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Practice of Epidemiology
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National infectious disease incidence rates are often estimated by standardizing locally derived rates using
national-level age and race distributions. Data on other factors potentially associated with incidence are often
not available in the form of patient-level covariates. Including characteristics of patients’ area of residence may
improve the accuracy of national estimates. The authors used data from the Centers for Disease Control and
Prevention’s Active Bacterial Core Surveillance program (2004–2005), adjusted for census-based variables, to
estimate the national incidence of invasive pneumococcal disease (IPD). The authors tested Poisson and negative
binomial models in a cross-validation procedure to select variables best predicting the incidence of IPD in each
county. Including census-level information on race and educational attainment improved the fit of both Poisson and
negative binomial models beyond that achieved by adjusting for other census variables or by adjusting for an
individual’s race and age alone. The Poisson model with census-based predictors led to a national estimate of IPD
of 16.0 cases per 100,000 persons as compared with 13.5 per 100,000 persons using an individual’s age and race
alone. Accuracy of, and confidence intervals for, these estimates can only be determined by obtaining data from
other randomly selected US counties. However, incorporating census-derived characteristics should be consid-
ered when estimating national incidence of IPD and other diseases.

estimation; pneumococcal infections; sentinel surveillance; statistics as topic; Streptococcus pneumoniae

Abbreviations: ABCs, Active Bacterial Core Surveillance; CDC, Centers for Disease Control and Prevention; IPD, invasive
pneumococcal disease; PCV7, heptavalent pneumococcal conjugate vaccine.

Streptococcus pneumoniae (pneumococcus) is a common
cause of morbidity and mortality from local and invasive
infections, in the United States and worldwide (1). Risk
factors for pneumococcal disease include age, chronic lung
and cardiovascular disease, smoking, and immunosuppres-
sive disorders (2). Independently of these factors, race and
other sociodemographic variables have also been recog-
nized to be related to the risk of pneumococcal carriage
(3, 4) and infection (5). For example, even after introduction
of the heptavalent pneumococcal conjugate vaccine (PCV7)
in 2000, differences in the incidence of invasive pneumo-
coccal disease (IPD) among white and black Americans
persisted (5), though they may now be narrowing in some
locales (6). It is unclear how much of the added risk asso-
ciated with race, which is seen in a wide range of health
conditions (7), may be explained by variables related to

socioeconomic status, environmental exposures, and access
to medical care. Information on potentially important socio-
demographic variables is often not collected as part of in-
fectious disease surveillance. Therefore, surveillance
systems that use age and race only to estimate national rates
of disease may over- or underestimate disease burden.

The Centers for Disease Control and Prevention (CDC)
monitors the incidence of IPD using Active Bacterial Core
Surveillance (ABCs), an active, population- and laboratory-
based surveillance system operating in 10 state health
departments (8). Because ABCs sites routinely audit labo-
ratories to ensure complete reporting, observed rates of IPD
within ABCs catchment areas are believed to be quite ac-
curate. Incidence rates of IPD have varied widely, at least in
the era before the introduction of PCV7, from 9 per 100,000
persons to 19 per 100,000 persons across geographic regions



correlated, we initially grouped variables into measures of
population density, age distribution, race/ethnicity, educa-
tion, economic factors, household crowding, and other mea-
sures (Table 1). In the 2000 US Census, the variable for race
(e.g., white, black, American Indian, etc.) was separated
from that for ethnicity (Hispanic vs. non-Hispanic). There-
fore, while categories of race are mutually exclusive, race
and ethnicity categories are not.

Household crowding was defined as the proportion of
owner- and renter-occupied housing units with more than
1 occupant per room. County in-migration was defined as
the proportion of the population over 5 years of age who had
become new residents of the county in the previous 5 years.
County-level vaccine penetration information was obtained
from published CDC estimates (14) of the fraction of chil-
dren aged 19–35 months who had received appropriate pri-
mary and booster vaccines (although we did not include
PCV7 in the coverage fraction, to allow comparison with
prior years).

Statistical methods

Model assumptions. Poisson regression was used to
model the number of cases Yij in county j ¼ {1, 2, . . .,
170} and age group i ¼ {1, 2, . . ., 6} as

Yij ~ Poisson
�
lij
�
; ð1Þ

where lij ¼ Popije
b0þaijþ

P
bkxjk ; Popij is the population in

age group i in county j, b0 is the intercept, ai is the age
group effect, bk is the census-level variable effect, and xjk
is the value of the kth census variable for county j.

A second model assuming a negative binomial distribu-
tion for the outcomes was also tested to account for the
possibility of overdispersion in the observed data. As with
the Poisson regression model, a logarithm link function was
used.

Yij ~ negative binomial
�
lij
�
: ð2Þ

US Census variable selection. In order to identify US
Census variables that might improve model prediction per-
formance, we began by fitting models for each variable
within each of the 7 groups of similar socioeconomic vari-
ables and then scoring the variables on the basis of their
predictive performance through a cross-validation proce-
dure. Because many of the sociodemographic variables are
highly correlated, putting more than 1 variable from each
group into a model would probably not improve model fit
greatly. Therefore, the single best variable from each group
was tested for inclusion in the final model. In all tested
models, the age group of each IPD case was always
included.

Model fitting. We designed and evaluated several candi-
date models using predictive variables from each group of
census variables, specified a priori (Table 1). Candidate
models included 2 or more variables (maximum of 5) from
different variable groups. The most predictive variables
from each group were used in the candidate models. We

(9). National estimates for IPD have been calculated by
adjusting the rates derived from ABCs surveillance areas
for the age and race distributions of the United States, as
reported by the US Census Bureau. However, the ABCs sites
were selected through a competitive process that evaluated
criteria such as the existing public health infrastructure and
the availability of academic partners at each site (10).
Therefore, since ABCs represents a nonrandom sample of
US counties, extrapolation to the remainder of the United
States may not yield optimal national estimates.

We hypothesized that incorporation of community-level
variables, in a statistical model, might produce better na-
tional estimates of the incidence of IPD. Community-level
data do not replace information collected on individuals.
Instead, such data reflect the demographic attributes of the
environment (11). For example, we have shown that inde-
pendently of whether a child receives out-of-home child
care, living in an area where most children attend day care
increases the risk of pneumococcal carriage (12). We lim-
ited our investigation of potential predictors to those avail-
able from the US Census Bureau, since they are widely
available and require no additional original data collection.
Since the surveillance areas of the ABCs are counties for
which we already know the number of IPD cases, we used
county-level information as candidate predictors. The pri-
mary study question was whether a model for extrapolating
the incidence of IPD from a nonrandom group of US
counties that adjusted for census-based variables would be
superior to one that adjusted for the age and race distribution
of the United States alone. The result might inform calcu-
lation of other national estimates from surveillance pro-
grams based on limited and non-randomly selected
geographic areas.

MATERIALS AND METHODS

Data sources

ABCs conducts active IPD surveillance in 170 geograph-
ically diverse counties in California (1 county), Colorado
(5 counties), Connecticut (all 8 counties), Georgia (20
counties), Maryland (6 counties), Minnesota (all 75
counties), New Mexico (all 26 counties), New York (15
counties), Oregon (3 counties), and Tennessee (11 counties)
(Figure 1). Cases are reported when pneumococcus is iso-
lated from a normally sterile site (e.g., blood, cerebrospinal
fluid) by clinical microbiology laboratories serving these
counties, as described elsewhere (13). Information on an
individual’s age, race, ethnicity, gender, and county is col-
lected on a standard reporting form. For this analysis, we
used the 7,370 cases of IPD identified in the years 2004 and
2005 using 6 age groups: 0–<2, 2–<5, 5–<18, 18–<50, 50–
<65, and �65 years.

The 2000 US Census contains information on the 115.9
million housing units and 281.4 million persons present in
the United States in the year 2000, and its data are available
in a variety of formats and media (http://www.census.gov/).
We selected 24 county-level variables, a priori, as potential
candidates to enter into a prediction model for the incidence
of IPD. Since many measures had the potential to be

http://www.census.gov/


also tested some of the variables that were ranked as second-
best predictors from the groups. Finally, we selected 7 final
models with improved prediction as measured using cross-
validation: 1) race only (proportion white); 2) race and high
school education (proportion with less than a high school
education); 3) race, high school education, and general pov-
erty (proportion of persons living in poverty); 4) race, high
school education, and child poverty (proportion of children
under age 6 years living in poverty); 5) race, high school
education, child poverty, and household income; 6) popula-
tion density, race, high school education, general poverty,
and vaccine penetration; and 7) population density, race,
high school education, child poverty, and vaccine penetra-
tion. All candidate models were tested using both the Pois-
son and negative binomial distributions by cross-validation.
After finding the model with the least cross-validation error,
we tested whether an interaction term between age group
and the census-derived variables improved the fit further.

Cross-validation procedure. Cross-validation partitions
an existing sample of data (here the known cases of pneu-
mococcal disease in the 170 ABCs counties) into subsets
(15). In K-fold cross-validation, the original sample is par-
titioned into K subsamples. Of the K subsamples, a single
subsample is retained as the validation data for testing the
model, and the remaining K � 1 subsamples are used to fit
the model. The cross-validation process is then repeated K
times (the folds), with each of the K subsamples used ex-
actly once as the validation data. The K results can then be
averaged (or otherwise combined) to produce a single error
estimate. The advantage of this method over repeated sub-
sampling is that all observations are used for both fitting the
model and validation, and each observation is used for val-
idation exactly once (16).

We used a 10-fold cross-validation in which each parti-
tion represented one of the states in the ABCs’ surveillance
network. A 170-fold cross-validation was also tested, where
each partition represented 1 county in the sample; results
were similar to those for the 10-fold state-level cross-
validation, and therefore we present only the state-level
cross-validation results. Models were used to provide pre-
dictions for all ABCs sites in the sample, and the predicted
values were compared with the observed values using the
generalized Pearson and error statistics.

Generalized Pearson and error statistics. The general-
ized Pearson statistic (17) and the sum of squared error
(or simply ‘‘error’’) statistic were applied to compare the
candidate models. The generalized Pearson statistic is

X2 ¼
X
i;j

�
yij � l̂ij

�2
Vij

; ð3Þ

where l̂ij is the expected number of cases estimated
using the 10-fold cross-validation procedure. For the
Poisson model, Vij ¼ l̂ij, and for the negative binomial,
Vij ¼ l̂ij

�
1þ j 3 l̂ij

�
; where j is a dispersion parameter

that is estimated from the data. The error statistic is

Error ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i; j

�
yij � l̂ij

�2s
: ð4Þ

The smaller the error, the better is the model’s prediction.
Both metrics were calculated with data stratified by age
group and county. Note that either statistic can be used to

Figure 1. US counties (dark areas) included in the Centers for Disease Control and Prevention’s Active Bacterial Core Surveillance (ABCs)
system.



number of cases for each age group in each of the 3,108
counties in the United States. The age-specific national esti-
mate is the sum of the age-specific county-level estimates, and
the overall national estimate is the sum for all age groups and
counties. The age-specific national incidence rates per 100,000
persons were calculated as the national estimate of the number
of cases in that age group divided by the national population in
that age group, multiplied by 100,000. The overall incidence
rates per 100,000 were calculated in the same way.

Table 1. Pearson and Error Statistics Derived From Bivariate Negative Binomial and Poisson Models Estimating the Incidence of Invasive

Pneumococcal Disease in the United States, 2004–2005a

Variable
Negative Binomial Model Poisson Model

Pearson Error Pearson Error

Intercept only 202.20b 294.23 3,041.34 287.24

Household crowding

Average household size (no. of persons per housing unit) 217.71 300.29 3,235.85 285.80

% living in crowded housing (>1 person per room) 196.17 291.51 2,864.12 283.90

Population density

No. of persons per square milec 203.41 494.07 3,893.15 751.64

No. of children under age 6 years per square mile 204.01 323.23 3,046.24 357.24

No. of adults aged 65 years or more per square mile 201.97 597.76 4,128.93 874.71

% of population in urban areas 205.04 293.28 3,135.63 286.88

Age distribution

% of persons under age 6 years 213.52 298.92 3,099.25 288.41

% of persons aged 65 years or more 200.12 295.44 3,058.48 288.91

% of households with children under age 18 years 212.00 299.40 3,125.82 286.02

% of households with adults aged 65 years or more 185.91 294.94 3,043.66 289.42

Race/ethnicity, %

White 204.48 279.72 2,561.87 270.25

Black 208.06 283.21 2,808.89 277.98

Asian 204.00 306.90 4,284.24 309.11

Native American 185.26 295.14 3,260.58 288.45

Other 204.19 295.49 3,131.62 289.62

Hispanic and Latino 204.01 295.48 3,132.93 289.60

% foreign-born 190.29 296.72 3,207.81 294.76

Education

% of adults with less than a high school education 135.62 264.48 2,141.76 244.59

% of adults with less than a college education 139.26 289.56 2,727.56 279.44

Economic factors

% of persons living in poverty (general poverty) 141.84 259.61 2,201.30 239.69

% of children under age 6 years living in poverty (child poverty) 156.57 266.05 2,375.83 252.91

Median household income/1,000 population 124.51 276.60 2,397.88 259.12

% unemployed among persons aged 16 years or more 179.76 275.74 2,584.52 265.19

Other

Vaccine penetrationd, % 207.27 290.40 2,915.57 281.21

County in- and outmigratione, per 1,000 184.18 299.33 3,100.62 299.31

a Results were adjusted for age group and 1 census variable.
b The italic entries identify the models with the best fit within each category.
c 1 square mile ¼ 1.6 km2.
d Estimated vaccine coverage level among children aged 19–35 months.
e Rate of domestic migration per 1,000 population.

compare the same probability model with different vari-
ables, but only the error statistic can be used to compare 
the Poisson model versus the negative binomial model with 
the same covariates. The Pearson statistic cannot be used in 
this way, since the denominator is calculated differently for 
the 2 types of models.

Estimates of national incidence. To estimate the national 
incidence, the 2 best models (those with the best cross-
validation results) were used to determine the estimated



Reference model. For comparison, we also fitted a model
with only individual covariates, consisting of age group and
race, without any county-level variables. Since information on
racewas missing for 16% of individuals, we imputed values in
proportion to the nonmissing cases in the same age group,
race, and county. This model is the one that is most similar
to the model currently used by the CDC to estimate the num-
ber of cases of IPD in the United States, although we used
a different imputation procedure for missing values.

RESULTS

We first assessed how well the catchment areas of the
ABCs represented all US counties. As one diagnostic, we
analyzed a scatterplot of 2 census variables shown to be
highly predictive of IPD rates: the proportion of persons
of white race and the proportion of persons with less than
a high school education in each county (Figure 2). The
ABCs counties appear as filled squares in Figure 2 and the
non-ABCs counties, which need to be ‘‘predicted’’ in the
development of national estimates, as empty diamonds. The
scatterplot suggests that the ABCs sample includes counties
with a similar distribution (compared with non-ABCs
counties) of the proportion of residents of white race, but
it includes counties with a lower proportion of people with
less than a high school education than is true for US counties

overall. It is this nonrandom nature of the ABCs counties
that make it important to consider various county-level
adjustment variables.

The results from initial age-adjusted models testing the
effect of each census variable alone are shown in Table 1 for
both the Poisson and negative binomial models. We have
chosen to display both Pearson and error statistics to high-
light the difference between model fitting (better Pearson
statistics) and accurate cross-validation results (better error
statistic). Results are similar regardless of whether we eval-
uate the variables based on the Pearson statistic or the error
statistic. Note that for almost all variables, the Poisson
models achieved lower (i.e., better) error statistics than the
negative binomial models, and hence the Poisson models
performed better.

We next evaluated 7 models that included various com-
binations of predictive county-level variables (Table 2). All
7 models performed considerably better than the reference
model (model 0) based on the Pearson statistic, and all but 1
performed considerably better based on the error statistic.
As is seen by comparing models 0 and 1, individually ascer-
tained race can be replaced by a county-level race variable
without any loss in predictive power. Across all models, the
values of the error statistic are lower for the Poisson models
than for the negative binomial models with the same vari-
ables. Model 3, with the proportion white, proportion of

Figure 2. Proportion (%) of adults with less than a high school education according to the proportion (%) of county residents who are white, United
States, 2004–2005. Black squares, counties included in the Active Bacterial Core Surveillance (ABCs) system; white diamonds, non-ABCs
counties (‘‘predicted’’ data).



of the local population can contribute to improved predic-
tion of national IPD counts, compared with estimates based
on people’s age and race alone.

Since the Poisson models performed better than the neg-
ative binomial models, the remaining results focus on the
Poisson models. All of these were evaluated by adding age
group 3 county-level variable interaction terms. Only
models 2 and 3 achieved better prediction when the inter-
action terms were added, with both models showing im-
provement in prediction in every age group. Their error
statistics, categorized by age group, are shown in Table 3.

Table 2. Candidate Models Estimating the Incidence of Invasive Pneumococcal Disease in the United States With Predictive Pearson and Error

Statistics, Using Model 0 (Without County-Level Variables) as the Reference Model, 2004–2005

Modela and Variables
Negative Binomial Model Poisson Model

Pearson Error Pearson Error

Model 0 N/Ab N/Ab 4,051.61 269.98

Age and individual race

Model 1 204.48 279.72 2,561.87 270.25

% white

Model 2 148.46 255.06 2,077.49 234.62

% white

% of adults with less than a high school education

Model 3 143.55 252.81c 2,078.02 232.44

% white

% of adults with less than a high school education

% of persons living in poverty

Model 4 146.29 253.52 2,100.96 234.86

% white

% of adults with less than a high school education

% of children under age 6 years living in poverty

Model 5 125.65 254.58 2,045.23 234.67

% white

% of adults with less than a high school education

% of children under age 6 years living in poverty

Median household income/1,000 population

Model 6 140.18 258.48 2,104.83 234.46

% of persons living in crowded housing

% white

% of adults with less than a high school education

% of persons living in poverty

Vaccine penetration

Model 7 145.31 259.35 2,174.49 239.85

% of persons living in crowded housing

% white

% of adults with less than a high school education

% of children under age 6 years living in poverty

Vaccine penetration

Abbreviation: N/A, not applicable.
a All models included age.
b The model did not fit the data with only age and race included, so it did not produce a result.
c The italic entries represent solutions with the least error.

adults with less than a high school education, and proportion
in poverty variables, performs best on the basis of the error
statistic. Model 2, with only the first 2 of these variables,
performs almost as well. Model 5, with proportion white,
proportion of adults with less than a high school education,
proportion of persons in poverty, and median household
income, has the best model fit according to the Pearson
statistic. In the best predictive model (model 3), the error
statistic was improved by 16% in comparison with the ref-
erence model. These findings suggest that including county-
level measures of race, poverty, and educational attainment



For example, model 2, with proportion white, proportion of
adults with less than a high school education, and the age
group 3 county-level variable interaction terms (Table 3),
achieved improvement of approximately 26% in prediction
when compared with the same model without the age
group 3 county-level variable interaction terms.

The national estimates derived from the reference model
and from the 2 best models are shown in Table 4. Not sur-
prisingly, the model based on individually ascertained or
imputed race provides estimates closer to current estimates
for IPD, since this method is analogous to the one used
currently by ABCs. For the remaining models, the estimates

Table 3. Comparison of the Error Statistics for Models Estimating the Incidence of Invasive Pneumococcal Disease in the United States, With

and Without Age Group 3 County-Level Variable Interaction Terms Included in the Poisson Model, 2004–2005

Model and Variables
Age Group, years

0–<2 2–<5 5–<18 18–<50 50–<65 ‡65 Total

Model 0 33.93 19.17 17.13 209.65 123.64 108.79 269.98

Age and individual race

Models With Age Group Effect and No Age Interaction Terms

Model 2 39.38 20.11 16.27 174.74 93.31 116.56 234.62

% white

% of adults with less than a high
school education

Model 3 39.58 20.17 15.84 174.89 92.04 112.91 232.44

% white

% of adults with less than a high
school education

% of persons living in poverty

Models With Interaction Between Age Group and County-Level Variables

Model 2 36.83 17.35 15.63 142.28 83.64 74.95 186.44

% white

% of adults with less than a high
school education

Model 3 37.30 18.36 15.13 161.87 84.70 75.08 202.41

% white

% of adults with less than a high
school education

% of persons living in poverty

Table 4. National Estimates of Expected Numbers of Cases of Invasive Pneumococcal Disease per 100,000 Persons for Models With Imputed

Race, Best Census Variable Models (With Age 3 County Interaction), and Current Published Estimates, United States, 2004–2005

Model and Variables
Age Group, years

0–<2 2–<5 5–<18 18–<50 50–<65 ‡65 Total

Model 0 35.6 12.1 2.5 7.4 21.9 38.8 13.5

Age and individual race

Model 2 36.9a 13.0 3.1 9.7 27.3 42.9 16.0

% white

% of adults with less than a high school education

Model 3 36.9 13.2 3.1 9.7 27.4 43.0 16.0

% white

% of adults with less than a high school education

% of persons living in poverty

Active Bacterial Core Surveillance system estimatesb 35.8 12.7 2.7 7.5 19.1 39.5 13.5

a The italic values represent national estimates using the best model found in the cross-validation procedure.
b Data were provided by the Centers for Disease Control and Prevention (2004).



county were likewise obtained from the 2000 Census. As
with other parameters estimated by statistical models, it
would be useful to develop confidence intervals around
the incidence rates for IPD that we have estimated here.
In practice, that is not possible, since the estimates do not
come from a randomly selected set of counties. The accu-
racy of the new national estimates and confidence intervals
can only be evaluated by obtaining data from an indepen-
dent random sample of counties. Such an external validation
is beyond the scope of this study. To evaluate the predictive
ability of our candidate models, we relied on a cross-
validation procedure. However, our predicted rates are also
subject to the same issue of potential bias because of non-
randomly selected counties. That is, if there were systematic
biases in the selection of ABCs counties that are not re-
flected in our selected census-level variables, then the esti-
mate of the national incidence will also be biased. A
comparison of the predicted number of cases and actual
counts of IPD for randomly selected counties not included
in the ABCs database would allow further evaluation of the
performance of this method.

We believe that the general method described here may
be applied equally well to estimate national incidence for
other reported diseases when only information from non-
randomly selected geographic areas is available. This is
the case in many current surveillance programs (18–20).
In the particular case of IPD, our analysis suggests that
the use of county-level variables improves the estimation
of IPD incidence. Thus, this method may provide an alter-
native to the labor-intensive collection of detailed individual
data if surveillance systems are resource-constrained. How-
ever, in addition to the above limitations, we note that the
use of this approach for other conditions is likely to reveal
a different set of predictor variables that produce the small-
est residual error in a cross-validation procedure. It is also
possible that for other clinical conditions, individually as-
certained information from cases (regarding race, for exam-
ple) may be more useful than the assignment based on
census-level information we employed. Exploration of the
utility of these techniques in the evaluation of other condi-
tions and surveillance programs is warranted.
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for age groups over 18 years were particularly high in com-
parison with current estimates. These were the age groups 
that achieved improved prediction when the model with 
race, education variables, and the age group 3 county-level 
variable interaction was tested (Table 3). Although results 
are not displayed in Table 4, models 2 and 3 (with no age 
interaction terms) provided similar national estimates of 
16.1 cases per 100,000 persons.

DISCUSSION

We have identified a method by which to incorporate 
census-level variables to inform national estimates of disease 
incidence when surveillance is limited to a nonrandom sam-
ple of defined geographic areas in the United States. We de-
veloped and evaluated models that use publicly available US 
Census variables as predictors to estimate the national inci-
dence of IPD from the sample of US counties under active 
surveillance through ABCs. To do this, we first tested the 
utility of Poisson and negative binomial models with a 
cross-validation procedure, using Pearson and error statistics 
as selection criteria. We then added US Census variables to 
determine the most parsimonious combination of variables 
that resulted in the lowest residual error. Then, we improved 
the 2 best models by adding interaction terms for age group 3 
census-level variables. Overall, we found that the model that 
best fit the data included census variables describing county-
level race and education, accounting for interaction with age 
group. Although overall national estimates were similar re-
gardless of whether or not the interaction term was added to 
the model, models within age groups that included the in-
teraction term provided better prediction.

As we expected, the negative binomial is better at mod-
eling the uncertainty in the rates when there is overdisper-
sion. However, for a predictive model, the key is to have 
accurate point estimates, and the Poisson model was supe-
rior in this regard. This is so because the maximum likeli-
hood fitting alters the point estimates. As a consequence, the 
negative binomial fitting may not match the observed rates 
as well as the Poisson. In situations where accurate point 
estimates are the priority, cross-validation error is the ap-
propriate statistic for model selection.

Note that the approach currently used by ABCs to develop 
national estimates of IPD and the proposed model from this 
work share race as a predictor variable. However, in the cur-
rent ABCs approach, race is an attribute recorded at the level 
of the individual, with missing values for some persons. In the 
proposed model, individually ascertained race is replaced by 
a county-level variable from the US Census (proportion of 
persons of white race in each county). The observation that 
the county-level race distribution functioned almost as well as 
individual-level information on race suggests that this may be 
a useful option when data on race have not been collected or 
are missing for a substantial fraction of persons.

The approach reported here has some limitations. We 
used data from the 2000 US Census and made the implicit 
assumption that the county-level variables used in these 
models were relatively stable through 2004 and 2005. Esti-
mated population denominators for 2004 and 2005 for each
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