
UCSF
UC San Francisco Previously Published Works

Title
Generation, Purification and Transplantation of Photoreceptors Derived from Human 
Induced Pluripotent Stem Cells

Permalink
https://escholarship.org/uc/item/6ng1f5tw

Journal
PLOS ONE, 5(1)

ISSN
1932-6203

Authors
Lamba, Deepak A
McUsic, Andrew
Hirata, Roli K
et al.

Publication Date
2010

DOI
10.1371/journal.pone.0008763

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, 
available at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6ng1f5tw
https://escholarship.org/uc/item/6ng1f5tw#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


Generation, Purification and Transplantation of
Photoreceptors Derived from Human Induced
Pluripotent Stem Cells
Deepak A. Lamba1,4, Andrew McUsic1,4, Roli K. Hirata2, Pei-Rong Wang2, David Russell2,3,4, Thomas A.

Reh1,4*

1 Department of Biological Structure, University of Washington, Seattle, Washington, United States of America, 2 Department of Medicine, University of Washington,

Seattle, Washington, United States of America, 3 Department of Biochemistry, University of Washington, Seattle, Washington, United States of America, 4 Institute for

Stem Cells and Regenerative Medicine, University of Washington, Seattle, Washington, United States of America

Abstract

Background: Inherited and acquired retinal degenerations are frequent causes of visual impairment and photoreceptor cell
replacement therapy may restore visual function to these individuals. To provide a source of new retinal neurons for cell
based therapies, we developed methods to derive retinal progenitors from human ES cells.

Methodology/Physical Findings: In this report we have used a similar method to direct induced pluripotent stem cells (iPS)
from human fibroblasts to a retinal progenitor fate, competent to generate photoreceptors. We also found we could purify
the photoreceptors derived from the iPS cells using fluorescence activated cell sorting (FACS) after labeling photoreceptors
with a lentivirus driving GFP from the IRBP cis-regulatory sequences. Moreover, we found that when we transplanted the
FACS purified iPSC derived photoreceptors, they were able to integrate into a normal mouse retina and express
photoreceptor markers.

Conclusions: This report provides evidence that enriched populations of human photoreceptors can be derived from iPS
cells.
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Introduction

Retinal degenerations that involve rod and cone photoreceptors

are a major cause of blindness, and affect millions of people in the

US. These devastating conditions can be inherited or acquired,

and while efforts are underway to develop treatments that slow or

prevent these conditions using gene therapy or medical treatments,

once the photoreceptors have degenerated, cell replacement or

prosthetic devices are the only options. Cell replacement of

photoreceptors has been shown to be feasible, even in mature

mice, where photoreceptors transplanted to the sub-retinal space

can integrate into the retina and function [1,2]. We, and others,

have developed protocols for generating retinal progenitors and

photoreceptors from human embryonic stem cells as a potential

source of replacement photoreceptors for cell-based therapy of

retinal degenerations [3,4,5]. Our protocol involves the directed

differentiation of undifferentiated human embryonic stem (hES)

cells into retinal progenitor cells, followed by expansion of these

cells and their differentiation into photoreceptors. These cells can

be transplanted to the sub-retinal space of visually deficient mice

and can restore some light response [2].

One of the problems with cell-based therapies is that recipients

may require immuno-suppressant drugs to prevent rejection of

the transplanted cells. One way around this complication is to

use cells derived from closely related or HLA-matched

individuals or even the patients themselves, using induced

pluripotent stem cells (iPS). iPS cells were initially generated

by Shinya Yamanaka and colleagues by expressing combinations

of candidate genes into mouse embryonic fibroblasts [6]. The

four genes that were required, OCT3/4, SOX2, KLF4 and c-MYC

have also been shown to induce pluripotency in human

fibroblasts, and various combinations of these and small

molecules can efficiently induce the pluripotent state in a variety

of different cell types [6,7,8,9,10,11]. The iPS cells behave

similarly to ES cells in most assays, including contributing to

mouse germline transmission [9]. Several groups have shown

that iPS cells can be directed to a variety of lineages and may be

useful for studying specific diseases where animal models do not

exist or are inadequate (eg. [12]).

The similarity of iPS cells to hES cells led us to ask whether

these cells would respond to our retinal determination protocol like

the ES cells. In this report we show that iPS cells, generated with
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the combination of OCT4, SOX2, NANOG and LIN28, can be

directed to a retinal progenitor fate using the same protocol as we

developed for hES cells. Moreover, we show for the first time that

iPSC-derived photoreceptors can be identified in the cultures by

infection with a viral construct in which GFP is driven from a

photoreceptor-specific (IRBP) promoter. The GFP+ photorecep-

tors can be highly purified using FACS, providing a potentially

unlimited source for cell-based therapies of retinal degenerations.

Lastly, we show that the iPSC-derived photoreceptors that have

been purified by FACS integrate into the outer nuclear layer after

transplantation to the sub-retinal space of adult mice, similar to

normal mouse photoreceptors and ES cell derived rod photore-

ceptors. The ability to derive retinal photoreceptors from iPS cells

will also be useful in the development of in vitro models of specific

human retinal degenerations.

Materials and Methods

Cell Culture and Retinal Induction
H-1 (WA01) line was obtained from Wicell, the Hues6, Hues14

and Hues16 were obtained from Doug Melton (Harvard

University, MA) and Mel1 and Mel2 lines were purchased from

Millipore. An iPS cell line was made by infecting a human

fibroblast culture (Coriell GM05387) with lentiviral vectors

expressing OCT4, NANOG, LIN28 and SOX2 as described

[11]. All cell lines were initially maintained with CF-1 feeders and

subsequently adapted to feeder-free conditions. Retinal induction

was performed by modifying the protocol previously described [5].

Instead of making embryoid bodies, 25–30 of the 150–200 ES cell

clumps were plated on Matrigel coated 35mm dishes and cultured

for 3 days in the presence of mouse noggin (1 ng/ml, R&D

Systems), human recombinant Dkk-1 (1 ng/ml, R&D Systems)

and human recombinant insulin-like growth factor-1 (IGF-1)

(1 ng/ml, R&D Systems). From the fourth day, the concentration

of the factors was increased to 10 ng/ml. The media was changed

every 2–3 days for up to three weeks. The cells were cultured for

several months in media containing N2 and B27 supplement

without any additional factors for further differentiation.

Immunocytochemistry and Immunohistochemistry
Cells and eyes were fixed with 4% paraformaldehyde and

analyzed with the following antibodies using protocol previously

described: rabbit anti-recoverin (gift from Dr. Jim Hurley,

University of Washington, 1:1000), mouse anti-Hu C/D (Molec-

ular Probes, 1:200), mouse anti-rhodopsin (Rho-4D2) (gift from

Dr. Molday, University of British Columbia, 1:750), mouse anti-

Pax6 (1:250) and mouse anti-SSEA4 (1:10) (DHSB), mouse anti-

human a-SMA, mouse anti-human AFP and mouse anti-MAP2

(Millipore), chicken anti-GFP (1:500) and rabbit anti-Sox9 (1:400)

(Abcam), rabbit anti-S-opsin (gift from Dr. J Nathans, Johns

Hopkins University, 1:1000), rabbit anti-Nrl (gift from Dr. A.

Swaroop, 1:500), goat anti-Otx2-biotin (R&D Systems, 1:250),

rabbit anti-AIPL1 (gift from Dr. V. Ramamurthy, 1:5000), rabbit

anti-Crx (gift from Dr. C. Craft, 1:250), rabbit anti-ZO-1

(Invitrogen, 1:250), goat anti-Sox2 (1:500), goat anti-Oct3/4

(1:250), goat anti-Brn3 (1:100) and rat anti-Blimp1 (1:100) (Santa

Cruz). Secondary antibody staining was done using the corre-

sponding Cy5 (Jackson Immunoresearch), Cy5-conjugated strep-

tavidin, Alexa-488, Alexa-568, and Alexa 633 fluorescent-

conjugated antibodies (Invitrogen, 1:500). The primary antibodies

were used at the appropriate dilution in 0.5% Triton X-100 and

5% dry milk in PBS overnight at 4uC. The slides were then

washed 3 times in PBS followed by 1 hour in secondary antibody

at room temperature. Images were taken using a Nikon A1

confocal microscope. Image analysis was performed using Volocity

software (Improvision) and Adobe Photoshop CS4. All counts

shown as mean +/2 SEM.

Virus Production and Infection
EF-1a-GFP lentivirus was made using constructs provided by

Dr. Charles Murry (University of Washington). The IRBP-GFP

lentivirus was prepared using the human IRBP promoter from Dr.

Paul Overbeek (Baylor College of Medicine, TX). pRRL-cPPT-

CMV lentivirus plasmid was cut to remove the CMV promoter

and replaced with the multiple cloning site and the eGFP portion

from pEGFP1 plasmid (Clonetech). The human IRBP promoter

was next subcloned into the multiple cloning site to drive eGFP

expression. Both lentiviruses are 3rd generation replication-

incompetent lentivirus and were made using the four-plasmid

system as previously described [2]. The ES cultures were infected

with either the EF-1a lentivirus or the IRBP-GFP lentivirus from

four to eight weeks after the induction of retinal determination,

and were maintained for an additional one to two weeks to allow

for expression of the GFP.

Fluorescent Activated Cell Sorting (FACS)
To isolate the cells that express IRBP-GFP from the ES

cultures, we dissociated them into a single-cell suspension using

trypsin. Prior to sorting, aggregates were removed by passing

through a 40 mm cell strainer. FACS was carried out on BD Aria

II sorter, gated for a high level of GFP expression.

Explant Culture
Retinas from newborn mouse, embryonic day 4 chicken, and 82

day, and 90 96 day fetal human retinas (obtained from the

Laboratory of Developmental Biology - NIH HD 000836 at the

University of Washington without identifiers) were dissected from

extra-ocular tissues and cultured in the presence of IRBP-GFP

lentivirus as free-floating explants in ultra-low attachment plates

overnight. The media was then changed and the explants were

maintained for an additional four days, prior to fixation with 4%

PFA and cryosectioning. One of the fetal human retinas was fixed

for cryosectioning while the other was trypsinized and used for

FACS and microarray analysis.

Real Time Quantitative PCR Analysis
Total RNA was extracted from the cultures using TriZol

(Invitrogen) followed by chloroform extraction as per manufac-

turer’s instructions. This was followed by DNAse-1 (Qiagen)

treatment followed by RNA cleanup using Qiagen RNA mini

cleanup kit. cDNA was reverse transcribed using Superscript II

RT kit (Invitrogen) as per manufacturer’s instructions. Q-PCR was

performed for various genes as previously described [5] and results

normalized to b2actin levels.

Microarray Analysis
For microarray analysis, a 96 day human fetal retina and FACS

purified human fetal photoreceptors were lyzed in Trizol and

RNA extracted as described above. The RNA was then checked

for RNA integrity and run as per manufacturer’s guidelines on the

Human Gene 1.0 ST chip (Affymetrix). The data was then

normalized in the GCOS software and was then analyzed using

Multi-Experiment Viewer (v. 4.4) software.

Cell Transplantation
All experiments were done in accordance with approved

protocols and the animals were housed and bred in the

iPS Cells Make Photoreceptors
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Department of Comparative Medicine at the University of

Washington. To test whether the iPSC-derived photoreceptors

could integrate into normal retina, adult wild-type mice were

anesthetized and approximately 50,000 FACS purified iPSC

derived photoreceptors were injected into the sub-retinal space as

previously described [2]. Animals that received injections of iPSC

derived photoreceptors also received daily injections of the

immunosuppressant Cyclosporine A (10 mg/kg/day). After sur-

vival periods of two to three weeks, the animals were sacrificed, the

retinas removed, cryosectioned and processed for immunofluores-

cent analysis. To determine whether the undifferentiated iPSCs

could generate teratomas, we carried out the assays as described in

a previous publication [13].

Results

The iPS cells were generated from normal human fibroblast

cultures as described previously (Yu et al., 2007) with lentiviral

vectors expressing OCT4, NANOG, LIN28 and SOX2. Upon

quadruple infection, several human ESC-like colonies appeared

after three weeks and were isolated and expanded further. One

particular clone (iPSC-MHF2 c1) was chosen for our experiments.

When cultured, these cells expressed the pluripotency markers

SOX2, OCT4 and SSEA-4 (figure 1A-A09). The cells could be

maintained with CF-1 feeder layers as well as in feeder-free MEF-

conditioned media. In vivo, the iPS cells were capable of

differentiation into cells of all three germ layers upon teratoma

formation in immunodeficient mice (Figure 1B, C, D), confirming

that the iPSCs were pluripotent. Additionally, we looked for

silencing of exogenous pluripotency genes and found that even

though Nanog and Lin28 were silenced, there was still some

expression of lentivirus induced Oct4 and Sox2 (Supplemental

Figure S2).

Next we tested whether these cells could be directed to a retinal

fate using a modification of our previously published protocol (see

Methods). The undifferentiated iPS cells were plated on Matrigel-

coated plates and treated with Dkk-1, IGF-1 and Noggin for three

weeks. As described in our previous report [5], the efficiency of

retinal determination was tested by analyzing the expression of

several key eye-field transcription factors (EFTFs) using RT-PCR.

All the EFTFs that we analyzed, Pax6, Six3, Lhx2 and Rx, showed

a 6 to 10 cycle (80 to 1000 fold) increase over the undifferentiated

cells at the end of two weeks of retinal induction (figure 2A). This is

similar to that which we observed using the H1 human ES cell line

(Lamba et al, 2006). In addition, there was on an average 5 cycle

(34-fold) increase in expression of Crx at end of 2 weeks (figure 2A).

We also analyzed the time course of the gene expression over 5

weeks of differentiation (Figure 2 E,F). We found that while the key

EFTFs Pax6, Lhx2 and Rx showed a rapid and sustained up-

regulation over the course of the experiment, the ‘‘late’’ progenitor

marker, Ascl1 showed a much slower increase, with a peak at three

weeks (Figure 2E). While these changes were similar to those we

have previously reported from ES cells subjected to this protocol

[5], the expression of Six3, another EFTF, was somewhat different

in the iPSCs than what we have observed in the ES cells. Six3

shows an early peak, like the other EFTFs, but then declines over

the next few weeks. We don’t have an explanation for this

difference, though it may be that ineffective silencing of the

transgenes in the iPSCs (see above) may interfere with Six3

expression. We also analyzed the expression of the photoreceptor

markers, Crx, recoverin and Nrl. All of these increased in the

iPSCs as a function of time of treatment (Figure. 2F), albeit with

somewhat different time courses. The pan-photoreceptor gene,

Crx, showed early increases, while recoverin, a later photoreceptor

marker of rods and cones, and Nrl, a rod photoreceptor

transcription factor, increased after progressively longer periods

of culture.

Since recent reports have shown substantial variability in the

response of different ES and iPSC lines to directed differentiation

protocols, we tested the effectiveness of this retinal determination

protocol on a number of other human ES cell lines and one of the

other iPS cell clone iPSC-MHF2 c2. These included three

Harvard hES cell lines by Doug Melton’s lab (Hues6, Hues14

and Hues16), and two Australian hES cell lines available through

Millipore (Mel1 and Mel2). These cells were also cultured using

the retinal determination protocol and analyzed for expression of

the EFTFs at the end of two weeks. Overall, each of the lines

responded to the induction protocol similarly to the H1 line;

however, there were small variations in the expression levels of the

EFTFs, as well as Crx, among the different cell lines. This was

particularly evident in the case of the iPSC-MHF2 c2 line

(Figure 2A), which showed much less effective induction of retinal

genes than any of the other lines. Together with the results from

the iPSCs, these data show the robustness of the protocol in

creating retinal progenitors from various human ES as well as iPS

cells.

To confirm the RT-PCR analysis, we analyzed the retinal cells

created from human iPS cells by immunocytochemistry for

expression of various retinal markers. Retinal progenitors express

Pax6, Sox2 and Sox9. We found that at the end of three weeks

all three markers were co-expressed by the iPSCs that had been

directed to a retinal fate (figure 2C-C09). Overall by three weeks

70.22% (+/25.24) of the cells expressed Pax6, 69.89% (+/

25.01) expressed Sox2 and 71.09% (+/24.69) expressed Sox9.

Most cells also expressed the neural progenitor marker nestin

(figure 2D, D’). The culture plates also had patches of retinal

pigmented epithelial cells, displaying pigmentation, characteris-

tic hexagonal morphology and ZO-1 expression (figure 2D, D0,

3H). Other cells in the cultures expressed markers of inner

Figure 1. Co-expression of undifferentiated cell markers Sox2
(green, A9), SSEA-4 (blue, A0) and Oct4 (red, A09) by iPS cells
with merged view in (A). (B-D) Tri-lineage potential of teratomas
formed by iPSC-MHF2 c1 in immunodeficient mice. Histological sections
from a teratoma stained with antibodies against human MAP-2
(microtubule associated protein-2, B), human SMA (alpha smooth
muscle actin, C), or human AFP (alpha-fetoprotein) and co-stained with
DAPI (blue).
doi:10.1371/journal.pone.0008763.g001

iPS Cells Make Photoreceptors
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retinal cell types: Hu C/D (figure 3A), which labels amacrine

and ganglion cells and Brn3 which labels ganglion cells

(figure 2D, D09). We also analyzed the cells for markers for

photoreceptor differentiation at the end of 2 months of

induction. The cells in the retinal directed iPS cell cultures

expressed the pan-photoreceptor markers Otx2 (9.6% (+/2

1.13%)) (figure 3B) and Crx (11.8% (+/22.9%)) (figure 3E). Cells

also express the rod photoreceptor-specific transcription factor

Nrl (figure 3A) and that 29.7% (+/22.3%) of all photoreceptors

were rod photoreceptors. Markers of more differentiated

photoreceptors such as recoverin, AIPL-1, rhodopsin and S-

opsin (figure 3C,D, G, F respectively) were expressed by less than

1% of cells at 2 months. These data were confirmed by PCR for

expression of Crx, Nrl, arrestin, recoverin, Trb2, rhodopsin and

Pax6 (Figure 2B). Thus, human iPS cells can be induced into

retinal fate and these cells express markers of retinal progenitors

as well as differentiated cells such as ganglion cells, amacrine

cells and photoreceptor cells.

Figure 2. (A) RT-PCR comparison of expression of EFTFs and CRX in the various human ES and iPS cell lines expressed as a cycle
change in PCR expression level compared to undifferentiated cells (n = 3–6) for the various lines, error bars represent SEM. (B) Gel
showing expression of retinal markers by RT-PCR following retinal induction of iPS cells. (C) Co-expression of Pax6 (white, C, C9), Sox2 (green, C, C0),
and Sox9 (red, C, C09) by iPS cell derived retinal progenitors (merged in (C)) at the end of three weeks. The progenitors also expressed nestin (white,
D,D’) in the typical rosette pattern with ZO-1(green, D, D0) in the center and Brn3 expressing ganglion cells (red, D, D09) at the periphery. (E, F) RT-PCR
graph showing time course of expression of various retinal progenitor cell (E) and photoreceptor cell (F) genes over the course of 5 weeks. Error bars
represent SEM.
doi:10.1371/journal.pone.0008763.g002

iPS Cells Make Photoreceptors
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Ultimate cell-based therapy will require that the various types of

retinal cells will need to be further purified from contaminating

cell populations. One approach that has been used successfully in

other regions of the nervous system is to use cell-type specific

promoters coupled with fluorescent activated cell sorting (FACS).

Inter-photoreceptor retinol binding protein (IRBP) is a photore-

ceptor specific gene expressed by both rod and cone photorecep-

tors early in their development prior to outer segment formation

[14]. The human IRBP promoter has been shown to drive

photoreceptor-specific expression in transgenic mice [15]. We

constructed a lentivirus expressing GFP from the human IRBP

promoter, and tested the specificity using human, mouse and

chicken retinal explants. The IRBP-GFP lentivirus resulted in

GFP expression only in the outer nuclear layer of all three species

where the photoreceptors reside (Figure 4 and Supplementary

Figure S1). Upon co-staining the human retinas for various

photoreceptors markers including recoverin, Otx2, Blimp-1 and

AIPL1, we found that GFP co-localized with photoreceptors in the

retinas infected with IRBP-GFP (figure 4A–D). As a control for the

specificity of infection, we used an EF1a lentivirus to infect other

retinal explants; in these cases GFP was expressed in all of the

various retinal cell types (Supplementary Figure S1). Thus,

lentivirus with the human IRBP promoter driving GFP,

specifically results in expression of GFP in photoreceptors of

human, mouse and chicken retinas.

To test the ability to enrich photoreceptors, we infected 90 day

fetal human retinal explants for 4 days in vitro and then

dissociated the retinas. The dissociated cells were then subjected

to fluorescent activated cell sorting (FACS). Following FACS, the

cells were lysed in Trizol and RNA collected and used to run the

Human Gene 1.0 ST array chip. We compared the results from

the Affymetrix analysis of mRNA from FACS enriched photore-

ceptors to that from mRNA from a similarly staged (96 day)

human fetal retina (GEO Accession # GSE18487). We found that

many photoreceptor genes including PDE6C, GNAT2, PDE6H,

THRB, RPGRIP1, CRX, ABCA4, RS1, TULP1, GNB3, EYS,

IMPG2, PCDH21, USH2A, CNGA3, NEUROD1 and RCVRN

were higher in the mRNA from the FACS purified photorecep-

tors, while progenitor genes like PAX6, LHX2, NESTIN, HES1,

HES5, HEY1, HEY2 and SOX9 showed lower levels of

expression when compared to mRNA from the 96 day fetal retina

(figure 5). Thus, the microarray data confirmed that the IRBP-

GFP resulted in photoreceptor specific GFP expression and that

the cells can be enriched using FACS.

Retinal cells derived from iPS cells or H-1 hES cells were then

infected with the IRBP-GFP lentivirus 4 to 8 weeks after initiation

of the retinal induction protocol. Based on our previous work using

a similar backbone lentivirus, we expected 60–70% infection

efficiency. We observed IRBP-GFP expressing cells in the culture

plate from 4 days of infection and their numbers increased over

the next few weeks in vitro. To confirm the identity of the IRBP-

GFP expressing cells in the retinal cells derived from either hES

Figure 3. Cells in culture at two months after initiation of the
protocol expressed HuC/D (green, A) marking ganglion and
amacrine cells and Nrl (red, A) which labels rod photorecep-
tors. Photoreceptors were identified by the expression of Otx2
(green, B), Crx (E), recoverin (red, C) and AIPL1 (red, D). Cells also
expressed differentiated markers like rhodopsin (red, G) and S-opsin
(green, F). (H) Retinal pigmented epithelium was also generated from
the iPS cells and these cells expressed ZO-1 (inset). Nuclei stained with
DAPI in blue.
doi:10.1371/journal.pone.0008763.g003

Figure 4. IRBP-GFP infection of human retinal explant resulted
in GFP expression in photoreceptors as evidenced by co-
expression of Otx2 (red, A, A0), AIPL1 (white, A, A09), recoverin
(red, B, B0) and Blimp1 (white, B, B09). IRBP-GFP expression in iPS
cell-derived retinal cells. GFP cells co-expressed AIPL1 (red, C, C’), Nrl
(red, D, D’). Nuclei stained with DAPI in blue.
doi:10.1371/journal.pone.0008763.g004

iPS Cells Make Photoreceptors
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cells or iPS cells, we fixed the cultures and processed them for

immuno-fluorescent analysis with the photoreceptors markers

AIPL1, rhodopsin, CRX and NRL (figure 4C-C9, D-D0). We

found that nearly 100% of the GFP cells were labeled for CRX

and the majority also expressed NRL, AIPL1 or rhodopsin. In

order to purify the IRBP-GFP-expressing cells from the live iPS

cell cultures, we subjected them to fluorescent-activated cell sorting

(FACS) (figure 6C). On average, 10% of all cells in the cultures

expressed IRBP-GFP. Following the FAC sorting, over 90%

(92.18% +/24.28) of the cells expressed the IRBP-GFP marker.

Additionally, all the GFP+ cells stained for CRX and most for

recoverin (figure 6A, B, D). Thus, retinal photoreceptors derived

from iPS cells and H-1 hES cells can be enriched using a

combination of IRBP-GFP lentivirus followed by FACS.

In our previous study, we found that retinal cells derived from

human ES cells would migrate into the retina and differentiate into

photoreceptors following transplantation to the sub-retinal space.

To determine whether iPS cell-derived photoreceptors would

incorporate into the retinas of mice following transplantation, we

used a similar approach. iPS cells were directed to a retinal fate

using our protocol and maintained in culture for an additional 4

weeks. The cells were then infected with the IRBP-GFP lentivirus

and maintained in culture for an additional one to two weeks.

Once a sufficient number of IRBP-GFP cells were present in the

live cultures, we dissociated the cells and subjected them to FACS.

The IRBP-GFP expressing population was then immediately

transplanted into the sub-retinal space of adult wild-type mice.

After a survival period of three weeks, the mice were euthanized

and the eyes were removed, fixed and sectioned. The transplanted

photoreceptors were identified using immuno-fluorescence for

GFP and other photoreceptor markers. We found that iPS derived

photoreceptors survived in the sub-retinal space over the three-

week period, though at a much lower survival rate than the

unsorted cells. We also found approximately 50 cells per eye that

had migrated into the outer nuclear layer and were similar in

appearance to hES derived photoreceptors following transplanta-

tion[2]. The iPSC-derived photoreceptors migrated well into the

ONL and expressed the photoreceptor markers Otx2, recoverin

and rhodopsin (figure 7A,B). These data further demonstrate the

ability of human iPSCs to differentiate into photoreceptors, and

further show that human iPS cell-derived photoreceptors can

survive and integrate into the retina after FACS purification and

transplantation.

Discussion

In this report we have shown that human iPS cells can be used

to generate retinal photoreceptors that can be purified by infecting

with a lentivirus that drives GFP from the IRBP promoter and

subsequent FACS. Our results show for the first time that human

photoreceptors derived from either ES cells or iPS cells can be

purified using a combination of photoreceptor-specific GFP vector

and fluorescent activated cell sorting. Together with previous

results that demonstrated the potential for ES cell derived

photoreceptors to integrate following transplantation and restore

light response to CRX 2/2 mice [2], the results presented in this

report further support the possibility that stem cell approaches can

lead to therapies for the treatment of retinal degenerations.

Three recent reports also show that other protocols used for

retinal differentiation of ES cells can be used for iPS cells derived

either from mouse or human to direct their differentiation to

retinal cells [16,17]. Hirami et al found that manipulations in Wnt

and nodal pathways were able to induce retinal gene expression in

20% of their cells in 2 of the 3 human iPS cell lines they tested.

They also showed that 14% of their colonies expressed Crx,

though it is unclear how many cells in each colony expressed the

marker. The same group also published another report using small

molecules that affect the same molecular pathways and found a

similar degree of retinal cell induction [18]. Meyer et al used a

different approach of manually selecting floating spheres which

had neural rosette morphology[17]. After manually selecting

retinal spheres, ,9% of the cells expressed Crx at 80 days, which

is comparable to what we see from our protocol when we assay all

cells in culture. In all cases, however, there is variability in the

response of a particular iPSC line to the induction protocol. It will

be interesting in the future to directly compare the same iPSCs

with these different protocols to determine whether specific iPSC

lines are not as responsive to differentiate as retinal cells, or

alternatively, particular iPSC lines might be better suited to

particular protocols of directed differentiation.

Human skin fibroblasts can be reprogrammed to a pluripotent

state using several different methods [6,8,9,19,20]. Our results

demonstrate that these reprogrammed fibroblasts can be directed

towards a retinal progenitor pathway with efficiency similar to that

of human ES cells. The presence of the pluripotency factors in

vector proviruses does not appear to interfere with the differen-

tiation of the cells to a retinal fate. In fact, we find that the protocol

we developed for ES cells is as effective in directing the iPS cells to

Figure 5. Microarray analysis of FACS sorted human fetal
retinal IRBP-GFP cells and 96 day unsorted fetal retinal cells.
The figure shows the heat map of the spot intensity comparison on the
microarray of the various photoreceptor and retinal progenitor genes.
doi:10.1371/journal.pone.0008763.g005
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retinal cells as it is for many of the other ES lines we tested, even

with incomplete silencing of the transgenes in the iPSCs. This is

perhaps not surprising in light of recent evidence that iPSCs can

differentiate into many different types of mature lineages [7,12].

Nevertheless, more recent methods for deriving iPS cells do not

rely on viral integration of the inducing genes and may therefore

prove even more useful for the derivation of iPS cells for cell based

therapies [21,22,23,24].

Our findings may lead to the generation of human

photoreceptors from individuals with inherited retinal degener-

ations, like Retinitis Pigmentosa (RP) and the development of

additional models for these disorders. Although animal models

have been generated for several forms of RP, there are many

different mutations that cause this disease [25]. The ability to

make photoreceptors from iPS cells should allow the generation

of in-vitro models for these forms of RP. The iPSC-derived

photoreceptors may therefore be useful for screening for

compounds that will slow or prevent rod degeneration in these

individuals. Although the photoreceptors generated from iPS

cells or ES cells do not fully mature in vitro, the differentiation

of ES cells can be facilitated through transplantation into the

mouse retina, and a similar approach may be used for iPS cell

derived photoreceptors. In addition to RP, iPS derived

photoreceptors may be useful for developing therapies for

patients with early onset retinal degenerations. Developmental

disorders are particularly amenable to modeling with iPS cells.

Recent studies have shown that motor neurons derived from iPS

cells from patients with spinal muscular atrophy have been

shown to have selective motor neuron death [26]. Photorecep-

tors derived from iPS cells from patients with Leber’s congenital

amaurosis or Usher’s disease would be good candidates for a

similar approach.

We have also found that the photoreceptors derived from ES

cells and from iPS cells can be labeled in live cultures when

infected with a lentivirus that drives GFP expression from the

IRBP promoter sequences. The GFP expressing cells can be

purified by FACS technology to contain nearly 90% photorecep-

tors, as assessed with subsequent labeling with rod and cone

markers. The ability to purify the cells from undifferentiated

contaminants is critical in developing a safe cell-based therapy for

retinal degenerations. Earlier studies using less differentiated cell

for transplantation have found evidence of teratoma formation; by

comparison, we have never observed a teratoma following

transplantation in over 100 mice to date with photoreceptors

derived from ES cells using our directed differentiation protocol. A

similar approach has been used to successfully reduce the risk of

teratoma formation in transplantation of dopamine neurons

derived from iPS cells [27]. Thus, using the FACS sorted

photoreceptor cells will add an additional level of security against

the risk of teratoma formation in cell based therapies using hES

cells.

Photoreceptors derived from iPS cells can be transplanted and

integrate into the retina. The iPSC-derived photoreceptors

behaved very similarly to cells derived from human ES cells.

After transplantation to the sub-retinal space, the cells begin to

move into the retina of normal adult mice within a few weeks.

Cells assume positions throughout the outer nuclear layer, and

have protein expression pattern similar to mouse rod photorecep-

Figure 6. Fluorescent activated Cells sorting of human cells. Following FACS and fixation, upon immunostaining, GFP cells (A) expressed Crx
(red, B). (C) Representative FACS plots for GFP cells in BD Aria II. (D) Plot showing percentage of sorted cells expressing Crx and recoverin.
doi:10.1371/journal.pone.0008763.g006
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tors, labeling for Otx2, recoverin and rhodopsin. Our recent study

has shown that photoreceptors derived from human ES cells were

able to restore some light response to Crx 2/2 mice [2]. We

found that FAC sorted cells did not survive as well as unsorted cells

and so there were insufficient cells integrated into the retina for

functional restoration. Nevertheless, the demonstration that iPS

cells can develop into rods that survive and integrate after

transplantation to the adult retina provides hope that autologous

transplantation can be developed as a treatment for some forms of

retinal degeneration. While gene therapy and medical therapies

are being developed for the more common retinal degenerations,

such as macular degeneration, there are millions of individuals

with significant visual loss that would benefit from a cell-

replacement therapy. Our results demonstrate the proof of

principle that iPS cells derived from patients with retinal diseases

may be useful in such therapies.

Supporting Information

Figure S1 Lentivirus testing on mouse and chicken explant

retinas. (A) shows GFP expression from the IRBP-GFP lentivirus

in mouse retina in the photoreceptors as evidenced by co-staining

with recoverin (red). (B) Control EF1a-GFP lentivirus resulted in

GFP in all mouse retinal cells. (C), (D) show similar IRBP-GFP (C)

in chicken photoreceptors as confirmed by photoreceptor marker

visinin (red) while Ef1a-GFP (D) resulted in GFP in all chicken

retinal cells.

Found at: doi:10.1371/journal.pone.0008763.s001 (7.70 MB TIF)

Figure S2 PCR analysis to assess silencing of exogenous

pluripotency genes. Above, gel image shows the expression of

the 4 pluripotency genes used for the creation of the iPS cell lines

at passage 12 of undifferentiated cell culture as well as 4 weeks

following retinal induction. By the end of 4 weeks, Lin28 and

Nanog were completely silenced, while Oct4 was reduced

compared to undifferentiated cells while Sox2 was not silenced

at all.

Found at: doi:10.1371/journal.pone.0008763.s002 (0.38 MB TIF)
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