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Abstract

Topics in Modeling Uncertainty with Learning

by

Ankit Jain

Doctor of Philosophy in Industrial Engineering and Operations Research

University of California, Berkeley

Associate Professor Andrew E. B. Lim, Co-Chair
Emeritus Professor J. George Shanthikumar, Co-Chair

It is fair to say that in many real world decision problems the underlying models cannot
be accurately represented. Uncertainty in a model may arise due to lack of sufficient data
to calibrate the model, non-stationarity, or due to wrong subjective assumptions. Hence
optimization in presence of model uncertainty is a very important issue. In the last few
decades, there has been a lot of work on finding robust solutions to model uncertainty
in operations research. With advances in the field of convex optimization, many robust
optimization problems are efficiently solvable. Still there are many challenges and open
questions related to model uncertainty, specially when learning is also involved. In this
thesis, we study the following challenges and problems related to model uncertainty with
learning:

First, defining and computing a robust solution to problems with model uncertainty is
a challenging task, specially in dynamic optimization problems. Many dynamic problems
are tractable only because the structure of the solutions can be analyzed and therefore the
dimension of a solution space can be reduced. It is therefore important to design and study
robust equivalents of dynamic optimization problems and analyze the structure of robust
solutions.

Second, in many situations the need for robust solution arises because of lack of sufficient
data to calibrate model parameters. It is important to study the properties of traditional
robust solutions. Are these robust solutions good for decision making in long run as compared
to non-robust solutions? If not, is it possible to design alternative approaches?

Third, it is not possible have robustness to model uncertainty if the attention is re-
stricted to a wrong model class. One may use a relatively model free learning and decision
making methodology such as reinforcement learning, which can achieve an optimal solution
asymptotically. However, these approaches may take a long time to learn and therefore it
is important to look at non-parametric methodologies which can achieve good small sample
performance.

The main contribution of this thesis can be summarized as follows:
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1. We study an infinite-time queuing control system, where both arrival and departure
rates can be controlled. We consider the case when arrival and departure processes
can not be accurately modeled. We prove that a threshold policy is optimal under
a max-min robust optimization objective when the uncertainty in the processes is
characterized by a novel notion of relative entropy. The new notion of relative entropy
accounts for different levels of modeling errors in arrival and departure processes.

2. We perform numerical tests to study the performance of traditional robust optimization
solutions with learning using past few data points. It is shown that the performance of
a robust solution may even be worse than a classical point estimate based non-robust
solution. We introduce the notion of generalized operational statistics that guarantees
a better solution than a classical solution over a set of uncertain parameters, while
incorporating subjective prior information. We apply operational statistics approach
to mean-variance portfolio optimization problem with uncertain mean returns. We
show that the operational statistics portfolio problem can be efficiently solvable by
reformulating it as a semi-definite program. Various extensions are discussed and
numerical experiments are done to show the efficacy of the solution.

3. We introduce objective operational learning, a new non-parametric approach that in-
corporates structural information to improve small sample performance. We show how
structural and objective information can be incorporated in the objective operational
learning algorithm. We apply the algorithm to an inventory control problem with
demand dependent on inventory level and prove convergence.
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Chapter 1

Introduction

In 1961, Daniel Ellsberg described in his work [Ell61], what is commonly known as
Ellsberg Paradox. An example of the Ellsberg paradox is as follows: there are two urns
containing red and black balls, from one of which a ball will be drawn at random. Let R2

denotes the choice of betting on red ball from urn 2. Given the choice one will receive $1, if
the ball drawn is red and $0, if the ball drawn is black. We define the choices R1, B2, B1 and
the associated rewards in a similar way. Now suppose we have the following information:
urn 2 contains 100 red and black balls but in a ratio that is unknown and urn 1 contains 50
red and 50 black balls. Given this information people are asked to draw their preferences.

It has been observed that most of the people have the following preference:

R1 ⋍ B1 ≻ B2 ⋍ R2, (1.1)

i.e., people are indifferent between R1 and B1 but prefer B1 or R1 over B2 or R2. An
observer applying the basic rules of probability and utility theory would infer tentatively
that a subject regards the event ‘black from urn 1’ as more likely than ‘black from urn 2’.
She would also infer that ‘red from urn 1’ is preferred over ‘red from urn 2’. Since she cannot
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conclude that ‘red from urn 1’ is more likely than ‘red from urn 2’ and at the same time
‘not-red from urn 1’ is more likely than ‘not-red from urn 2’, this behavior is inconsistent
with the essential properties of probability relationships. There is no probability measure
on the balls in the urn which supports the preferences described in (1.1).

A probable explanation of people’s behavior in the above example is as follows: in case of
urn 2, the subject has too little information to form a probability distribution (prior) on the
number of red balls and black balls. Hence she considers a set of possible priors, and being
uncertainty/ambiguity averse she calculates the minimal expected utility over all priors in
her subjective uncertainty set while evaluating a bet. To explain the Ellsberg paradox using
this logic, one may consider the extreme case in which the decision maker takes into account
all possible priors over red and black balls in urn 2. In that case the minimal expected utility
of the choice R2 or B2 is 0 as there is a prior which corresponds to all red balls or all black
balls. On the other hand the minimal expected utility of the choice R1 or B1 is 50 as the
exact prior is known. This explains the behavior observed in (1.1). This type of observed
behavior in people’s preferences is also called ambiguity aversion.

The notion of ambiguity or model uncertainty as separate from risk (that can be charac-
terized by a probability distribution) was defined as early as 1921 by Frank Knight [Kni21].
Over the years ambiguity averse modeling has been studied in many optimization settings by
researchers in the field of operations research (OR). One of the earliest papers in inventory
control that considered ambiguity averse modeling was by Scarf [H58] in 1958. He used
a min-max objective to find the optimal inventory control policy with unknown demand
distribution, assuming only the precise knowledge of first two moments of the distribution.
Gallego and Moon [GM94] extended the model of Scarf to several other cases such as inven-
tory control with fixed ordering cost. Advances in the field of convex optimization [Wri97] in
last three decades made it possible to solve ambiguity averse or robust problems, specially in
the field of deterministic optimization, where the parameters (such as product ordering cost
in an inventory control) of a decision problem are assumed to be uncertain (as opposed to
being random). Typically these uncertain parameters are assumed to lie in a closed convex
region like an ellipsoid or intervals. If an optimization problem with known parameters is
given by:

max
x

f(x, (a))

subject to

g(x, b) ≥ 0,

(1.2)

then a robust version of the problem is:

max
x

min
a∈A,b∈B

f(x,a)

subject to

g(x, b) ≥ 0, ∀b ∈ B,

(1.3)
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where x is the decision variable and a, b are parameters of the system. A and B are parameter
uncertainty sets in the robust problem for a and b respectively.

For many classes of functions f and g and uncertainty sets, including linear functions
and ellipsoidal uncertainty sets, the robust problem is a “nice” convex program that can be
efficiently solved. Some of the works in operations research along this line can be found in
Ben-Tal and Nemirovski [BTN98, BTN99, BTN00], El Ghaoui and Lebret [EL97], Bertsi-
mas and Sim [BS04], Bertsimas and Theile [BTar], El Ghaoui, Oks and Oustry [EOO03],
Goldfarb and Iyengar [GI03]. In place of ‘max-min’, alternative objectives such as ‘min-max
regret’ or ‘competitive ratio’ are used too. We study different objectives and their effect on
optimization problems in Chapter 3.

Despite the advances, there has been comparatively little research in OR on robust or am-
biguity averse dynamic optimization problems, where state of the world changes with time,
mainly because of hardness of resulting dynamic programs. Nilim and El Ghaoui [Nl05]
explored robust stochastic dynamic programs where state of the world evolves according to
an uncertain probability transition matrix. Their work is closely related to earlier work in
economics by Epstein and Wang [EW94] and Chen and Epstein [CE02]. Lim and Shan-
thikumar [LS07] considered a dynamic pricing problem where uncertainty in probability
distribution of future states is characterized by a set of probability distributions which are
at a certain “distance” to a nominal probability measure characterized by relative entropy.

In Chapter 2, we consider a dynamic optimization problem of controlling a single stage
queuing system where arrivals and departures are modeled by point processes with stochastic
intensities. An arrival incurs a cost while a departure earns a revenue. The objective is to
maximize the profit by controlling the intensities subject to capacity limits and holding costs.
When the stochastic model for arrival and departure processes are completely known, then
a threshold policy is known to be optimal. We prove that a threshold policy is optimal
under a max-min robust model, when the uncertainty in the processes is characterized by
relative entropy. Our model generalizes the standard notion of relative entropy to account
for different levels of model uncertainty in arrival and departure processes. Despite the
criticism of max-min model (see Chapter 3) for being too conservative or being too sensitive
with respect to the size of uncertainty set, max-min optimization remains an important tool
in robustness and sensitivity analysis. First, it provides a class of policies parametrized
by the size of uncertainty set, which a decision maker can choose from. Second, it is an
important tool to analyze the effect of uncertainty on the decision. For example, in the
queuing problem in Chapter 2, there are problem instances for which the controls are not
affected by uncertainty in arrivals or departures.

Coming back to the discussion on the Ellsberg paradox and ambiguity modeling, one
should be careful in applying the same concepts when there is repeated decision making and
learning is involved. For example, if one is asked to play the same game as described by
the Ellsberg paradox repeatedly, one can choose a red ball and a black ball alternatively
from urn 2 and get the same utility as someone choosing a black or red ball from urn 1.
Typically in many operations research problems, the uncertainty is due to lack of sufficient
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data to learn the parameters of the underlying distribution, non-stationarity in the stochas-
tic process or wrong model assumptions. In classical modeling one tends to disregard the
uncertainty in estimates of parameters or estimated distribution. It is also common to use
the uncertainty sets estimated from the data, such as confidence intervals or ellipsoids, in
robust optimization problems. it is not clear that if the decisions are made repeatedly, then
the long run performance of robust models would be better than the classical ones. It is also
important to know how much sensitive the robust models are to the size of uncertainty sets.
These issues are explored in detail in Chapter 3.

Even when one is reasonably sure that the true parameter lies in an uncertainty set, it
can not be guaranteed that the robust policy would outperform the classical policy. Ideally,
instead of doing optimization and estimation separately, we want a mapping of past data
to a policy which is optimal in some way, or is at least better than the classical policy in
expected sense. This in theory may be achieved by defining the negative of objective function
of the problem as a risk function and looking for an estimate which is uniformly better
than the classical estimate. Unfortunately for many objective functions and distributions of
underlying stochastic process a uniformly better estimate is impossible or hard to find.

In Chapter 4, we use a novel approach called Operational Statistics which aims to improve
on a classical policy (in long run or expected sense) over a set of parameters. This is achieved
by explicitly constraining the policy to be better than the classical policy over the set. The
operational statistics formulation also incorporates subjective information (which may not
necessarily be derived from data) about the underlying parameter. Thus, an operational
statistics approach would strive to improve on the classical estimation based policy over the
uncertainty set while also incorporating subjective belief about the underlying parameter of
the stochastic process.

In Chapter 5, we apply the operational statistics approach to a mean-variance portfolio
optimization problem with uncertain mean returns of stocks. Given mean return of stocks
and covariance matrix, the objective of a mean-variance portfolio optimization problem in-
troduced by Markowitz [Mar52] is to find the proportion of different stocks in the portfolio by
maximizing a quadratic utility, which is equal to the average return of portfolio - variance of
the portfolio multiplied by a risk aversion constant. Estimate of means from limited number
of samples is known to be bad and the policy which replaces actual mean vector with sample
mean vector is nown to perform bad out of sample. We show that our operational statistics
mean variance portfolio optimization problem can be reformulated as a semi-definite pro-
gram and thus can be solved reasonably efficiently. We show the connection of our approach
with norm constrained portfolio optimization approach and discuss various extensions and
numerical experiments.

Another important issue in repeated decision making, which involves repeated estima-
tion and optimization steps, is the effect of optimization step on estimation, particularly
if the model assumptions are wrong. It has been observed in revenue management prob-
lems [CdMK06] that using inaccurate model assumptions may lead to progressively worse
estimates and in turn worse per step revenue. One simple example of such a phenomenon is
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the case of censored demand. Suppose someone is observing demand for a particular product
by observing how many units of that particular product are sold on a retail store shelf. That
person does not realize that the demand she observes in a particular period is the minimum
of the actual demand and number of units on the shelf. In a stochastic demand setting the
optimal number of units to order or place on shelf (see Chapter 3) is a particular quantile
of the demand distribution. So if use quantiles of empirical distribution constructed from
sales data, it may so happen that we may progressively have worse quantiles, and thus in
turn have progressively worse “optimal” order quantity. This results in a per step revenue
function that spiral down to zero. In general such a situation may arise when demand is
dependent on existing inventory or in many pricing problems.

In presence of inaccurate model assumptions, one may be tempted to use a relatively
model free approach like reinforcement learning [SB98] or multi-arm bandits [ACBF02].
However, there is more structural information available than what is typically used in a
multi-arm bandit algorithm. For example, given the demand in a particular period and
order quantity we know the exact functional form of profit function. Ignoring these structural
information may lead to poor small sample performance. In Chapter 6 we introduce a new
approach called Objective Operational Learning which utilizes this information efficiently.
We apply the approach to an inventory control problem with demand dependent on inventory
level. We show the comparison of objective operational learning approach to non-parametric
regression and prove asymptotic convergence.
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Chapter 2

Application of Dynamic Robust
Optimization in Queueing Control

We consider a general single-stage queuing system, in which the input (arrival) and output
(service completion) processes are modeled by point processes with dynamically controlled
stochastic intensities. An entering job incurs a cost, c̃, and a job completion produces
revenue, p̃. In addition there is a holding cost which is linearly proportional to the number
of jobs in the system at a given time. The problem is to dynamically control both the input
and output intensities so as to maximize discounted profit.

Problems of this type have been studied for example by Chen and Yao [CY90], where it
is shown that a threshold policy for both the input and output processes is optimal under
the assumption that the stochastic model for arrival and departure processes is accurate and
known. (See the papers [Li88], [Sti85] and [Ser81] for similar results). In many applications,
however, arrival and departure intensities can not be accurately modeled due to complexities
of the real-world system or lack of sufficient calibration data. This raises natural questions
including (i) what is the impact of model uncertainty on the “optimal” operating policies for
the system, and (ii) are threshold policies still “optimal”? We account for model errors by
formulating a max-min robust control version of this problem in which model uncertainty
is incorporated using the notion of relative entropy. Within this framework, we show that
threshold policy is optimal for the robust control problem, and study the impact of the level
of model uncertainty on the optimal threshold level.

While the use of relative entropy to account for model uncertainty in stochastic opti-
mization problems has a relatively long history ( [PJD00], [LS07], [HSTW06] and [PMR96]),
one feature of our work which departs from the standard approach is that we generalize
the standard notion of relative entropy in order to allow for different levels of model uncer-
tainty for the arrival as well as the departure processes (see also Lim, Shanthikumar and
Watewai [LSW09] for similar ideas in the context of dynamic pricing). Aside from being
realistic–for example, it is likely to be the case that the system operator is substantially
more knowledgeable about the service system he/she in controlling (since it is internal) than
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the customer arrival process, which is typically much more complicated and subject to many
external factors–this also allows us to study (say) the impact of the level of model uncertainty
in the arrival process on the service control policy.

The outline of this chapter is as follows. In Section 2.1 we recall the model from Chen and
Yao [CY90] and formulate the robust version of this problem. The robust version involves
an extension of the notion of discounted relative entropy from Hansen, Sargent, Turmuham-
betova and Williams [HSTW06] in order to handle different levels of model uncertainty for
the arrival and departure processes. Dynamic programming equations for the robust control
problem are derived in Section 2.2, and the impact of the level of model uncertainty on the
threshold control levels is studied in Section 2.3.

2.1 Model Formulation

In this section we first introduce the standard model which is similar to [CY90] before
formulating the robust model in section 2.1.2. The robust model extends the notion of
discounted relative entropy from [HSTW06] in order to handle different level of uncertainties
in arrival and departure rates.

2.1.1 Nominal Model

Consider a single-stage queuing system as shown in Fig. 2.1. Let Xt be the state of the
system that denotes the number of jobs in process at time t. Xt takes values on nonnegative
integers and is of the form

Xt = x0 + At −Dt, (2.1)

where x0 ≥ 0 is the state at time t = 0 of the system and At and Dt are the arrival and
departure processes respectively. At and Dt denote the cumulative number of arrivals and
departures until time t.

DtAt
X t

Figure 2.1: Queuing System

We assume that At and Dt are simple point processes. Let Ft be the sigma field generated
by Xt, i.e., Ft = σ(Xs, s ≤ t). Also let At and Dt admit Ft predictable intensities βt and αt.
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The rates αt and βt are subjected to the following capacity constraints

0 ≤ βt ≤ y, ∀t ≥ 0, and

0 ≤ αt ≤ z, ∀t ≥ 0.
(2.2)

If there is no ambiguity in the arrival or departure process, i.e., if we can exactly control
the arrival and departure intensities, then our objective is to find a control u = {βt, αt, t ≥ 0}
to maximize the following discounted value function:

V (x0, u) = Ex0

∫ ∞

0

e−δt(p̃dDt − c̃dAt − hXtdt). (2.3)

Here Ex0 denotes the conditional expectation given X0 = x0, δ is the discount factor, p̃ is the
revenue obtained by selling one unit of output, c̃ is the cost of acquiring one unit of input and
h is the unit holding cost for work-in-process inventory. Substituting Xt from (2.1) in (2.3)
we obtain:

V (x0, u) = Ex0

∫ ∞

0

e−δt

((

p̃+
h

δ

)

dDt −

(

c̃+
h

δ

)

dAt

)

−
hx0

δ
. (2.4)

Defining p = p̃+ h
δ

and c = c̃+ h
δ

we have

V (x0, u) = Ex0

∫ ∞

0

e−δt (pdDt − cdAt) −
hx0

δ
. (2.5)

We can drop the last term in (2.5) for the purpose of finding optimal control as it is a
constant term. From the definition of stochastic intensity [Bre81]

Ex0

∫ ∞

0

cdAt = Ex0

∫ ∞

0

cβtdt,

Ex0

∫ ∞

0

pdDt = Ex0

∫ ∞

0

pαtdt.

(2.6)

Rewriting the value function in (2.5) using (2.6) and dropping the constant term we have

V (x0, u) = Ex0

∫ ∞

0

e−δt (pdDt − cdAt) = Ex0

∫ ∞

0

e−δt (pαt − cβt) dt. (2.7)

The problem formulation with unambiguous arrival rate is:

max
u

V (x0, u) = max
u

Ex0

∫ ∞

0

e−δt (pαt − cβt) dt. (2.8)
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2.1.2 Robust Model

Let (Ω,Ft,F) be the underlying measurable space for arrival and departure processes,
At and Dt respectively. At and Dt are counting processes and admit intensities. A complete
specification of intensity λt of the process At and of intensity µt of the process Dt induces a
measure P over F . The nominal model is based on the assumption that the decision maker
is able to set arrival and departure intensities precisely subject to capacity constraints. The
objective then is to find (λt, µt) which are optimal.

In reality the real-world intensity processes are unlikely to be (λt, µt). For example, the
arrival rate, λt, might be a function of the price an arriving customer pays for the service
being offered while µt could depend on the number of workers assigned to the customer in
service, and the assumption in the nominal model is the decision maker knows the exact
relationship between pricing decisions and the arrival rate λt, as well as the number of
workers assigned and the departure rate µt, so that the arrival and departure rates can be
set to the precise values that the decision maker desires. In practice, the relationship between
the pricing decision and λt and also the number of assigned workers and the service rate µt

may be difficult to characterize. The arrival intensity might be a complicated non-stationary
function of the price and also of other factors such as amount of advertising. This makes it
impossible to precisely calibrate intensities.

More generally we have a situation where the decision maker on the basis of her model
thinks she is setting the arrival and departure rates at levels (λt, µt) but in reality the rates
might be something different (say (βt, αt)). Our objective in this section is to incorporate
the possibility of such model uncertainty into the formulation of the problem.

Suppose the real-world Ft-predictable intensity processes βt and αt induces a measure
Q over F . We assume that the real-world intensity processes, while not known accurately,
satisfy certain minimal conditions with respect to the intensity processes λt and µt, which are
precisely known to the decision maker. Let Pt and Qt be restrictions of P and Q respectively
to Ft. In particular we assume that for all t, Qt is absolutely continuous with respect to Pt,
i.e.,

Pt(A) = 0 ⇒ Qt(A) = 0 ∀A ∈ Ft.

The distribution Q is said to be absolutely continuous over finite intervals with respect
to P if Qt is absolutely continuous with respect to Pt for all t. This definition of absolute
continuity captures the idea that two models are impossible to distinguish with certainty
over a finite interval([HSTW06]).

Let {γt, t ≥ 0} be a stochastic process such that for every t, γt is Radon-Nikodym
derivative [Dur03] of Qt with respect to Pt. γt is a positive martingale and is adapted to
filtration Ft. It follows from [Jac79] that there are Ft-predictable processes κt and ηt such
that:

γt = exp

(
∫ t

0

(ln(κs)dAs + ln(ηs)dDs) +

∫ t

0

((1 − κs)λs + (1 − ηs)µs) ds

)

(2.9)
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The following result is a version of the Girsanov Theorem for point processes as stated in
Bremaud [Bre81].

Theorem 1 (Girsanov Theorem). Let At and Dt be Ft-adapted point processes with Ft-
predictable intensities λt and µt respectively under the probability measure P . Suppose that
γt is a positive Ft-martingale under P and that the Radon-Nikodym density of Qt with respect
to Pt is given by

dQt

dPt

= γt = exp

(
∫ t

0

(ln(κs)dAs + ln(ηs)dDs) +

∫ t

0

((1 − κs)λs + (1 − ηs)µs) ds

)

, (2.10)

then At and Dt are Ft-adapted point processes with intensities βt = κtλt and αt = ηtµt

respectively under Q.

Theorem 1 allows us to parameterize the real-world model Q = (βt, αt, t ≥ 0) through
the processes κt and ηt.

2.1.3 Relative Entropy

Relative entropy or KL divergence is a measure of difference between two probability
measures. Here we use a weaker notion, called Discounted Relative Entropy [HSTW06] to
measure the discrepancy between two measures over an infinite horizon.

The weaker notion requires that the two measure being compared put positive probability
on all of the same events, except tail events. The discounted relative entropy is defined as:

R̃(Q|P ) = δ

∫ ∞

0

exp(−δt)

(
∫

ln

(

dQt

dPt

)

dQt

)

dt, (2.11)

where dQt

dPt
is the Radon-Nikodym derivative of Qt with respect to Pt.

This measure of relative entropy is convex in Q as shown in [HSTW06]. It should be
noted here even if the discounted measure of entropy is finite the standard relative entropy
measure of distance between P and Q can be infinite, i.e., it allows:

∫

log

(

dQ

dP

)

dQ = +∞ (2.12)

If (2.12) holds but discounted relative entropy (2.11) is finite, then it means that a
statistician would be able to distinguish between the probability measures P and Q with a
continuous record of data on an infinite interval while it is impossible to do so by recording a
finite length time interval data. As an example if under P the arrival rate is constant λ and
under Q the arrival rate is constant β, β 6= λ, then relative entropy of P and Q is infinite
but the discounted relative entropy between Q and P is finite.
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Returning to our discussion on point processes, it follows from Theorem 1 that our
measure of discounted relative entropy (2.11) transforms into:

R̃(Q|P ) = δ

∫ ∞

0

e−δt

(
∫

ln
dQt

dPt
dQt

)

dt

= δ

∫ ∞

0

e−δt

(
∫ t

0

(λs(κs lnκs + 1 − κs) + µs(ηs ln ηs + 1 − ηs)) ds

)

dt

= δ

∫ ∞

0

(λs(κs lnκs + 1 − κs) + µs(ηs ln ηs + 1 − ηs)) ds

(∫ ∞

s

e−δtdt

)

=

∫ ∞

0

e−δsλs(κs lnκs + 1 − κs)ds+

∫ ∞

0

e−δsµs(ηs ln ηs + 1 − ηs)ds.

(2.13)

where the third equality is justified by Fubini’s theorem [Dur03] as the integrand is positive.
The first term R̃1(Q|P ) =

∫∞

0
e−δsλs(κs lnκs + 1 − κs)ds can be interpreted as measure of

ambiguity in the arrival process. Similarly the second term R̃2(Q|P ) =
∫∞

0
e−δsµs(ηs ln ηs +

1 − ηs)ds measures the ambiguity in the departure process.
Our robust control problem corresponding to (2.8) is as follows:

maxu∈U minQ EQ

[∫∞

0
e−δt (pαt − cβtdt)

]

subject to: R̃(Q|P ) ≤ η.
(2.14)

Here the control is u = {λt, µt, λt ≤ y, µt ≤ z, t ≥ 0}.
The robust control problem is a two-player game between ‘nature’ and decision maker.

Given the control u, nature chooses a “worst-case” measure Q from the class of measures
defined by the convex discounted relative entropy constraint. The constant η ≥ 0 is a
measure of our confidence in the nominal measure P and restricts the amount that Q (or
the real-world intensity processes βt and αt) can deviate from P (resp. λt and µt). A large
value of η allows Q to deviate further from our nominal probability measure P while a small
value of η is chosen when we have a high degree of confidence in our nominal model. Putting
η = 0 reduces the robust control problem to a standard one.

Alternatively, we may consider the following problem:

max
u∈U

min
Q

(

EQ

[
∫ ∞

0

e−δt (pµt − cβtdt)

]

+ θR̃(Q|P )

)

. (2.15)

The constant θ > 0 may be seen as the Lagrange multiplier for the relative entropy constraint
in (2.14) and solving (2.14) is equivalent to solving (2.15) for an appropriate choice of θ.
Alternatively, the parameter θ can represents our confidence in the nominal model. A large
value of θ denotes high confidence in the model as the penalty of deviation from the model
is large.

Note that the discounted relative entropy in (2.13) is the sum of two terms. The terms
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individually can be interpreted as measure of uncertainties in arrival and departure processes
respectively. In formulation (2.15) as both the terms in discounted relative entropy expansion
are multiplied by the same constant θ, the confidence levels in arrival and departure processes
are assumed to be the same. If we have reason to believe in varying levels of confidence in
arrival and departure processes the formulation (2.15) can be modified as:

max
u∈U

min
Q

(

EQ

[
∫ ∞

0

e−δt (pαt − cβtdt)

]

+ θAR̃1(Q|P ) + θDR̃2(Q|P )

)

. (2.16)

where θA and θD denotes the confidence in arrival and departure processes respectively .
Hence Model (2.16) differs from standard robust model (2.15) that assumes the same level
of uncertainty for all parts of the model.

Substituting the value of discounted relative entropy for point processes from (2.13)
to (2.15) our robust formulation is:

max
u∈U

min
κ,η

Ex0

[

∫ ∞

0

e−δt
(

pηsµs − cκsλs + θAλs(1 − κs + κs lnκs)

+ θDµs(1 − ηs + ηs ln ηs)
)

ds
]

.

(2.17)

2.2 Characterization of Optimal Policy

Suppose we first restrict ourselves to the policies which are Markov in the state (the
number of items that are currently in service). In other words, we can replace λt and µt

by λ(Xt) and µ(Xt) respectively. Further assume that nature is restricted to choose among
a set of Markovian policy only, i.e., κ and η are only functions of X. In this case the
formulation (2.17) reduces to:

max
λ,µ

min
κ

Ex0

[

∫ ∞

0

e−δt
(

pη(Xs)µ(Xs) − cκ(Xs)λ(Xs) + θAλ(Xs)(1 − κ(Xs)

+ κ(Xs) lnκ(Xs)) + θDµ(Xs)(1 − η(Xs) + η(Xs) ln η(Xs))
)

ds
]

.

(2.18)

The Hamiltonian-Jacobi-Bellman (HJB) equation corresponding to the above formulation
is:

δV (x) = max
λ(x),µ(x)

min
κ(x),η(x)

[

λ(x)κ(x)(−c + θA(−1 + lnκ(x)) + ∆V (x)) + λ(x)θA

+ µ(x)η(x)(p+ θD(−1 + ln η(x)) − ∆V (x− 1)) + µ(x)θD

]

,

(2.19)

where
∆V (x) = V (x+ 1) − V (x), (2.20)
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and

V (x) = max
λ,µ

min
κ,η

Ex

[

∫ ∞

0

e−δt
(

pµ(Xs) − cκ(Xs)λ(Xs) + θAλ(Xs)(1 − κ(Xs)

+ κ(Xs) lnκ(Xs)) + θDµ(Xs)(1 − η(Xs) + η(Xs) ln η(Xs))
)

ds
]

.

(2.21)

The solution of the (unconstrained convex) inner minimization (with respect to κ and η)
problem in (2.19) is characterized by the first order conditions and yields the following

κ∗(x) = exp

(

−
1

θA
(∆V (x) − c)

)

, and

η∗(x) = exp

(

−
1

θD
(p− ∆V (x− 1))

)

.

(2.22)

Substituting back the value of κ∗ and η∗(x) from (2.22) to (2.19), we obtain the following
after some manipulation:

δV (x) = max
λ(x),µ(x)

[

θAλ(x)
(

1 − exp
(

−
1

θA
(∆V (x) − c)

))

+ θDµ(x)

(

1 − exp(−
1

θD

(p− ∆V (x− 1))

)

]

.

(2.23)

As the above equation is linear in λ(x) and µ(x), we obtain the following characterization
of the optimal policy

λ∗(x) =

{

y if ∆V (x) ≥ c
0 otherwise.

(2.24)

µ∗(x) =

{

z if ∆V (x− 1) ≤ p, x ≥ 1
0 otherwise.

(2.25)

This proves that optimal policy would either allow arrivals at full force or not to allow
arrivals at all. The same structure holds for production. We either produce at full force or
do not produce at all. In order to guarantee that the optimal policy is threshold we need to
prove the existence of a number b such that:

{

c ≤ ∆V (x) ≤ p for x ≤ b
∆V (x) < c for x > b.

(2.26)

As it does not make sense to stop the production if there is a positive inventory due to
discounting and the holding cost, it is obvious that the optimal output policy should be of
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the following form:

µ∗(x) =

{

z if x ≥ 1
0 otherwise.

(2.27)

Now consider the following policy for arrivals. At every stage there is a choice between
setting the arrival intensity to zero or setting it equal to its max value of y. The value
function if we follow this binary policy which we have already proved to be optimal in the
case when both nature and decision maker is restricted to the class of Markovian policies is:

V (x) = max
λ(·)∈{0,y}

Ex

[

∫ ∞

0

e−δt
(

pµ∗(Xs)η
∗(Xs) − cκ∗(Xs)λ(Xs)

+ θAλ(Xs)(1 − κ∗(Xs) + κ∗(Xs) lnκ∗(Xs))

+ θDµ(Xs)(1 − η∗(Xs) + η∗(Xs) ln η∗(Xs))
)

ds
]

.

(2.28)

µ∗(x) is as described in (2.27), and κ∗(x), η∗(x) are as in (2.22). Now suppose we can
find a finite constant ν such that ν ≥ (yκ∗(x) + zη∗(x)), ∀x. The existence of such a ν is
guaranteed if we look at the expression (2.22) as it is possible to obtain upper and lower
bounds on V (x).1 Given such a ν we can write the following dynamic programming equation
( see Bertsekas [Ber95] Ch. 5)

V (x) =
1

δ + ν

[

pµ∗(x)η∗(x) + µ∗(x)θD(1 − η∗(x) + η∗(x) ln η∗(x))

+ (ν − µ∗(x))V (x) + µ∗(x)V (x− 1)

+ max
(

− cyκ∗(x) + yθA(1 − κ∗(x) + κ∗(x) lnκ∗(x))

+ yκ∗(x)(V (x+ 1) − V (x)), 0
)

.

(2.29)

Without loss of generality we can assume that δ+ν = 1 as it is possible to scale upper bounds
z and y appropriately. Substituting the value of κ∗(x) and η∗(x) from (2.22) in (2.29) and
simplifying we obtain:

V (x) = µ∗(x)θD

(

1 − e
− 1

θD
(p−∆V (x−1))

)

+ νV (x) + yθA max
(

1 − e
− 1

θA
(∆V (x)−c)

, 0
)

. (2.30)

To prove the structural properties of V (x) consider the following value-iteration algorithm:

Vn+1(x) = µ∗(x)θD

(

1 − e
− 1

θD
(p−∆Vn(x−1))

)

+ νVn(x) + yθA max
(

1 − e
− 1

θA
(∆Vn(x)−c)

, 0
)

.

(2.31)

Such a value-iteration algorithm corresponding to a stochastic game can be shown to
converge to the true value function (see [Sha53]). Note that similar iteration equations are

1Zero is a lower bound. An upper bound is the value function of the unambiguous problem which can be

uniformly upper bounded.
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observed in risk sensitive control literature (see [HHM96], [BM02], [CCdO03] and [CM99]).
The set of value-iteration equations can be written more explicitly in the following form:

Vn+1(x) = zθD

(

1 − e
− 1

θD
(p−∆Vn(x−1))

)

+ νVn(x) + yθA max
(

1 − e
− 1

θA
(∆Vn(x)−c)

, 0
)

(2.32)

where by convention ∆Vn(−1) = p for all n so that e
− 1

θD
(p−∆Vn(−1))

= 1.

Theorem 2. Suppose we initialize V0(x) = 0 for all x. If we iterate according to equa-
tion (2.32) then the following holds true for every n

(a) ∆Vn(x) ≤ p.

(b) Vn(x) is increasing in x, i.e., ∆Vn(x) ≥ 0.

(c) Vn(x) is concave in x, i.e., ∆Vn(x) is decreasing in x.

Proof. Proof is by induction. By construction the hypothesis holds true for n = 0. We now
suppose that it holds for n = k and show that it holds for n = k + 1.

(a)

∆Vk+1(x) = zθD

((

(1 − e
− 1

θD
(p−∆Vk(x))

)

−
(

1 − e
− 1

θD
(p−∆Vk(x−1))

))

+ ν(∆Vk(x))

+ yθA

(

max(1 − e
− 1

θA
(∆Vk(x+1)−c)

, 0) − max(1 − e
− 1

θA
(∆Vk(x)−c)

, 0)
)

≤ zθD

(

1 − e
− 1

θD
(p−∆Vk(x))

)

+ ν∆Vk(x)

≤ z(p− ∆Vk(x)) + ν∆Vk(x) = zp + (ν − z)p ≤ zp+ (ν − z)p = p.

We have used the following facts: max(1 − e
− 1

θA
(∆Vk(x+1)−c)

, 0) ≤ max(1 − e
− 1

θA
(∆Vk(x)−c)

, 0)

as ∆Vk(x) is a decreasing function of x,
(

1 − e
− 1

θD
(p−∆Vk(x−1))

)

≥ 0 as ∆Vk(x − 1) ≤ p for

all x and 1 − e−s ≤ s when x ≥ 0.
(b)

∆Vk+1(x) = zθD

(

e
− 1

θD
(p−∆Vk(x−1))

− e
− 1

θD
(p−∆Vk(x))

)

+ ν(∆Vk(x))

+ yθA

(

max(1 − e
− 1

θA
(∆Vk(x+1)−c)

, 0) − max(1 − e
− 1

θA
(∆Vk(x)−c)

, 0)
)

≥ ν∆Vk(x) + yθA

(

max(1 − e
− 1

θA
(∆Vk(x+1)−c)

, 0) − max(1 − e
− 1

θA
(∆Vk(x)−c)

, 0)
)

≥ ν∆Vk(x) − yθA max
(

1 − e
− 1

θA
(∆Vk(x)−c)

, 0
)

.

If ∆Vk(x) ≤ c, then max(1 − e
− 1

θA
(∆Vk(x)−c)

, 0) = 0 and hence ∆Vk+1(x) ≥ ν∆Vk(x) ≥ 0.
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Else if ∆Vk(x) ≥ c, then

∆Vk+1(x) ≥ ν∆Vk(x) − yθA

(

1 − e
− 1

θA
(∆Vk(x)−c)

)

≥ ν∆Vk(x) − yθA
∆Vk(x) − c

θA

≥ (ν − y)∆Vk(x) ≥ 0.

Here we have used the fact that 1 − e−s ≤ s when s ≥ 0.
(c)

∆Vk+1(x) − ∆Vk+1(x+ 1) = zθD

(

e
−

f(x−1)
θD − 2e

−
f(x)
θD + e

−
f(x+1)

θD

)

+ ν(∆Vk(x) − ∆Vk(x+ 1))

+ yθA(2 max(1 − e
− g(x+1)

θA , 0) − max(1 − e
− g(x)

θA , 0) − max(1 − e
− g(x+2)

θA , 0)),

where f(x) = p − ∆V (x) and g(x) = ∆V (x) − c. Note that as 0 ≤ f(x) ≤ p and f(x) is
increasing in x we have

e
−

f(x−1)
θD − e

−
f(x)
θD ≥ 0.

Also as g(x) is decreasing in x,

max(1 − e
−

g(x+1)
θA , 0) − max(1 − e

−
g(x+2)

θA , 0) ≥ 0.

Therefore

∆Vk+1(x) − ∆Vk+1(x+ 1) ≥ zθD

(

e
− f(x+1)

θD − e
− f(x)

θD

)

+ ν(∆Vk(x) − ∆Vk(x+ 1))

+ yθA

(

max(1 − e
− g(x+1)

θA , 0) − max(1 − e
− g(x)

θA , 0)

)

= zθD

(

e
−

f(x+1)
θD − e

−
f(x)
θD

)

+ z((p− ∆Vk(x+ 1)) − (p− ∆Vk(x)))

+ yθA

(

max(1 − e
− g(x+1)

θA , 0) − max(1 − e
− g(x)

θA , 0)

)

+ y((∆Vk(x) − c) − (∆Vk(x+ 1) − c))

+ (ν − y − z)(∆Vk(x) − ∆Vk(x+ 1))

≥ zθD

((

e
− f(x+1)

θD +
f(x+ 1)

θD

)

−

(

e
− f(x)

θD +
f(x)

θD

))

+ yθA

(

max(1 − e
−

g(x+1)
θA , 0) −

g(x+ 1)

θA

)

− yθA

(

max(1 − e
−

g(x)
θA , 0) −

g(x)

θA

)

.
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e−s + s is an increasing function of s when s ≥ 0, so

(

e
− f(x+1)

θD +
f(x+ 1)

θD

)

−

(

e
− f(x)

θD +
f(x)

θD

)

≥ 0.

Also max(1 − e−s, 0) − s is decreasing in s and as g(x) is a decreasing function of x

(

max(1 − e
− g(x+1)

θA , 0) −
g(x+ 1)

θA

)

−

(

max(1 − e
− g(x)

θA , 0) −
g(x)

θA

)

≥ 0.

Therefore,
∆Vk+1(x) − ∆Vk+1(x+ 1) ≥ 0.

Hence we have proved here that if we restrict ourselves to the class of Markovian policies
and nature is also restricted to choose Markovian policy to hurt the decision maker then a
threshold policy is optimum. Specifically we proved that there exists a threshold b ∈ [0,∞]
such that

{

c ≤ V (x+ 1) − V (x) ≤ p for x ≤ b
V (x+ 1) − V (x) < c for x > b

(2.33)

Coupled with (2.24) we have the following policy:

λ∗(x) =

{

y if x ≤ b
0 if x > b

(2.34)

Next we will show that the policy remains optimal even if the nature is free to choose any
non-Markovian policy. Specifically we prove that if we choose threshold policy and nature
is free to choose anything, nature would choose Markovian policy to hurt most.

Theorem 3. Suppose we choose the input and output intensities according to the equa-
tions (2.34) and (2.25). Suppose we allow “nature”, acting as the adversary, to choose any
arbitrary Ft-predictable processes κt and ηt to hurt the decision maker so that the expected
profit is minimized. Then nature would choose Markovian policy as given by (2.22), where
the value function in the equation is the optimal one when both nature and decision maker
are allowed to choose only Markovian policies.

Proof. For any given arbitrary processes (κt, ηt), t ≥ 0, suppose we consider a situation where
nature follows (κt, ηt) up to time t and then follows Markovian policy given by (2.22) after
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that. The value function associated with this (denoted by Ṽt) can be expressed as follows:

Ṽt(x) = Ex

∫ t

0

e−δt
(

pµ∗(Xs)ηs − cλ∗(Xs)κs

+ θAλ
∗(Xs)(1 − κs + κs lnκs) + θAµ

∗(Xs)(1 − ηs + ηs ln ηs)ds
)

+ Ex[e
−δtV (Xt)].

(2.35)

To derive the second expectation in above equation consider

∫ t

0

e−δsdV (Xs) = e−δtV (Xt) − V (X(0)) + δ

∫ t

0

e−δsV (Xs)ds. (2.36)

Taking expectation on both sides of the equality, we have

Ex

∫ t

0

e−δsdV (Xs) = Ex[e
−δtV (Xt)] − V (x) + Ex

[

δ

∫ t

0

e−δsV (Xs)ds

]

. (2.37)

We can calculate the left most term in the above expression as:

Ex

∫ t

0

eδsdV (Xs) = Ex

∫ t

0

e−δs
(

[∆V (Xs)]dAs − [∆V (Xs − 1)]dDs

)

= Ex

∫ t

0

e−δs
(

κsλ
∗(Xs)∆V (Xs) − ηsµ

∗(Xs)∆V (Xs − 1)
)

ds.

(2.38)

The first equality follows from the fact that there are only two possible transitions,
upward and downward, and the second equality follows from (2.6). From (2.35) and (2.38)
we obtain:

Ex[e
−δtV (Xt)] = V (x) + Ex

∫ t

0

e−δs
(

κsλ
∗(Xs)∆V (Xs)

− ηsµ
∗(Xs)∆V (Xs − 1) − δV (Xs)

)

ds.

(2.39)

From (2.23) we have

δV (Xs) = θAλ
∗(x)

(

1 − exp
(

−
1

θA

(∆V (Xs) − c)
))

+ θDµ
∗(x)

(

1 − exp

(

−
1

θD

(p− ∆V (Xs − 1))

))

.
(2.40)
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From (2.39) and (2.40) we obtain

Ex[e
−δtV (Xt)] = V (x) + Ex

∫ t

0

e−δs
(

κsλ
∗(Xs)∆V (Xs) − ηsµ

∗(Xs)∆V (Xs − 1)
)

ds

−Ex

∫ t

0

e−δsθAλ
∗(x)

(

1 − exp
(

−
1

θA

(∆V (Xs) − c)
))

ds

+ Ex

∫ t

0

e−δsθDµ
∗(x)

(

1 − exp

(

−
1

θD
(p− ∆V (Xs − 1))

))

ds.

(2.41)

Substituting Ex[e
−δtV (X(t))] from (2.41) to (2.35) we obtain

Ṽt(x) = Ex

∫ t

0

e−δs
(

λ∗(Xs)
[

− cκs + θA

(

κs(lnκs − 1) + e
− 1

θA
(∆V (Xs)−c)

)

+ κs∆V (Xs)
])

ds

+ Ex

∫ t

0

e−δs
(

µ∗(Xs)
[

pηs + θD

(

ηs(ln ηs − 1) + e
− 1

θD
(p−∆V (Xs−1))

)

− ηs∆V (Xs − 1)
])

ds+ V (x).

(2.42)

We now prove that the integrands in the expression are non-negative, i.e.,

−cκs + θA

(

κs(lnκs − 1) + e
− 1

θA
(∆V (Xs)−c)

)

+ κs∆V (Xs) ≥ 0 (2.43)

and
pηs + θD

(

ηs(ln ηs − 1) + e
− 1

θD
(p−∆V (Xs−1))

)

− ηs∆V (Xs − 1) ≥ 0. (2.44)

But this is straightforward as expressions (2.43) and (2.44) are convex in κ and η re-
spectively and from the first order conditions, the values of κs and ηs that minimize the
integrands are:

κs = e
− 1

θA
(∆V (Xs)−c)

,

ηs = e
− 1

θD
(p−∆V (Xs−1))

.
(2.45)

Substituting the minimizing value of κs in (2.43) and ηs in (2.44) we get zeros. Hence we
have proved that

Ṽt(x) ≥ V (x). (2.46)

A similar analysis would prove that if nature chose Markovian policy as defined in (2.22)
and we are free to choose any policy, we will again choose threshold policy. So even if we
are free to choose anything and nature is restricted to Markovian, we will choose threshold
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policy. Giving more freedom to nature will only worsen the performance. So it makes sense
for us to choose threshold policy. Hence a threshold policy is optimum even if we are free to
choose any Ft-predictable intensities and in that case nature would also choose a Markovian
policy to hurt us most.

2.3 Effect of Ambiguity Parameter on Threshold Con-

trol

In this section we will study the effect of change in ambiguity levels on threshold control.
We define the optimal value function explicitly as a function of φ := (θA, θD) as

V φ(x) := max
u

min
κ,η

Ex

[

∫ ∞

0

e−δt
(

pµs − cκsλs + θAλs(1 − κs + κs lnκs)

+ θDµs(1 − ηs + ηs ln ηs)
)

ds
]

.

(2.47)

We also define a partial order on φ, i.e., φ1 ≥ φ2 if θ1A ≥ θ2A and θ1D ≥ θ2D.
The following property of the value function is obvious from its definition.

Proposition 4. If φ1 ≤ φ2 then V φ1(x) ≤ V φ2(x) for all x ∈ N .

Let b(φ) is the value of optimal threshold control corresponding to the parameter φ. We
now show that the threshold remains bounded.

Proposition 5. b(φ) <∞ for all φ ∈ [0,∞] × [0,∞].

Proof. If b(φ) = ∞ for some φ then limx→∞ V
φ(x) = ∞ as ∆V φ(x) > c for all x. But the

function V φ(·) is uniformly (in x) less than the value function for the unambiguous problem.
The value function of the unambiguous problem can be uniformly bounded by setting αt = z
and βt = 0 in (2.8). Hence limx→∞ V

φ(x) = ∞ is not possible.

We can now prove that the optimal threshold control is monotone in θA for fixed θD.

Proposition 6. Let φ1 = (θ1A, θD) and φ2 = (θ2A, θD). If θ1A < θ2A then b(φ1) ≥ b(φ2).

Proof. If x > b(φ) for some φ = (θA, θD), then ∆V φ(x) < c and hence

V φ(x) = zθD

(

1 − e
− 1

θD
(p−∆V φ(x−1))

)

+ νV φ(x) (2.48)

which implies

δV φ(x) + zθD

(

e
− 1

θD
(p−∆V φ(x−1))

)

= zθD. (2.49)
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Subtracting δV φ(x− 1) from both sides we obtain

δ(∆V φ(x− 1)) + zθD

(

e
− 1

θD
(p−∆V φ(x−1))

)

= zθD − δV φ(x− 1). (2.50)

Suppose on the contrary b(φ1) < b(φ2) < ∞. By definition of b(φ2), ∆V φ2(b(φ2)) ≥ c
but ∆V φ2(b(φ2) + 1) < c. Therefore substituting x = b(φ2) + 1 we obtain the following from
eq (2.50)

δ(∆V φ2(b(φ2))) + zθD

(

e
− 1

θD
(p−∆V φ2 (b(φ2)))

)

= zθD − δV φ2(b(φ2)). (2.51)

Also as b(φ1) < b(φ2)

δ(∆V φ1(b(φ2))) + zθD

(

e
− 1

θD
(p−∆V φ1 (b(φ2)))

)

= zθD − δV φ1(b(φ2)). (2.52)

As φ2 ≥ φ1, V
φ2(b(φ2)) ≥ V φ1(b(φ2)). Hence

δ(∆V φ2(b(φ2))) + zθD

(

e
− 1

θD
(p−∆V φ2 (b(φ2)))

)

≤ δ(∆V φ1(b(φ2))) + zθD

(

e
− 1

θD
(p−∆V φ1 (b(φ2)))

)

.

(2.53)

The function δs+zθDe
− 1

θD
(p−s)

is an increasing function of s for s ≥ 0. So the only way (2.53)
can be true is if

∆V φ2(b(φ2)) ≤ ∆V φ1(b(φ2)).

As ∆V φ2(b(φ2)) ≥ c, so ∆V φ1(b(φ2)) ≥ c. This contradicts b(φ1) < b(φ2).

Numerical experiments also indicate (for various choices of parameters) that threshold
value is an increasing function of θD. Thus the ambiguity in arrival and ambiguity in depar-
ture appear to act in opposite directions (see e.g. figure 2.2). It is therefore important to
consider the case when the two ambiguity levels are same. In our numerical experiments for
θA = θD, the threshold control is increasing in the common ambiguity level (figure 2.3).
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Figure 2.2: Threshold control variation with ambiguity levels.
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Chapter 3

Comparison of Different Approaches
to Model Uncertainty with Learning

Consider a general discrete time stochastic optimization problem. Let X := {Xk}0≤k≤n

be the underlying stochastic process, where n is the number of decision epochs or planning
horizon. The process X is defined on a sample space (Ω,F ,Fk) and it subsumes all stochastic
processes of interest for the optimization problem. The set Ω is the set of all possible
outcomes of X and F is a sigma algebra associated with Ω. The set F0 (sigma algebra)
can be understood as the set of all information available at time 0, such as past demand
data or a priori subjective belief of an expert about the future demand. The set Fk contains
all possible information at time k. It is important to note that the information available to
decision maker at any time k may be a strict subset of Fk. For example, the decision maker
may know only the past sales data and not the actual demand data. Therefore, we make a
distinction and denote by Ik the set of information available to the decision maker at time
k.

Let yk be the decision made at the beginning of time k. The decision is made based
on the knowledge of the information set Ik−1. Let y = {y1, y2, . . . , yn} be the policy of the
decision maker and Y be the set of all admissible policies. We consider the following generic
optimization problem:

max
y∈Y

E [ψ (y,X)) |I0 ] (3.1)

In solving a stochastic optimization problem such as (3.1), a four steps procedure is
usually followed:

1. Choose the best objective to maximize: Depending on the problem and risk preference
a function ψ of the policy y and stochastic process X is chosen. This function is
maximized in some way (for example, expected value) given the initial information set
I0. Henceforth we drop I0 for convenience of presentation. Unless otherwise mentioned
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it should be understood that the objective is maximized given the initial information
I0.

2. Make suitable assumptions about the underlying stochastic process: Let P be the prob-
ability measure that governs the stochastic process X. To estimate P, some statistical
assumptions about the stochastic process are made based on previous knowledge, ex-
pert opinions or mathematical convenience. For example, we may assume that the
demand in an inventory control problem is independent and identically distributed
with exponential distribution.

3. Estimate parameters/distributions based on assumption: Given the assumptions about
the stochastic process, the parameters of the model are estimated or an estimate P0

of the true probability measure P is calculated using past data. For instance, in the
inventory example with i.i.d. and exponential distributed demand, the mean of past
demand data is an estimate of the parameter of the exponential distribution. One may
also use subjective Bayesian priors where the estimates are considered random and
have a probability distribution in contrast to point estimates in classical statistics.

4. Solve the problem using estimates: The problem is then solved assuming that the
estimate P0 is the true probability measure. It is hoped that the solution obtained
using P0 would be close to the true optimal (when P is known) in some sense.

One subjective element in the above procedure is the choice of statistical assumptions.
The assumptions are made in hope that the resulting analytical model is close to the actual
system. But in many cases this may not be the case, because even if the assumptions are
correct, one may not get a good estimate of the model parameters if the data is limited or
the past data is not a true reflection of future. In subsequent sections we discuss the effects
of incorrect assumptions or errors in model. We discuss various ways to model these errors
and present a comparison of these approaches.

Throughout the paper we present the newsvendor problem to discuss and compare differ-
ent ideas. The simplicity of the problem allows us to concentrate on ideas without worrying
about calculations and numerical tractability. The formal statement of the newsvendor
problem is as follows.

Newsvendor Problem

Consider a perishable item which is purchased at a cost of c per unit and sold at a price
of s per unit. The demand for the product is random and can take value anywhere in [0,∞).
The salvage value of the unsold item at the end of the period is 0 and thus no inventory is
carried over. Suppose the order quantities in the first n periods are y = {y1, y2, . . . , yn} and
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the demands are D = {D1, D2, . . .Dn}. Then the profit ψ(y,D) is

ψ(y,D) =

n
∑

i=1

{smin {yi, Di} − cyi} . (3.2)

We also assume that the decision maker is risk neutral and wants to maximize the ex-
pected profit in each period. Thus the problem is to maximize

φ(y) = Eψ(y,D) =
n
∑

i=1

E [{smin {yi, Di} − cyi}] . (3.3)

Throughout the chapter, while comparing various approaches, we make a statistical as-
sumption that D1, D2, . . . , Dn are i.i.d with a continuous distribution FD. This commonly
made assumption may not always be valid.

In addition, when required we make an assumption that the demand is exponentially
distributed with mean θ, i.e. FD(x) = 1 − exp(−x

θ
), D ≥ 0.

The rest of the chapter is organized as follows: In Section 3.1, we review some of the
classical modeling approaches in operations management.1 In Section 3.2, effects of wrong
model on the modeling methodologies mentioned in Section 3.1 are discussed. In Section 3.3,
we review some common uncertainty sets based on data, which are used to describe a collec-
tion of models. We compare the performance of different robust optimization models with
various uncertainty sets in Section 3.4.

3.1 Classical Modeling

3.1.1 Deterministic Modeling

Many of the earlier models in operations management were fully deterministic. Mathe-
matically, deterministic modeling is equivalent to choosing a specific instance ω0 ∈ Ω and
maximizing:

max
y∈Y

ψ (y,X(ω0)) (3.4)

A practical implementation of this policy would require a method to choose ω0 based on
initial information. Typical forecasting methods like moving average or exponential smooth-
ing can be used to choose ω0. For example, the initial information in period may consist of
past values of the stochastic process X i.e., X0, X−1, X−2, . . . , X−m. One possible way to

1This chapter is partly based on IEOR 290A course lecture notes taken by the author in Spring 2006 at

University of California, Berkeley
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utilize this information in a deterministic way is:

Xk(ω0) =

0
∑

i=−m

Xi, k = 1, 2, . . . , n. (3.5)

A large number of works in mathematical programming and robust optimization use de-
terministic modeling. The resulting problem often falls within well defined concepts of
mathematical programming, and therefore can be solved efficiently using standard tools and
software. However, unless the variability in the stochastic process is low, a deterministic
approach is not likely to result in a good solution.

Suppose the demand in the newsvendor problem is assumed to be deterministic, i.e., it is
Dk(ω0). Then, the optimal order quantity yk is Dk(ω0). Hence the newsvendor profit ψD(ω0)
in deterministic case is:

ψD(ω0) =

n
∑

k=1

(smin{Dk, Dk(ω0)} − cDk(ω0)) (3.6)

One possible way to get the forecast Dk(ω0) is to use the average of data from past lk periods.
Then,

Dk(ω0) := D̄lk
k :=

1

lk

k−1
∑

i=k−lk

Di (3.7)

Using the forecast, the profit is:

ψD =

n
∑

k=1

(

smin
{

Dk, D̄
lk
k

}

− cD̄lk
k

)

(3.8)

3.1.2 Stochastic Modeling

A typical stochastic model in operations management assumes a probability measure
P on (Ω,F , (Fk)). Often some statistical assumptions such as i.i.d. are made about the
stochastic process. It is desirable to specify the stochastic process under minimal assump-
tions. However, a weaker assumption usually means worse model calibration due to lack of
past data or subjective information. The generic optimization problem given the probability
measure P is:

max
y∈Y

EP [ψ(y,X)] (3.9)

The statistical assumptions and modeling can further be classified into parametric and
non-parametric modeling. Each of these can further be subdivided into Bayesian or Fre-
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quentist approach.

Parametric approach

The probability distribution Pθ belongs to a set PΘ, characterized by a finite dimensional
parameter θ. A frequentist approach assumes that the parameter θ is fixed but unknown.
Let y(θ) be the solution of the following optimization problem:

max
y∈Y

EPθ
[ψ(y,X)] (3.10)

To implement a policy using a frequentist approach, one finds an estimate of θ based on initial
information. The estimate θ̂ (I0) of θ is typically estimated by statistical techniques such
as using maximum likelihood estimator or uniformly minimum variance unbiased (UMVU)
estimator. In this case the implemented solution yPF is:

yPF = y(θ̂ (I0)). (3.11)

As a specific example of parametric modeling, we consider the newsvendor problem with
i.i.d. and exponentially distributed demand with mean θ. In this case, the objective function
and the optimal policy (see [LS05]) are:

EPθ
[ψ(y,D)] =

n
∑

k=1

(

sθ
(

1 − exp
{

−
yk

θ

})

− cyk

)

, (3.12)

and

yPF
k (θ) = θ ln

(s

c

)

. (3.13)

For an exponential distribution, the sample mean is the UMVU estimator of θ. Hence
one can use the sample mean of the observed data to estimate θ. The implemented ordering
policy is then

ŷPF
k = D̄lk

k log
(s

c

)

, k = 1, 2, . . . , n, (3.14)

with profit

ψPF =

n
∑

k=1

{

smin
{

Dk, D̄
lk
k log

(s

c

)}

− cD̄lk
k log

(s

c

)}

, (3.15)

where, D̄lk
k = 1

lk

∑k−1
i=k−lk

Di.
In parametric Bayesian, one assumes the parameter θ of the underlying distribution to

be random and one chooses an a priori distribution for the parameter θ. Suppose the a priori
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distribution for θ is F (θ), θ ∈ Θ. The objective function in this case is

EΘ [ψ (y,X(θ)) |I0 ] =

∫

θ∈Θ

ψ (y,X(θ)) dF (θ) . (3.16)

Let

yPB(I0) = arg max
y∈Y

EΘ [ψ (y,X(θ)) |I0 ] (3.17)

When the re-optimization is done at every step, as in newsvendor problem, a popular
choice of subjective prior is the conjugate of the demand distribution (e.g. [Azo85]). When
the demand is exponentially distributed, the conjugate choice of prior is gamma distribu-
tion. The probability density of gamma distribution with parameters α and β (which are
subjectively chosen) and the rate 1

θ
is:

f(θ) =
(β

θ
)α+1

βΓ(α)
exp

{

−
β

θ

}

, θ ≥ 0. (3.18)

Suppose at every time instant k the information we have or want to use is the last lk
periods of past data. Straightforward algebra will reveal that

ŷPB
k =

(

β + lkD̄
lk
k

)

(

(s

c

)
1

α+lk − 1

)

, (3.19)

with profit

ψ̂PB =

n
∑

k=1

{

smin

{

Dk,
(

β + lkD̄
lk
k

)

(

(s

c

)
1

α+lk − 1

)}

− c
(

β + lkD̄
lk
k

)

(

(s

c

)
1

α+lk − 1

)}

.

(3.20)

Non-Parametric Approach

Non-parametric modeling do not describe the probability distribution of stochastic pro-
cess using finite number of parameters, and hence make less statistical assumptions. Let
P̂ be an estimate (which is calculated non-parametrically) of distribution of X, then the
optimal non-parametric solution yNP (P̂ ) is:

yNP (P̂ ) = arg max
y∈Y

EP̂ [ψ(y,X)] (3.21)

To implement the non-parametric solution we need a method to calculate the distribu-
tion P̂ . Empirical distribution of past data and kernel density estimation (for continuous
distributions) are two of the methods used.
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For the newsvendor problem observe that the optimal order quantity yNP
k (FDk

) for de-
mand distribution FDk

is given by

yNP
k (FDk

) = F̄ inv
Dk

(c

s

)

, (3.22)

where F̄ inv
Dk

is the inverse of the survival function (F̄Dk
= 1−FDk

) of the demand. Suppose in
period k we use the empirical distribution based on last lk demand data points. Let Dk

[0] = 0

and Dk
[r] be the r-th order statistic of {Dk−1, Dk−2 . . . , Dk−lk}, r = 1, 2, . . . , lk. Since the

demand is assumed to be continuous, we set

ˆ̄FDk
(x) = 1 −

1

lk

{

r − 1 +
x−Dk

[r−1]

Dk
[r] −Dk

[r−1]

}

, Dk
[r−1] < x ≤ Dk

[r], r = 1, 2, . . . , lk. (3.23)

Then the implemented order quantity π̂g based on the empirical distribution is:

ŷNP
k = ˆ̄F

inv

Dk

(c

s

)

= Dk
[r̂−1] + â(Dk

[r̂] −Dk
[r̂−1]), (3.24)

where r̂ ∈ {1, 2, . . . , lk} satisfies

lk

(

1 −
c

s

)

< r̂ ≤ lk

(

1 −
c

s

)

+ 1, (3.25)

and

â = lk

(

1 −
c

s

)

+ 1 − r̂. (3.26)

3.2 Modeling Errors

In this section we discuss the effect of modeling errors on the models mentioned in
Section 3.1. We distinguish between two types of errors: (i) calibration error and (ii) error
due to wrong statistical assumptions. Even if our statistical assumptions about the nature
of stochastic process is right, we may still have an error in model due to limited amount of
data available for calibration.

3.2.1 Calibration Error

Let φk denotes the expected profit in period k, specifically φD
k denotes the expected profit

in period k using deterministic policy; φPF
k represents the expected profit in period k using

parametric frequentist method and so on. Mathematically:

φPF
k = EP

[

smin
{

Dk, D̄
lk
k log

(s

c

)}

− cD̄lk
k log

(s

c

)]

(3.27)
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Figure 3.1: Comparison of classical modeling methods discussed in Section 3.1. Values of
parameters are s=5, c=1, θ = 1.

The probability measure P is the true probability measure of the stochastic process D.
Let the true probability measure is i.i.d. and exponentially distributed as assumed in the
parametric model. The optimal profit as a function of mean demand parameter θ is given
by:

φ(θ) = (s− c)θ − cθ log
s

c
(3.28)

If we believe the assumption that the demand is i.i.d., then it make sense to use lk = k. It
can be shown for lk = k:

φD
k = sθ

(

1 −

(

k

k + 1

)n)

− cθ (3.29)

φPF
k = sθ

(

1 −

(

k

k + ln(s/c)

)n)

− cθ (3.30)

(3.31)

Figure 3.1 shows the performance of various models discussed in Section 3.1. All the mod-
els except for the deterministic model converge to the optimal solution asymptotically. A
Bayesian model with good subjective prior (α = 5, β = 5) has very good small sample per-
formance whereas if a Bayesian prior with α = 2, β = 5 is used the performance is even
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worse than non-parametric model. Hence the choice of subjective prior is very relevant to
the performance of a Bayesian model.

The other major issue in operations management is the non stationarity of stochastic
process. In presence of non-stationarity we can only trust past few data points for calibration.
Suppose lk = m, where m a constant independent of k. Let φ̂(m) is the long run average of
the profit in a period. Specifically:

φ̂D(m) = lim
n←∞

1

n

n
∑

k=1

[

smin
{

Dk, D̄
m
k log

(s

c

)}

− cD̄m
k log

(s

c

)]

. (3.32)

φ̂PF , φ̂PB and φ̂NP are defined similarly. The following can be shown (see [LS05]) if the
demand process is exponentially distributed:

φ̂D(m) = (s− c)θ − sθ

(

m

m+ 1

)m

, (3.33)

φ̂PF (m) = sθ

(

1 −

(

m

m+ ln( s
c
)

)m)

− cθ ln
(s

c

)

, (3.34)

φ̂PB(m) = sθ



1 −





θ
(

s
c

)
1

α+m + θ − 1





m

exp

{

−
β

θ

(

(s

c

)
1

α+m

− 1

)}



 (3.35)

− c(β +mθ)

(

(s

c

)
1

α+m
− 1

)

, (3.36)

φ̂NP = cθ

{

s

c

(

1 −

(

m− r̂ + 2

m+ 1

)(

m− r̂ + 1

m− r̂ + 1 + â

))

−
r̂−1
∑

k=1

1

m− k + 1
−

â

m− r̂ + 1

}

.

(3.37)

3.2.2 Error due to Wrong Statistical Assumptions

Performance of a model may suffer not only due to lack of sufficient data to calibrate
the model, but also due to wrong model assumptions. In all models of Section 3.1, we have
assumed that the demand process is i.i.d. and exponentially distributed. In this section
we consider the effect on various models if each of the above assumptions are not true. In
particular, we consider two different ways a model is misspecified:

(i) the demand is gamma distributed with scale parameter 0.1 and shape parameter 10
instead of being exponentially distributed. Figure 3.2 shows the performance of various
models discussed in Section 3.1. All the models except for the non-parametric model
converge to the wrong order quantity due to model misspecification.

(ii) the observed demand is a function of order quantity as in the case of a censored
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Figure 3.2: Effect of wrong model on long run profit. Demand is gamma distributed with
scale parameter 0.1 and shape parameter 10 instead of exponential.

newsvendor problem. In a censored newsvendor problem sales data is observed instead
of actual demand data. We consider the effect of using sales data instead of actual
demand data to construct estimate of demand distribution. Figure 3.3 shows the per-
formance of all the models using censored data. In all the models, using censored data
leads to progressive worsening of demand distribution, which in turn leads to smaller
(stochastically) order quantity. Eventually in all the models the order quantities, as
well as the estimate of demand distribution, converge to zero.

3.3 Flexible Modeling using Variable Uncertainty set

As discussed in Section 3.2, it is clear that classical models of operations management
performs poorly due to error in calibration and also due to model misspecification. Therefore,
there is a need to use models that explicitly take into account the errors due to calibration
and misspecification. One possible way to do this is to consider more than one model
while making decisions. In our optimization problem it is equivalent to specifying multiple
probability measure for the stochastic process X. So instead of specifying a single probability
measure P , we specify a collection of probability measure P and assume that the true
probability measure lies in the set P or there is a probability measure in the set which is
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Figure 3.3: Spiral down effect observed using censored demands
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very close (in some sense) to the true probability measure. The variable uncertainty set P
can be defined in both parametric and non-parametric ways.

3.3.1 Deterministic Variable Uncertainty Set

The deterministic uncertainty set is a collection of degenerate probability measure, i.e.,

PD = {PD
ω , ω ∈ Ω}. (3.38)

This is essentially equivalent to defining a set of values that X can take. Let the set of
possible values be X . Then one considers a collection of problems:

ψ(y,X), X ∈ X . (3.39)

In the newsvendor problem, where D̄lk
k is the forecast of the future, the deterministic

uncertainty set is given by:

DD
k = {D : D̄lk

k − ak ≤ D ≤ D̄lk
k + bk} (3.40)

In practice it is hard to come up with values of ak and bk unless there are natural limits or
engineering application. A natural limit can be found by using population size, but using
the population size is not expected to give a good solution as we shall see in the next section.

Another possible way to get ak’s and bk’s is to use confidence interval associated with
D̄lk

k assuming lk is sufficiently large so that distribution of D̄lk
k is close to normal. The values

of ak and bk then would be:

ak = D̄lk
k − zα/2

Slk
k

lk
, bk = D̄lk

k + zα/2
Slk

k

lk
, (3.41)

for appropriate value of α, 0 < α < 1. Slk
k is the standard deviation of last lk entries.

3.3.2 Parametric Variable Uncertainty Set

A possible way to consider the error in calibration of a parametric model is to consider
a family of probability measures based on different values of parameter. In a parametric
frequentist setting the collection of measures we consider could be

PPF = {P PF
θ , θ ∈ Θ}, (3.42)

for some set Θ of parameter values.
It is common in robust optimization to specify set Θ using a confidence set for θ. Let

0 < α < 1 and t (I0) be an estimator of θ given initial information I0. The uncertainty set
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Θ is chosen so that

P (t (I0) ∈ Θ) = 1 − α. (3.43)

One problem here is how to choose an appropriate value of α, as the solution is dependent
on α. A robust solution is desirable if it is not too sensitive to the choice of α.

For the newsvendor problem if the past lk periods data is assumed to be i.i.d. exponential
then it can be shown that:

2lk
θ
D̄lk

k =d χ2
2lk
, (3.44)

where χ2
2lk

is a chi-square random variable with 2lk degrees of freedom. From (3.43) and (3.44)
it is immediate that

P

(

2lkD̄
lk
k

χ2
2lk , α

2

≤ θ ≤
2lkD̄

lk
k

χ2
2lk,1−α

2

)

= 1 − α, (3.45)

where
P{χ2

2lk,β ≤ χ2
2lk
} = β, β ≥ 0.

A (1 − α) 100 % confidence interval for θ is

(

2lkD̄
lk
k

χ2
2lk, α

2

,
2lkD̄

lk
k

χ2
2lk,1− α

2

)

which can be used as set

Θ.
A Bayesian way to specify the variable uncertainty set is to consider hierarchical models.

If the parameters of prior distribution are not well specified then in true Bayesian sense
we should consider the parameters of prior distribution itself to be random and specify a
probability measure on parameters. We can consider multiple levels of hierarchy, though in
practice it is not advantageous to have more than two or three levels of hierarchy.

3.3.3 Nonparametric Variable Uncertainty Set

There are multiple ways to specify a non-parametric uncertainty set. One particular way
is to specify some properties about the distribution of the stochastic process and consider the
class of all probability measures that satisfy those properties. For example a non-parametric
variable uncertainty set can be a set of all probability measures such that the mean vector
and covariance matrix of the stochastic process are some particular values, i.e.,

P = {P : EP [X] = µ,EP [(X − µ)(X − µ)′] = Q.} (3.46)

A non-parametric variable uncertainty set can also be specified by choosing a ball of prob-
ability measure centered around a nominal probability measure. All measures in the ball
are within some ”distance“ from the nominal probability measure. Therefore, to completely
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specify a non-parametric variable uncertainty set we need a nominal probability measure and
a measure of distance between probability measures. One way to specify nominal probabil-
ity measure is to choose it non-parametrically as in Section 3.1.2, although we can specify
a parametric nominal probability measure while still choosing the variable uncertainty set
non-parametrically. If P̂ is the nominal probability measure and d(P, P̂ ) is a measure of
distance between P and P̂ , then a non-parametric variable uncertainty set is:

P = {P : d(P, P̂ ) ≤ α}, (3.47)

for some parameter value α. Ideally we would like to choose α so that the true probability
measure is in P. In practice it may be hard to choose such an α but we hope that our
solution is not too sensitive to α and a reasonable choice of α would give us a robust enough
solution.

Some of the distance measures commonly used are listed below:

Kullback-Leibler(KL) Divergence or Relative Entropy

dKL(P, P̂ ) =

∫

Ω

log

(

dP

dP̂

)

dP, (3.48)

where dP

dP̂
is so called Radon-Nikodym derivative. Kullback-Leibler divergence is a popular

measure to specify variable uncertainty sets specifically in dynamic models. It has a useful
property that it is sum separable for product measures. It is convex in P and takes values
in [0,∞]. However, it is not a metric (it is not symmetric in (P, P̂ ) and does not satisfy
the triangle inequality). Another caveat is if there exists a set A, however small, such that
P (A) > 0 but P (A) = 0, then dKL(P, P̂ ) = ∞.

Total Variation Distance

Total variation distance is defined as:

dTV (P, P̂ ) = sup{|P (A) − P̂ (A)| : A ∈ F} (3.49)

Total variation distance defines a norm on the space of probability measures.



3.4. ROBUST OPTIMIZATION MODELS 37

Lévy (Prokhorov) Metric

Lévy metric, which is a special case of Lévy-Prokhorov metric, between two probability
distributions F and F̂ is defined as

dL(F, F̂ ) = inf{h : F (x− h) − h ≤ F̂ (x) ≤ F (x+ h) + h; h > 0; x ∈ R}. (3.50)

3.4 Robust Optimization Models

Assuming that the true probability measure can be any one from the variable uncertainty
set, robust optimization methods use suitable objective functions to derive solutions which
are hoped to be robust enough to model misspecification and calibration error. Some of
the most commonly used objective functions are max-min, max-min regret and max-min
competitive ratio.

3.4.1 Max-min Objective

The max-min or worst case objective is the most commonly used robust objective in
operations management literature. The optimization problem is:

max
y∈Y

min
P∈P

E [ψ(y,X)] . (3.51)

This approach finds the best solution assuming the true model is the worst one possible. If
the variable uncertainty set is large then the solution might be too conservative. On the
other hand if the uncertainty set is too small then the solution may not be robust at all. In
practice we want a solution that is not too sensitive to the variable uncertainty set; min-max
as a robust objective fails to achieve that as we shall see in the newsvendor problem context.

Max-min with Deterministic Uncertainty Set

If the demand in period k can take values in [ak, bk], then the robust optimization problem
is:

max
y≥0

min
ak≤Dk≤bk

n
∑

k=1

(smin{Dk, yk} − cyk) . (3.52)

Since the inner minimization is monotone in Dk, the optimization problem (3.52) can be
written as:

max
y≥0

n
∑

k=1

(smin{a, yk} − cyk) , (3.53)
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Figure 3.4: Performance of Max-min robust optimization objective with deterministic un-
certainty set.

with optimum solution

yR:D
k = ak, k = 1, 2, . . . , m. (3.54)

To implement the solution we need values for ak’s. A natural boundary is ak = 0 but
this would give a profit of 0, which is clearly a pessimistic solution.

Instead if we use the value of ak as defined in (3.41), the profit ψR:D is:

ψR:D =

n
∑

k=1

smin

{

[

D̄lk
k − zα/2S

lk
k

]+

, Dk

}

− c
[

D̄lk
k − zα/2S

lk
k

]+

. (3.55)

As we see from Figure 3.4, the performance of the deterministic max-min optimization
is even worse than deterministic optimization for 90% confidence interval estimates for α.
We can, of course, improve the performance by choosing different values of confidence level.
However, first it is difficult to say which value of confidence level is good a priori. In addition,
as we see from Figure 3.5, the performance of the max-min deterministic robust optimization
can be quite sensitive to the choice of α.
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Figure 3.5: Sesitivity of Max-min robust optimization (with deterministic uncertainty set)
objective with respect to α .

Max-min with Parametric Uncertainty Set

Suppose the variable parametric uncertainty set in period k is ak ≤ θ ≤ bk. The robust
optimization problem in period k is:

max
yk≥0

min
ak≤θ≤bk

sθ
(

1 − exp
(

−
yk

θ

))

− cyk (3.56)

As before the inner minimization is monotone in θ, and so it is immediate that

yR:PF
k = ak log

(s

c

)

, k = 1, 2, . . . , m. (3.57)

To implement the solution, we can use confidence interval for θ as defined in (3.45). The
robust profit ψR:PF is:

ψR:PF =

n
∑

k=1

smin

{

2lkD̄
lk
k

χ2lk,α/2

log
(s

c

)

, Dk

}

− c
2lkD̄

lk
k

χ2lk ,α/2

. (3.58)

Figure 3.6 shows the performance of max-min robust parametric solution and classical
parametric solution for an uncertainty set corresponding to 90% confidence level. The per-
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Figure 3.6: Performance of Max-min robust optimization with parametric uncertainty set

formance of robust solution is worse than classical point estimate based parametric solution
irrespective of the number of past data points used.

Max-min with Nonparametric Variable Uncertainty Set

The non-parametric uncertainty set for demand Dk in period k is the set of all probability
distribution with mean µk and variance σ2

k. It can be shown that maximizing the newsvendor
profit is equivalent to minimizing

yk +
s

c
EP [Dk − yk] . (3.59)

An upper bound on EP [Dk − yk], as proved in [GM94] is:

EP [Dk − yk] ≤
(σ2

k + (yk − µk)
2)

1/2
− (yk − µk)

2
. (3.60)

The order quantity yNP
k that minimizes the upper bound is:

yR:NP
k = µk +

σk

2

(

(

s− c

c

)1/2

−

(

c

s− c

)1/2
)

. (3.61)
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To actually implement this policy we need estimates of µk and σk. Let the estimates based
on past lk periods of data be:

µ̂lk
k =

1

lk

k−1
∑

i=k−lk

Dk, and (3.62)

σ̂lk
k =

1

lk − 1

k−1
∑

i=k−lk

(Dk − µ̂lk
k )1/2. (3.63)

The implemented policy is:

ŷR:NP
k = µ̂lk

k +
σ̂lk

k

2

(

(

s− c

c

)1/2

−

(

c

s− c

)1/2
)

. (3.64)

The profit ψR:NP corresponding to policy ŷR:NP
k is:

ψR:NP =
n
∑

k=1

(

smin
{

ŷR:NP
k , Dk.

}

− cŷR:NP
k

)

. (3.65)

Figure 3.7 compare the performance of max-min robust non-parametric solution and classical
non-parametric solution for an uncertainty set corresponding to 90% confidence level. There
is not much difference between the performance of robust solution and that of a classical
non-parametric solution.

3.4.2 Min-max Regret

Max-min objectives choose the worst model out of all permissible ones. If the model
happens to be best one possible then the performance of a robust max-min solution is
very bad. There is an opportunity cost if the true model is best one and the solution
is too conservative. Min-max regret find a solution by minimizing this opportunity cost.
Mathematically, a min-max regret objective is:

min
y∈Y

max
P∈P

EP [ψ(y∗(P ),X) − ψ(y,X)] , (3.66)

where y∗(P ) is the optimal solution under the probability measure P . The notion of regret
is more appealing than worst-case optimization as it sought to achieve a middle ground
between optimistic and pessimistic scenarios.
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Figure 3.7: Performance of Max-min robust optimization with non-parametric uncertainty
set

Min-Max Regret with Deterministic Variable Uncertainty Set

If the demand in period k is known to be deterministically D then the optimal profit is
(s− c)D. So the regret objective in period k, if the deterministic uncertainty set is [ak, bk],
is:

min
yk

max
ak≤Dk≤bk

((s− c)Dk − smin{yk, Dk} − cyk) . (3.67)

For a given yk the objective is convex in Dk. Hence, the objective in (3.67) can be written
as:

min
yk

max{(s− c)ak − sak − cyk, (s− c)bk − syk − cyk}. (3.68)

The solution yk would be such that:

(s− c)ak − sak − cyk = (s− c)bk − syk − cyk. (3.69)

Hence

yk = ak + (bk − ak)
s− c

s
. (3.70)
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Figure 3.8: Performance of of Min-max regret optimization with deterministic uncertainty
set

As we see here the regret solution depends on both ak and bk and is also dependent on s and
c.

To actually implement this policy if we decide to use values of ak and bk as defined
in (3.41), the profit, ψReg:D is:

ψReg:D =

n
∑

k=1

(

smin
{

yReg:D
k , Dk

}

− cyReg:D
k

)

, (3.71)

where yReg:D
k is defined by (3.70) with ak =

[

D̄lk
k − zα/2S

lk
k

]+

and bk = D̄lk
k + zα/2S

lk
k .

Figure 3.8 compares the performance of regret solution to classical solution in case of
deterministic uncertainty set. The performance of regret solution is much better than the
worst case robust solution and it outperforms the nominal deterministic model for small
sample sizes. However, for large sample sizes the classical solution still outperforms the
regret solution. Figure 3.9 shows the variation of performance of regret solution with size of
deterministic uncertainty set. As compared to the worst case solution the regret solution has
a desirable property that it is not too sensitive to the size of the uncertainty set parametrized
by α.
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Figure 3.9: Sensitivity of Min-max regret optimization (with deterministic uncertainty set)
with α.

Min-Max Regret with Parametric Variable Uncertainty Set

With parameter of exponential lying in [ak, bk], the min-max regret problem in period k
is

min
yk

max
ak≤θ≤bk

Eθ

[

(s− c)θ − cθ log
(s

c

)

− smin{yk, Dk} + cyk

]

(3.72)

which can be written after taking expectation as

min
yk

max
ak≤θ≤bk

[

θ

(

s exp

(

−yk

θ

)

− cθ(1 + log(s/c))

)

+ cyk

]

(3.73)

It can be shown that the optimal yk can be found by equating regrets at θ = ak and θ = bk.
The optimum yk is the solution of the following equation:

(bk − ak)
c

s

(

1 + log
(s

c

))

= bk exp(−yk/bk) − ak exp(−yk/ak). (3.74)
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Figure 3.10: Performance of of Min-max regret optimization with parametric uncertainty set

We can use confidence interval for θ as defined in (3.45) for ak and bk. The profit function
ψReg:PF is

ψReg:PF =
n
∑

k=1

(

smin
{

yReg:PF
k , Dk

}

− cyReg:PF
k

)

, (3.75)

with yReg:PF
k is solution of (3.74) with ak =

2lkD̄
lk
k

χ2lk,α/2
and bk =

2lkD̄
lk
k

χ2lk,1−α/2
.

Figure 3.10 compares the performance of regret solution with classical parametric solution
for 90% confidence parametric uncertainty set. Even though the performance of regret
solution is better than the worst case solution, it is still worse than the classical parametric
solution for all sample sizes.

Max-min Regret with Nonparametric Variable Uncertainty Set

We consider the the non-parametric uncertainty set for demand Dk in period k is the
set of all probability distribution with mean µk. It can be shown (See [PR08]) that order
quantity that minimize the maximum regret is:

yReg:NP
k =

{

µk

(

1 − c
s

)

if 1
2
≤ c

s
µk

4 c
s

if 1
2
> c

s
(3.76)



3.4. ROBUST OPTIMIZATION MODELS 46

0 5 10 15 20 25 30 35 40
0.75

0.8

0.85

0.9

0.95

1

Number of Past Data Points Used

Lo
ng

 R
un

 A
ve

ra
ge

 

 

Min−max Regret Non Parametric
Nominal Non Parametric

Figure 3.11: Performance of Min-max Regret optimization with non-parametric uncertainty
set

The implemented ỹReg:NP
k use an estimate of µk as in (3.62). The profit ψReg:NP corresponding

to policy ŷReg:NP
k is:

ψR:NP =
n
∑

k=1

(

smin
{

ŷReg:NP
k , Dk

}

− cŷReg:NP
k

)

. (3.77)

From Figure 3.11, the performance of non-parametric solution is worse than the classical
non-parametric solution based on empirical distribution.

3.4.3 Max-min Competitive Ratio

Max-min Competitive ratio is a benchmark objective similar in spirit to max-min regret.
Instead of looking at the difference in the objective values, we look at the ratios. The
optimization problem is:

max
y

min
P∈P

EP [ψ(y,X]

EP [ψ(y∗(P ),X)]
(3.78)

A possible advantage of competitive ratio over regret is the objective in (3.78) is relatively
agnostic to the scale of the problem.
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Max-min Competitive Ratio with Deterministic Variable Uncertainty Set

The competitive ratio optimization problem in period k (assuming ak > 0) is

max
yk

min
ak≤Dk≤bk

smin{yk, Dk} − cyk

(s− c)Dk
. (3.79)

The optimal yk can be found by solving the following:

sak − cyk

ak
=
syk − cyk

bk
, (3.80)

from which we obtain

yk =
sakbk

c(bk − ak) + sak
. (3.81)

If we use values of ak and bk as defined in (3.41), the profit, ψC:D is:

ψC:D =
n
∑

k=1

(

smin
{

yC:D
k , Dk

}

− cyC:D
k

)

, (3.82)

where yC:D
k is defined by (3.81) with ak = max

{

D̄lk
k − zα/2S

lk
k , ǫ
}

and bk = D̄lk
k + zα/2S

lk
k .

ǫ > 0 is small parameter added to make ak > 0.
Figure 3.12 compares the performance of the solution derived from competitive ratio

objective (uncertainty set constructed using 90% confidence level) to the performance of
the classical deterministic solution. The competitive ratio solution outperforms the classical
deterministic solution for nearly all sample sizes. Hence, as a robust objective it works much
better than regret and worst case optimization objectives for the newsvendor problem. In
addition, as we see from Figure 3.13 the performance of the competitive ratio solution is not
much sensitive to the size of uncertainty set.

Max-min Competitive Ratio with Parametric Variable Uncertainty Set

As before the max-min competitive ratio problem in period k with variable parametric
uncertainty is

max
yk

min
ak≤θ≤bk

sθ
(

1 − exp
(

−yk

θ

))

− cyk

θ
(

(s− c) − log
(

s
c

)) . (3.83)

For a given yk the above objective has maximum at θ = yk

ln(s/c)
, decreasing on either side of

it. In addition, the function is concave in yk. It can be proved that the optimal policy yk is
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Figure 3.12: Performance of Max-min competitive ratio optimization with deterministic
uncertainty set
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Figure 3.13: Sensitivity of Max-min competitive ratio optimization (with deterministic un-
certainty set) with α.
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Figure 3.14: Performance of Max-min competitive ratio optimization with parametric un-
certainty set

given by solution of the following:

sak

(

1 − exp
(

− yk

ak

))

− cyk

ak

=
sbk

(

1 − exp
(

−yk

bk

))

− cyk

bk
. (3.84)

We can implement the policy by solving for yk with ak and bk given by (3.45). If the solution
is yC:PF

k , the profit function ψC:PF is:

ψC:PF =

n
∑

k=1

(

smin
{

yC:PF
k , Dk

}

− cyC:PF
k

)

. (3.85)

Figure 3.14 compares the performance of the competitive ratio solution with parametric
uncertainty set to the solution of the classical parametric solution. The performance of
competitive ratio solution is close to the classical parametric solution but is still uniformly
worse than the classical solution for all sample sizes. This is in contrast to the competitive
ratio with deterministic uncertainty set, where the robust solution outperforms the classical
deterministic solution.

The comparison of various robust optimization models when uncertainty set is calculated
from past data shows that most of the time performance of robust models is even worse
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than their non-robust counterparts. Next we discuss some objective learning approaches
that integrate optimization and learning.

3.5 Learning

3.5.1 Reinforcement Learning

Reinforcement learning as a learning paradigm falls between supervised and unsupervised
learning. Learning is done through trial and error by providing reinforcement or reward in
response to an action. The method is particularly suitable for learning in dynamic environ-
ment without making too many assumptions about the underlying process or environment.
The basic premise of reinforcement learning is to learn the best action in a given “state”
by exploiting the current best action and also by randomly exploring other actions. The
“state” can be understood to be a finite dimensional vector which is an input to the system.
An example of a state is the initial inventory at the start of a period in inventory control
problem. The system tries to learn the “value” of the state, which is the reward obtained
by implementing an optimal policy through a reinforcement learning algorithm. Some of
the popular reinforcement learning algorithms are TD(λ) [Sut88], Q learning [Wat89], and
Dyna [Sut90]. For a survey of reinforcement learning algorithms see [SB98] and [KLM96].

The newsvendor problem, which is an example of sequential decision making, can be for-
mulated as a multiple arm bandit problem, which is a special case of reinforcement learning
with single state but multiple actions. Although the action (order quantity) space is con-
tinuously valued, we can get a good approximation by discretization the action space into
finitely many values then applying an algorithm such as UCB1 [ACBF02] for multi-armed
bandit on the discretized problem. A better approach would be to apply continuum arm
bandit algorithm [Kle04], as the newsvendor profit function is Lipschitz continuous in order
quantity. An advantage of multi-arm bandit approach is that we can theoretically bound
the cumulative regret of the algorithm. On the other hand the small sample performance of
multi-arm bandit algorithm does not utilize much structural and distributional information
about the problem in hand.

3.5.2 Objective Bayesian

The main criticism of subjective Bayesian methods is subjectivity in choosing the prior
for the parameters of distribution of stochastic process. It is often difficult to find an
“expert” who can provide a good subjective prior. As we have seen from Figure 3.1 the
solution does depend heavily on the choice of prior. A possible alternative is to use non-
informative/objective priors. A non-informative prior can informally be defined as the one
which favors no particular value of parameter over others. One particular way to define
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non-informative is to use Jefferys prior [Jef46], which is to use

fΘ(θ) ∝ (I(θ))1/2 (3.86)

as non-informative prior, where I(θ) is the expected Fisher information. Under some com-
monly satisfied assumptions [Ber85] I(θ) is given by

I(θ) = −Eθ
∂2 logPθ

∂θ2
. (3.87)

For an exponential distribution with mean θ, the expected Fisher information I(θ) is
(

1
θ

)2
,

and a non-informative prior is:

fΘ(θ) =
1

θ
, θ > 0.. (3.88)

Note that the prior (3.88) is not a proper probability density over (0,∞) as
∫

(0,∞)
1
θ
dθ = ∞.

However, we may still use fΘ(θ) as a probability density in Bayes’ rule if the posterior is a
proper probability density.

For the newsvendor problem, if in period k we use past lk periods of data to make the
decision then the posterior distribution using prior (3.88) is

fk
Θ(θ) =

lkD̄
lk
k

(lk − 1)!θlk+1
exp

(

−
lkD̄

lk
k

θ

)

. (3.89)

Hence the marginal distribution of Dk is

fDk
(x) =

∫

Θ

(

lkD̄
lk
k

)lk

(lk − 1)!θlk+2
exp

(

−
lkD̄

lk
k + x

θ

)

dθ. (3.90)

which is equal to

fDk
(x) =

lk

(

lkD̄
lk
k

)lk

(

lkD̄
lk
k + x

)lk+1
. (3.91)

Hence

F̄Dk
(x) =

(

lkD̄
lk
k

lkD̄
lk
k + x

)lk

. (3.92)
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Therefore, the optimal order quantity yOB = F̄−1
Dk

(c/s) is:

yOB = Dlk
k lk
(

(s/c)1/lk − 1
)

. (3.93)

Objective Bayesian learning provides an attractive way to make decisions in the presence
of model uncertainty. Later in Chapter 4 we will see this is (in a way) the best we can do.

However, objective Bayesian can also be criticized similarly to subjective Bayesian as
there is no unique way of defining a non-informative prior. For example, for Normal dis-
tribution with mean µ and variance σ2, Jefferys prior is 1

σ2 . Another commonly used non-
informative prior is 1

σ
. It is not clear which prior to be used for a particular problem. In

addition, similar to subjective Bayesian method the prior should be chosen independent of
objective function.

3.5.3 Classical Decision Theory

In classical (non-Bayesian) decision theory a non-randomized decision rule y is a mapping
from the available information to the policy space. So the decision at time k, yk is directly
a function of the information set Ik. We denote the dependency of y on information set
by y(I). A classical decision theorists seeks to evaluate the “loss” for every value of the
parameter of the underlying stochastic process. The loss is measured by using a risk function.
In the setup where profit is maximized we can use the negative of the profit function as risk.
Equivalently we can focus on

max
y

Eθ [ψ(y(I),X(θ)] . (3.94)

As the frequentist risk or profit function is a function of θ, it is not clear what maximiz-
ing (3.94) actually means. A partial ordering of decision rules can be formed by utilizing the
following notion:

Definition 7. A decision rule y(I) is better than y′(I) if

Eθ [ψ(y(I),X(θ)] ≥ Eθ [ψ(y′(I),X(θ)] ∀ θ (3.95)

with strict inequality for at least one θ.

Definition 8. A decision rule is admissible if there exists no better decision rule as defined
in Definition 7.

Naturally it makes sense to search only for decision rules which are admissible. However,
the class of admissible decision rules is very large. If we fix a particular value of θ, say θ0
and let ỹ be the optimal decision for θ0 regardless of past data values or information, then
it is likely that ỹ is admissible. However, such a decision rule is likely to perform quite bad
for other values of θ. On the other hand we can define the concept of an optimal decision
rule as follows:
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Definition 9. A policy y is optimal, if

Eθ [ψ(y(I),X(θ))] ≥ Eθ[[ψ(y′(I),X(θ))] , ∀ θ, (3.96)

for all possible y′.

Such a concept, though attractive, is quite restrictive. Indeed the class of problems where
one can find a decision rule in the sense of (3.96) is quite small. Therefore, there is a need to
define alternative concepts of choosing decision rules. In classical decision theory, there are
three major methods [Ber85] of choosing decision rules. First is Bayes Risk Principle where
the risk or profit function is integrated over θ using a prior on θ. The method is not too
different from subjective Bayesian principle discussed in Section 3.1.2, and can be criticized
similarly for subjectivity in choosing the prior distribution. Second is Invariance Principle

which informally states that a decision rule should not depend on the unit of measurement
used or any other such arbitrary structure. There is a direct correspondence of such rules
with method of using non-informative priors and hence we will not discuss it here. Third
is the Max-min Principle. The aim is to choose a decision rule that maximize the profit
assuming the worst possible parameter of stochastic process. Such a concept is similar to
robust optimization, the difference being the policy is a function of past data/information.

3.6 Discussion

In this chapter, we have studied the effect of model uncertainty on various classical mod-
eling approaches. We studied many popular robust optimization approaches and compared
the performance to their non-robust counterparts. If the performance is compared on the
basis of next period expected profit, then most of the time performance of robust solutions
is even worse than the classical non-robust solutions. In Chapter 4, we introduce generalized
operational statistics approach, which is a parametric approach that guarantees a better
solution than a classical solution over a set of parameter.

In Section 3.2.2, we also discussed the effect of using wrong model class and wrong
statistical assumption. When confidence in a particular model class is low it is desirable to
use a non-parametric method such as reinforcement learning. In Chapter 6 we introduce a
new non-parametric learning method, which utilizes the structural information embedded in
a problem to improve small sample performance.
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Chapter 4

Operational Statistics

In Chapter 3, we discussed different approaches for modeling uncertainty with learning.
In almost all these approaches the learning and optimizations tasks are separated. First
the parameters of the model are statistically estimated, and then optimization is done on
the resulting model assuming that the estimated parameters are true ones. Operational
statistics (OS) is an integrated learning and optimization approach to model uncertainty.
The OS approach was first introduced in [LS05] and further explored in [CSS08]. The
papers [LS05] and [CSS08] have successfully applied operational statistics to the parametric
setting where the unknown parameters are either scale or shift parameters. In this chapter
we generalize the operational statistics approach and in Chapter 5, we apply the approach
to mean variance portfolio optimization problem. Below we present a brief introduction to
the operational statistics approach as applied to the newsvendor problem [LS05]. We then
present a generalization of this apporach.

4.1 Operational Statistics

Consider the newsvendor problem as defined in Chapter 3. The expected profit when the
order quantities and the realized demands in first n periods are y1, . . . , yn and D1, . . . , Dn

respectively is:

φ(y) =
n
∑

k=1

E [{smin {yk, Dk} − cyk}] . (4.1)

If we know the distribution of the demand then it is well known that the optimal order
quantity in every period is F̄ 1

(

c
s

)

where F is the distribution function of the demand. Now
consider the case when the demand is exponentially distributed with unknown parameter
θ. If parameter θ is known then the optimal order quantity is θ ln

(

c
s

)

. When θ is unknown
one particular method that is frequently used in the literature is to replace θ by its point
estimate at every time instant. When θ is a scale parameter a point estimate of θ for period
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k using past lk periods of demand data is:

θ̃k = D̄lk
k =

1

lk

k−1
∑

i=k−lk

Di. (4.2)

Hence the order quantity ŷk, using the estimate θ̃k is:

ŷk = D̄lk
k ln

(s

c

)

. (4.3)

If we use the order quantity ŷk, then using equation (4.1), the a priori expected profit φsm

as a function of θ is:

φsm(θ) = Eψsm(D) =

n
∑

k=1

E

[{

smin
{

D̄lk
k ln(

(s

c

)

, Dk

}

− cD̄lk
k ln

(s

c

)}]

=

n
∑

k=1

cθ

[

s

c
−
s

c

(

lk
lk + ln(s/c)

)lk

− ln
(c

s

)

]

.

(4.4)

In operational statistics an order quantity, rather than the parameters of the distribution, is
directly estimated from the data. In this sense, the approach is similar to the policy gradient
and direct reinforcement methods mentioned in the reinforcement learning literature (see
Baxter and Bartlett [BB01] and Moody and Saffell [MS01]. However, in operational statistics
the order quantity is estimated in such a way that the a priori expected profit is maximized,
rather than doing trial and error and fine-tuning the parameters using gradients in policy
space. The latter approach requires extensive amount of data before it performs well and
is unsuitable for most of the problems where past data is not readily available. Even if the
data is available, it is not necessary that the statistical assumptions (such as i.i.d. demands)
are valid over a long run of time.

The idea of operational statistics is as follows: we consider order quantities to be statistics
of the data {D1, D2, . . . , Dn} within some acceptable class parametrized by some optimiza-
tion variables, say z. This statistics is called operational statistics as the statistics is driven
by the operational problem, not by the estimation problem. One then finds an optimal
operational statistics within the class by maximizing the expected a priori profit over the
variables z. Specifically for the problem in hand, where the demand is exponential with
unknown scale parameter θ, the order quantity is chosen to be of the form

ỹk(zk) = zkD̄
lk
k , z ≥ 0. (4.5)
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The a priori expected profit φos(θ) using the estimate ỹk is

φos(θ) =
n
∑

k=1

E

[{

smin
{

zkD̄
lk
k , Dk

}

− czkD̄
lk
k

}]

=
n
∑

k=1

cθ

[

s

c
−
s

c

(

lk
lk + zk)

)lk

− zk

]

.

(4.6)
Optimizing over zk we get

z∗k = lk

(

(s

c

)1/(lk+1)

− 1

)

. (4.7)

The operational statistics order quantity is

ỹk = lk

(

(s

c

)1/(lk+1)

− 1

)

D̄lk
k . (4.8)

Realized profit ψOS using operational statistics is

ψOS(D) =
n
∑

k=1

[{

smin

{

lk

(

(s

c

)1/(lk+1)

− 1

)

D̄lk
k , Dk

}

− clk

(

(s

c

)1/(lk+1)

− 1

)

D̄lk
k

}]

.

(4.9)
Consider the situation where the underlying process {Dk} is locally stationary. At every

time instant only last m periods of data can be considered approximately i.i.d,. and therefore
we use lk = m for every k. Long run average profit of the operational statistics strategy
would be

lim
n→∞

ψOS(D)

n
= E

[{

smin

{

m

(

(s

c

)1/(m+1)

− 1

)

D̄m
k , Dk

}

− cm

(

(s

c

)1/(m+1)

− 1

)

D̄m
k

}]

= θ

[(

s− s
(c

s

)m/(m+1)
)

− cm

(

(s

c

)1/(m+1)

− 1

)]

.

(4.10)

Compare (4.10) to the long run average cost of using a trailing m period sample mean
strategy

lim
n→∞

ψOS(D)

n
= θ

[

s− s

(

m

m+ ln(s/c)

)m

− c ln
(c

s

)

]

. (4.11)

Since the operational statistics order quantity (4.8) maximizes the a priori expected profit
over all order quantities of the form zD̄lk

k , z ≥ 0, the expected (or long run average) profit
obtained from the operational statistics approach (4.10) is higher than the profit obtained
from the sample mean based approach (4.11) for all choices of m. On the other hand, as seen
in Chapter 3, none of the robust optimization approaches guarantees a uniformly better(in
a priori expected profit sense) solution than a simple sample mean based approach. As we
see from a sample simulation shown in Figure (4.1) for parameters s = 2, c = 1 and θ = 1,
the improvement can be quite significant for small values of m.
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Figure 4.1: Operational statistics policy is uniformly better than the sample mean based
policy for newsvendor problem

Note that in equation (4.7), the optimal zk is independent of θ. This is because the
unknown parameter θ acts as a scaling parameter in the profit function (4.6). It is shown
in [LS05], when the unknown parameter is a scale parameter (e.g. mean in exponential dis-
tribution or normal distribution with unknown mean) and the class of operational statistics
is linear in sample mean, the optimal operational statistics is independent of the scaling pa-
rameter for newsvendor problem. The paper [CSS08] extended the result of [LS05] to a class
of homogeneous order one function and two parameter families (scale and shift). They also
showed a connection of operational statistics to objective Bayesian decision theory. However,
the class of problems where an optimal operational statistics is independent of the underlying
unknown parameter is very limited or difficult to find.

4.1.1 Generalized Operational Statistics

A defining feature of operational statistics, as mentioned above, is that it guarantees a
better solution than the classical estimation based policy. However, it is either very hard
or impossible to find a statistics such that the corresponding profit is uniformly better than
the profit of a classical estimation based policy over the full range of parameter. Suppose
in addition the decision maker knows for sure that the unknown parameter lies in a known
uncertainty set Θ. Our objective is to improve the performance of classical policy over the
range Θ. In other words, we want to ensure that the performance of operational statistics
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policy is better than the classical estimation based policy over the set Θ. A generalized
version of operational statistics is implemented as follows:

Suppose we are interested in maximizing the function Eθψ(y,D) over y. If the value of
θ is known an optimal policy is y(θ). In the absence of true knowledge about θ, a classical
estimation based policy is y(θ̂), where θ̂ is an estimate of θ. In addition, the decision maker
knows or strongly believes that the parameter θ lies in a set Θ. We choose a set of functions
F , such that F defines a class of operational statistics. Each function f ∈ F defines a
mapping from past data D to a decision y. The function class F is such that the classical
estimation based decision rule y(θ̂) belongs to F . In addition we choose a representative
parameter θ̃ and solve the following optimization problem:

Operational Statistics Formulation 1

max
f∈F

Eθ̃ψ(f(D),D)

such that

Eθψ(f(D),D) ≥ Eθψ(y(θ̂),D) ∀θ ∈ Θ

(4.12)

The representative parameter ˜theta is subjective knowledge of the decision maker inde-
pendent from the data. Thus, the decision maker wants to utilize her subjective information,
but because she is not sure about her subjective knowledge, wants a solution that is guaran-
teed to perform better than the classical solution over the acceptable range of parameters.
As y(θ̂) belongs to F , y(θ̂) is a feasible solution of (4.12) and hence the optimization prob-
lem (4.12) is feasible. Also even though the choice of θ̃ is subjective, the constraints in
the optimization problem ensure that the operational statistics solution is better than the
classical solution over the set Θ, and hence ensures robustness of the solution with respect
to the parameter θ̃. Instead of using a single parameter θ̃, we can also use a subjective prior
on θ. Let Pθ be the choice of the prior. Following is the version of operational statistics
problem with subjective prior:

Operational Statistics Formulation 2

max
f∈F

∫

Θ

Eθ̃ψ(f(D),D)Pθ

such that

Eθψ(f(D),D) ≥ Eθψ(y(θ̂),D) ∀θ ∈ Θ

(4.13)

As the operational statistics solution is guaranteed to perform better than classical solution,
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and a classical solution converges to the true solution when θ̂ → ∞, the operational statistics
solution would also converge to the true solution. The uncertainty set Θ, on the other hand,
is held fixed and is not updated in response to the past data. It is also possible to use
some other benchmark instead of classical estimation policy in the operational statistics
formulation.
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Chapter 5

Application of Operational Statistics
to Portfolio Optimization

In this chapter, we consider an important application of operational statistics approach
defined in Chapter 4 in mean variance portfolio optimization problem.

5.1 Mean-Variance Portfolio Optimization

We consider the problem of finding a mean variance optimal portfolio. The investor’s
problem is to find an optimal allocation to m-risky assets and a risk-free asset. Let µ be the
vector of mean excess returns (return - risk free rate) and Σ be the covariance matrix. We
assume that the portfolio returns are normally distributed. The investor wishes to maximize
the following mean variance utility function:

max
π

π′µ −
1

2
γπΣπ, (5.1)

where π is the vector of portfolio weights and γ is the risk aversion factor. The fraction 1−π′e

is invested in the risk free asset. Note that we do not have any short selling constraints.
The problem can be solved analytically if we have exact knowledge of parameters µ and

Σ. In fact, the solution is π = 1
γ
Σ−1µ. In reality, obtaining an accurate estimate of µ is

quite difficult. For example, if the return of a stock is generated from a normal distribution
with mean 20% and volatility 20%, it would take around 384 years of data to estimate the
return within an error of 10% with 95% confidence as can be seen from Figure 5.1 To see
how uncertainty in the parameters affects the utility function in (5.1) consider the following
example. There is one risky asset and one risk free asset in the portfolio. Return is normally
distributed with mean µ and known variance σ2. The investor solves the maximum utility
problem corresponding to (5.1) and estimates the fraction of wealth invested in the risky asset
to be π = 1

γσ2µ. Since the parameter µ is unknown, she estimates it using past n periods of
return data. The estimate µ̂, which is a maximum likelihood estimate, is the average of last
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Figure 5.1: Variation of confidence interval with number of years. It takes many years of
data to obtain a reasonable estimate of mean of a stock.
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n periods. The estimate itself is normally distributed with mean µ and variance σ2/n. Hence
the implemented weight in risky asset is π̂ = 1

γσ2 µ̂. The expected mean variance utility as a
function of µ is:

Û(µ) = Eµ

[(

1

γσ2
µ̂

)

µ−
γ

2

(

1

γσ2
µ̂

)

σ2

(

1

γσ2
µ̂

)]

=
1

2γ

(

µ2

σ2
−

1

n

) (5.2)

For µ ≈ σ, the percentage loss due to uncertainty in return vector is 100
n

%. This loss can
be substantial for small values of n.

We can generalize the above to m stocks. Suppose we have a reasonably accurate estimate
of Σ but an estimate of return is obtained from the past data. In general covariance matrix
can be estimated more precisely by using high frequency data. In addition, the effect of
uncertainty in covariance is usually smaller as compared to the uncertainty in returns [CZ93].
Suppose µ̂ is an estimator of µ with E [µ̂] = µ and Cov(µ̂) = B. If µ̂ is the maximum
likelihood estimate of µ based on past n periods of data, then Cov(µ̂) = Σ/n. The expected
utility as a function of µ when portfolio weights π̂ = 1

γ
Σ−1µ̂ is:

Û(µ) = Eµ

[

π̂′µ −
1

2
γπ̂′Σπ̂

]

= Eµ

[(

1

γ
Σ−1µ̂

)′

µ −
1

2
γ

(

1

γ
Σ−1µ̂

)′

Σ

(

1

γ
Σ−1µ̂

)]

=
1

γ

(

µ′Σ−1µ −
1

2

(

µ′Σ−1µ + tr
(

BΣ−1
))

)

=
1

2γ

(

µ′Σ−1µ − tr
(

BΣ−1
))

.

(5.3)

If the covariance matrix B is Σ/n, as in the case of maximum likelihood estimate based
on n period data, then the expected utility is:

Û(µ) =
1

2γ

(

µ′Σ−1µ −
m

n

)

(5.4)

As we can see, if the number of stocks m is large and n is comparatively small, the loss
in utility function due to uncertainty can be large.
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5.2 Robust Optimization Approach

Robust optimization is one way to account for the error in estimating parameter µ.
Suppose it is known or strongly believed that the parameter lies in a convex uncertainty set
U . A min-max based robust optimization approach would solve the following problem:

max
π

min
µ∈U

π′µ −
1

2
γπΣπ. (5.5)

Because the set U is convex and the objective is linear in µ, we can exchange the order of
min-max in (5.5). Therefore Formulation (5.5) is equivalent to:

min
µ∈U

max
π

π′µ −
1

2
γπΣπ. (5.6)

Solving the inner optimization problem with respect to π, we obtain

1

2γ
min
µ∈U

(

µ′Σ−1µ
)

. (5.7)

As can be seen, if we use robust optimization we obtain the worst possible utility from the
chosen uncertainty set. One may argue that such a conservative approach is desirable in a
highly volatile market; however, such a conservative approach may not guarantee a better
solution than classical estimation based policy. The operational statistics approach defined
in the next section strives to build a policy better than classical estimation based policy.

5.3 Operational Statistics Approach to Portfolio Opti-

mization

Operational statistics is defined in Chapter 4. First, we need to choose a function class,
i.e. a set of functions which define mapping of past data to a policy. We can restrict our
attention to functions of µ̂ (the maximum likelihood estimate of µ) as µ̂ is a sufficient
statistics for µ. Suppose the function class we choose is F and the corresponding policy set
is ΠF = {π : π = f(µ̂), f ∈ F}. We choose the function class F in such a way that π̂ ∈ ΠF .
This will guarantee the feasibility of the problem we want to solve. In addition, suppose
µ̃ is a representative return value that is subjectively chosen by the decision maker. The
subjectivity in choosing µ̃ would allow expert opinion to be incorporated in the optimization
problem. However, µ̃ can also be chosen objectively, for example, using maximum likelihood
estimate µ̂.
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The operational statistics optimization problem is as follows:

max
f

Eµ̃

[

f(µ̂)′µ̃ −
1

2
f(µ̂)′Σf(µ̂)

]

subject to:

Eµ

[

f(µ̂)′µ −
1

2
f(µ̂)′Σf(µ̂)

]

≥ Û(µ), ∀µ ∈ U .

(5.8)

The function class we choose to solve Formulation (5.8) is F = { 1
γ
Σ−1Aµ̂ : Σ−1A ∈

Sn, A ∈ Sn}. The set Sn is the set of all symmetric n × n matrices. Later in Section 5.5
we connect our choice of the function set with norm constrained portfolio. We choose the
uncertainty set U to be an ellipsoid centered around µ̃. Note that the usual confidence region
for multivariate normal is an ellipsoid centered around µ̂, i.e U = {x : (x−µ̃)TG(x−µ̃) ≤ 1}
where G is a positive semi-definite matrix. The assumption that µ̃ is the center of the
ellipsoid U is made for simplicity of notation and can be relaxed.

The problem we now have is:

Portfolio OS Problem 1

max
A

Eµ̃

[

µ̂′AΣ−1µ̃ −
1

2
µ̂′AΣ−1Aµ̂

]

subject to: Eµ

[

µ̂′AΣ−1µ −
1

2
µ̂′AΣ−1Aµ̂

]

≥
1

2

(

µ′Σ−1µ −
m

n

)

, ∀µ ∈ U .

(5.9)

The objective function in Formulation (5.9) is concave in matrix A. We also have infinitely
many convex constraints. It is not clear whether the problem can be solved efficiently. Next
we will show that the problem can be reformulated as a semidefinite program (SDP). An SDP
is a generalization of linear program which concerns with optimization of a linear function
over intersection of a cone of semidefinite matrices and an affine space. An SDP can be
solved efficiently by using interior point methods. In its dual form a semidefinite program
can be expressed as:

max
y,S1,...,Sn

b′y

subject to:

y1A11 + · · ·+ ymAm1 + S1 = C1

· · ·

y1A1n + · · · + ymAmn + Sn = Cn

Si � 0 for i = 1 to n,

(5.10)
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where A’s and C’s are n × n matrices and are parameters of the system. The constraint
Si � 0 means that the matrix Si is a symmetric positive semidefinite matrix. Note that a
linear constraint Ay = c or a second order conic constraint ‖y‖2 ≤ z can be expressed as
semidefinite constraints. For more on semidefinite programs and second order cone programs
see [LS91, VB93, NN94, BTN01]. We now have the following theorem:

Theorem 10. The Problem (5.9) can be reformulated as a semidefinite program.

Proof. To prove the theorem we need the following two lemmas:

Lemma 11. (S-lemma) Let B1 and B2 be symmetric matrices and let Hi(x) = x′Bix +
2c′ix + di, i = 0, 1 be two quadratic functions of x ∈ R

n. If there exists a y such that
H1(y) > 0, then H0(x) ≥ 0 for all x satisfying H1(x) ≥ 0, if and only if there exists a λ ≥ 0
such that

[

d0 c′0
c0 B0

]

− λ

[

d1 c′1
c1 B1

]

� 0

Lemma 12. (Schur Complement) Let

W =

[

X Y ′

Y Z

]

be a symmetric matrix with p × p block X and q × q block Z. Assume that X is positive
definite. Then W is positive semi-definite if and only if the Schur complement of W in X,
i.e., the matrix

Z − Y X−1Y ′

is positive semi-definite.

First, note that
Eµ

[

µ̂′AΣ−1µ
]

= µ′AΣ−1µ (5.11)

and

Eµ

[

µ̂′AΣ−1Aµ̂
]

= Eµ

[

tr
(

µ̂′AΣ−1Aµ̂
)]

= Eµ

[

tr
(

µ̂µ̂′AΣ−1A
)]

= tr
(

Eµ [µ̂µ̂′]AΣ−1A
)

= tr

((

µµ′ +
1

n
Σ

)

AΣ−1A

)

= tr
(

µµ′AΣ−1A
)

+
1

n
tr
(

Σ1/2Σ1/2AΣ−1/2Σ−1/2A
)

= µ′AΣ−1Aµ +
1

n
tr
(

Σ1/2AΣ−1/2Σ−1/2AΣ1/2
)

= µ′AΣ−1Aµ +
1

n
tr (X ′X) ,

(5.12)
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where X = Σ−1/2AΣ1/2.
The constraints can be rewritten as:

(

µ′AΣ−1Aµ + µ′Σ−1µ − 2µ′AΣ−1µ
)

≤
1

n
(m− tr(X ′X)) (5.13)

⇒
(

µ′(A− I)Σ−1(A− I)µ
)

≤
1

n
(m− tr(X ′X)). (5.14)

Note that the right hand side is independent of µ in the above inequality. We can now
write the constraints set as follows:

(

µ′(A− I)Σ−1(A− I)µ
)

≤ ν ∀µ ∈ U (5.15)

ν ≤
1

n
(m− tr(X ′X)). (5.16)

Let Xi, i = 1, . . . , m be the column vectors of matrix X. Constraint (5.16) is a second
order conic constraint since it can be written as:

tr(X ′X) ≤ m− nν (5.17)

⇒
l
∑

i=1

X ′iXi ≤
(m− nν + 1)2

4
−

(m− nν − 1)2

4
(5.18)

⇒

∥

∥

∥

∥

∥

∥

∥

∥

∥











X1
...
Xm

m−1−nν
2











∥

∥

∥

∥

∥

∥

∥

∥

∥

2

≤
m+ 1 − nν

2
. (5.19)

Constraint (5.15) is equivalent to

ν − µ′(A− I)Σ−1(A− I)µ ≥ 0

for all b such that 1 − (µ − µ̃)′G(µ − µ̃) ≥ 0. To proceed further, we need the following
lemma:

Note that for µ = µ̃, the inequality 1− (µ− µ̃)′G(µ− µ̃) ≥ 0 is strictly feasible. Hence
Constraint (5.15) can be rewritten as:

[

ν − λ(1 − µ̃Gµ̃) −λµ̃′G
−λGµ̃ λG− (A− I)Σ−1(A− I)

]

� 0 (5.20)

Consider the following two cases:
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1. µ̃ = 0. Constraint (5.20) in this case is:

[

ν − λ 0
0 λG− (A− I)Σ−1(A− I)

]

� 0 (5.21)

which translates to the following two constraints:

ν ≥ λ; λG− (A− I)Σ−1(A− I) � 0 (5.22)

Since Σ is positive definite, we can write Constraint (5.20) using Schur Complement
lemma as:

ν ≥ λ;

[

Σ A− I
A− I λG

]

� 0 (5.23)

The above is a positive semi-definite constraint set.

2. µ̃ 6= 0. First, note that if ν−λ(1− µ̃Gµ̃) = 0 then for the matrix in Constraint (5.20)
to be positive semi-definite λ should be equal to zero. This in turn implies ν = 0, and
therefore A = I. For any non-trivial solution ν − λ(1 − µ̃Gµ̃) > 0 should be true.
Applying the Schur Complement lemma we obtain:

[

ν − λ(1 − µ̃′Gµ̃) −λµ̃′G
−λGµ̃ λG− (A− I)Σ−1(A− I)

]

� 0 (5.24)

⇐⇒ λG− (A− I)Σ−1(A− I) −
λ2

ν − λ(1 − µ̃′Gµ̃)
Gµ̃µ̃′G � 0. (5.25)

Constraint (5.25) can also be rewritten as:

λG− (A− I)Σ−1(A− I) − αGµ̃µ̃′G � 0 (5.26)

λ2

ν − λ(1 − µ̃′Gµ̃)
≤ α. (5.27)

Constraint (5.26) can be written using Schur Complement lemma as:

[

Σ A− I
A− I λG− αGµ̃µ̃′G

]

� 0, (5.28)

which is a positive semi-definite constraint. Constraint (5.27) can be expressed in conic
form as:

∥

∥

∥

∥

(

λ
α−ν+λ(1−µ̃′Gµ̃)

2

)∥

∥

∥

∥

2

≤
α + ν − λ(1 − µ̃′Gµ̃)

2
(5.29)
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The objective in Formulation (5.9) is

max
A

µ̃′AΣ−1µ̃ −
1

2

(

µ̃′AΣ−1Aµ̃ +
1

n
tr(X ′X)

)

(5.30)

Completing the square in Equation (5.30) we obtain

max
A

−
1

2

(

µ̃′(A− I)Σ−1(A− I)µ̃ +
1

n
tr(X ′X)

)

+
1

2
µ̃′Σ−1µ̃ (5.31)

As 1
2
µ̃′Σ−1µ̃ is a constant, the objective is equivalent to minimizing:

min
A

(

nµ̃′(A− I)Σ−1(A− I)µ̃ + tr(X ′X)
)

(5.32)

The objective can therefore be written as:

min z

subject to:
(

nµ̃′(A− I)Σ−1(A− I)µ̃ + tr(X ′X)
)

≤ z (5.33)

Let y = n1/2Σ−1/2Aµ̃. We can write (5.33) as a conic constraint:

∥

∥

∥

∥

∥

∥

∥

∥

∥











y
X1
...
Xm











∥

∥

∥

∥

∥

∥

∥

∥

∥

2

≤ z

y = n1/2Σ−1/2(A− I)µ̃

(5.34)

The formulation (5.9) is now the following semi-definite program:

min z
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subject to:

∥

∥

∥

∥

∥

∥

∥

∥

∥











y
X1
...
Xm











∥

∥

∥

∥

∥

∥

∥

∥

∥

2

≤ z

∥

∥

∥

∥

∥

∥

∥

∥

∥











X1
...
Xm

m−1−nν
2











∥

∥

∥

∥

∥

∥

∥

∥

∥

2

≤
m+ 1 − nν

2
,

[

Σ A− I
A− I λG− αGµ̃µ̃′G

]

� 0,

∥

∥

∥

∥

(

λ
α−ν+λ(1−µ̃′Gµ̃)

2

)∥

∥

∥

∥

2

≤
α + ν − λ(1 − µ̃′Gµ̃)

2
,

y = n1/2Σ−1/2(A− I)µ̃,

λ ≥ 0

(5.35)

for µ̃ 6= 0. The formulation for µ̃ = 0 is similar.

5.4 Related Literature

There is a long history of work on mean-variance and other related portfolio optimization
problems. The foundation of modern portfolio theory is laid by the seminal work of Harry
Markowitz [Mar52, Mar59] on mean variance portfolio selection. The beauty of Markowitz
portfolio lies in its simplicity and numerical tractability. However, it is also well known that
a mean variance portfolio thus constructed has poor out of sample performance due to large
error in estimates, particularly of mean vector, but also of covariance matrix. One of the
earlier papers that identifies the poor performance of Markowitz portfolio due to estimation
error was by Jobson and Korkie [JK81]. Some other studies on the effect of estimation error
on Markowitz portfolio are [FS88, Mic89, CZ93] and [Bro93]. It has also been observed that
a naive Markowitz portfolio rarely outperforms a portfolio that assigns equal weights to each
of its constituents [DGU09]. Over the years many remedies have been proposed by various
authors to mitigate the effect of estimation error on the portfolio.

A Bayesian approach suggests to use a prior on mean or/and covariance matrix to reduce
the uncertainty in parameters. A good choice of prior may reduce the effects of uncertainty
considerably whereas a bad choice may make it even worse. In literature various choices of
priors have been proposed. A popular choice is to use non informative diffuse priors [BBK79,
Bar74]. A diffuse prior for unknown mean and known variance matrix is normally distributed
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with mean µ̂ and variance Σ
(

1 + 1
n

)

where n is the length of the period used to estimate
µ. Another choice is using Bayes-Stein prior [Ste55, Jor86, JS61] which shrink the sample
means µ1, . . . , µm towards a common value. A Bayes-Stein estimator of the mean vector is:

(1 − ŵ)µ̂ + ŵµ̄e (5.36)

where

ŵ = min

(

1,
(m− 2)/n

(µ̂ − µ̄e)Σ−1(µ̂ − µ̄e)

)

. (5.37)

The estimator shrinks the means to a common value µ̄.
Robust optimization methods in portfolio optimization consider the parameters of the

problem to lie in an uncertainty set and use objectives like max-min or min-max regret to
calculate robust portfolios. Goldfarb and Iyengar [GI03] considered the worst case optimiza-
tion problem under interval and ellipsoidal uncertainties for mean vector and covariance
matrix respectively and showed that the problem can be reformulated as a second order
conic program (SOCP). In addition, see [UW03, TK04] for related research on worst case
portfolio optimization.

It has also been observed that adding constraints have a positive shrinkage effect on the
estimates and thus result in better portfolios. Examples of research along this line are: Con-
straining portfolios by putting short selling constraints [FS88, Cho93, JM03]; explicitly con-
straining the moments of a portfolio [MP00]; shrinking covariance matrix [LW04a, LW04b];
and constraining a vector norm of portfolio weights [DGNU09].

5.5 Connection to Norm-Constrained Portfolio

As mentioned in Section 5.4, putting constraints on mean variance portfolio optimization
problem improves the performance of the portfolio in practice. One particular approach that
has been explored by [DGNU09] is constraining the norm of portfolio weights to be less than
some specified value. Various norms such as 1-norm, 2-norm and matrix-norm have been
explored by [DGNU09]. We are particularly interested in the portfolio subject to matrix
norm:

max
π

π′µ −
1

2
γπΣπ

subject to

π′X ′π ≤ 1,

(5.38)

An alternative characterization of (5.38) using penalty function is:

max
π

π′µ −
1

2
γπΣπ − π′X ′π. (5.39)
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Formulation (5.39) has the solution

πnorm =
1

γ
Σ−1(I + γΣX)µ. (5.40)

The implemented policy would be

π̂norm =
1

γ
Σ−1(I + γΣX)µ̂, (5.41)

where I is an identity matrix of suitable dimension. The operational statistics policy πos is

πos =
1

γ
Σ−1A∗µ̂, (5.42)

where A∗ is the solution of the operational statistics optimization problem.
Comparing (5.41) and (5.42) we see a parallel between these two solutions. If A∗ =

I + γΣX then both the solutions are same. Hence the operational statistics solution is
the solution of a norm constrained portfolio problem with matrix X suitably defined. One
difference is that the matrix in operational statistics X would be chosen as a solution of an
optimization problem.

5.6 Extensions

In this section we consider various extensions to our base operational statistics model.

5.6.1 Using a Prior

One of the difficulty in implementing the operational statistics portfolio optimization
problem is how to choose µ̃ subjectively. In practice, in the absence of any subjective infor-
mation one may be inclined to choose the maximum likelihood estimate µ̂ as µ̃. This may
not be desirable as we already know that µ̂ is a poor proxy for µ. In this case a good choice
is to use a prior distribution on set U similar to the operational statistics Formulation (4.13)
in Chapter 4. Let Pµ be our choice of prior on set U .

max
A

∫

U

Eµ

[

µ̂′AΣ−1µ −
1

2
µ̂′AΣ−1Aµ̂

]

dPµ

subject to: Eµ

[

µ̂′AΣ−1µ −
1

2
µ̂′AΣ−1Aµ̂

]

≥
1

2

(

µ′Σ−1µ −
m

n

)

, ∀µ ∈ U .

(5.43)

One particular choice of prior we consider in our numerical experiments is a uniform prior
on set U . This also corresponds to non-informative prior in the absence of any subjective
information. For uniform prior we have the following problem:
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Portfolio OS Problem 2

max
A

1

|U|

∫

U

Eµ

[

µ̂′AΣ−1µ −
1

2
µ̂′AΣ−1Aµ̂

]

dµ

subject to: Eµ

[

µ̂′AΣ−1µ −
1

2
µ̂′AΣ−1Aµ̂

]

≥
1

2

(

µ′Σ−1µ −
m

n

)

, ∀µ ∈ U .

(5.44)

Proposition 13. The Problem (5.44) can be reformulated as a semidefinite program.

Proof. Note that the constraint set is same as (5.9). So we just need to focus on the objective.
From (5.12)

Eµ

[

µ̂′AΣ−1µ −
1

2
µ̂′AΣ−1Aµ̂

]

= µ′AΣ−1µ −
1

2
µ′AΣ−1Aµ −

1

2n
tr(X ′X)

= µ′(AΣ−1 −
1

2
AΣ−1A)µ −

1

2n
tr(X ′X)

(5.45)

Hence
∫

U

Eµ

[

µ̂′AΣ−1µ −
1

2
µ̂′AΣ−1Aµ̂

]

dµ =

∫

U

[

µ′(AΣ−1 −
1

2
AΣ−1A)µ

]

dµ −
|U|

2n
tr(X ′X)

(5.46)
Now

∫

U

[

µ′(AΣ−1 −
1

2
AΣ−1A)µ

]

dµ =

∫

U

tr

(

µ′(AΣ−1 −
1

2
AΣ−1A)µ

)

dµ

=

∫

U

tr

(

µµ′(AΣ−1 −
1

2
AΣ−1A)

)

dµ

= tr

((∫

U

µµ′dµ

)

(AΣ−1 −
1

2
AΣ−1A)

)

(5.47)

Recall that the set U = {x : (x − µ̃)TG(x − µ̃) ≤ 1}. Let L be the symmetric square root
of positive definite matrix G. By substituting z = L(x − µ̃) we obtain

∫

U

µµ′dµ = µ̃µ̃′|U| + det(L−1)|

∫

{z′z≤1}

L−1zz′L−1dz (5.48)

Note that if z = {z1, . . . , zi, . . . , zn} then

∫

{z′z≤1}

z2
i dz = Cn

1

n+ 2
(5.49)
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and for i 6= j
∫

{z′z≤1}

zizjdz = 0. (5.50)

where Cn is the volume of n−dimensional unit sphere. In addition, note that |U| =
Cn|det(L−1)|. Therefore,

∫

U

µµ′dµ = |U|

(

µ̃µ̃′ +
1

n+ 2
L−1L−1

)

(5.51)

and
∫

U

[

µ′(AΣ−1 −
1

2
AΣ−1A)µ

]

dµ = |U|tr

((

µ̃µ̃′ +
1

n + 2
L−1L−1

)

(AΣ−1 −
1

2
AΣ−1A)

)

= |U|tr

(

µ̃µ̃′(AΣ−1 −
1

2
AΣ−1A)

)

+
|U|

n+ 2
tr

(

L−1L−1(AΣ−1 −
1

2
AΣ−1A)

)

= |U|

(

µ̃′(AΣ−1 −
1

2
AΣ−1A)µ̃

)

+
|U|

n+ 2
tr

(

L−1(AΣ−1 −
1

2
AΣ−1A)L−1

)

(5.52)

Hence the objective function of (5.44) is

µ̃′(AΣ−1 −
1

2
AΣ−1A)µ̃ −

1

2n
tr(X ′X) +

1

n + 2
tr

(

L−1(AΣ−1 −
1

2
AΣ−1A)L−1

)

(5.53)

Completing the squares in (5.53) we obtain

−
1

2

(

µ̃′(A− I)Σ−1(A− I)µ̃
)

−
1

2n
tr(X ′X) −

1

2(n+ 2)
tr
(

L−1(A− I)Σ−1(A− I)L−1
)

+
1

2
µ̃′Σ−1µ̃ +

1

2(n+ 2)
tr
(

L−1Σ−1(A− I)
)

(5.54)

The last two terms in (5.54) are constants and can be dropped. Hence the objective is
equivalent to minimizing:

nµ̃′(A− I)Σ−1(A− I)µ̃ + tr(X ′X) +
n

n+ 2
tr
(

L−1(A− I)Σ−1(A− I)L−1
)

(5.55)
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Let W =
(

n
n+2

)1/2
Σ−1/2(A − I)L−1. Then, similar to the proof of Theorem 10, Formula-

tion (5.44) can be written as:
min z

subject to:
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
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∥

∥

∥

∥

∥

∥

∥

∥
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≤
m+ 1 − nν

2
,

[

Σ A− I
A− I λG− αGµ̃µ̃′G

]

� 0,

∥

∥

∥

∥

(

λ
α−ν+λ(1−µ̃′Gµ̃)

2

)∥

∥

∥

∥

2

≤
α + ν − λ(1 − µ̃′Gµ̃)

2
,

y = n1/2Σ−1/2(A− I)µ̃,

λ ≥ 0

(5.56)

5.6.2 Portfolio with No Risk-Free Asset

We can also consider a portfolio with no risk-free asset. Here the vector µ represents
true returns, not the excess returns. In addition, the weights of the constituents should sum
to one. We have the following nominal problem:

max
π

π′µ −
1

2
γπΣπ

subject to

π′e = 1

(5.57)
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The solution of 5.57 is given by

π =
1

γ
Σ−1 (µ − µ0e) (5.58)

where

µ0 =
µ′Σ−1e − γ

e′Σ−1e
. (5.59)

The classical estimation based policy would replace µ by its point estimate µ̂. The
corresponding operational statistics problem is:

Portfolio OS Problem 3

max
A

Eµ̃

[

(µ̂A− µ̂1e)′Σ−1µ̃ −
1

2
(µ̂A− µ̂1e)Σ−1(µ̂A− µ̂1e)

]

dµ

subject to:

Eµ

[

(µ̂A− µ̂1e)Σ−1µ −
1

2
(µ̂A− µ̂1e)Σ−1(µ̂A− µ̂1e)

]

≥ Eµ

[

(µ̂ − µ̂0e)Σ−1µ −
1

2
(µ̂ − µ̂0e)Σ−1(µ̂ − µ̂0e)

]

, ∀µ ∈ U ,

(5.60)

where the policy space is parametrized by the positive semidefinite matrix A and

µ̂1 =
µ̂′Σ−1e − γ

e′Σ−1e
, µ̂1 =

µ̂′AΣ−1e − γ

e′Σ−1e
. (5.61)

We state the next proposition without the proof, as the proof is similar to Proposition 13
and Theorem 10.

Proposition 14. The Problem (5.60) can be reformulated as a semidefinite program.

5.7 Numerical Results

For numerical experiments we chose a portfolio of 10 stocks. Each component of the
return vector u is randomly generated between [−0.05, 0.20]. The covariance matrix Σ is
randomly generated with an identity matrix (multiplied by a small constant) added to it so
that Σ is well conditioned. The uncertainty set U is chosen to be:

U = {x : (x − µ)′Σ−1(x − µ) ≤ α}.
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The uncertainty set is centered around the true return vector µ and is parametrized by α.
We compare the expected utilities of sample mean based policy, operational statistics policy
(with uniform prior) and robust policy on 3 trial runs. All semidefinite programs are solved
using SDPT3 semidefinite program solver using the MATLAB interface YALMIP.

Table 5.1 compares the expected utility of the three policies. The operational statistics
policy with uniform prior is better than the sample mean based policy for all choices of α.
It should be so because of the constraints in the operational statistics formulation. When α
is very small or the uncertainty set is very small, the robust policy outperforms operational
statistics policy. This is because when the size of the uncertainty set is very small, even the
worst case model in the set is quite good. However, for large values of α, the operational
statistics policy is better than the robust policy. When {µ = 0} ∈ U , then the robust utility
is equal to zero and the robust utility is even worse than the utility of sample mean based
policy. Even for very large values of α, it is surprising that the operational statistics policy
improves the sample mean based policy substantially. One caveat however is that the robust
utility is lower bounded by zero whereas the operational statistics utility is lower bounded
by the utility of sample mean policy. Therefore, when the utility of sample mean policy is
negative as in experiment 3, the operational statistics utility also becomes negative for large
values of α whereas the robust utility remains lower bounded by 0.
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(Experiment 1: True Utility = 2.2375
α Sample Mean Policy Robust Policy OS Policy
0.001 1.3328 2.2312 1.7824
0.01 1.3328 2.1750 1.7699
0.1 1.3328 1.6125 1.6252
1 1.3328 0 1.5128
10 1.3328 0 1.4974
100 1.3328 0 1.4953
1000 1.3328 0 1.4951
10000 1.3328 0 1.4950
100000 1.3328 0 1.4950

Experiment 2: True Utility = 1.2047
α Sample Mean Policy Robust Policy OS Policy
0.001 0.4291 1.1984 0.8278
0.01 0.4291 1.1422 0.8150
0.1 0.4291 0.5797 0.6980
1 0.4291 0 0.5981
10 0.4291 0 0.5793
100 0.4291 0 0.5772
1000 0.4291 0 0.5770
10000 0.4291 0 0.5770
100000 0.4291 0 0.5770

Experiment 3: True Utility = 0.5226
α Sample Mean Policy Robust Policy OS Policy
0.001 -0.1651 0.4086 0.2472
0.01 -0.1651 0.3523 0.2219
0.1 -0.1651 0 0.0252
1 -0.1651 0 0.0047
10 -0.1651 0 -0.1031
100 -0.1651 0 -0.1228
1000 -0.1651 0 -0.1249
10000 -0.1651 0 -0.1251
100000 -0.1651 0 -0.1251

Table 5.1: Comparison of utilities of operational statistics policy, worst case robust opti-
mization policy and sample mean based policy
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Chapter 6

Objective Operational Learning

Most of the research on stochastic modeling and optimization in Operations Research
and Management Science (ORMS) is model-based. Standard model-based methods typically
assume a parametric family of distributions and assume full knowledge of parameters. In
practice, these parameters are estimated using data (e.g. Bayesian inference, point estimate,
etc.), and then the model is optimized using estimated model. Though model-based methods
remains the primary focus of ORMS literature, it is also well known that they can have
poor out-of-sample performance and converge to unacceptable solutions if the underlying
assumptions are incorrect (a dramatic illustration of this is the so-called spiral-down effect
in revenue management; see [CdMK06]). On the other hand, while non-parametric or model
free methods while guarantee asymptotic convergence to the optimal solution under minimal
assumptions, they typically ignore structural or domain information about the problem,
resulting in poor small sample performance. This limits the applicability of standard non-
parametric model when systems are only locally stationary.

In this chapter we introduce the notion of objective operational learning. A distinguishing
feature of this approach is that it incorporates structural knowledge and (possibly incorrect)
assumptions about the problem but smoothly drops the incorrect ones and becomes increas-
ingly non-parametric as the data size increases. The transition from an assumption-based
estimate of the objective function to a non-parametric one is done with the aid of a kernel
function. The objective operational learning approach aims to improve small sample perfor-
mance while guaranteeing asymptotic convergence to the optimal solution under essentially
the same conditions as other model-free non-parametric methods (even if the assumed struc-
tural model is incorrect).

In this chapter, we provide a general description of our algorithm and show how it can
be used to learn the profit function and optimal order quantity for a newsvendor problem
with a potentially order-dependent demand distribution. We make no assumptions about
this dependence aside from continuity (under some metric) of demand distribution on order
quantity. We provide a mechanism for choosing next period order quantity based on the
current estimate of the profit function. The mechanism is a randomized decision rule which
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balances the classical trade off between exploration and exploitation.
The main contributions of our work can be summarized as follows:
(i) We introduce a new approach for learning the objective function and online opti-

mization called objective operation learning. To our knowledge this is the first approach
that incorporates possibly erroneous structural models in a systematic way to improve small
sample performance while guaranteeing asymptotic convergence under minimal assumptions.

(ii) We show how domain information can be incorporated for different variations of the
newsvendor problem. We show that the definition of our kernel function need not be similar
to what is used in the nonparametric regression.

(iii) We apply our approach to newsvendor problem with order quantity dependent de-
mand distribution. We prove that the point-wise convergence of estimates of profit function
constructed using the operational statistics algorithm.

The rest of this chapter is organized as follows. In Section 6.1, we review the related
literature. We introduce our problem setting in Section 6.2 and in Section 6.3, we briefly
review non-paramteric regression. In Section 6.4, we study the newsvendor model in three
scenarios and introduce the idea of objective operational statistics. Section 6.5 is the ap-
plication of the objective operational learning method to newsvendor problem with order
quantity dependent demand distribution and includes the convergence results.

6.1 Related Literature

Most of the non-parametric work in ORMS is without learning. Such studies find policies
by bounding the worst case “loss” due to model error given a set of permissible models. Such
a set is constructed using some nonparametric information about the underlying model.
[Sca58, Gal92] and [MG94] derived optimal order quantities in the newsvendor problem
under max-min loss when only mean and variance of the demand distribution are known.
[LS07] used a set characterized by relative entropy distance around a nominal distribution in
dynamic pricing problem. The papers [Mor59], [YW06] and [PR08] derived ordering policy
using min-max regret and under different conditions on demand distribution in inventory
models.

Some of the recent work on non-parametric methods that includes both learning and
optimization are [LRS07], [HR09], [HLRO07] and [BZ09]. All of the above works are mainly
concentrated on deriving policies that guarantee certain asymptotic performance.

In Statistics, kernel-based learning is well-known in non-parametric density estimation
and non-parametric regression (see [Nad64] and [Wat64]). These non-parametric learning
methods work with minimal assumptions and they typically ignore problem specific informa-
tion in contrast to objective operational learning. Another key difference is non-parametric
learning is primarily an estimation problem, while our task involves both decision making as
well as learning. An area that is perhaps the most closely related to objective operational
learning is multiple arm bandits and online learning that captures the trade off between
exploration and exploitation. A long line of papers has been published on classical n-arm
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bandit problem and its variants starting from the seminal work of [Rob52] in stochastic set-
ting and [ACBFS98] in adversarial case. An interesting and relevant subset of work is on
online convex optimization and continuum-arm bandits. See the papers [Kle04, AK08] and
[AHR08] for more details.

Unlike the work mentioned above, our estimate of the profit function incorporates useful,
though possibly incorrect, assumptions about the problem when the data size is small. The
advantage of making assumptions is that it reduces the variance of the objective function
estimates (at the cost of introducing bias when they happen to be incorrect) which improves
the small sample performance. Any structural assumption we make is smoothly dropped
unlike some other approaches ([KSST08, MRT08]) where the objective function is restricted
to belonging to a known (e.g. linear) subspace.

Further details on the differences between operational learning and other non-parametric
approaches, as well as computational studies which show a substantial advantage of objective
operational learning over non-parametric regression for small sample sizes, are provided in
the body of the chapter.

6.2 Problem Description

Consider an optimization problem under uncertainty that is repeated indefinitely. At
each repeat, a decision, y, is chosen from the set Y ⊆ R. Let φ(y) be the mean utility
function associated with y. Our problem is to find an optimal decision y∗ belonging to the
optimal subset Y ∗, i.e.,

y∗ ∈ Y∗ ≡ arg max{φ(y) : y ∈ Y} (6.1)

We consider the situations where the function φ(y) remains the same in each repeat, but
is unknown to the decision maker. The optimal decision y∗ can not be found by solving a
single optimization problem but needs to be learned over time.

More formally, suppose that a decision (possibly randomized) Y , results in a random
response X and generates an associated random utility V . In the newsvendor problem, for
example, an order quantity Y = y results in a realized demand X, generated from some
distribution that might depend on Y = y, with realized profit V . Naturally,

φ(y) = E[V |Y = y], y ∈ Y . (6.2)

If Yk denotes the decision at repeat k, with Xk and Vk the associated response and realized
utility, we would like to design a method for generating Yk (possibly randomly) given knowl-
edge of the history of decisions, responses, and utilities Fk = {(Yj, Xj , Vj), j = 1, . . . , k−1},
such that {Yk, k = 1, 2, . . .} converges to an optimal decision y∗. We would like to guaran-
tee convergence under mild assumptions about our knowledge of φ(y) and for the method
to perform well for small data samples.

Note that if Yk = y, k = 1, 2, . . ., is the same for each repeat, then by the strong law of
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large numbers (SLLN), we have

lim
n→∞

1

n

n
∑

k=1

Vk = φ(y), a.s. (6.3)

6.3 Non-Parametric Regression

In non-parametric statistics, kernel smoothing, introduced in [Ros56] for density estima-
tion, plays a crucial role. Asymptotic properties of kernel smoothing are studied in [Par62]
for the univariate case and in [Cac66] for the multivariate case. [Nad64] and [Wat64] ex-
tended this idea to non-parametric function regression. Therefore when φ is well behaved one
may adapt the idea of Nadaraya-Watson function regression to construct a smoothed
objective function as follows:

φ̃(y) =

∑n
k=1 Vkκn(y, Yk)
∑k

n=1 κn(y, Yk)
. (6.4)

Here the kernel κn satisfies the properties:

lim
n→∞

κn(y, Yk) = 1, y = Yk,

lim
n→∞

κn(y, Yk) = 0, y 6= Yk,
(6.5)

and κn(y, Yk) is decreasing in |y − Yk|.
When Y is discrete one may trivially choose κn(y, Yk) = 1, y = Yk; κn(y, Yk) = 0, y 6= Yk

for all values of k and n. When Y is continuous, two commonly used kernel functions are
the uniform kernel

(

κn(y, Yk) = 1{|y−Yk|<βn}

)

,

and the Gaussian kernel
(

κn(y, Yk) = exp

(

−
1

2

(y − Yk)
2

β2
n

))

,

where βn (limn→∞ βn = ∞) is the bandwidth parameter.
If the decisions {Yk, k = 1, 2, } are independently and uniformly sampled from Y , then

under some mild conditions on the kernel function (see the papers [Nod76] and [FY79]) one
can prove:

lim
n→∞

φ̃(y) = φ(y), (a.s., as well as, uniformly on Y). (6.6)

If estimation of φ(y) is the only focus, this approach is adequate. However, in a decision
making context, we want to choose the decisions {Yk, k = 1, 2, . . .} so that the sequence of
decisions converge to an optimal solution in an efficient way. While it is possible to devise al-
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gorithms which are completely data driven and blind to any information or knowledge about
the decision problem and converge asymptotically to the optimal solution, small sample
performance can be poor if domain knowledge is ignored.

6.4 Objective Operational Learning

We begin with a description of the notion of Objective Operational Learning and discuss
its differences with the classical notion of nonparametric regression. The aim of objective
operational learning is to improved finite time performance by incorporating problem-specific
domain information in conjunction with data to construct the approximation φ̃n(y) of φ(y).
We illustrate these ideas in the context of the newsvendor problem.

6.4.1 Constructing the Structural model: Newsvendor problem
with Observable Demand

Assume that the per-unit purchase cost of items being sold is c, the selling price is s,
there is no salvage value, and demand (including lost sales) can be observed. The demand
distribution may depend on the order quantity, though the precise nature of this relationship
is not known to the decision maker. All repeats are statistically identical. Our data after
n repeats is Fn = {(Yk, Xk, Vk), k = 1, · · · , n} where Yn = (Y1, Y2, . . . , Yn) is the record
of past decisions (order quantities), Xn = (X1, X2, . . . , Xn) are the resulting observations
(demands), and Vn = (V1, · · · , Vn) are the realized utilities (profits) for each repeat. Observe
that Vk = ψ(Yk, Xk) where

ψ(y, x) = smin{y, x} − cy, y ∈ Y ≡ [ymin, ymax].

Our goal at each repeat is to construct an approximation of the objective function φ̃n(y) and
to use this approximation to generate a new order quantity Yn+1. We would like the sequence
of orders to converge to the optimal order quantity y∗ as n → ∞ and for the performance
of the orders to be “good” even when the number of repeats is small.

An important component of the approximation that we adopt is the notion of retrospective
utility, which as a function of y is defined as

ψ̂k(y, Xk) = ψ(y, Xk) = smin{y, Xk} − cy, y ∈ Y . (6.7)

The function ψ̂k(y, Xk) is an estimate of the profit we would have obtained in period k if
y instead of Yk happened to be the order quantity and the observed demand Xk remains
unchanged even if we make this switch (hence the term retrospective). More generally, the
function ψ̂k(y, Xk) is a sample of the random utility associated with an order quantity y.
We now consider three different cases:
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(a) Standard Newsvendor Model

First, consider the special case where demands {X1, X2, . . .} are i.i.d. and independent
of the order quantity, inventory level etc. Then ψ̂k is unbiased:

E[ψ̂k(y, Xk) | Yk] = φ(y), ∀ y ∈ Y ,

and strongly consistent:

lim
n→∞

1

n

n
∑

k=1

ψ̂k(y, Xk) = φ(y), a.s., y ∈ Y ,

which suggests the following approximation of the profit function:

φ̃n(y) =
1

n

n
∑

k=1

ψ̂k(y, Xk). (6.8)

This approximation can be used to generate the decision Yn+1 for the next repeat. One
method is to choose Yn+1 ∈ arg max{φ̃n(y) : y ∈ Y}. In the case of i.i.d. and order-
independent demand, it can be shown that φ̃n(y) → φ(y) and Yn → y∗ ∈ Y∗ as n → ∞
which is in a large part due to ψ̂k(y, Xk) being an unbiased sample of the utility associated
with order quantity y. We now consider two scenarios where ψ̂k(y, Xk) may not be an
unbiased sample of φ(y).

(b) Censored Demand Newsvendor Model

Suppose the demands are i.i.d and independent of the inventory level. However instead
of observing full demand data only past sales are observable. The variable Xk now denotes
the number of items sold in period k. Two events can occur:

• Xk < Yk: sales equals demand if demand is smaller than the order quantity Yk;

• Xk = Yk: sales equals order quantity Yk if demand exceeds Yk.

In the censored demand case, it is not possible to say that retrospective utility ψ̂k(y, Xk) is
an unbiased sample of φ(y) for all y. However, conditioning on whether or not y > Yk we
can say the following:

E[ψ̂k(y, Xk)|Yk] = φ(y) if y ≤ Yk

E[ψ̂k(y, Xk)|Yk] 6= φ(y) if y > Yk,

i.e., the estimate ψ̂k(y, Xk) is a biased sample of φ(y) if y > Yk.
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(c) Newsvendor Model with Demand Dependent on Inventory

Now suppose the demand depends on the inventory level in each repeat and Xk is demand
in period k if the ordered quantity is Yk, then the retrospective utility ψ̂k(y, Xk), in general,
will be biased in that

φ(y) 6= E[ψ̂k(y, Xk) | Yk], when y 6= Yk.

If we assume a functional form for the dependencies and correct the estimate ψ̂k(y, Xk),
we may have poor performance in long run if our choice of functional form turns out to be
wrong.

Although the retrospective utility may be biased, the information that ψ̂k(y, Xk) carries
about the utility φ(y) can still be valuable if y and Yk are “close”, more so when there are
few data points. This naturally motivates the approximation

φ̃n(y) =

∑n
k=1 ψ̂k(y, Xk)κn(y, Yk)
∑n

k=1 κn(y, Yk)
, (6.9)

where κn(y, Y ) is a weighing function or a kernel. We call the approximation function φ̃n(y),
operational statistics of objective function or Objective Operational Statistics.

One obvious difference between Nadaraya-Watson regression (6.4) and the objective oper-
ational statistics (6.9) is that the retrospective utility ψ̂k(y, Xk) is not used in the Nadaraya-
Watson approximation, so problem specific information about the profit function captured
in the retrospective utility is ignored. In addition, in contrast to equal weighting (6.8), it
acknowledges the problem of bias by using the kernel to gradually suppress the influence of
functions ψ̂k(y, Xk) when Yk is far from y.

It is also worth noting that the validity of ψ̂k(y,Xk) can go beyond just the one point
Yk as we have seen in the classical newsvendor problem and in censored demand case. In
such cases, the definition of the kernel used in objective operational statistics may differ from
standard kernel definition used in Nadaraya-Watson regression. Note that if κn(y, Yk) = 1 for
all k and n, we obtain the approximation (6.8). In case of censored demand when ψ̂k(y,Xk)
is valid for y ≤ Yk, we can choose the following kernel function:

κn(y, Yk) = 1 if y ≤ Yk

κn(y, Yk) = κ′n(y, Yk) if y > Yk,

where κ′n(y, Yk) satisfies the Nadaraya-Watson regression’s kernel definition (6.5).

Example 15. Consider a situation where demand is dependent on inventory level and is
deterministically equal to 4 + 0.2y. If we order Yk in period k then the profit function is
smin{4 + 0.1Yk, Yk} − cYk. Suppose s = 4 and c = 2 and we sample at points Y1 = 2 and
Y2 = 10 and observe the corresponding profits as 4 and 0 respectively. Figure 6.1 plots the
Nadaraya-Watson regression function and the objective operational statistics approximation
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Figure 6.1: Comparison of Nadaraya-Watson regression approximation and objective oper-
ational statistics after two data points

after ordering Y1 = 2 and Y2 = 10 and correspondingly observing demands X1 = 4.2 and
X2 = 5. The objective operational statistics approximation is much closer to the actual
function as compared to the Nadaraya-Watson regression approximation.

6.4.2 Summary: Objective Operational Learning

A key element of the objective operational statistics approximation φ̃(y) is that it in-
corporates domain information through a function ψ̂k(y,Xk). More generally, the informa-
tion function ψ̂k can be a function of all the past history, i.e., Xk = {X1, . . . , Xk} and
Yk = {Y1, . . . , Yk}. The objective operational statistics approximation in general is:

φ̃n(y) =

∑n
k=1 ψ̂k(y, Xk,Yk)κn(y, Yk)

∑n
k=1 κn(y, Yk)

, (6.10)

We also need a randomized method for generating orders {Yk} that uses the objective
operational statistics approximation while balancing exploration and exploitation trade-off.
A good randomized method needs to exploit the information by sampling near points of max-
imum of current function estimate φ̃k, while sufficiently exploring other points to guarantee
convergence of the approximation function. Our objective approximation learning algorithm
which balances exploration and exploitation works as follows.
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Objective Operational Learning Algorithm

0. Choose a point Y0 arbitrarily inside Y . Observe X0 and construct initial objective
operational estimation φ̃0(y) = ψk(y,X0, Y0). Initialize e(0) = 1, n = 1 and ye

0 = Y0. In
addition, choose a sequence of parameters {ǫn} that control the amount of exploration.

1. Generate U(n), a {0, 1} random variable with probability U(n) = 1 equal to ǫn.

2. If U(n) = 0, choose Yn ∈ Yn−1 = arg max{φ̃n−1(y)}. In addition, φ̃n = φ̃n−1.

3. If U(n) = 1, increment e(n) = e(n− 1) + 1.

4. Choose Yn = ye
e(n) such that {ye

1, y
e
2, . . . , y

e
e(n)} forms a low discrepancy sequence inside

Y . Observe Xn and define Xe
e(n) = Xn.

5. Update φ̃n as follows:

φ̃n(y) =

∑e(n)
k=1 ψ̂k(y, X

e
k,y

e
k)κn(y, ye

k)
∑n

k=1 κn(y, ye
k)

, (6.11)

where ye
k = {ye

0, . . . , y
e
k} and Xe

k = {Xe
0 , . . . , X

e
k}.

6. Repeat steps 2–5.

The objective operational learning algorithm balances exploration and exploitation using
an ǫ−greedy policy. At step n with probability 1 − ǫn current information is exploited and
Yn is chosen corresponding to a maximum of the approximation φ̃n. With probability ǫn an
exploration step occurs. The variable e(n) denotes the number of exploration steps by time
n. Note that while calculating the approximation φ̃n, only the data from exploration steps
are used.

An important property of ψ̂k is that it is unbiased when y = Yk, namely

EXe
k

[

ψ̂k

(

y, (Ye
k−1, Y

e
k ), (Xe

k−1, X
e
k)
) ∣

∣

∣
(Ye

k−1, Y
e
k ), Xe

k−1

]∣

∣

∣

Y e
k =y

= φ(y).

Clearly, the art in choosing ψ̂k is such that the bias is small when y is close to Yk.
We next apply the objective operational learning algorithm to newsvendor problem with

demand dependent on inventory and derive conditions on various parameters (ǫn, κn etc.)
under which the functional approximation converges to the true function.
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6.5 Application of Objective Operational Learning to

Inventory Dependent Demand Problem

For the inventory problem described in Section 6.4.1, let Y denote the set of allowable
order quantities and D the support of the random demand. We assume for each repeat
that demand D, conditional on y, has cumulative distribution Fy(·). The expected profit
associated with y is

φ(y) = E[ψ(y, D) | y] =

∫

x∈D

ψ(y, x)dFy(x).

The goal is to find an optimal order quantity

y∗ = arg max
y∈Y

φ(y).

We are interested in the situation where the distribution function Fy(·) (and hence φ(y)) is
unknown to the decision maker. Instead, the decision maker’s ordering decision at repeat
n + 1 can only depend on the history of ordering decisions and the associated realizations
of demand and profits Fn = {(Yk, Dk, Vk) | k = 1, . . . , n − 1}. We make the following
assumptions:

Assumptions

(i) The set Y is bounded. Without loss of generality Y ⊆ [0, 1].

(ii) Profit function ψ(y, D) is bounded on Y × D. Without loss of generality, we assume
|ψ(y, D)| ≤ 1.

(iii) There is a constant C <∞ such that

E |φyk
(y) − φ(y)| ≤ C |y − yk|

where

φyk
(y) =

∫

x∈D

ψ(y, x)dFyk
(x).

In other words ψ(y,Dk), where Dk is observed demand when Yk = yk, is a good sample
of φ(y) in the sense that its expected value φyk

(y) is close to φ(y), if y is close to yk.
Note that the assumption (iii) is different than Lipschitz continuity assumption on φ(y)
and the function φ(y) may even be discontinuous in y.

To implement the operational learning algorithm specified in Section 6.4.2 for inventory
control problem we need to further specify the following:
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• Low discrepancy sequence. The low discrepancy sequence {ye
1, y

e
2, . . . , y

e
k} in set Y

should satisfy the following properties:

– For any closed interval A ⊆ [0, 1] of length δ, there exists a constant λU such that

k
∑

i=1

1{ye
i∈A}

≤ λU max(kδ, 1) (6.12)

for all k ≥ 1.

– For any closed interval A ⊆ [0, 1] of length δ > 2/k, there exist constants λL, CL

such that
k
∑

i=1

1{ye
i∈A}

≥ λL kδ (6.13)

for all k ≥ CL.

An example of a sequence that satisfy (6.12) and (6.13) is a sequence of dyadic rationals
in interval [0, 1]. A dyadic rational is of the form a

2b where a and b are natural num-
bers. If k = 2b for some b then the k dyadic rationals are {0, 1/k, 2/k, . . . , (k − 1)/k}
and are equal-spaced. A dyadic rational sequence can be constructed as follows: Let
bmbm−1 . . . b3b2b1 be the binary representation of k − 1. Then the kth dyadic rational
ye

k has a binary representation 0.b1b2b3 . . . bm−1bm. It is easy to see that the sequence
of dyadic rationals satisfy (6.12) and (6.13) with λU = 1, λL = 1/2, CL = 1.

• Function ψ̂k(y,y
e
k,X

e
k). Note that observed data Xe

k is demand data {De
1, . . . , D

k
e}

corresponding to points {ye
1, . . . , y

k
e}. We make a simplifying assumption that the

function ψ̂k(y,y
e
k,X

e
k) = ψ(y,De

k). For convergence results we do not use any specific
form of ψ (hence our results can be extended to other OR problems). Specific form
of ψ(y,D), for example, ψ(y,D) = smin(y,D) − cy, where s and c are selling price
and cost of purchase respectively, can be used while implementing the algorithm. The
update equation corresponding to (6.11) is

φ̃n(y) =

∑e(n)
k=1 ψ(y, De

k)κn(y, ye
k)

∑e(n)
k=1 κn(y, ye

k)
. (6.14)

• Kernel Function. We use a uniform kernel with bandwidth βn, i.e.,

κn(y, ye
k) = 1{|y−ye

k|<βn} (6.15)

Even though we prove convergence results for uniform kernel, extending convergence
results to other kernels such as Gaussian kernel is straightforward.
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• Sequence {ǫn}. First,note that en =
∑n

i=1 Un, where Un is independent Bernoulli
random variable with probability of success ǫn. Let bn =

∑n
i=1 ǫi. We choose the

sequence {ǫn} in such a way that bn ≥ logn eventually. Following fact is immediate
using Chernoff bound for sum of independent Bernoulli random variables:

Proposition 16. If bn ∈ ω(logn), then for any δ > 0

(1 − δ)bn ≤ e(n) ≤ (1 + δ)bn eventually, almost surely.

We now prove the point-wise convergence of the function φ̃(y).

Theorem 17. Suppose assumptions (i)-(iii) are satisfied and the sequence {ye
1, y

e
2, . . .} sat-

isfies the condition (6.13). If the bandwidth parameter βn in kernel function (6.15) is chosen

to be βn = αb
− 1

3
n , α > 0, where bn ∈ ω(logn) and φ̃n(y) is updated according to (6.14), then

the following holds for every y ∈ Y :

lim sup
n→∞

E

[

(φ̃n(y) − φ(y))2

b
− 2

3
n

]

≤M <∞,

where M is a constant. The rate of convergence of φ̃n(y) in expectation is therefore b
− 1

3
n .

Proof.

(φ̃n(y) − φ(y))2 =

(

∑e(n)
k=1 ψ(y, De

k)κn(y, ye
k)

∑e(n)
k=1 κn(y, ye

k)
− φ(y)

)2

=

(

∑e(n)
k=1(ψ(y, De

k) − φye
k
(y))κn(y, y

e
k)

∑e(n)
k=1 κn(y, ye

k)

+

∑e(n)
k=1(φye

k
(y)) − φ(y))κn(y, y

e
k)

∑e(n)
k=1 κn(y, ye

k)

)2

(6.16)

≤ 2

(

∑e(n)
k=1(ψ(y, De

k) − φye
k
(y))κn(y, y

e
k)

∑e(n)
k=1 κn(y, ye

k)

)2

(6.17)

+ 2

(

∑e(n)
k=1(φye

k
(y)) − φ(y))κn(y, y

e
k)

∑e(n)
k=1 κn(y, ye

k)

)2
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If κn(y, ye
k) = 0 when |y − ye

k| > βn and therefore, using assumption (iii)

(

∑e(n)
k=1(φye

k
(y)) − φ(y))κn(y, y

e
k)

∑e(n)
k=1 κn(y, ye

k)

)2

≤

(

∑e(n)
k=1 C|y

e
k − y|κn(y, y

e
k)

∑e(n)
k=1 κn(y, ye

k)

)2

≤

(

∑e(n)
k=1 Cβnκn(y, ye

k)
∑e(n)

k=1 κn(y, ye
k)

)2

= C2β2
n. (6.18)

Now,

E

(

∑e(n)
k=1(ψ(y, De

k) − φye
k
(y))κn(y, y

e
k)

∑e(n)
k=1 κn(y, ye

k)

)2

= E



E





(

∑e(n)
k=1(ψ(y, De

k) − φye
k
(y))κn(y, y

e
k)

∑e(n)
k=1 κn(y, ye

k)

)2
∣

∣

∣

∣

∣

∣

e(n)









= E









E

[

(

∑e(n)
k=1(ψ(y, De

k) − φye
k
(y))κn(y, y

e
k)
)2
∣

∣

∣

∣

e(n)

]

(

∑e(n)
k=1 κn(y, ye

k)
)2









. (6.19)

Using the fact that (ψ(y, De
i ) − φye

i
(y)) and (ψ(y, De

j) − φye
j
(y)) are independent mean 0

random variables when i 6= j and E(ψ(y, De
i ) − φye

i
(y))2 ≤ 4 using assumption (ii) we

obtain:

E

(

∑e(n)
k=1(ψ(y, De

k) − φye
k
(y))κn(y, y

e
k)

∑e(n)
k=1 κn(y, ye

k)

)2

≤ E







∑e(n)
k=1 4κ2

n(y, ye
k)

(

∑e(n)
k=1 κn(y, ye

k)
)2






(6.20)

= 4E







∑e(n)
k=1 κn(y, ye

k)
(

∑e(n)
k=1 κn(y, ye

k)
)2






(6.21)

= 4E

[

1
∑e(n)

k=1 κn(y, ye
k)

]

(6.22)

≤ 4E

[

1

λLe(n)βn

]

≤
4

λLbn(1 − δ)βn
, (6.23)
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where (6.21) follows from the fact that κ2
n(· , ·) = κn(· , ·) as the kernel value is either 0 or 1.

Equation (6.23) follows from (6.13) and proposition 16. Now from (6.17), (6.18) and (6.23)

E

[

(φ̃n(y) − φ(y))2
]

≤
8

λL(1 − δ)bnβn
+ 2C2β2

n. (6.24)

For the choice of βn = αb
−1/3
n ,

E

[

(φ̃n(y) − φ(y))2
]

≤M b−2/3
n , (6.25)

where M = 8
αλL(1−δ)

+ 2C2α2.
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Chapter 7

Conclusion

In this thesis, we investigated and studied some important issues in modeling uncertainty
with learning.

First, we considered the problem of worst-case robust intensity control of the arrival and
departure processes of a single-state queuing system, where model ambiguity is represented
using the notion of relative entropy. The queuing problem belongs to the class of robust
dynamic optimization problems. A novel feature of our model is that we consider different
levels of uncertainty for the arrival and departure processes. We prove that the optimal
robust control for our model is of threshold type. Our work on queuing control work can be
extended in several directions. One possibility is to consider state-dependent capacity limits.
Another extension is to consider multistage networks. Finally it would be interesting to
consider a decentralized version of our problem where arrivals and departures are controlled
by separate entities. Our approach should also extend to other intensity control problems
such as the ones that arise in optimal dynamic pricing of goods.

When limited amount of past data is available for learning, a popular approach in robust
optimization is to construct uncertainty sets for unknown parameters from past data using
confidence sets. We showed that using such an approach may results in a policy which
has worse performance than a non-robust policy. We introduced a new approach called
generalized operational statistics and applied it to a mean-variance portfolio optimization
problem. The operational statistics policy for portfolio optimization guarantees a better
solution than a classical sample mean based policy. In our work we have assumed that only
the mean returns vector is uncertain while the covariance matrix is known with certainty. An
important extension of our work would be a portfolio optimization problem, such as minimum
variance portfolio problem, where the covariance matrix is assumed to be uncertain. In
addition, the policy class we considered is restrictive in the sense that if the uncertainty
set is a singleton, then we do not obtain the optimal policy corresponding to the singleton.
Because of this, the performance of worst case robust policy for mean variance portfolio
optimization outperforms the operational statistics policy for small uncertainty sets.

The generalized operational statistics approach we introduced in this thesis should be
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applicable to many operations research problems. One difficulty in applying operational
statistics approach to broader range of problems is the numerical tractability of the solu-
tions. With advances in the field of convex optimization, specially with development of
interior point algorithms for second order conic programs and semidefinite programs, it is
now possible to solve many large scale robust problems efficiently. In portfolio optimization
we exploited the structure of the operational statistics problem and proved that the opera-
tional statistics portfolio optimization problem can be converted into a semidefinite program
and therefore, can be solved efficiently. In general, it is quite possible that a operational
statistics is not convex even if the nominal problem is convex. However, it is worth exploring
the class of problems where the operational statistics formulation remains convex.

Finally, we introduced a new relatively model free learning approach called objective
operational learning. As opposed to other non-parametric approaches, objective operational
learning incorporates structural information about the objective and the problem, and there-
fore aims for a good small sample performance while guaranteeing convergence to the true
solution under stationarity of underlying stochastic process. In most real world processes,
the stationarity assumption is not likely to be valid, and hence it is very important to look at
algorithms which have good small sample performance. We showed how to effectively incor-
porate structural information in objective operational learning algorithm by demonstrating
several examples of newsvendor problems. We applied the objective operational learning al-
gorithm to an inventory control problem with demand distribution dependent on inventory
level and proved various structural properties.

The objective operational statistics approach would be very useful in high dimensional
setting such as multi-product pricing, where model free approaches that do not utilize any
structural information would take a long time to learn. In high dimensions, the small sample
performance of classical non-parametric strategy is expected to be poor. In high dimen-
sional setting, one can incorporate multiple levels of structural information into operational
statistics algorithm. For example, in multi-product problems, demand distributions of two
products can be stochastically ordered. Another example is a case where the demand of a
particular product is always less than the sum of demands of two other products. We would
also have the information about the profit function which may be a complex non-linear
function of product prices and their demands. A multi-dimensional objective operational
learning algorithm should be designed to incorporate as much information as possible into
the algorithm.
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