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Summary

There is a dynamic reciprocity between plants and their environment: soil
physiochemical properties in�uence plant morphology and metabolism, and root
morphology and exudates shape the environment surrounding roots. Here, we
investigate the reproducibility of plant trait changes in response to three growth
environments.

We utilized fabricated ecosystem (EcoFAB) devices to grow the model grass
Brachypodium distachyon in three distinct media across four laboratories: phosphate‐
su�cient and ‐de�cient mineral media allowed assessment of the e�ects of phosphate
starvation, and a complex, sterile soil extract represented a more natural environment
with yet uncharacterized e�ects on plant growth and metabolism.

Tissue weight and phosphate content, total root length, and root tissue and exudate
metabolic pro�les were consistent across laboratories and distinct between
experimental treatments. Plants grown in soil extract were morphologically and
metabolically distinct, with root hairs four times longer than with other growth
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conditions. Further, plants depleted half of the metabolites investigated from the soil
extract.

To interact with their environment, plants not only adapt morphology and release
complex metabolite mixtures, but also selectively deplete a range of soil‐derived
metabolites. The EcoFABs utilized here generated high interlaboratory reproducibility,
demonstrating their value in standardized investigations of plant traits.

Introduction
Plants adapt to their belowground environment by root morphological and metabolic plasticity.
In turn, they in�uence soil physiochemical properties and root‐associated organisms by
creating the rhizosphere, an environmental niche formed by the physical structure of roots and
the release of metabolites (root exudates). These complex root–environment interactions are
challenging to study in general, and even more so in a manner that is reproducible across
laboratories (Poorter et al., 2012).

Root morphology and metabolism are a�ected by abiotic and biotic factors. Nutrient
availability of soils, for example, can profoundly a�ect root morphology and provoke changes
in root metabolism. Phosphate limitation typically results in elongated lateral roots and root
hairs in a context‐dependent manner (Peret et al., 2011; Plaxton & Tran, 2011; Nestler et al.,
2016) and in increased exudation of organic acids that solubilize phosphate (Neumann &
Martinoia, 2002; Plaxton & Tran, 2011; Thijs et al., 2016). Root morphology and metabolism are
further a�ected by microbes and microbial compounds (Venturi & Keel, 2016; Verbon &
Liberman, 2016; Etalo et al., 2018). The presence of plant growth‐promoting bacteria can
stimulate lateral root and root hair growth of Arabidopsis (López‐Bucio et al., 2007; Vacheron
et al., 2013; Zamioudis et al., 2013). Plant responses to abiotic and biotic factors are likely
intertwined, as illustrated recently by a study that linked phosphate stress in plants with the
structure of root‐associated microbial communities (Castrillo et al., 2017). Thus, plant
phenotypes in soil are a result of a complex response to abiotic and biotic factors, and an
integrated view of root morphology and metabolism is necessary to gain a holistic
understanding of plant–environment interactions.

Characterization of plant phenotypes in response to abiotic and biotic stresses in soil can have
a profound impact on agriculture, especially as many resources, such as phosphate‐based
fertilizers, are limited (Cordell et al., 2009), and global food demand is projected to have to
increase by 60% by the year 2050 due to an ever‐growing population (FAO. World Food
Situation http://www.fao.org/worldfoodsituation/en/ [accessed 15 May 2018]). Grasses are
central to biofuel production and provide 70% of human calories (Brutnell et al., 2015). Thus,
research on model grasses such as Setaria viridis and Brachypodium distachyon can inform
growth strategies for many crops (Brutnell et al., 2015). B. distachyon is gaining popularity as a
model grass because of its small genome, short generation time, genetic tractability, and the
availability of extensive germplasm and mutant collections (Hsia et al., 2017). Additionally, since
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it uses C  carbon (C) �xation, it is a good laboratory model plant relevant to cereal crops such
as barley (Hordeum vulgare), rice (Oryza sativa), and wheat (Triticum aestivum). It has recently
been utilized to investigate plant developmental processes, abiotic stresses, biotic interactions,
and root morphology (Watt et al., 2009; Brutnell et al., 2015).

The relationship between plants and their environment is ideally studied in an agriculturally
relevant �eld setting. Environmental factors, especially the type of soil in which plants are
grown, are major determinants of root‐associated microbial communities (Bulgarelli et al.,
2013; Edwards et al., 2015), and of root morphology (Senga et al., 2017). However, investigation
of root morphology in soil is challenging due to its opacity, and investigation of exudation in
soil is challenging due to soils physiochemical complexity (Cai et al., 2011). Specialized imaging
techniques, such as magnetic resonance imaging, computed tomography (Metzner et al., 2015;
Helliwell et al., 2017), or the use of labeled plants (Rellán‐Álvarez et al., 2015), have been
developed, but they are not widely accessible or amenable to high‐throughput
experimentation (Metzner et al., 2015). Similarly, approaches for the investigation of root
exudation in soils include the use of in situ soil drainage systems (lysimeters) in �elds (Strobel,
2001), which are low throughput and require complex installations, or of laboratory‐based
extraction methods that are based on �ushing the soil with large volumes of liquids (Swenson
et al., 2015; Pétriacq et al., 2017). Studying metabolites within rhizosphere soils is also
challenging because of the complex mixture of plant‐ and microbe‐derived metabolites, which
are potentially altered by the chemistry and mineralogy of the soil investigated. A further
challenge is the limited reproducibility of morphological and metabolic data generated
(Massonnet et al., 2010; Poorter et al., 2012).

Owing to these challenges in the �eld, root morphology and metabolism are often studied in
laboratory settings. Laboratory environments can feature transparent substrates and mineral
growth media devoid of complex chemical compounds present in soils, in order to allow
straightforward investigation of plant traits. However, these highly arti�cial laboratory
environments may not reproduce normal plant growth and plant–environment interactions
that occur in the �eld. Thus, systems that allow the manipulation of aspects of natural systems
in a controlled laboratory environment are desirable. Micro�uidic devices are gradually
improved to study, for example, heterogenous environments (Stanley et al., 2017), and
currently these important devices are designed to accommodate plants with small roots, such
Arabidopsis, for a growth period of several days to c. 2 wk (Parashar & Pandey, 2011; Jiang
et al., 2014; Stanley et al., 2017). We recently reported on a modular growth system, the EcoFAB
(Ecosystem Fabrication), which facilitates the evaluation of root morphology and exudation of
various plants over the course of several plant developmental stages up to several weeks (Gao
et al., 2018). The EcoFAB design is purposely kept simple and inexpensive, to allow for
straightforward design and manufacturing of EcoFABs for various experimental questions. The
EcoFABs also address the challenge of studying plant growth in various environments, such as
chemically simple or complex hydroponic setups, including the ability to add solid substrates
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such as sand or soil. In addition, microbes can be added to EcoFAB chambers, and the system
is compatible with chemical imaging (Gao et al., 2018). One of the key distinctions of a
standardized system such as the EcoFAB is the reproducibility of data generated.

The study presented here aimed to test the reproducibility of EcoFABs across multiple
laboratories in assessing the response of the model grass B. distachyon in di�erent growth
media. Phosphate‐su�cient and ‐de�cient mineral media were chosen to assess the
performance of the EcoFAB system in reproducing well‐described e�ects of phosphate
starvation, and a complex sterilized soil extract was chosen as representation of a more natural
environment with yet uncharacterized e�ects on plant morphology and metabolism. We
hypothesized that the use of the EcoFAB system produces data reproducible across
laboratories, and that B. distachyon grown in the various media would result in distinct
metabolic and morphological changes.

Materials and Methods
EcoFAB preparation
EcoFAB devices were fabricated according to the published method (Gao et al., 2018). Brie�y, a
1 : 10 silicone elastomer curing agent : base mixture (polydimethylsiloxane (PDMS); Ellsworth
Adhesives, Germantown, WI, USA) was poured onto a 3D‐printed mold, and allowed to solidify
at 80°C for 4 h. The PDMS layer was separated from the mold, the edged trimmed, and
permanently bonded to a glass microscope slide. The EcoFAB device and outer chamber were
sterilized by incubation in 70% v/v ethanol for 30 min, followed by incubation in 100% v/v
ethanol for 5 min. After evaporation of residual ethanol, the EcoFAB device was rinsed three
times with the growth medium of choice before transferring seedlings.

Plant growth conditions
All experiments were performed with B. distachyon Bd21‐3 (Vogel & Hill, 2007). Seeds were
dehusked and sterilized in 70% v/v ethanol for 30 s, and in 6% v/v sodium hypochlorite, 0.1%
v/v Triton X‐100 for 5 min, followed by �ve wash steps in water. Seedlings were germinated on
0.5× Murashige & Skoog (MS) plates (2.2 g l  MS medium, MSP01 (Caisson Labs, Smith�eld, UT,
USA) with 1650 mg l  ammonium nitrate, 6.2 mg l  boric acid, 332.2 mg l  calcium chloride,
0.025 mg l  cobalt chloride, 0.025 mg l  copper sulfate, 37.26 mg l  disodium EDTA,
27.8 mg l  ferrous sulfate heptahydrate, 180.7 mg l  magnesium sulfate, 16.9 mg l
manganese(II) sulfate monohydrate, 0.25 mg l  sodium molybdate dihydrate, 0.83 mg l
potassium iodide, 1900 mg l  potassium nitrate, 170 mg l  monopotassium phosphate
(KH PO ), 8.6 mg l  zinc sulfate heptahydrate; 6% w/v Bioworld phytoagar, 401000721 (Fisher
Scienti�c, Waltham, MA, USA), pH adjusted to 5.7) in a 16 h : 8 h, light : dark regime at 24°C.
EcoFABs were sterilized as published, and seedlings transferred to EcoFAB chambers at 3 d
after germination as previously described (Gao et al., 2018). Seedlings with comparable size
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were picked to conduct the experiment and were distributed in a random manner to the
various EcoFABs. EcoFABs were incubated in a 16 h : 8 h, light : dark regime at 24°C, with
150 μmol m  s illumination. The EcoFABs were �lled with 2 ml of 0.5× MS (B. distachyon grows
without phenotypically detectable nutrient limitation, ‘phosphate‐su�cient’, 2.2 g l  MS
medium, MSP01 (Caisson Labs), pH adjusted to 5.7), 0.5× MS‐P (B. distachyon leaves turn yellow
as a sign of malnutrition, ‘phosphate‐de�cient’, 2.2 g l  MS medium without phosphate,
composition is the same as MSP01 without 170 mg l  KH PO , MSP11 (Caisson Labs), pH
adjusted to 5.7), or soil extract. The soil extract was prepared by incubating 100 g of a standard
glasshouse soil (Pro‐Mix PGX; Hummert International, Earth City, MO, USA) in 1 l of water for
16 h at 4°C and gentle shaking, followed by �ltration through a 0.2 μm cellulose nitrate �lter
(09‐761‐104; Corning, Tewksbury, MA, USA) for sterilization. The soil extract was stored at 4°C,
and its phosphate content was determined as 145 μM (Ames, 1966), which is four times lower
than 0.5× MS. Although we did not perform additional nutrient analyses, it is likely that levels of
other nutrients besides phosphate are also low, compared with 0.5× MS.

A comparative study of B. distachyon in EcoFABs vs plates was performed by laboratory 1, in
which B. distachyon seeds were sterilized and germinated on 0.5× MS plates for 3 d as already
described, then either transferred to EcoFAB growth chambers containing 0.5× MS liquid
medium as described (Gao et al., 2018) or to 0.5× MS phytoagar plates. Roots were imaged
weekly, and total root area was measured using the IMAGEJ software suite (v.2.0.0). For the
developmental time course, plants were grown in EcoFAB chambers in 0.5× MS for up to 43 d,
and exudates were collected at indicated times (Supporting information Fig. S1), frozen, and
stored at −80°C. Metabolites were extracted as described in the section ‘Liquid
chromatography‐mass spectrometry sample extraction’.

EcoFAB interlaboratory experiment
An overview of the experimental procedure is provided in Fig. 1, and the participating
laboratories are listed in Table S1. The following material was distributed from laboratory 1 to
the participating laboratories: EcoFAB growth chambers, micropore tape to seal the EcoFABs,
B. distachyon seeds, MS powder, MS‐P powder, liquid soil extract (see Plant growth conditions
section), phytoagar, and light and temperature data loggers (UA‐002‐08; HOBO Onset, Bourne,
MA, USA), and a detailed protocol for plant growth and experimental procedures. The
experiments were conducted in parallel by the di�erent laboratories. Each participating
laboratory sterilized EcoFABs and seeds as described (Gao et al., 2018). Growth conditions were
monitored throughout the experiment, and these are reported in Table S1. Plants were grown
in quadruplicates for each experimental condition, and one control EcoFAB was set up per
condition without plants. Sterility was monitored throughout the experiment by plating 50 μl of
growth media on Luria–Bertani plates every week. Of the 60 chambers total, four chambers
were excluded from analysis due to contamination.

−2 −1

−1

−1

−1
2 4
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Figure 1

Open in �gure viewer PowerPoint

Experimental setup of the reproducibility experiment. Illustration of the reproducibility

experiment: EcoFABs, Brachypodium distachyon seeds, growth media (yellow, 0.5× Murashige &

Skoog (MS); red, 0.5× MS‐P; blue, soil extract), and light/temperature sensors were distributed to

the participating laboratories. Each laboratory germinated the seeds, transferred seedlings to

sterilized EcoFABs, and grew the plants for 21 d. Root and shoot tissue as well as root exudates

were sampled for downstream analysis.

https://wol-prod-cdn.literatumonline.com/cms/attachment/7ab8618a-369e-454b-82ac-5c15d0fe35c0/nph15662-fig-0001-m.jpg
https://nph.onlinelibrary.wiley.com/action/downloadFigures?id=nph15662-fig-0001&doi=10.1111%2Fnph.15662
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Root systems in EcoFABs were imaged at 7, 14, and 21 d after transfer (dat) to the EcoFAB
chambers. Total root length was quanti�ed by laboratory 1 with the SMARTROOT plugin (v.4.21)
for the IMAGEJ software (v.2.0.0) (Lobet et al., 2011). Root hairs were imaged at 21 d with 10×
magni�cation, and their length was determined with IMAGEJ. The data presented are an average
of three measurements per imaged root.

Growth media were replenished to 2 ml three times a week, and the media were exchanged
fully at 20 dat. This medium was removed through the sampling port by pipetting after 24 h of
further incubation, and the volume was recorded. The root exudates were frozen immediately,
stored at −80°C, and shipped to laboratory 1 for metabolite analysis. The FW of root and shoot
tissue was recorded, and the tissue was immediately frozen and stored at −80°C. The tissue
was homogenized by the participating laboratories by their method of choice (mortar and
pestle with liquid nitrogen (N), or steel beads with a bead beater). An aliquot of the tissue was
utilized for phosphate content determination by all participating laboratories (Ames, 1966), and
an aliquot was sent back to laboratory 1 for metabolite analysis.

Liquid chromatography–mass spectrometry sample extraction
Homogenized root tissues were extracted two times with 700 μl 100% liquid chromatography–
mass spectrometry (LC–MS)‐grade methanol (CAS 67‐56‐1; Honeywell Burdick & Jackson,
Morristown, NJ, USA) for 1 h at 4°C. The samples were centrifuged for 5 min at 5000 g, 4°C, and
supernatants were pooled and evaporated under vacuum at 25°C until dry. The samples were
resuspended in 100% LC–MS‐grade methanol with 15 μM internal standards (767964; Sigma‐
Aldrich) with a volume relative to the sample FW (11 mg per 100 μl).

Frozen root exudates were lyophilized using a Labconco FreeZone lyophilizer, resuspended in
500 μl LC–MS‐grade methanol (CAS 67‐56‐1; Honeywell Burdick & Jackson), sonicated for
15 min in a water bath at 23°C, and incubated at 4°C for 16 h for salt precipitation. Samples
were then centrifuged for 5 min at 5000 g, 4°C, and supernatants were transferred to new
microcentrifuge tubes and evaporated at 25°C under vacuum until dry. Samples were
resuspended in 100% LC–MS‐grade methanol with 15 μM internal standards (767964; Sigma‐
Aldrich) with a volume relative to the root tissue FW, and the root exudate volume collected
(20 μl methanol 100 mg  FW per milliliter of exudate volume).

LC–MS method and analysis
Metabolites in samples were chromatographically separated using hydrophilic liquid
interaction chromatography on a SeQuant 5 μm, 150 mm × 2.1 mm, 200 Å zic‐HILIC column
(1.50454.0001; Millipore) and detected with a Q Exactive Hybrid Quadrupole‐Orbitrap mass
spectrometer equipped with an HESI‐II source probe (ThermoFisher Scienti�c, Waltham, MA,
USA). For chromatographic separations, an Agilent 1290 series high‐performance LC system
was used with a column temperature of 40°C, 3 μl sample injections, and 4°C sample storage. A

−1
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gradient of mobile phase A (5 mM ammonium acetate in water) and B (5 mM ammonium
acetate, 95% v/v acetonitrile in water) was used for metabolite retention and elution as follows:
column equilibration at 0.45 ml min  in 100% B for 1.5 min, a linear gradient at 0.45 ml min
to 35% A over 13.5 min, a linear gradient to 0.6 ml min  and to 100% A over 3 min, a hold at
0.6 ml min  and 100% A for 5 min followed by a linear gradient to 0.45 ml min  and 100% B
over 2 min and re‐equilibration for an additional 7 min. Each sample was injected twice: once
for analysis in positive‐ion mode and once for analysis in negative‐ion mode. The mass
spectrometer source was set with a sheath gas �ow of 55, aux gas �ow of 20 and sweep gas
�ow of 2 (arbitrary units), spray voltage of |±3| kV, and capillary temperature of 400°C. Ion
detection was performed using the Q Exactive's data dependent MS2 Top2 method, with the
two highest abundance precursory ions (2.0 m/z isolation window, 17 500 resolution, 1 × 10
automatic gain control (AGC) target, 2.0 m/z isolation window, stepped normalized collisions
energies of 10, 20, and 30 eV) selected from a full MS pre‐scan (70–1050 m/z, 70 000 resolution,
3 × 10  AGC target, 100 ms maximum ion transmission) with settings at 1 × 10  minimum AGC
target, charges excluded above |3| and a 10 s dynamic exclusion window. Internal and
external standards were included for quality control purposes, with blank injections between
every unique sample.

Metabolite identi�cation and statistical analysis
LC–MS data were analyzed with Metabolite Atlas to construct extracted ion chromatograms
corresponding to metabolites contained within our in‐house standards library
(https://github.com/biorack/metatlas; Bowen & Northen, 2010; Yao et al., 2015). For
metabolite identi�cation, chemical classes were assigned using the CLASSYFIRE compound
classi�cation system (Djoumbou Feunang et al., 2016). Metabolites were identi�ed following the
conventions de�ned by the Metabolomics Standards Initiative (Sumner et al., 2007; Tables S2,
S3). All assignments were of the highest con�dence (‘level 1’ Metabolomics Standards Initiative
identi�cations), which is identi�ed as at least two orthogonal measures vs authentic chemical
standards (e.g. retention time and fragmentation spectra). In all cases we used three
orthogonal measures: retention time (within 1 min vs standard), fragmentation spectra
(manual inspection), and accurate mass (within 20 ppm). In general, accurate masses were
within 5 ppm, though the error was higher for low‐mass ions in negative mode. Peak height
and retention time consistency for the LC–MS run were ascertained by analyzing quality control
samples that were included at the beginning, during, and at the end of the run. Internal
standards were used to assess sample‐to‐sample consistency for peak area and retention
times.

Metabolite background signals detected in the extraction blanks, 0.5× MS, and 0.5× MS‐P
control samples were subtracted from the experimental sample peak heights. Further,
metabolite peak heights were normalized by setting the maximum peak height detected in any
sample to 100%. The method utilized here allows for the relative comparison of peak heights
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between samples (e.g. if a compound of interest is present in signi�cantly di�erent amounts
between samples), but not for absolute metabolite level quanti�cation (e.g. micrograms of a
compound of interest per gram tissue). To explore the variation between growth conditions,
the metabolite pro�les were principal component analysis ordinated, and the 95% con�dence
level was displayed as ellipses for each treatment. Hierarchical clustering analysis with a Bray–
Curtis dissimilarity matrix was performed with the Python 2.7 Seaborn package. The
signi�cance between root tissue as well as root exudate metabolic pro�les was analyzed with
the Python SciPy ANOVA test coupled to a Python Tukey's honestly signi�cant di�erence test
with α = 0.05 corresponding to a 95% con�dence level for each metabolite. Statistically
signi�cant metabolites were displayed as bar graphs, where the sum of all values added up to
100% (Figs 4 (see later), S2), or as fold change for soil extract exudates divided by soil extract
controls (see Fig. 5).

Results
The EcoFAB growth system design and benchmarking
The EcoFAB device is comprised of a PDMS layer bonded to a glass slide, an outer box to
maintain sterility (Gao et al., 2018), a plant reservoir to hold the seedling, and a sampling port
for the addition or exchange of growth medium (Fig. S1a). Brachypodium distachyon can be
grown in EcoFABs for multiple weeks (Fig. S1b depicts a 3‐wk‐old B. distachyon plant), facilitating
the investigation of various developmental stages from seedlings to adult plants.

We benchmarked B. distachyon growth in the EcoFAB vs on standard agar plates. We found that
B. distachyon roots develop similarly in EcoFABs containing 0.5× MS medium compared with
growth on 0.5× MS agar plates over the course of 5 wk, with no signi�cant di�erences in total
root area observed except for week 2 (P = 0.05; Fig. S1c). In addition, sampling of B. distachyon
root exudates at di�erent developmental stages showed a gradual shift of exudate pro�les
over time (Fig. S1d), consistent with reports for plants in other growth systems (Chaparro et al.,
2013; Zhalnina et al., 2018).

Multilab investigation of EcoFAB data reproducibility
EcoFab materials were distributed to four participating laboratories that ran the same
experiment in parallel, investigating morphological and metabolic changes of B. distachyon
grown in phosphate‐su�cient, phosphate‐de�cient, or soil extract medium (4.3 times less
phosphate than phosphate‐su�cient medium). Roots were imaged on a weekly basis, and after
3 wk each laboratory determined the FW and phosphate content of root and shoot tissue, and
sampled root tissue and exudates for LC–MS analysis (Fig. 1).

Growth conditions (light intensity, day length, and temperature) were comparable between
laboratories throughout the experiment (Table S1). The FW and phosphate content were
consistent across laboratories, and di�erent between experimental treatments (Fig. 2a,b): as
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expected, phosphate‐de�cient plants had signi�cantly lower phosphate content, and less than
half the FW of phosphate‐su�cient plants (Tukey's test, P = 0.05). Interestingly, soil‐extract‐
grown plants showed a mixed response, in that they resembled phosphate‐de�cient plants in
phosphate content and shoot weight, but their root weight was signi�cantly higher than of
phosphate‐de�cient plants, and more similar to phosphate‐su�cient plants. The root : shoot
FW ratio averaged across all laboratories was 0.9 for phosphate‐su�cient plants, 1.3 for
phosphate‐de�cient plants, and 1.8 for soil‐extract‐grown plants (Fig. S3).

Figure 2

Open in �gure viewer PowerPoint

Interlaboratory morphological and metabolic consistency. Brachypodium distachyon was grown

in 0.5× Murashige & Skoog (MS) (MS, yellow), 0.5× MS‐P (MS‐P, red), or soil extract (SE, blue) for

3 wk. Root and shoot (a) FW and (b) phosphate content were determined by the participating

laboratories. Data are means ± standard error (n > 9). Asterisks indicate signi�cant di�erences

between experimental treatments (ANOVA, P < 0.05). Principal component (PC) analysis of

normalized peak heights of (c) ground root tissue metabolites and (d) root exudate metabolites.

Hierarchical clustering for the metabolite data is shown in Supporting Information Fig. S4.

https://wol-prod-cdn.literatumonline.com/cms/attachment/9abfe0ce-a575-482b-891a-0eb7d77c96c7/nph15662-fig-0002-m.jpg
https://nph.onlinelibrary.wiley.com/action/downloadFigures?id=nph15662-fig-0002&doi=10.1111%2Fnph.15662
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Upon receiving samples from each laboratory following the experiment, laboratory 1 extracted
and analyzed metabolites, generating metabolite pro�les from root tissues and exudates using
LC–MS. The metabolic pro�les of root tissues were comparable across laboratories, and
reproducibly demonstrated a clear separation between experimental conditions in a principal
component analysis plot and in a hierarchical clustering analysis (Figs 2c, S4a; Tukey’ honestly
signi�cance test, P = 0.05). Similarly, the metabolic pro�les of root exudates were comparable
across laboratories and showed a separation between soil extract and other growth conditions
(Figs 2d, S4b).

Root morphology (quanti�ed by laboratory 1) was similarly di�erent between experimental
treatments. Plants grown in phosphate‐su�cient conditions formed root systems extending
across most of the EcoFAB root chambers, whereas phosphate‐de�cient roots did not reach as
far. Soil‐extract‐grown roots also reached across the entire root chamber, with overall less
roots compared with phosphate‐su�cient plants, but visibly elongated root hairs (Fig. 3a).
Quanti�cation of total root length averaged across laboratories was 7 cm at 7 dat for all plants,
increased to 40 cm, 22 cm, and 30 cm at 14 dat, and further to 114 cm, 48 cm, and 67 cm for
phosphate‐su�cient, phosphate‐de�cient, and soil‐extract‐grown plants, respectively.
Di�erences between experimental treatments were �rst visible 14 dat with phosphate‐
de�cient plants exhibiting shorter total root length than phosphate‐su�cient plants (Tukey,
P = 0.05), but became more pronounced by 21 dat, with phosphate‐su�cient plants exhibiting
longer total root length than those grown in soil extract, which in turn were longer than of
phosphate‐de�cient plants (Fig. 3b). Interestingly, root morphology varied somewhat between
laboratories: the absolute measurements di�ered up to a factor of 2, with plants grown in
laboratories 1 and 4 exhibiting consistently higher total root length than plants of
laboratories 2 and 3 (Fig. S2). Speci�cally, total root length was 75–150 cm in phosphate‐
su�cient, 32–62 cm in phosphate‐de�cient, and 44–87 cm in soil‐extract conditions (Fig. S2).

https://wol-prod-cdn.literatumonline.com/cms/attachment/7e915084-ce06-4ab8-9dea-1db39115bcbc/nph15662-fig-0003-m.jpg
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Figure 3

Open in �gure viewer PowerPoint

Root morphology. (a) Representative pictures of 14 d after transfer (dat) Brachypodium

distachyon in EcoFAB chambers in 0.5× Murashige & Skoog (MS) (MS), 0.5× MS‐P (MS‐P), or soil

extract (SE) for the di�erent laboratories (Lab 1–Lab 4). Note the long root hairs in soil‐extract

growing plants (arrowheads). Brightness and contrast were adjusted for better display. (b) Total

root length 7, 14, and 21 dat averaged across laboratories. The same data are displayed per lab

in Supporting Information Fig. S2. Data are means ± standard error (n > 9). (c) Root hair

morphology. Arrowheads point to root hairs. (d) Root hair length at 21 dat for primary and

lateral roots. Data are means ± standard error (n > 9). Asterisks indicate signi�cant di�erences

within a group of bars (ANOVA, P < 0.05). Bars: (a) 1 cm; (c) 1 mm.

To summarize, the root and shoot FW and phosphate content, root and exudate metabolic
pro�les, and total root length were consistent across laboratories and distinct for the
experimental treatments.

Distinct root morphology in soil extract
In addition to the high root : shoot ratio observed for soil‐extract‐grown plants (Fig. S3), plants
grown in soil extract had longer root hairs than plants grown in other conditions, which were
visible even under low‐magni�cation (Fig. 3a,c). Interestingly, quanti�cation revealed that root
hairs on primary soil‐extract‐grown roots reached a length of 0.8 mm, which was four times

https://wol-prod-cdn.literatumonline.com/cms/attachment/7e915084-ce06-4ab8-9dea-1db39115bcbc/nph15662-fig-0003-m.jpg
https://nph.onlinelibrary.wiley.com/action/downloadFigures?id=nph15662-fig-0003&doi=10.1111%2Fnph.15662
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longer than phosphate‐su�cient‐ or phosphate‐de�cient‐grown roots. Root hair length of
lateral roots remained unchanged (Fig. 3d).

Metabolic analysis of root tissue and exudates
Metabolites extracted from root tissue and root exudates were found to be distinct between
experimental treatments (Fig. 2c,d). Based on authentic metabolite standards, a broad range of
metabolites was detected in root tissues as well as in exudates; among them were organic
acids, carbohydrates, nucleosides/nucleotides/nucleic bases, amino acids and other
nitrogenous compounds, benzenoids, and fatty acids.

Half of the metabolites detected in root tissue extracts (52 out of 117 compounds) were
signi�cantly di�erent in pairwise comparisons of experimental treatments, with 28% having
highest abundance in phosphate‐su�cient‐, 30% in phosphate‐de�cient‐, and 25% in soil‐
extract‐grown roots (Fig. 4; Table S2). The signi�cantly di�erent metabolites (P < 0.05) could be
grouped into four main clusters (Fig. 4). Cluster I consists of three metabolites signi�cantly
di�erent between all experimental treatments. Cluster II is composed of metabolites abundant
in phosphate‐su�cient roots, including nucleosides, organic acids, amino acids, and, notably,
all phosphorous compounds present in this dataset. The higher abundance of phosphorous
compounds in phosphate‐su�cient roots compared with phosphate‐de�cient‐ or soil‐extract‐
grown roots is in line with the phosphate quanti�cation of plant tissues (Fig. 2b), in which the
highest free phosphate was detected in phosphate‐su�cient plants, as would be expected.
Cluster III includes metabolites abundant in phosphate‐de�cient roots. All these metabolites
are nitrogenous compounds, likely due to the N–phosphate imbalance of phosphate‐de�cient
plants. Cluster IV contains metabolites distinct for soil‐extract‐grown roots, and is split in two
subclusters: IVa includes metabolites with low abundance in soil extract roots, which are mostly
nitrogenous compounds, whereas IVb includes metabolites with high abundance in soil extract
roots, which are mostly organic acids.

https://wol-prod-cdn.literatumonline.com/cms/attachment/ef5e8cbc-f414-4cbf-87f7-38099ae74fc5/nph15662-fig-0004-m.jpg


3/1/2019 Multilab EcoFAB study shows highly reproducible physiology and depletion of soil metabolites by a model grass - Sasse - - New Phytologi…

https://nph.onlinelibrary.wiley.com/doi/full/10.1111/nph.15662 14/29

Figure 4

Open in �gure viewer PowerPoint

Characteristic metabolites detected in di�erent root tissues. Normalized relative peak height of

metabolites di�ering between roots grown in 0.5× Murashige & Skoog (MS) (MS, yellow), 0.5×

MS‐P (MS‐P, red), and soil extract (SE, blue) (ANOVA, P < 0.05). Metabolite clusters are indicated

by roman numerals.

https://wol-prod-cdn.literatumonline.com/cms/attachment/ef5e8cbc-f414-4cbf-87f7-38099ae74fc5/nph15662-fig-0004-m.jpg
https://nph.onlinelibrary.wiley.com/action/downloadFigures?id=nph15662-fig-0004&doi=10.1111%2Fnph.15662
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Overall, 137 metabolites were identi�ed in root exudates (Table S3). Only phenylacetaldehyde
was signi�cantly di�erent between exudates of phosphate‐su�cient and ‐de�cient plants
(Table S3), which explains why these conditions are not separated in a principal component
analysis (Fig. 2d). Plants grown in soil extracts had a distinct exudate composition, with 27 and
25 distinct compounds vs phosphate‐su�cient and phosphate‐de�cient root exudates,
respectively. Most of these distinct metabolites were most abundant in soil extract controls (no
plant), showed medium abundance in soil extract exudates, and had low abundance in the
other conditions (Fig. S2).

Metabolite comparisons between soil extract with and without plants revealed that half of the
metabolites detected (74 of 136 compounds) were altered in abundance, causing a distinct
grouping in a principal component analysis (Fig. S5). Fifty percent of these metabolites were
depleted in the presence of plants (Table S3; Fig. S6). Although individual metabolite levels
varied somewhat across laboratories, this �nding was consistent across participating
laboratories (Fig. S7). Distinct metabolites included organic acids, carbohydrates, amino acids,
and nucleosides, and these compounds contained various groups, such as phosphate, N, or
sulfur (S) (Fig. 5; Table S3). Furthermore, citric acid exhibited an interesting but statistically
insigni�cant trend of higher abundance in soil extract exudates vs controls (Table S3; ANOVA,
P = 0.23; t‐test, P = 0.04).

https://wol-prod-cdn.literatumonline.com/cms/attachment/fdc7961f-4318-4481-a49b-3e90ca99dd40/nph15662-fig-0005-m.jpg
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Figure 5

Open in �gure viewer PowerPoint

Metabolites reduced in exudates of soil‐extract‐grown plants. Fold change of selected

metabolites di�ering between exudates of plants grown in soil extract (SE), and soil extract

controls (ANOVA, P < 0.05). Graphs for single laboratories are given in Supporting Information

Fig. S7.

Metabolites that were detected in root tissue and root exudates showed distinct patterns: 42%
of these metabolites were signi�cantly di�erent in roots and 43% in exudates, depending on
environments. Only 23% of the compounds were signi�cantly di�erent in both datasets, which
indicates that root exudates are metabolically distinct from root tissue (Figs 4, S6; Tables S2,
S3). We similarly found that only 50% of the metabolites depleted from soil extract were
signi�cantly di�erent in root tissues, with 29% of high abundance in soil extract roots (mostly
organic acids), 25% of low abundance, and 46% are not detected (nitrogenous compounds).

Discussion
Reproducibility of morphological and metabolic data in EcoFABs
This study investigated the reproducibility of morphological and metabolic responses of the
model grass B. distachyon grown in EcoFABs in phosphate‐su�cient and phosphate‐de�cient
mineral medium and in chemically complex but sterile soil extract. We purposely chose
phosphate starvation as an experimental system, as the morphological and metabolic
responses of plants are well described and should be reproducible in a system such as the
EcoFAB. The soil extract medium was added to represent a more natural environment, but it
was sterilized to exclude the e�ects of microbial metabolism on exudation and to lower
variability of the system.

We found that B. distachyon FW, phosphate content, and metabolic pro�les were distinct for
our experimental conditions and that these responses were reproducible across the four
participating laboratories. The traits investigated included tissue FW and phosphate content,
total root length, and metabolic pro�les of roots and exudates. These results compare
favorably to a related study comparing three Arabidopsis thaliana genotypes grown in soil in
pots by 10 laboratories (Massonnet et al., 2010) where, similar to this study, materials were
distributed from one laboratory, growth conditions were monitored at each laboratory, and
one laboratory analyzed leaf morphology and metabolomic and transcriptomic pro�les.
Although one trait was similar between a core group of four laboratories, all traits signi�cantly
varied across laboratories. The authors attributed the variance to the strong in�uence of small
environmental changes in their soil pot system (Massonnet et al., 2010). Our EcoFAB setup
comprised a more uniform and controlled growth environment than pots �lled with soil, which
is likely one cause of the higher reproducibility observed here. Another equalizing factor might

https://nph.onlinelibrary.wiley.com/action/downloadFigures?id=nph15662-fig-0005&doi=10.1111%2Fnph.15662
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have been the use of sterilized soil extract in this study, which did not take into consideration
the complex physical and mineral properties of soil, or the e�ects of microorganisms. It could
be that integrating these factors in future EcoFAB studies might increase the variability of the
system. It will be important to investigate the reproducibility as well as the morphological and
metabolic responses of plants to microbial communities and soil mineralogy, as natural soils
were identi�ed as main contributors shaping root morphology, plant C exudation, plant–
microbe interactions, and rhizosphere extension (Bulgarelli et al., 2013; Holz et al., 2017;
Koebernick et al., 2017; Edwards et al., 2018). Overall, we conclude that the reproducibility of
plant traits in soil extract EcoFABs is a promising �rst step towards developing plant growth
systems generating reproducible data that are relevant to �eld environments.

Metabolic pro�les of roots were more distinct than of exudates
Root metabolic pro�les were clearly distinct between experimental treatments. Phosphate‐
su�cient roots were abundant in nucleosides, amino acids, organic acids, and phosphorous
compounds, whereas phosphate‐de�cient roots accumulated nitrogenous compounds, and
soil‐extract‐grown roots were de�cient in nitrogenous compounds, but accumulated
carbohydrates (Fig. 4). It will be interesting to investigate whether shoot metabolic pro�les are
similarly distinct between experimental treatments in a future study.

The metabolites detected in B. distachyon root exudates in this study (Table S3) were
comparable to metabolites detected in exudates of other grasses, such as wheat (Iannucci
et al., 2017), maize (Zea mays; Carvalhais et al., 2011), rice (Bacilio‐Jiménez et al., 2003), Avena
barbata (Zhalnina et al., 2018), and dicots such as Arabidopsis (Chaparro et al., 2013). Similarly,
the B. distachyon exudation pro�le varied with developmental stage, as reported for other
plants (Fig. S1; Chaparro et al., 2013; Zhalnina et al., 2018).

The largest exudate metabolic di�erences in this study were observed between plants grown in
soil extract and soil extract controls without plants. Surprisingly, we did not �nd many
statistical di�erences in exudates of plants grown in phosphate‐su�cient vs ‐de�cient
conditions. For many plants, an increase in organic acid exudation in low phosphate conditions
was reported (Neumann & Martinoia, 2002; Plaxton & Tran, 2011; Thijs et al., 2016), which was
not found in our dataset. This might be due to several reasons. First, plants were grown
without phosphate for the entire growth period and might have ceased di�erential exudation
when sampled after 3 wk. Second, the small EcoFAB volume likely allows for re‐uptake of
exuded metabolites, masking di�erential exudation of compounds. Third, the exudation
response of B. distachyon to phosphate starvation might not be as pronounced as in other
species and be below the detection limit in our assay. Future experiments focusing on the
timing and magnitude of B. distachyon exudation changes in response to phosphate starvation
would be able to address these points. The clear di�erences observed for FW, tissue phosphate
content, and root metabolic pro�le indicate that the plants indeed were starved for phosphate
in our experimental setup.



3/1/2019 Multilab EcoFAB study shows highly reproducible physiology and depletion of soil metabolites by a model grass - Sasse - - New Phytologi…

https://nph.onlinelibrary.wiley.com/doi/full/10.1111/nph.15662 18/29

Plants deplete metabolites from soil extract
The main di�erences in exudate metabolic pro�les in this study were due to a depletion of
metabolites from soil extract by plants (Fig. 5; Table S3). With our experimental setup, we are
unable to determine whether metabolites are depleted due to uptake by plant roots or due to,
for example, chemical reactions caused by an altered pH around plant roots. Experiments with
isotopically labeled compounds spiked into soil extract could address the fate of metabolites of
interest in future experiments.

In addition to depletion of metabolites, a trend for increased citric acid levels in soil‐extract‐
grown plants was observed. This might constitute a starvation response, given that exudation
of organic acids is a characteristic of phosphate‐limited plants (Neumann & Martinoia, 2002;
Plaxton & Tran, 2011). The fact that half of the soil extract metabolites (among them, organic
acids, amino acids, nucleosides, and carbohydrates) are depleted by plants is surprising, as it
suggests that plants not only are producers, but also consumers of a signi�cant amount of
compounds. Various nitrogenous compounds are depleted from soil extract by plants. Among
them is pterin, which is a folate precursor. Folate is an essential part of human diet, and thus
studying uptake of pterin by plants to elevate folate levels might be an interesting
bioforti�cation strategy (Strobbe & Van Der Straeten, 2017). Xanthine is part of the purine
degradation pathway in plants and can act as a sole N source for A.  thaliana growth (Brychkova
et al., 2008). Similarly, there could be direct utilization of thymine and thymidine for synthesis
of nucleic acids and of N‐acetyl‐L‐glutamic acid for synthesis of amino acids. In addition, plants
deplete complex organoheterocyclic compounds such as the ascorbic acid precursor
gulonolactone (Smirno�, 2018), as well as simple carbohydrates such as sucrose. Uptake of
these compounds by roots would indicate that plants grow partially heterotrophically in
speci�c environments, importing simple and complex biomass precursors.

There is only a small amount of literature regarding uptake of metabolites by roots: amino
acids and sugars were reported to be imported by roots in mineral medium assays where
compounds were spiked in (Jones & Darrah, 1994; Yamada et al., 2011), whereas organic acids
are likely not imported at signi�cant amounts (Jones & Darrah, 1995). There is evidence that
plants are capable of (re)importing C from environments (Jones & Darrah, 1993), but overall,
the scope of how much and which metabolites are taken up by plants from natural
environments is currently unknown. In another experimental system comprising cyanobacteria
and associated heterotrophs, it was found that the primary producer depleted 26% of
biological soil crust metabolites, whereas soil heterotrophs only depleted 13% of metabolites
(Baran et al., 2015). This might suggest that photoautotroph organisms in general not only
release, but also deplete, a signi�cant amount of compounds from the environment. Plants
might compete with microbes for nutrient soil organic compounds in certain environmental
conditions. Besides nutritional functions, compounds could act as signals, as exempli�ed by a
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recent study that found the depletion of plant‐derived phenolic acids to be associated with
rhizosphere microbes (Zhalnina et al., 2018).

Many of the plant‐depleted metabolites contained N, phosphate, or S groups (Fig. 5; Table S3),
which suggests that plants not only use inorganic forms, but also more complex compounds as
nutrients. Consistent with this hypothesis, compounds containing the N, phosphorus (P), and S
groups are low in soil‐extract‐grown roots, likely indicating a fast turnover rate. It was
suggested that amino acid uptake might account for 30–90% of imported N, depending on the
environmental conditions (Jones & Darrah, 1994; Yamada et al., 2011), but overall, data on how
much elements are taken up as inorganic vs organic compounds is missing. By contrast to N‐,
P‐, and S‐containing compounds, carbohydrate‐type compounds were of high abundance in
soil‐extract‐grown roots, likely due to a low external demand for carbohydrates by plant tissues
(Fig. 4).

Interestingly, plants depleted metabolites from soil extract in a selective manner, suggesting
that the plant controls depletion of metabolites to a certain degree. Similarly, the di�erence
between root and exudate metabolic pro�les (Figs 4, S6) indicates that plants control exudation
to some degree. Selectivity in import and export processes could be achieved by the presence
of transport proteins that were described for a number of metabolites (Sasse et al., 2018), and
investigation of transport processes is a promising direction for future studies. We conclude
that plants not only signi�cantly alter their environment by export, but also by depletion of
metabolites.

Distinct plant growth in soil extract
In this study, plants were grown in basal salt medium widely used in standard laboratory
settings, and in soil extract medium that includes water‐soluble metabolites but that excludes
additional factors de�ning soils, such as presence of other metabolically active organisms or
solid soil particles.

We observed an increased root : shoot ratio in plants grown in soil extract, which might point
to nutrient limitations (Cai et al., 2011), consistent with the low phosphate content of soil
extract and of soil‐extract‐grown plants (Figs 2b, S3). Interestingly, altered root : shoot ratios
were recently also detected for wheat genotypes grown in di�erent soils (Iannucci et al., 2017),
suggesting that di�erent soils might a�ect root : shoot ratio and possibly also metabolic
pro�les in di�erent ways.

The most prominent phenotypic di�erence observed for soil‐extract‐grown plants was the
four‐fold increase in root hair length compared with other plants (Fig. 3). Root hair elongation
can be caused by altered nutrient levels (e.g. phosphate, N, potassium, iron, micronutrients)
(Senga et al., 2017; Zhang et al., 2018), and depends on the growth condition used (Nestler
et al., 2016). Further, the response to phosphate is concentration dependent (Bates & Lynch,
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1996), which might be the cause for the di�erent root hair phenotype observed in phosphate‐
de�cient medium vs phosphate‐limited soil extract. Alternatively, the presence of microbes and
microbe‐derived metabolites that alter plant hormone homeostasis could also cause the
phenotype observed in soil extract (López‐Bucio et al., 2007; Ortiz‐Castro et al., 2011; Vacheron
et al., 2013; Zamioudis et al., 2013). Compounds such as tryptophan and salicylate detected in
soil extract are reported to alter root morphology (Vacheron et al., 2013), and thus are
candidates for causing elongated root hairs. We suggest that the long root hair phenotype
observed could be a result of soil extract nutrient levels and speci�c concentrations of signaling
compounds. The determination of the causal factor(s) resulting in the long root hair phenotype
represents an important future direction.

Root hair length was shown to have a signi�cant impact on how plants grow in natural soils,
and how plants interact with their environment. Root hairs alter physical properties of the soil,
such as the extension of the rhizosphere and the pore size development in soils (Holz et al.,
2017; Koebernick et al., 2017). Root hairs also a�ect biotic interactions by de�ning the
rhizosphere and the amount of C exuded from roots (Holz et al., 2017; Koebernick et al., 2017).
The complex morphological and metabolic alterations of B. distachyon when grown in soil
extract stress the importance of not only considering standard laboratory growth media, but
also more natural substrates when studying plant–environment interactions. It would be
interesting to investigate how root hair length changes when solid particles, microbial
communities, or both are added back to the soil extract used in this study, to investigate
morphology changes in a more natural environment. In addition, the observation that
increased root hair length was restricted to primary roots but not observed on lateral roots
highlights the need for high spatial resolution when measuring root traits, even in a simpli�ed
system like the EcoFAB.

In conclusion, EcoFABs are reproducible tools to study a variety of topics, and this
reproducibility enables interlaboratory studies of plant–environment interactions. Their low
cost, �exibility, and compatibility with metabolomics studies enables investigations of
increasingly complex conditions simulating speci�c natural environments. We found that
B. distachyon growth in EcoFABs was reproducible across four laboratories for a number of
morphological and metabolic traits, including tissue FW and phosphate content, total root
length, and metabolic pro�les of root tissue and root exudates. In addition, plants grown in soil
extract exhibited an altered root : shoot ratio and elongated root hairs, and depleted half of
the investigated metabolites from soil extract. An important next step in the development of
more �eld‐relevant EcoFABs will be the ability to include solid materials and microbial
communities that re�ect additional important aspects of soils.
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