1.2) from a different
perspective. Motivated by applications in genomic analysis
and image analysis, we are particularly interested in detect-
ing discrepancies when μ1 and 0 or μ2 are distinguishable
to a certain extent in at least one coordinate. We develop
a fully data driven procedure to compute the critical val-
ues using the Monte Carlo simulations. The validity of our
procedure is established without enforcing structural assump-
tions of any kind on the unknown covariances. The main
idea is based on the approximation of empirical processes
by Gaussian processes (Chernozhukov et al., 2013), and to
some degree, is similar to that of Liu and Shao (2013) that
utilizes the intermediate approximation. However, instead of
generating independent standard multivariate normal vectors,
our approach takes into account correlations among the fea-
tures and therefore is automatically adapted to the underlying
dependence.

The rest of the article is organized as follows. In Section 2,
we describe the simulation-based testing procedures for both
hypotheses (1.1) and (1.2). Theoretical properties of the tests
are studied in Section 3. Numerical studies are reported in

Section 4 to assess the performance of the proposed tests
comparing to the peer methods. In Section 5, we applied
the proposed tests to the acute lymphoblastic leukemia data
for identifying disease-associated gene-sets based on the gene
expression levels. The underpinning technical details, as well
as additional simulation results and empirical data analysis,
are relegated to the supplementary material.

2. Methodology

Throughout the article, we denote by |β|∞ = max1≤k≤p |βk| for
a p-dimensional vector β = (β1, . . . , βp)

T. For a matrix A =
(ak�)p×p, define |A|∞ = max1≤k,�≤p |ak�|. Let D1 = diag (�1)
and D2 = diag (�2). Denote by R1 and R2 the correspond-
ing correlation matrices. Let Xn = {X1, . . . ,Xn} and Ym =
{Y1, . . . ,Ym} be two independent samples consisting of inde-
pendent and identically distributed (i.i.d.) observations drawn
from the distributions of X and Y, respectively. Let N =
n + m. For each i = 1, . . . , n and j = 1, . . . , m, write Xi =
(Xi1, . . . , Xip)

T and Yj = (Yj1, . . . , Yjp)
T.

2.1. Test Procedures

2.1.1. One-sample case. Consider the maximum-type
statistics in the following forms:

T (I)
ns = max

1≤k≤p

√
n|X̄k| or T (I)

s = max
1≤k≤p

√
n|X̄k|
σ̂1k

, (2.1)

where X̄k = n−1
∑n

i=1
Xik and σ̂2

1k = n−1
∑n

i=1
(Xik − X̄k)

2.
Throughout, the statistic T (I)

s is referred as the studentized
statistic, while T (II)

ns is referred as the non-studentized statis-
tic. Intuitively, large values of T (I)

ns or T (I)
s provide evidences

against H
(I)
0 in (1.1) so that the corresponding tests are of the

form �(I)
ns,α = I{T (I)

ns > cv(I)
ns,α} or �(I)

s,α = I{T (I)
s > cv(I)

s,α}, where
cv(I)

ns,α and cv(I)
s,α are the critical values.

Under the null hypothesis H
(I)
0 : μ1 = 0, we motivate

from the multivariate central limit theorem with fixed
p to calculate critical values cv(I)

ns,α and cv(I)
s,α as fol-

lows: let �̃1 be an estimate of �1 from the sample Xn,
and set R̃1 = D̃

−1/2
1 �̃1D̃

−1/2
1 with D̃1 = diag (�̃1). Given

Xn, let W(I)
ns ∼ N(0, �̃1) and W(I)

s ∼ N(0, R̃1) be two
Gaussian random vectors, the critical values can be com-
puted by cv(I)

ns,α = inf{t ∈ R : P(|W(I)
ns |∞ > t |Xn) ≤ α} and

cv(I)
s,α = inf{t ∈ R : P(|W(I)

s |∞ > t |Xn) ≤ α}. Practically, let

{Wns,�}M
�=1

i.i.d.∼ N(0, �̃1) and {Ws,�}M
�=1

i.i.d.∼ N(0, R̃1). Then,

cv(I)
ns,α and cv(I)

s,α can be estimated by ĉv
(I)
ns,α = inf{t ∈

R : F̂
(I)
ns,M(t) ≥ 1 − α} and ĉv

(I)
s,α = inf{t ∈ R : F̂

(I)
s,M(t) ≥ 1 − α},

where F̂
(I)
ns,M(t) = M−1

∑M

�=1
I{|Wns,�|∞ ≤ t} and F̂

(I)
s,M(t) =

M−1
∑M

�=1
I{|Ws,�|∞ ≤ t}. For ν ∈ {ns, s}, the empirical version

of test �(I)
ν,α is therefore defined by

�̂(I)
ν,α(M) = I{T (I)

ν > ĉv
(I)
ν,α }, (2.2)

such that the null hypothesis H
(I)
0 is rejected whenever

�̂(I)
ν,α(M) = 1. The proposed testing procedures are fully data

driven and easily computed. In Section 2.2, we discuss the
constructions of �̃1, from which the wide applicability of the
test (2.2) will be explored.
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2.1.2. Two-sample case. The above procedures
can be naturally extended to deal with the two-
sample problem (1.2). Analogously to (2.1), we define
the non-studentized and studentized test statis-
tics by T (II)

ns = max1≤k≤p

√
nm|X̄k − Ȳk|/

√
n + m and

T (II)
s = max1≤k≤p

√
nm|X̄k − Ȳk|/(mσ̂2

1k + nσ̂2
2k)

1/2, respec-
tively, where X̄k = n−1

∑n

i=1
Xik, Ȳk = m−1

∑m

j=1
Yjk,

σ̂2
1k = n−1

∑n

i=1
(Xik − X̄k)

2, and σ̂2
2k = m−1

∑m

j=1
(Yjk − Ȳk)

2.

For nominal significance level α, we define tests of the
form �(II)

ns,α = I{T (II)
ns > cv(II)

ns,α} or �(II)
s,α = I{T (II)

s > cv(II)
s,α } with

appropriate critical values cv(II)
ns,α and cv(II)

s,α . Let �̃1 and �̃2

be estimates of �1 and �2, respectively. Define

�̃1,2 = m

N
�̃1 + n

N
�̃2, D̃1,2 = diag

(
�̃1,2

)
,

R̃1,2 = D̃
−1/2
1,2 �̃1,2D̃

−1/2
1,2 , (2.3)

and let {Wns,�}M
�=1

i.i.d.∼ N(0, �̃1,2) and {Ws,�}M
�=1

i.i.d.∼
N(0, R̃1,2). Then, cv(II)

ns,α and cv(II)
s,α can be estimated by

ĉv
(II)
ns,α = inf{t ∈ R : F̂

(II)
ns,M(t) ≥ 1 − α} and ĉv

(II)
s,α = inf{t ∈ R :

F̂
(II)
s,M (t) ≥ 1 − α}, where F̂

(II)
ns,M(t) = M−1

∑M

�=1
I{|Wns,�|∞ ≤ t}

and F̂
(II)
s,M (t) = M−1

∑M

�=1
I{|Ws,�|∞ ≤ t}. Similarly to (2.2),

for ν ∈ {ns, s}, we define the empirical version of �(II)
ν,α by

�̂(II)
ν,α (M) = I{T (II)

ν > ĉv
(II)
ν,α }, such that the null hypothesis

H
(II)
0 is rejected as long as �̂(II)

ν,α (M) = 1.

2.2. Estimation of Covariance Matrices

As a part of proposed tests, we need estimates of the covari-
ance matrices. Many existing tests rely on the operator-norm
consistent estimation of the covariance matrices that requires
extra structural assumptions on the unknown covariances
such as banding or sparsity. In contrast, the proposed tests
require much less restrictions on covariance estimates, which
grants its wide scope of applicability. In fact, the validity
of the proposed testing procedures only entails the covari-
ance estimators �̃1 and �̃2 to satisfy |�̃1 − �1|∞ = oP(1) and

|�̃2 − �2|∞ = oP(1).
It is shown in Lemma 3 in the supplementary material that

for the sample covariance and correlation matrices �̂q and R̂q

with q = 1, 2, there holds |�̂q − �q|∞ + |R̂q − Rq|∞ = oP(1)
under mild regularity conditions for log(p) = o(nγ/2) with
0 < γ ≤ 2. Therefore, the sample covariance and correlation
matrices can be directly used in the proposed tests, while the
dimension p is allowed to be as large as either O{exp(nc1)} for
some c1 > 0. In comparison to the existing tests, we do not
enforce any structural assumptions on the unknown covari-
ance matrices �1 and �2. This reflects our motivations in
Section 1. As evidenced by extensive numerical studies in
Section 4, our proposed procedures are fairly robust to vari-
ous covariance structures with complex forms, even the long
range dependence. Although the proposed tests do not require
operator-norm consistent estimates of �1 and �2, still one
may replace the sample covariance matrix by adaptive and
rate-optimal covariance estimators to improve the empirical
performance when the underlying covariance satisfies certain
structural assumptions.

2.3. Screening-Based Testing Procedures

The proposed testing procedures are valid when the dimension
p is much larger than the sample size n. However, building
tests based on all dimensions may result in large critical values
which may compromise the power performance. To enhance
the power, we propose a two-step procedure that combines
the proposed simulation-based tests and a preliminary step
on feature screening, which screens the p measurements before
conducting the test. The power of this two-step procedure is
expected to improve upon the proposed tests with a large
number of irrelevant features excluded.

2.3.1. One-sample case. Let S10 = {1 ≤ k ≤ p : μ1k = 0}.
The preliminary procedure is aimed at eliminating irrel-
evant features indexed by S10. Reformulate the original
global test of a mean vector to the following p marginal
tests: H

(I)
0k : μ1k = 0 versus H

(I)
1k : μ1k �= 0, for k = 1, . . . , p.

For the kth marginal hypothesis, a standard test statis-
tic is the t-statistic TS

(I)
k = √

n|X̄k|/σ̂1k. Motivated by the
idea of marginal screening (Chang et al., 2013, 2016), we

define the index set Ŝ1 = {1 ≤ k ≤ p : TS
(I)
k ≤

√
2 log(p) +

{2 log(p)}−1/2 +
√

2 log(1/α)}. We refer to Chang et al. (2013,
2016) for more discussions on the advantages of the stud-

enized statistics in marginal screening problems. If |Ŝ1| < p,
we put d = p − |Ŝ1| and let μ̃1 ∈ Rd be the sub-vector of

μ1 ∈ Rp containing only the coordinates excluded by Ŝ1. We
have therefore downsized the original problem and instead, we
focus on the reduced null hypothesis H̃

(I)
0 : μ̃1 = 0 against the

alternative H̃
(I)
1 : μ̃1 �= 0. Write T̂ (I)

ns = max
k/∈̂S1

√
n|X̄k| and

T̂ (I)
s = max

k/∈̂S1
√

n|X̄k|/σ̂1k. The resulting non-studentized and

studentized tests are given by �f,(I)
ns,α = I{T̂ (I)

ns > cv(I)
ns,α(Ŝ1)}

and �f,(I)
s,α = I{T̂ (I)

s > cv(I)
s,α(Ŝ1)}, where cv(I)

ns,α(Ŝ1) and cv(I)
s,α(Ŝ1)

denote the conditional (1 − α)-quantile of max
k/∈̂S1 |W (I)

ns,k|
and max

k/∈̂S1 |W (I)
s,k | given Xn, respectively, with W(I)

ns =
(W

(I)
ns,1, . . . , W

(I)
ns,p)

T and W(I)
s = (W

(I)
s,1, . . . , W

(I)
s,p)T as discussed

in Section 2.1.1. Whenever |Ŝ1| = p, we set �f,(I)
ns,α = �f,(I)

s,α = 0.

Notice that P
H

(I)
0

{�f,(I)
ν,α = 1} ≤ P

H
(I)
0

[�
f,(I)
ν,α = 1, Ŝ1 =

{1, . . . , p}] + P
H

(I)
0

[Ŝ1 �= {1, . . . , p}] for ν ∈ {ns, s}. Since

�
f,(I)
ν,α = 0 if |Ŝ| = p, then P

H
(I)
0

{�f,(I)
ν,α = 1} ≤ P

H
(I)
0

[Ŝ1 �=
{1, . . . , p}]. As shown in part D of supplementary material,

lim supn→∞ PH
(I)
0

[Ŝ1 �= {1, . . . , p}] ≤ α, which indicates that

the size of the two-step procedure can be controlled by the
prescribed significant level α. On the other hand, also stated

in part D of supplementary material, P
H

(I)
1

{T̂ (I)
ν = T

(I)
ν } → 1

for ν ∈ {ns, s} which means the testing statistics with screen-

ing and without screening are almost identical under H
(I)
1 .

Since the critical value cv
(I)
ν,α(Ŝ1) for two-step procedure is not

larger than cv
(I)
ν,α for non-screening procedure, we know with

probability approaching to one that the power for two-step
procedure does not decrease in comparison to the procedure
without screening. The simulation studies in Section 4 also
verify this.

2.3.2. Two-sample case. Similar to the one-sample
case, for each k = 1, . . . , p, we define TS

(II)
k = √

nm
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|X̄k − Ȳk|/
(
mσ̂2

1k + nσ̂2
2k

)1/2
and set Ŝ2 = {1 ≤ k ≤ p : TS

(II)
k ≤

[
√

2 log(p) + {2 log(p)}−1/2 +
√

2 log(1/α)}. If |Ŝ2| < p, the
resulting tests, denoted by �f,(II)

ns,α and �f,(II)
s,α , are defined

in the same way as �f,(I)
ns,α and �f,(I)

s,α for one-sample case,

respectively. If |Ŝ2| = p, we set �f,(II)
ns,α = �f,(II)

s,α = 0.

3. Theoretical Properties

In this section, we study the properties of the proposed
tests including the asymptotic sizes and powers. In prac-
tice, taking M in thousands using numerical devices to
increase simulation efficiency is now the rule rather than
the exception in the Monte Carlo framework. The difference
between such large values of M and using mathematically
ideal value M = ∞ is particularly small. We therefore focus
on the oracle tests �(I)

ν,α and �(II)
ν,α for ν ∈ {ns, s}, and their

screening-based analogues �f,(I)
ν,α and �f,(II)

ν,α . It is shown that
the proposed tests maintain the nominal size asymptoti-
cally under very general covariance structures. Moreover, the
proposed tests are shown to be consistent against sparse alter-
natives. Recall �1 = (σ1,k�)1≤k,�≤p, �2 = (σ2,k�)1≤k,�≤p, D1 =
diag (�1) and D2 = diag (�2). The marginally standardized
version of X and Y are U = (U1, . . . , Up)

T = D
−1/2
1 X and

V = (V1, . . . , Vp)
T = D

−1/2
2 Y, respectively. We only impose

the following mild moment conditions.

� (M1) max1≤k≤p max[{E(|Uk|r)}1/r, {E(|Vk|r)}1/r] ≤ K0 for
some r ≥ 4 and K0 > 0

� (M2) max1≤k≤p max[E{exp(K1|Uk|γ)},E{exp(K1|Vk|γ)}] ≤
K2 for some K1 > 0, K2 > 1 and 0 < γ ≤ 2.

Condition (M1) indicates that the tail probability (|Uk| > t)
decays to zero in a faster rate than t−r as t → ∞. Condi-
tion (M2) requires exponentially light tails, that is, (|Uk| >

t) ≤ exp(−K̃1t
γ) for some K̃1 > 0 and all sufficiently large t,

and implies that all moments of Uk are finite. Throughout
this section, we assume that σ1,11, . . . , σ1,pp, σ2,11, . . . , σ2,pp are
uniformly bounded away from 0 and ∞, n, p ≥ 2, n � m, and
n ≤ m.

Theorem 1. Let �̃1 = �̂1, the sample covariance matrix,
and ν ∈ {ns, s}. As n, p → ∞, P

H
(I)
0

{�(I)
ν,α = 1} → α holds with

either (i) (M1) holds and p = O(nr/2−1−δ) for some δ > 0; or
(ii) (M2) holds for some γ ≥ 1/2 and log(p) = o(n1/7).

Theorem 1 establishes the validity of the proposed one-
sample tests in the sense that the testing procedures in
Section 2.1.1 maintain nominal significance level asymptoti-
cally. In addition, as evidenced by the numerical experiments
in Section 4, the test based on non-studentized statistics out-
performs its studentized analogue in terms of maintaining the
nominal significance level when the sample size is small. This,
however, is not surprising since the inverse operation, say
D̂

−1/2
1 , usually leads to an augmentation of the estimation

error in D̂1 and therefore is more sensitive to the sample size.
In the following theorem, we summarize the asymptotic power

of the proposed one-sample tests under suitable conditions on
the lower bound of the signal-to-noise ratios.

Theorem 2. Let �̃1 = �̂1 be the sample covari-
ance matrix. Assume that either condition (M1) holds
and p = O(nr/2−1−δ) for some δ > 0, or condition (M2)
holds and log(p) = o(nγ/2). For given 0 < α < 1, write

λ(p, α) =
√

2 log(p) +
√

2 log(1/α), and let {εn}n≥1 be an
arbitrary sequence of positive numbers satisfying εn → 0
and εn

√
log(p) → ∞ as n → ∞. As n, p → ∞, we have

(i) P
H

(I)
1

{�(I)
ns,α = 1} → 1 if max1≤k≤p |μ1k|/max1≤k≤p σ1k ≥

(1 + εn)n
−1/2λ(p, α), and (ii) P

H
(I)
1

{�(I)
s,α = 1} → 1 if

max1≤k≤p |μ1k|/σ1k ≥ (1 + εn)n
−1/2λ(p, α).

Theorem 2 reveals that the test based on studentized statis-
tics is consistent in a larger testable region in comparison to
the test based on non-studentized statistics. As a complement
to Theorem 1, the asymptotic size of the proposed two-sample
tests without screening is reported below.

Theorem 3. Let (�̃1, �̃2) = (�̂1, �̂2) and ν ∈ {ns, s}.
Assume that either condition (i) or condition (ii) in Theorem 1
holds. Then as n, p → ∞, P

H
(II)
0

{�(II)
ν,α = 1} → α.

Theorem 3 implies that, under proper moment condi-
tions, the proposed two-sample non-screening tests maintain
nominal size α asymptotically, while allowing for either a poly-
nomial or an exponential rate of growth of the dimension p

with respect to the sample size n. In Theorem 4 below, the
asymptotic power of the two-sample non-screening tests is
analyzed.

Theorem 4. Let (�̃1, �̃2) = (�̂1, �̂2). Assume that
either condition (M1) holds and p = O(nr/2−1−δ) for some
δ > 0, or condition (M2) holds and log(p) = o(nγ/2). For
given 0 < α < 1, let λ(p, α) and {εn}n≥1 be as in Theo-
rem 2. As n, p → ∞, we have (i) P

H
(II)
1

{�(II)
ns,α = 1} → 1

if max1≤k≤p |μ1k − μ2k|/max1≤k≤p(σ
2
1k/n + σ2

2k/m)1/2 ≥
(1 + εn)λ(p, α), and (ii) P

H
(II)
1

{�(II)
s,α = 1} → 1 if

max1≤k≤p |μ1k − μ2k|/(σ2
1k/n + σ2

2k/m)1/2 ≥ (1 + εn)λ(p, α).

The following theorem establishes asymptotic properties
of the proposed two-step testing procedures. Part (i) in
Theorem 5 below shows that the type I error of the
proposed screening-based two-step procedures can be
controlled by the prescribed significance level asymp-
totically. Similar to the comparison between the
studentized and non-studentized tests in Theorem 2,
parts (ii) and (iii) in Theorem 5 below also imply that the
screening-based two-step studentized test is consistent in a
larger region than its non-studentized counterpart.

Theorem 5. Let �̃1 = �̂1. Assume that either condition
(M1) holds and p = O(nr/2−1−δ) for some δ > 0, or condi-
tion (M2) holds for some γ ≥ 1

2
and log(p) = o(n1/7). We

have (i) lim supn→∞ PH
(I)
0

{�f,(I)
ν,α = 1} ≤ α for ν ∈ {ns, s}, (ii)

P
H

(I)
1

{�f,(I)
ns,α = 1} → 1 if the condition for part (i) in Theorem
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2 holds, (iii) P
H

(I)
1

{�f,(I)
s,α = 1} → 1 if the condition for part

(ii) in Theorem 2 holds.

Similarly, the following theorem establishes the limiting
null property and the asymptotic power for the proposed two-
step procedures with pre-screening in the two-sample settings.

Theorem 6. Let (�̃1, �̃2) = (�̂1, �̂2). Assume that either
condition (M1) holds and p = O(nr/2−1−δ) for some δ > 0, or
condition (M2) holds for some γ ≥ 1

2
and log(p) = o(n1/7).

We have (i) lim supn→∞ PH
(II)
0

{�f,(II)
ν,α = 1} ≤ α for ν ∈ {ns, s},

(ii) P
H

(II)
1

{�f,(II)
ns,α = 1} → 1 if the condition for part (i) in The-

orem 4 holds, and (iii) P
H

(II)
1

{�f,(II)
s,α = 1} → 1 if the condition

for part (ii) in Theorem 4 holds.

4. Simulation Studies

In this section, we report the simulation results from sev-
eral experiments to evaluate the performance of the proposed
tests, including the non-studentized test without screening
�ns,α, the studentized test without screening �s,α, the non-
studentized test with screening �f

ns,α and the studentized test
with screening �f

s,α, for both one- and two-sample problems.
For ease of exposition, we suppress the superscripts (I) and
(II). To demonstrate the proposed tests, we also implemented
peer testing procedures for comparison. For the one-sample
problem, we compared the proposed tests with the test by
Zhong et al. (2013) (denoted by ZCX hereafter) and the
Higher Criticism (HC) procedure by Donoho and Jin (2004) .
We used the method proposed by Li and Siegmund (2015) to
obtain more accurate approximation of the critical values in
HC procedure. For the two-sample problem, we experimented
the tests by Chen and Qin (2010) (denoted by CQ hereafter)
and Cai et al. (2014) (denoted by CLX hereafter) as well as
the HC procedure.

In the simulation studies, we considered a wide range of
covariance structures, including both the sparse and dense
settings to investigate the numerical performance of the pro-
posed tests. We generate data with sample sizes n = 40 or
80 in one-sample case and (n, m) = (40, 40) or (80, 80) in two-
sample case. The dimension p took values in 120, 360, or 1080.
The empirical size and power were defined as the proportion
of the rejection among 1500 replications. We used the sample
covariance matrices to generate M = 1500 Monte Carlo sam-
ples to compute the critical values for our proposed tests. We
only report the results for six models in this section and more
models are considered in the supplementary material.

4.1. One-Sample Case

We took μ1 = 0 under the null hypothesis, whereas, under the
alternative, we took μ1 = (μ11, . . . , μ1p)

T to have �κpr non-
zero entries uniformly and randomly drawn from {1, . . . , p},
where κ was an integer and �x denotes the integer part of
x. We took r = 0, 0.4, 0.5, 0.7, and 0.85, where κ = 8 if r = 0
and κ = 1 otherwise. The choices of r = 0 and r = 0.7 or 0.85
correspond to the sparse and non-sparse settings, respec-
tively. The magnitudes of non-zero entries μ1� were set to
be {2βσ1,�� log(p)/n}1/2, where σ1,�� denotes the �th diagonal
entry of �1. We took β = 0.01, 0.2, 0.4, 0.6, and use β = 0.01
to mimic the scenario of weak signals.

The following two models were used to generate ran-

dom samples Xi = Zi + μ1 for i = 1, . . . , n, where {Zi}n
i=1

i.i.d∼
N(0, �1) with �1 = (σ1,k�)1≤k,�≤p.

� Model 1(I): σ1,k� = 0.4|k−�| for 1 ≤ k, � ≤ p.
� Model 2(I): Let {θk}p

k=1

i.i.d.∼ Unif(1, 2). We took σ1,kk =
θk and σ1,k� = ρα(|k − �|) for k �= �, where ρα(e) = 1

2
{(e +

1)2H + (e − 1)2H − 2e2H } with H = 0.9.

Model 1(I) has sparse covariance structure while Model 2(I)

takes long range dependence into account which exhibits a
non-sparse structure. In addition, we considered the following
model with non-Gaussian data to study the robustness of the
proposed tests against Gaussian assumptions. The covariance
structure in the following Model 3(I) is non-sparse.

� Model 3(I): Let {Xi}n
i=1

i.i.d.∼ tω(μ1, �1), where tω(μ1, �1)
is the non-central multivariate t-distribution with non-
central parameter μ1, degrees of freedom ω = 5, and σ1,k� =
0.995|k−�|.

Simulation results for the tests �ns,α, �s,α, �f
ns,α, and �f

s,α

and the ZCX and HC tests are summarized in Table 1 and
Figure 1. Table 1 displays the empirical sizes of all the tests.
It can be seen that in all the models, the empirical sizes of
the non-studentized tests �ns,α and �f

ns,α are reasonably close
to the nominal level 0.05 for both n = 40 and n = 80. The
proposed studentized tests �s,α and �f

s,α have slightly inflated
size when n is relatively small but improve with larger sample
sizes. The ZCX test maintains the nominal size for Model 1(I)

but fails in the presence of long range dependence or non-
sparse covariance structures. The HC procedure also fails in
maintaining the nominal significance when the sample size n

is small or the dependency is strong and complex.
To compare the empirical powers, we took n = 80 and

p = 1080. For Model 1(I), we compared the proposed tests
with the ZCX test (column (a) in Figure 1), whereas, for
the other two models, we only focused on comparing the
four proposed tests as they maintain the nominal size rea-
sonably well and other tests fail in size control. Column (a) in
Figure 1 shows that �s,α, �f

s,α, and �f
ns,α provide non-trivial

powers against alternatives with sparse signals (r = 0) even
under the weak signal settings (β = 0.01); in contrast, the
ZCX test improves its power as the signal getting dense, which
is expected for sum of squares-type statistics. As the signal
strength increases, all tests under consideration gain powers.
The proposed tests with screening, �f

ns,α and �f
s,α, outperform

the ZXC test under sparse alternatives (r = 0, 0.4), and their
powers are close to that of the ZCX test for dense signals
(r ≥ 0.7). From columns (b) and (c) in Figure 1, we observe
that the screening procedure substantially improves the power
performance of the tests for all settings, which reflects the
heuristic discussions and motivations in Section 2.3.1. The
non-studentized test with screening �f

ns,α performs compara-
bly to, or better than, the studentized test without screening
�s,α under sparse alternatives (r ≤ 0.5). This suggests that
�f

ns,α is more preferable in practice given its capability in
maintaining the nominal significance for small sample size.
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Table 1
Empirical sizes of the proposed tests (non-studentized without screening �ns,α, studentized without screening �s,α,

non-studentized with screening �f
ns,α, and studenzied with screening �f

s,α) for the one-sample problem (1.1), along with those
of the tests by Zhong et al. (2013) (ZCX), and Donoho and Jin (2004) (HC) at 5% nominal significance. Models with

Gaussian data and sparse or long range dependence (non-sparse) covariance matrices, and the autoregressive model with
t-distributed innovations are considered when n = 40, 80 and p = 120, 360, 1080.

Model 1(I) Model 2(I) Model 3(I)

tests/p 120 360 1080 120 360 1080 120 360 1080

n = 40

�ns,α 0.037 0.027 0.021 0.025 0.028 0.023 0.054 0.044 0.033
�s,α 0.133 0.126 0.168 0.093 0.113 0.202 0.065 0.080 0.096
�f

ns,α 0.044 0.045 0.043 0.039 0.027 0.039 0.054 0.046 0.033
�f

s,α 0.150 0.154 0.194 0.095 0.170 0.218 0.060 0.058 0.093
ZCX 0.064 0.078 0.089 1 1 1 0.382 0.487 0.673
HC 0.123 0.225 0.316 0.129 0.249 0.320 0.274 0.377 0.468

n = 80

�ns,α 0.037 0.036 0.029 0.040 0.032 0.042 0.049 0.047 0.040
�s,α 0.060 0.082 0.092 0.082 0.083 0.094 0.058 0.058 0.067
�f

ns,α 0.048 0.045 0.043 0.051 0.045 0.040 0.049 0.048 0.044
�f

s,α 0.086 0.097 0.094 0.095 0.091 0.110 0.060 0.058 0.069
ZCX 0.080 0.072 0.071 1 1 1 0.404 0.506 0.702
HC 0.063 0.119 0.142 0.079 0.145 0.175 0.267 0.363 0.471

4.2. Two-Sample Case

We took μ1 = μ2 = 0 under the null hypothesis, whereas,
under the alternative, we let μ1 = (μ11, . . . , μ1p)

T to have
�κpr non-zero entries uniformly and randomly drawn from
{1, . . . , p}, where κ is an integer. As before, we considered
r = 0, 0.4, 0.5, 0.7, and 0.85, where κ = 8 if r = 0 and κ = 1
otherwise. The magnitudes of non-zero entries μ1� were set to
be {2βσ�� log(p)(1/n + 1/m)}1/2, where σ�� is the �th diagonal
entry of the pooled covariance matrix �1,2 as in (2.3). We
took β = 0.01, 0.2, 0.4, 0.6.

The following two models were used to generate random
samples Xi = Z1,i + μ1,Yj = Z2,j + μ2 for i = 1, . . . , n and

j = 1, . . . , m, where {Z1,i}n
i=1

i.i.d.∼ N(0, �1) and {Z2,j}m
j=1

i.i.d.∼
N(0, �2) with �1 = (σ1,k�)1≤k,�≤p and �2 = (σ2,k�)1≤k,�≤p,
respectively.

� Model 1(II): For k = 1, . . . , p and q = 1, 2, σq,kk

i.i.d.∼
Unif(2, 3), σq,k� = 0.7 for 10(t − 1) + 1 ≤ k �= � ≤ 10t, where
t = 1, . . . , �p/10, and σq,k� = 0 otherwise.

� Model 2(II): Let F = (fk�)1≤k,�≤p with fkk = 1, fk,k+1 =
fk+1,k = 0.5, Uq ∼ U(Vp,k0), the uniform distribution on
the Stiefel manifold for q = 1, 2, and � = diag{θ11, . . . , θpp}
with θkk

i.i.d.∼ Unif(1, 6). Set k0 = 10 and put �q = �1/2(F +
UqU

T
q )�1/2 for q = 1, 2.

Model 1(II) and Model 2(II) are with sparse and non-sparse
covariance structures, respectively. In addition, we considered
the following model with non-Gaussian data.

� Model 3(II): Let {Xi}n
i=1

i.i.d.∼ tω1(μ1, �1) and {Yj}m
j=1

i.i.d.∼
tω2(μ2, �2), where ω1 = 5, ω2 = 7, σ1,k� = 0.995|k−�| and
σ2,k� = 0.7|k−�|.

The numerical results on the proposed tests �ns,α, �s,α,
�f

ns,α, and �f
s,α and the HC, CQ, and CLX tests are summa-

rized in Table 2 and Figure 2. Table 2 displays the empirical
sizes. It can be seen that in all the models, the empirical sizes
for �ns,α and �f

ns,α are reasonably close to the nominal level
0.05 for both (n, m) = (40, 40) and (80, 80). The studentized
tests, �s,α and �f

s,α, have slightly inflated significance when
the sample size is relatively small but improve when the sam-
ple size increases. Additionally, the CLX test fails to maintain
the nominal size for Model 3(II) due to the strong dependency
in the covariance structures. Analogous to the observation in
Section 4.1, it is difficult for the HC procedure to maintain
the nominal significance when the sample size is small or the
dependency is strong and complex. The CQ test maintains
the nominal significance reasonably well in all the models.

To evaluate the power, we compared the proposed tests
with the CQ and CLX tests for (n, m) = (80, 80) and
p = 1080. It can be seen that the tests with screening, �f

ns,α

and �f
s,α, outperform both the CQ and CLX tests against

alternatives with sparse signals (r = 0) for different signal
strength β. On the other hand, all the tests perform simi-
larly when the signals become less sparse and strong. The
CQ test gains more powers when signals become less sparse,
as expected for sum of squares-type statistics. Its power
approaches to those of the proposed tests with screening �f

ns,α

and �f
s,α when the signals become less sparse and stronger

(r ≥ 0.5, β ≥ 0.4) in the models except Model 3(II). In Model
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Figure 1. Empirical powers of the proposed tests (non-studentized without screening �ns,α, studentized without screening
�s,α, non-studentized with screening �f

ns,α, and also studenzied with screening �f
s,α) against alternatives with different levels

of the signal strength (β) and sparsity (1 − r) for the one-sample problem (1.1) when n = 80 and p = 1080 at 5% nominal
significance for the Gaussian data and sparse covariance matrices in Model 1(I) (column (a)), the Gaussian data and long
range dependence covariance matrices in Model 2(I) (column (b)), and the autoregressive process model, Model 3(I), with
t-distributed innovations (column (c)). Column (a) also displays the powers of the test by Zhong et al. (2013) (ZCX).
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Table 2
Empirical sizes of the proposed tests (non-studentized without screening �ns,α, studentized without screening �s,α,

non-studentized with screening �f
ns,α, and studenzied with screening �f

s,α) for the two-sample problem (1.2), along with those
of the tests by Donoho and Jin (2004) (HC), Chen and Qin (2010) (CQ), and Cai et al. (2014) (CLX) at 5% nominal
significance. Models with Gaussian data and sparse or non-sparse covariance matrices, and with non-Gaussian data are

considered when n = m = 40 or 80 and p = 120, 360, 1080.

Model 1(II) Model 2(II) Model 3(II)

tests/p 120 360 1080 120 360 1080 120 360 1080

(n, m) = (40, 40)

�ns,α 0.039 0.041 0.041 0.042 0.044 0.039 0.052 0.036 0.042
�s,α 0.094 0.112 0.125 0.092 0.097 0.116 0.086 0.090 0.092
�f

ns,α 0.055 0.048 0.057 0.049 0.055 0.054 0.055 0.039 0.052
�f

s,α 0.092 0.120 0.152 0.098 0.131 0.053 0.090 0.094 0.094
HC 0.086 0.156 0.157 0.078 0.144 0.148 0.172 0.237 0.283
CQ 0.044 0.049 0.034 0.046 0.049 0.051 0.064 0.066 0.054
CLX 0.101 0.103 0.138 0.081 0.087 0.098 0.204 0.181 0.137

(n, m) = (80, 80)

�ns,α 0.054 0.039 0.046 0.053 0.040 0.040 0.046 0.045 0.047
�s,α 0.074 0.062 0.086 0.058 0.064 0.090 0.059 0.065 0.074
�f

ns,α 0.065 0.052 0.060 0.063 0.050 0.058 0.047 0.048 0.056
�f

s,α 0.088 0.076 0.098 0.070 0.080 0.093 0.062 0.069 0.086
HC 0.068 0.086 0.099 0.053 0.085 0.085 0.165 0.239 0.263
CQ 0.046 0.039 0.048 0.048 0.038 0.048 0.044 0.054 0.056
CLX 0.107 0.090 0.104 0.057 0.057 0.089 0.289 0.352 0.297

3(II), all the proposed tests outperform the CQ test substan-
tially as the sum of squares-type test statistics may lose power
for heavy tailed sampling distributions. The CLX test per-
forms similarly to the �ns,α and �s,α, but is outperformed by
the proposed tests with screening for all settings. The sim-
ulation results agree with the heuristic discussion and the
theoretical justification that the screening step substantially
improves the power of proposed tests. Similar to the observa-
tions in Section 4.1, �f

ns,α is preferable in practice whenever
the sample size is relatively small.

In summary, the numerical results show that the pro-
posed tests, particularly the studentized tests and the
non-studentized test with screening, �s,α, �f

s,α, and �f
ns,α, out-

perform the existing methods when the covariance structure
is non-sparse and complex. The proposed tests are robust
against both unknown covariance structures and Gaussian-
ity. The �f

ns,α maintains the nominal significance for small
sample sizes and has good powers against sparse alter-
natives, which is recommended for practical applications
with relatively small sample size. The �f

s,α is more pow-
erful and thus is preferable in applications with relatively
large samples, such as biomedical research with a large
cohort.

More extensive simulations were carried out for dimen-
sions p = 120 and 360, from which the comparisons are
consistent with the cases that are reported here. The empir-
ical powers of all the tests also increase in p. All the
additional simulation results are placed in the online sup-
plementary materials. Furthermore, extra simulations were
reported in the supplementary materials to demonstrate that

the proposed procedures may benefit from using regularized
covariance estimations when the covariance matrices do admit
special structures.

5. Empirical Study

Analysis and interpretation based on gene-sets or GO terms
derive more power than focusing on individual gene in extract-
ing biological insights (Subramanian et al., 2005). It has
drawn increasing attentions to identify GO terms associated
with biological states of interest (Subramanian et al., 2005;
Efron and Tibshirani, 2007; Recknor et al., 2008). A particular
GO term belongs to one of the three categories of gene ontolo-
gies of interest: biological processes (BP), cellular components
(CC), and molecular functions (MF).

Statistically, identifying interesting gene-sets out of G

candidate gene-sets S1, . . . ,SG based on independent sam-
ples from two biological states (q = 1, 2) is equivalent to
test hypotheses H0s : μ1,s = μ2,s versus H1s : μ1,s �= μ2,s for
s = 1, . . . , G, where μq,s models the mean expression levels of
ps genes in the gene-set Ss under biological state q. It is com-
mon that gene-sets overlap with each other as one particular
gene may belong to several functional groups, and the size of a
gene-set ps usually range from a small to a very large number.
The selection of gene-sets therefore encounters both multiplic-
ity and high dimensionality. Similar to Chen and Qin (2010),
we applied the proposed tests to each gene-set. With p-values
obtained for all G gene-sets, we further employed the multiple
testing methods such as the Benjamini–Yekutieli (BY) proce-
dure (Benjamini and Yekutieli, 2001) for controlling the false
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Figure 2. Empirical powers of the proposed tests (non-studentized without screening �ns,α, studentized without screening
�s,α, non-studentized with screening �f

ns,α, and also studenzied with screening �f
s,α) against alternatives with different levels

of the signal strength (β) and sparsity (1 − r) for the two-sample problem (1.2) when n = 80 and p = 1080 at 5% nominal
significance for the Gaussian data and sparse covariance matrices in Model 1(II) (column (a)), the Gaussian data and non-
sparse covariance matrices in Model 2(II) (column (b)), and the non-Gaussian data in Model 3(II) (column (c)). The powers
of the tests by Chen and Qin (2010) (CQ) and Cai et al. (2014) (CLX) are also displayed.
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Table 3
Numbers of identified BCR/ABL associated gene-sets for each GO category using different tests in conjunction with the BY
procedure by Benjamini and Yekutieli (2001) for controlling FDR at 0.015. Columns labeled by the name of tests records the

number of identified gene-sets by the corresponding testing procedures, where �ns,α and �f
ns,α are the proposed

non-studentized tests without and with screening, and CQ stands for the test by
Chen and Qin (2010).

�f
ns,α and CQ

GO
Category �ns,α �f

ns,α only Both CQ only Total maxs ps mins ps �p̄s

BP 601 0 956 560 1853 3050 20 150

CC 52 0 99 17 262 3145 19 280

MF 95 0 150 77 284 3040 19 157

discovery rate (FDR) under dependency to identify significant
gene-sets.

We applied the above procedure to a human acute lym-
phoblastic leukemia (ALL) data set which is available at .The
data contains gene expression levels from microarray experi-
ments for patients suffering from ALL of either T-lymphocyte
type or B-lymphocyte type leukemia. This data set was orig-
inally analyzed by Chiaretti et al. (2004) to provide insight
into the genetic mechanism on ALL development and it was
also analyzed by Dudoit et al. (2011) and Chen and Qin
(2010) using different methodologies. To illustrate the pro-
posed tests, we focus on the 75 patients of B-lymphocyte type
leukemia, who were classified into two groups: 35 patients with
BCR/ABL fusion and 40 patients with cytogenetically normal
NEG, i.e., n = 35 and m = 40. We employed the approach in
Gentleman et al. (2005) to conduct preliminary data process-
ing. To focus on high dimensional scenarios, we also excluded
gene-sets with ps ≤ 19. It remained G = 1853, 262, and 284
unique GO terms in the BP, CC, and MF categories, respec-
tively. And the largest gene-set contained ps = 3050, 3145,
and 3040 genes in the BP, CC and MF categories, respectively.
Given the complexity of the data processing and collection
procedures, batch effects may exist and result in unreliable
results. Therefore, we further employ the surrogate variable
analysis (SVA) method proposed by Leek and Storey (2007)
to remove the potential batch effects and other unwanted vari-
ations in the data. In summary, two surrogate variables were
found by SVA and removed from the original ALL expression
data. Identifications of gene-sets associated to the BCR/ABL
fusion display biological insights on the development of
B-lymphocyte type leukemia and provide lists of functional
groups for potential clinical treatments. We aim to iden-
tify gene-sets with significantly different expression levels
between the BCR/ABL and NEG groups for each of the three
categories.

The sample size of the ALL data is relatively small compar-
ing to the maximum ps, we therefore employed the proposed
two-sample non-studentized tests �ns,α and �f

ns,α in the anal-
ysis as suggested by simulation studies in Section 4. Based
on empirical p-values, we further employed the BY proce-
dure for controlling the FDR at 0.015 and identify significant
gene-sets. For the proposed tests, we let M = 50, 000 and
used the sample covariance matrices to generate samples.
Simulation studies in Section 4 have shown that the test by

Cai et al. (2014) may inflate type I error rate for small sam-
ple size, we therefore only consider the test by Chen and
Qin (2010) (CQ) as a reference. For each category, the num-
bers of gene-sets being identified are summarized in Table 3.
All the gene-sets identified by the proposed two-step test
�f

ns,α are also identified by CQ methods. This suggests that
CQ test may over-detect some disease-associated gene-sets.
Moreover, �f

ns,α found more disease associated gene-sets than
�ns,α, which reflects the power improvement of the proposed
two-step testing procedure as discussed before.

By carefully investigating the gene-sets identified by both
the proposed tests �ns,α and �f

ns,α, we found that gene-
sets GO:0005758 (mitochondrial intermembrane space) and
GO:0004860 (protein kinase inhibitor activity) were identi-
fied as diseases-associated in the CC and MF categories. The
functions of these two interesting gene-sets were recently stud-
ied and recognized associated with the development of ALL
(Cui et al., 2009; Brinkmann and Kashkar, 2014). Particu-
larly, the protein kinase inhibition has been considered to
be essential for the mechanism of T-lymphocyte type ALL
(Cui et al., 2009) and our finding suggests its connection with
B-lymphocyte type ALL as well. The association of these
gene-sets with the ALL may deserve further biological vali-
dations using the polymerase chain reaction.

6. Supplementary Materials

Web Appendices, which include proofs of the main theorems
and additional numerical results referenced in Section 3 and
4 are available with this article at the Biometrics website on
Wiley Online Library.
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