UC Merced

Proceedings of the Annual Meeting of the Cognitive Science Society

Title

Identifying the Bounds of Peripersonal Space with Phase Transition Methods

Permalink

https://escholarship.org/uc/item/6nd208c4

Journal

Proceedings of the Annual Meeting of the Cognitive Science Society, 42(0)

Authors

Huijsmans, Milou Wiltshire, Travis

Publication Date

2020

Copyright Information

This work is made available under the terms of a Creative Commons Attribution License, available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

Identifying the Bounds of Peripersonal Space with Phase Transition Methods

Milou Huijsmans

Tilburg University, Tilburg, Noord-Brabant, Netherlands

Travis Wiltshire

Tilburg University, Tilburg, North Brabant, Netherlands

Abstract

The shape of the transition in multisensory integration between the (defensive) peripersonal space (DPPS) and the extrapersonal space (EPS) has recently been debated. Contributing to this discussion, we approached the DPPS-EPS transition from a dynamic systems perspective. Specifically, the dynamic complexity of visuotactile reaction times to moving stimuli was employed to evaluate the presence of phase transitions. Reecting well-established ndings on the DPPS-EPS transition, we hypothesized that a phase transition would be identied for looming stimuli, but not for receding stimuli, and that the phase transition for looming threatening stimuli would be located further away from the body than for looming non-threatening stimuli. Contrary to these hypotheses, we found that phase transitions for receding stimuli were more prominent and located further away from the body than phase transitions for looming stimuli. Nonetheless, we consider the identification of phase transitions to be a promising approach for future studies of multisensory integration.