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ScienceDirect
Duplications are the primary force by which new gene functions

arise and provide a substrate for large-scale structural

variation. Analysis of thousands of genomes shows that

humans and great apes have more genetic differences in

content and structure over recent segmental duplications than

any other euchromatic region. Novel human-specific

duplicated genes, ARHGAP11B and SRGAP2C, have recently

been described with a potential role in neocortical expansion

and increased neuronal spine density. Large segmental

duplications and the structural variants they promote are also

frequently stratified between human populations with a subset

being subjected to positive selection. The impact of recent

duplications on human evolution and adaptation is only

beginning to be realized as new technologies enhance their

discovery and accurate genotyping.
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Introduction
In this review, we will summarize recent advances in our

understanding of primate segmental duplications (SDs;

defined as large tracts of sequence (>1 kbp) sharing

>90% identity [1]) and their impact in contributing to

new genes and functions within the human lineage.

Mutation by duplication has two, very different, conse-

quences on an evolving genome [2,3]. First, it creates

genetic redundancy liberating functional DNA from an-

cestral selective constraint. This can lead to the birth of

novel genes and regulatory elements either instan-

taneously through duplicative transpositions or by subse-

quent mutational tinkering of the paralogous copy [4].
Current Opinion in Genetics & Development 2016, 41:44–52 
Second, by dint of its high sequence identity, duplication

provides the substrate for subsequent rearrangement

through the process of non-allelic homologous recombi-

nation [5��]. This mutational process is dynamic because

the presence of SDs further increases the probability of

subsequent rounds of duplications as a result of larger and

more abundant tracts of identical sequences [6–8]. Dupli-

cations of genic material thus have the potential to

radically change structure and content over extremely

short periods of times. Here, we focus on gene innovation

by duplication and emerging data regarding its impor-

tance to human adaptation.

Nonrandom evolution of great ape segmental

duplication

The accumulation of SDs in the human–great ape lineage

has been nonrandom in both time and space [9]. Com-

parative and sequence-identity analyses support a three-

fold excess of duplications in the common ancestor of

human and great apes lineage (7–16 mya) in contrast to

deletions, which have occurred in a more clocklike man-

ner during evolution (Figure 1) [10]. The intrachromo-

somal burst and to a lesser extent interchromosomal

duplications have been associated with particular seg-

ments identified as core duplicons [11,12] (Table 1).

Using a repeat-graph approach, 24 core duplicons

(�15 kbp) were originally identified as segments over-

represented in 437 duplication blocks within the human

genome. Subsequent phylogenetic analyses revealed that

the cores represent the focal point for the serial accumu-

lation of SDs, resulting in increasingly larger duplication

blocks (>250 kbp in size) composed of mosaic duplicated

segments where evolutionarily younger duplicated seg-

ments are located at increasing distances from the core.

There is evidence that the cores have been reused in

different great ape lineages [13] and are preferential sites

of rearrangements leading to large-scale inversion poly-

morphisms [14,15]. Interestingly, many of these cores are

enriched in rapidly evolving human–great ape gene fami-

lies [16–23]. Though the function of most of these gene

families has not yet been determined, biochemical inves-

tigations into a few (e.g., TBC1D3) have suggested an

association with cell proliferation [24]; others (e.g.,

DUF1220 or NBPF) have been implicated in changes

of brain size [21,25�,26�] while some (e.g., NPIP) show

remarkable signatures of positive selection [19]. At the

periphery of these core-mediated duplication blocks lie

most of the human-specific segmental duplications

(HSDs) [27,28]. HSDs are restricted to specific regions
www.sciencedirect.com
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Figure 1
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Primate rates of duplication and deletion. Rates of fixed (a) duplications and (b) deletions are shown as a function of the number of substitutions

along each branch of the great ape phylogeny. Branch widths are scaled proportionally to the number of duplicated base pairs per substituted

base pair based on analysis of 97 human/ape genomes. A burst of duplicated base pairs appears to have occurred in the common ancestral

branch leading to humans and African great apes, where duplicated base pairs were added at 2.6-fold the rate of substitution. In contrast, the

rate of deletion in the great ape lineage is more clocklike along all branches (mean of 0.32 deleted base pairs per substitution) with the exception

of the chimpanzee–bonobo ancestral lineage, where an approximate twofold increase in the rate of deletion is observed (0.71 deleted base pairs

per substitution). Adapted from [10].

Table 1

Examples of genes/gene families mapped to core duplicons

Clade Gene Significant

expression

Subcellular

localization

Description Possible function Example disease-associated

genomic hotspot

chr1 NBPF Soft tissue Cytoplasm Neuroblastoma breakpoint

gene family, DUF1220

Transcription factor

regulated by NF-kB

1q21.1: Neuroblastoma,

ASD, ID, Schizophrenia

chr2 RANBP2 Testis Nuclear pore RANBP2-like and GRIP

domain- containing 5 isoform

Ran GTPase binding 2q13: ID

chr7_2 PMS2L5 Ubiquitous Nuclear Postmeiotic segregation

increased 2-like 5

DNA mismatch repair 7q11.23: Williams–Beuren

syndrome, ASD, ID

chr7_2 SPDYE1 Testis Unknown speedy/RINGO cell cycle

regulator family member E1

Cell cycle regulator 7q11.23: Williams–Beuren

syndrome, ASD, ID

chr7_3 DPY19L2 Testis Unknown dpy-19 like 2 Spermatogenesis None

chr9_1 SPATA31A1 Exclusively

in testis

Unknown SPATA31 subfamily A,

member 1

Unknown None

chr9_2 ZNF790 Ubiquitous Nuclear Zinc-finger protein 790 DNA binding None

chr11/chr2 TRIM51 Mammary

gland

Unknown Tripartite motif-containing 51 Unknown 2q11.2: ID, ADHD

chr15 GOLGA Exclusively

in testis

Unknown Golgin-like protein, golgi

autoantigen, golgin subfamily

a

DNA binding 15q13.3: ASD, ID,

Schizophrenia, Epilepsy

chr16 NPIP Ubiquitous Nuclear

membrane

Nuclear pore complex

interacting protein, morpheus

gene family

Unknown 16p11.2: ASD, ID,

Schizophrenia, Epilepsy

chr17_1 LRRC37A Ubiquitous Unknown Leucine-rich repeat, c114

SLIT-like testicular protein

ATP-dependent

peptidase activity

17q21.31: ID

chr17_2 TBC1D3 Testis Cytoplasm TBC1 domain family member Cell growth and

proliferation

17q12: ASD, ID,

Schizophrenia

M1 OR7E Unknown Unknown Olfactory receptor 7E

pseudogenes

Receptors mediating

sense of smell

8p23.1: ID

M5 SMA Spinal cord Lysosome Spinal muscular atrophy

associated gene

Hydrolase activity 5q13.2: Spinal Muscular

Atrophy

M6 CCDC127 Ubiquitous Unknown Coiled-coiled domain

containing 27

Unknown None

ASD: autism spectrum disorder; ID: intellectual disability and associated developmental delay; ADHD: attention-deficit and hyperactivity disorder.

Adapted from [11].
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of the genome and appear to be enriched in genes

associated with brain development and neuronal apopto-

sis. Approximately 25 of these regions are now associated

with recurrent chromosomal rearrangements and neuro-

developmental disease [29�,30,31] suggesting that there

has been a negative fitness effect with the propagation of

these elements during evolution.

Segmental duplication and the evolution of a larger

human brain

Over the last four years, a few interesting examples have

highlighted the potential functional impact of SDs with

respect to the evolution of the human brain. Of the three

recently described examples, two — SRGAP2C and ARH-
GAP11B — are the direct consequence of HSDs

[32,33,34��,35�]. It is noteworthy that the third, a recently

described human-accelerated regulatory region (HARE5)

of Wnt receptor FZD8 (frizzled-8) [36�], is part of an

18 kbp primate-specific SD on chromosome 10 that likely

arose after divergence of Old and New World primates,

although the duplication of the locus occurred long before

the burst of functional single-base-pair substitutions on

the human lineage.

SRGAP2C

The cortical developmental gene SRGAP2 (Slit-Robo Rho

GTPase-activating protein 2) has duplicated three sepa-

rate times uniquely in the human lineage with its paralogs

dispersing across 85 Mbp on chromosome 1 (Figure 2a)

[33]. Ancestral SRGAP2A is capable of homodimerizing via

an FBAR domain at the cell surface where it induces

membrane protrusions required for neuronal migration

and morphogenesis in mammals [37]. Evolutionary recon-

structions showed that a 258 kbp SD transposed from

chromosome 1q32.1 to 1q21.1 �3.4 million years ago

(mya) where it spawned a truncated SRGAP2B, including

the first 9 of 22 exons and putative regulatory sequences of

the ancestral copy. Larger secondary duplications of

SRGAP2B created an additional truncated ‘granddaughter’

paralog SRGAP2C (at chromosome 1p12 �2.4 mya). De-

spite it being one of the most recent paralogs, SRGAP2C is

fixed for copy number in all modern humans — unlike its

predecessor SRGAP2B. This truncated paralog is co-

expressed with the full-length ancestral SRGAP2A in

the germinal layers of human embryonic cortex, where

neural progenitors divide to produce postmitotic neurons,

and the cortical plate, where neurons undergo terminal

differentiation and synaptogenesis [32]. Transient over-

expression of SRGAP2C in culture and in vivo leads to

human-specific features, including neoteny of dendritic

spine maturation, promotion of longer spines at a greater

density, and sustained radial migration in the developing

mouse neocortex. Human-specific SRGAP2C, which lacks

RhoGAP and SH3 functional domains, dimerizes with the

ancestral SRGAP2A via its partial FBAR domain, in effect

usurping functional full-length proteins from homodimer-

izing and assembling at the cell surface. This antagonistic
Current Opinion in Genetics & Development 2016, 41:44–52 
function may have been present at the birth of SRGAP2C
as a result of the incomplete SD that excluded the

RhoGAP and SH3 functional domains. It is intriguing

that these SRGAP2 duplicates arose 2–3 mya, the estimat-

ed divergence time of Australopithecus to Homo and im-

mediately prior to the paleontological estimate of human

neocortex expansion [38]. This raises the exciting possi-

bility that the SRGAP2C duplication played an important

role in neural adaptive changes specific to the hominin

lineage.

ARHGAP11B

Another potentially functionally relevant HSD gene is

ARHGAP11B, the product of an incomplete duplication of

ARHGAP11A (Rho-type GTPase-activating protein 11A)

shortly after the chimpanzee and human lineages di-

verged �5.2 mya (Figure 2b) [35�]. It was one of the

initiating events that led to the formation of large com-

plex HSDs responsible for mediating recurrent rearran-

gements contributing to 15q13.3 microdeletion syndrome

associated with intellectual disability, epilepsy and

schizophrenia [39]. Notably, all events were associated

with the chromosome 15 core duplicon containing

GOLGA [35�]. The truncated ARHGAP11B lacks the

terminal 756 aa residues of ARHGAP11A and instead

encodes a modified carboxyl terminus consisting of

47 functionally distinct residues. Unlike the full-length

ARHAP11A or a shorter 250 aa isoform, the resulting

267 aa protein does not exhibit RhoGAP activity based

on a RhoA/Rho-kinase-based cell transfection assay.

ARHGAP11B may have evolved a completely novel func-

tion [34��].

Performing an RNA-seq assay of cortical progenitor sub-

populations in human and mouse, Florio and colleagues

identified only ARHGAP11B when searching for tran-

scripts unique to humans that show >10-fold expression

difference between basal radial glial cell populations —

isolated from the subventricular zone — compared with

neuronal cells [34��]. In utero electroporation and expres-

sion of the gene in E13.5 mouse embryos resulted in a

�30% increase in the thickness of the subventricular zone

due to greater basal radial glial mitotic divisions. Further,

microinjection of ARHGAP11B into E13.5 mouse apical

radial glial cells showed a subsequent increase in basal

radial glial cells where the progeny lost apical contact

(delamination). Remarkably, examination of the mouse

brain slices at E18.5 demonstrated in half of the cases an

increase in the cortical plate area and neocortical folding

reminiscent of the gyrification common among primate

species. These findings are consistent with the hypothesis

that an increased number of radial glial neuron progenitor

cells, possibly through increased symmetric cell divisions,

would lead to a neuronal expansion in the cortical layers of

the developing brain. While potentially exciting, caution

should be exercised until transgenic mice are constructed

that replicate these findings. There is concern that both
www.sciencedirect.com
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Figure 2
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Gene duplication and neuroanatomical adaptations. (a) SRGAP2A encodes a 1071 aa protein with three protein domains shown as boxes: FBAR

(orange), RhoGAP (blue), and SH3 (yellow). An incomplete SD from chromosome 1q32.1 created SRGAP2B at 1q21.1 encoding a partial FBAR

domain (458 aa) and seven unique residues [33]. A subsequent duplication from SRGAP2B created SRGAP2C at 1p12.1 and SRGAP2D at 1q21.1

(which later partially deleted and represents a pseudogene). SRGAP2A homodimerizes and assembles at the cell membrane surface via its SH3

domain and induces filopodia protrusion by interacting with a protein complex including F-actin (brown oval) [37]. Truncated SRGAP2C is capable

of heterodimerizing with SRGAP2A via its FBAR domain but lacks the RhoGAP and SH3 domains in turn antagonizing the function of the ancestral

gene by not allowing it to assemble at the cell membrane surface. SRGAP2C expression induces long thin spines in mouse-cultured cortical

neurons that phenocopies SRGAP2A deficiency in mice. Pictured are segments of dendrites from cortical neurons (20DIV) expressing EGFP alone

(control) or EGFP and SRGAP2C (SRGAP2C) imaged two days after transfection. Reprinted with permission from [32]. (b) ARGHAP11A encodes a

1023 aa protein with a RhoGAP domain (blue). It was partially duplicated at chromosome 15q13.3 resulting in a paralog ARHGAP11B encoding a

truncated RhoGAP domain (220 aa) and 47 unique residues at the C terminus (pink box) [35�]. Via its RhoGAP domain, ARHGAP11A and a

truncated alternative isoform encoding 250 aa (not pictured) show RhoGAP activity, evidenced by dephosphorylation of myosin phosphatase

target protein 1, unlike ARHGAP11B, which does not exhibit RhoGAP activity. ARHGAP11B overexpression leads to an increase in basal

progenitors in the mouse neocortex possibly inducing cortical folding. Pictured are coronal sections of an E18.5 mouse telencephali in utero

electroporated at E13.5 with ARHGAP11B and GFP expression plasmids. Phase contrast and GFP fluorescence of one section along the rostro-

caudal axis. Scale bars, 500 mm. Green and white dashed lines and triangles indicate gyrus- and sulcus-like structures in and adjacent to the

electroporated area, respectively. Reprinted with permission from [34��].
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Figure 3
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microinjection as well as electroporation may have in-

duced artefacts associated with cell proliferation.

Variation and selection within human populations

SDs show extensive copy number variation in the human

species [27,28,40,41�,42�,43,44] and contribute more var-

iant base pairs between any two individuals than any

other single source, including single-nucleotide polymor-

phisms (SNPs), indels and structural variants [45��]. Ge-

nomic analysis of a diversity panel of 236 sequenced

human genomes identified 1036 copy number variants

(CNVs) stratified between human populations [45��].
Using the Vst statistic, analogous to Fst for multiallelic

or multicopy states, found that duplications were 1.8 times

more likely than deletions to exhibit population stratifi-

cation but less likely to be tagged by adjacent SNPs

(R2 = 0.03 Vst of duplications vs. Fst of flanking SNPs)

making them more difficult to detect. This is in agree-

ment with other studies showing the majority of multi-

copy duplications correlating less well with flanking SNP

genotypes [43,46]. Among this set were five duplications

identified in Oceanic populations that were shared with

the archaic Denisovans. A subset of these constituted a

larger 255 kbp SD mapping to chromosome 16p12.1

(Figure 3a). Using shared SNPs, this SD was determined

to have arisen in Denisovans �400 thousand years ago

(kya) followed by introgression into the Oceanic ancestral

population �40 kya, where it has since nearly fixed either

through positive selection or genetic drift. The duplica-

tion is associated with the chromosome 16 core duplicon

containing NPIP [19], appears to be exclusive to living

Oceanic human populations and represents the first ex-

ample of an SD arising in a sibling species of humans that

was later introduced to our lineage likely by introgression.

While interesting, is there any evidence that SDs and

their associated structural variants may be substrates for

more recent selection and adaptation?

Amylase and adaptation to a starch-rich diet

Recent duplications of the salivary amylase gene (AMY1)

are frequently cited as an example of adaptive evolution
(Figure 3 Legend Continued) segments from chromosome 16p12.1. The d

but not observed in any other modern human populations possibly as a res

P3 formed as a result of interspersed duplications of P1 (represented in the

core duplicon. P3 frequency was estimated based on genome sequence re

(E = 59, As = 45, Af = 36, O = 21) [41�]. The P3 duplication has been identifie

the amylase locus, with at least eight predicted haplotypes representing var

from [50��]). Overall copy number estimates of AMY1 in 1000 Genomes Pro

(CN � 4) versus high-copy (CN > 4) frequencies were determined (E = 145, 

overall lower copy numbers of AMY1 compared with Asian and Oceanic. (c

adapted from [54]). Various forms of the directly orientated haplotype (H1) h

duplications of the promoter and first exon of KANSL1 (H1D). The inverted 

Khoisan and in more complex duplicated forms in European/Mediterranean

exon of KANSL1 (H2D). Allele frequencies of H1, H1D, H2, and H2D are sho

cohorts (E = 628, As = 733, Af = 820, O = 27) [54]. H2.1 is predicted to repre

haplotype worldwide, and the increased frequencies of H1D, H2, and H2D 

extraordinary genetic drift. This is remarkable in light of the fact that the Eu

accumulation of directly oriented SDs. The less complex pattern of SDs obs

haplotype is not predisposed to disease [54].

www.sciencedirect.com 
in the human lineage [47,48]. Expansion of AMY1 and the

concomitant increase in salivary enzyme production may

improve our ability to digest starch-rich foods, a poten-

tially beneficial trait related to the diet of early modern

humans as they switched from a hunter-gatherer to a

primarily agricultural society �10 kya. Genotyping mod-

ern humans using qPCR and microarray, Perry and col-

leagues determined that copy number ranged from 2 to

15, noting stark differences between populations with low

and high starch diets [47]. Further comparisons in closely

related nonhuman primates and archaic hominins show

these extreme expansions of gene copy are unique to

modern humans and not seen in Neanderthal and Deni-

sovan genomes [45��]. More refined copy number esti-

mates and insights into the structural variation of this

locus are beginning to emerge [45��,49,50��], with diverse

haplotypes identified ranging in size from 77 kbp to

�200 kbp including variability (2–6 copies) of nearby

pancreatic amylase genes (AMY2B and AMY2A)

(Figure 3b) [50��].

17q21.31 duplication and inversion

The expansion of chromosome 17q21.31 duplications and

the associated inversion polymorphism represent another

potential example of recent human adaptation. Stefans-

son and colleagues originally reported a 900 kbp inversion

polymorphism flanked by SDs enriched in European and

Mediterranean populations [51]. Within the Icelandic

population [51] and in European-Americans [52], the

inverted haplotype (H2) has been associated with in-

creased fecundity of H2 carrier females and an overall

increase in global recombination, potentially explaining

the increase in frequency. Subsequent sequencing and

characterization of the predominant H2 duplicated

(H2D) haplotype in individuals of European descent

showed that the H2 haplotypes were virtually identical

having expanded �17–48 kya [53,54]. The high Europe-

an allele frequency (�36%) of such a young haplotype

was consistent with the original suggestion of positive

selection. This finding was even more remarkable in

light of the fact that the H1 and H2 haplotypes diverged
uplication is present in the genome of the ancient hominin, Denisova,

ult of introgression back into the human lineage. The Oceanic-specific

 human reference genome GRCh38) and P2 and included the NPIP

ad-depth from the Human Genome Diversity Project (HGDP) cohort

d in all Papuan individuals. (b) Diverse duplication structures exist at

ying copies of AMY2B, AMY2A, AMY1, and AMY2AP (figure adapted

ject [41�] and HGDP cohorts [44] were calculated and low-copy

As = 204, Af = 133, O = 21). European and African populations show

) Structural diversity of the chromosome 17q21.31 haplotype (figure

ave been identified, including European-enriched haplotypes that show

haplotype (H2) exists in a simpler form (H2.1) found among the San

 haplotypes, including a smaller duplication of the promoter and first

wn based on sequence data from 1000 Genomes Project and HGDP

sent the ancestral haplotype (2.3 mya), H1 is now the dominant

in European populations are the result of positive selection or

ropean H2 haplotype is predisposed to microdeletion due to the

erved among African H2.1 allele carriers suggest that the ancestral H2

Current Opinion in Genetics & Development 2016, 41:44–52
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�2–3 mya and the H2 haplotype predisposes to recurrent

microdeletions associated with Koolen-de Vries syn-

drome [55,56] and, thus, subject to some modest negative

selection. A total of eight complex human structural

haplotypes have been characterized to date ranging in

size from 1 to 1.5 Mbp with considerable expansions of

SDs occurring in the last million years of human evolution

[53,54] (Figure 3c). The LRRC37A core duplicon resides

near many of the breakpoints, including the inversion,

flanking SDs, and disease-associated microdeletion [57].

Although the molecular basis for the selection of the

European H2 locus is not known, it is interesting that

the region contains several genes important in neural

function, including MAPT — associated with several

neurodegenerative disorders including Alzheimer’s dis-

ease, CRHR1 — a cortical-releasing hormone receptor,

and KANSL1 — the gene responsible for the Koolen-de

Vries syndrome [58]. It is interesting to note that the H2

haplotype was recently associated with increased intra-

cranial volume indicating larger brain size [59].

Summary & future directions

Although the selective disadvantage of interspersed SDs

is well established, examples of their selective benefit

have been slower to emerge. Examples such as SRGAP2C
and ARHGAP11B are interesting because, in both cases,

the SDs were incomplete and potentially functional at

birth due to truncations facilitating antagonistic interac-

tions with the parental gene (SRGAP2A) or leading to

rapid neofunctionalization (ARHGAP11B). Examples

such as the 17q21.31 inversion and the amylase gene

family highlight the continued importance of SDs to more

recent adaptations. Despite these intriguing examples,

several challenges remain. First, many of the regions are

still not properly assembled in human and other great ape

genomes due to their high sequence identity and associ-

ation with other larger more complex duplications. Al-

though the catalog of human SDs is nearly complete [41�],
recent estimates suggest that as much as 40 Mbp of

euchromatic sequence may be missing from the current

human reference due to structural variation [60] of which

at least 4.2 Mbp are duplicated (>3 copies) and are copy

number polymorphic [45��]. This has meant that under-

lying genes have only been discovered through targeted

efforts via sequencing of clones, full-length cDNA, and de
novo genome assembly using long-read methods to cor-

rect the reference genome and distinguish paralogs

[61,62,63�]. Second, our understanding of the patterns

of human variation in these regions is currently in its

infancy. An important step forward will be the develop-

ment of robust genotyping assays capable of inferring

both the sequence content and structure of these regions

[28,42�,50��]. Finally, functional studies assaying dupli-

cations are not well established. While CRISPR/Cas9

technology has facilitated knockouts within human in-

duced pluripotent stem cells (iPSCs), the high degree

of sequence identity between paralogs makes such an
Current Opinion in Genetics & Development 2016, 41:44–52 
undertaking nontrivial often promoting the formation of

large-scale rearrangements [64�]. Though less straightfor-

ward due to the megabase pairs of highly rearranged

sequence frequently associated with HSDs, genome edit-

ing can also be used to ‘knock in’ HSDs in species where

these genes do not exist. Generating the genomic context

to establish equivalence and proof of functional effect in
vivo has not yet been achieved for any HSD. Neverthe-

less, efforts can be made to ‘humanize’ chimpanzee iPSCs

as well as mice. The ultimate test of function lies in

identifying mutations of HSD genes associated with

human disease (e.g., natural gene knockouts in humans).

Current whole-genome sequencing efforts will make it

possible to assay variation in a number of disease cohorts.

Though limitations exist when using short reads to assay

variation between highly similar paralogs, recent

advances in synthetic long read methods via barcoding

(e.g., 10X Genomics) may prove effective in improving

variant calling and characterizing the complexity of struc-

tural change. Notwithstanding these challenges, the

emerging data suggest a disproportionate role for SDs

not only in human disease but also human evolution.
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