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Abstract

Cancers rely on multiple, heterogeneous processes at different scales, pertaining to many 

biomedical fields. Therefore, understanding cancer is necessarily an interdisciplinary task that 

requires placing specialised experimental and clinical research into a broader conceptual, 

theoretical, and methodological framework. Without such a framework, oncology will collect 

piecemeal results, with scant dialogue between the different scientific communities studying 

cancer. We argue that one important way forward in service of a more successful dialogue is 

through greater integration of applied sciences (experimental and clinical) with conceptual and 

theoretical approaches, informed by philosophical methods. By way of illustration, we explore six 

central themes: (i) the role of mutations in cancer; (ii) the clonal evolution of cancer cells; (iii) 
the relationship between cancer and multicellularity; (iv) the tumour microenvironment; (v) the 

immune system; and (vi) stem cells. In each case, we examine open questions in the scientific 

literature through a philosophical methodology and show the benefit of such a synergy for the 

scientific and medical understanding of cancer.

Keywords

driver mutation; clonal evolution; multicellularity; tumorigenesis; tumour microenvironment; 
oncoimmunology; cancer stem cells; philosophy of cancer

I. INTRODUCTION

The biological complexity and heterogeneity of cancer make it very difficult to 

circumscribe, apprehend, control, and cure. Oncology currently faces countless challenges, 

not only biological and clinical but conceptual and theoretical too.

The importance of conceptual clarity is indisputable when considering, for example, 

central notions such as ‘cancer stem cells’ (Batlle & Clevers, 2017) or ‘tumour-associated 

neoantigens’ (Schumacher, Scheper & Kvistborg, 2019). In such cases, the definition one 

adopts can have a major impact on the experimental and clinical work that follows and on 

the interpretation of results, as demonstrated by philosophers (Laplane et al., 2018; Pradeu, 

2019; Fagan, 2021). For example, the therapeutic strategy of targeting cancer stem cells 

is based on the definition of stemness as a constitutive property of the cells, but other 

conceptions of stemness are possible, suggesting alternative therapeutic strategies (Laplane 

& Solary, 2019). The benefit of defining terms and engaging in theoretical thinking is also 

clear when considering how other scientific disciplines could shed light on cancer biology 

– for instance, when evolutionary biologists ask in what sense tumours ‘evolve’ (e.g. Maley 

et al., 2017), when ecologists argue that tumours have properties of ecosystems (Pienta et 
al., 2008), when developmental biologists suggest that tumours can be seen as developing 

‘organs’ (Egeblad, Nakasone & Werb, 2010), or when physicists characterise tumours as 

material objects where physical forces and properties influence progression and treatment 

(Nia, Munn & Jain, 2020). One particularly fruitful approach for connecting different 

Pradeu et al. Page 4

Biol Rev Camb Philos Soc. Author manuscript; available in PMC 2024 February 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



disciplines is through the formulation of integrative theoretical frameworks, especially 

when they are mathematically formalised (Bialek, 2018), as illustrated by many stimulating 

examples in oncology (e.g. Frank, 2003; Pacheco, Santos & Dingli, 2014). Conceptual 

clarification and interdisciplinary integration of methods and knowledge can thus enrich our 

understanding of cancer and suggest new therapeutic avenues.

Continuing a long history of theoretical thinking in oncology since at least the 19th century, 

many theories of cancer coexist today. Yet most of them face four difficulties. First, they 

tend to be narrow in scope, for example by proposing that one aspect of cancer might 

be considered as ‘the’ cause of cancer and/or as the best possible therapeutic target (e.g. 

somatic mutations, aneuploidy, telomerase activity, cancer stem cells) (Paduch, 2015). 

Second, they often remain speculative, lacking compelling empirical support and/or direct 

clinical applications. Third, they are generally disconnected from medical theories of cancer, 
which are understood as descriptions of common patterns of neoplastic development in 

patients (Clark, 1995). Finally, most of them remain verbal, i.e. are not expressed in 

mathematical form, although major contributions to the mathematical modelling of cancer 

have been made in the last two decades (Komarova, 2005; Frank, 2007; Altrock, Liu & 

Michor, 2015). Overcoming these difficulties is necessary for building a genuinely fruitful 

theoretical oncology.

We argue that philosophy can contribute to this aim through its classic tools of conceptual 

clarification, critical assessment of scientific assumptions, analysis of argumentative 

consistency, formulation of new concepts, theories or research programs, and connection 

between different disciplines (Pradeu et al., 2021). Note that (i) philosophy here refers to 

a set of tools or methods, rather than content (the idea is not to apply traditional ideas 

from philosophers to cancer, but to use philosophical methods); (ii) we defend a pragmatic 

use of philosophy with the clear intent of improving oncology; (iii) these methods are 

also used by scientists, especially conceptually inclined ones. So what we are describing 

here is ultimately a continuum of scientific contributions. Philosophers, because of their 

strong background in logic and argumentative reasoning, can operate the above tools with 

higher degrees of thoroughness and freedom. Scientists have better experimental skills 

and more expert knowledge in their area of specialisation. This spectrum of skills makes 

the cooperation between these two communities particularly fruitful to build a theoretical 

oncology (Laplane et al., 2019b).

To make progress in this direction, we have gathered philosophers belonging to a tradition of 

philosophical intervention in science with scientists from various backgrounds – biologists, 

medical doctors, physicists, and mathematicians – to illustrate, through the examination of 

six major challenges, how insights coming from conceptual, theoretical, and philosophical 

perspectives can advance current and future knowledge in cancer biology (Fig. 1).

II. HOW TO UNDERSTAND THE ROLE OF MUTATIONS IN CANCER AND 

HEALTHY TISSUES

The oncogene and tumour suppressor gene framework, according to which cancer 

emerges from mutations of particular genes, gained dominance in the 1980s (Morange, 
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1997). However, progress in sequencing technologies resulted in the discovery of an ever-

expanding list of potential oncogenes, complicating the understanding of which mutations 

play a causal role in cancer, as analysed by a philosopher (Plutynski, 2021c). Moreover, 

it has become increasingly clear that normal tissues also accumulate mutations with age, 

giving rise to clones which may or may not transform into overt cancers (Wijewardhane, 

Dressler & Ciccarelli, 2021). Beyond genes, the tumour micro- and macro-environment (see 

Section V) as well as epigenetic alterations also contribute to cancer development.

Cells accumulate mutations. Yet most of these mutations have no obvious impact on cell 

function or phenotype. Which mutations, then, are involved in cancer, and how do we know? 

The concept of ‘driver mutations’ offers, in theory, a simple way to distinguish the mutations 

that matter in cancer from those that play no causal role, called ‘passenger mutations’. 

However, what it means to play a causal role in cancer is not always straightforward. 

First, what do we mean by ‘causal’? And can it be quantified? Mathematical theories of 

causation based on structural models and philosophical accounts of causation could help 

clarify the causal role of driver mutations in the future (Woodward, 2003; Malaterre, 2011). 

In particular, the innovative approach of computer scientist and philosopher Judea Pearl, 

based on the construction of causal diagrams (Pearl & Mackenzie, 2018; Halpern & Pearl, 

2020) could be especially useful in cancer research (Greenland, Pearl & Robins, 1999; 

for a philosophical discussion, see Vineis, Illari & Russo, 2017). Second, some mutations 

may play no direct role in cancer cells’ hallmarks, but may have an indirect causal role, 

by disrupting the process of mitosis, thus leading to higher rates of mutation. Should such 

mutations count as drivers? As this example illustrates, the causal role of a mutation is often 

indirect and uncertain. Thus, the concept of ‘driver mutations’ is vaguely defined, leading to 

disagreements on how best to identify them and determine their causal role.

To know whether a mutation is driver or passenger, one would need functional data or 

experimental assessment of the mutation’s impact on the cells. The main way of doing this 

is by introducing the mutations of interest in mice or in cell lines and studying their impact. 

These studies face the limits inherent to all experimental models, need to be made for each 

mutation in each cell type of interest, and lead to an endless process as functional effects of 

a given mutation frequently depend on other mutations already present in the cell. Different 

researchers can perform the same experiment and obtain different results due to differences 

in genomic and cellular context. An alternative is to infer the driver status from sequencing 

data. Recurrence of mutations (the fact that the same mutation is observed in multiple 

samples) is taken as evidence of its causal role in cancer development. The underlying 

assumption here is that mutations are unlikely to be observed to recur so often by mere 

chance. Yet, assessing which alterations are drivers and which are merely passengers or false 

positives for a given cancer type or subtype is proving more challenging than anticipated, as 

emphasised by Plutynski (2021c).

The first reason is practical: many confounding factors, like gene size, position effect, 

chromatin openness, or frailty of particular sequences can change the likelihood for a 

particular mutation to occur at each genome base. These issues lead to a difficult balance 

between risks of false positives and false negatives (Lawrence et al., 2013). The Pan-Cancer 

Analysis of Whole Genomes Consortium failed to identify driver mutations in 5% of 
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samples (The ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium, 2020). 

Recent studies have highlighted the existence of passenger hotspots, i.e. inherently more 

mutable genomic sites leading to false positives (Hess et al., 2019), or possible biases in 

the mutation rate, with a lower mutation rate in gene bodies (Monroe et al., 2022) (of 

note, this raises the question of whether the mutation rate is lower in driver mutations). 

Ambiguities surrounding the concept of driver mutation may in part reflect our current state 

of knowledge and may partly be solved by future technological and computational progress. 

But even there, there is a place for theoretical work. The direction of such progress depends 

on where the community thinks progress should be made, i.e. what should be examined. The 

analysis of underlying assumptions behind competing methods of identifying such genes 

also appears as a particularly powerful motor to identify unanticipated confounders and 

accompany progress.

The second reason is conceptual: ‘driver’ is itself a concept in flux, currently conflating 

two meanings. Although originally intended to refer to mutations that played some role in 

the selective advantage, or growth fitness, of cells (drivers drive clonal expansion) (Maley 

et al., 2004), the concept has expanded to cover any mutation to any gene that plays 

some functional role in cancer (drivers drive the disease). These two claims only partially 

overlap and should be disentangled to avoid flawed inferences. Some mutations induce a 

selective advantage without being malignant (Wijewardhane et al., 2021). Sequencing of 

non-malignant tissues has shown the accumulation of mutated clones with aging in multiple 

tissues (Kakiuchi & Ogawa, 2021). While some mutations conferring a fitness advantage 

are enriched in cancers, others are instead enriched in non-cancer tissues. This is, for 

example, the case for TP53 and NOTCH1, respectively, in the oesophagus, raising the 

question of whether the latter mutations might in fact protect against cancer (Martincorena 

et al., 2018). A mouse model illustrated that non-cancerous mutant clones can efficiently 

eliminate nascent oesophageal tumours through cell competition (Colom et al., 2021). 

Likewise, functional studies have shown that partial loss-of-function of Arid1a and Kmt2d, 

observed in liver tissues but not cancer, can confer a non-malignant selective advantage 

in response to liver injury (Zhu et al., 2019). Conversely, some mutations can induce a 

malignant phenotype while being neutral or even deleterious in terms of fitness, such as 

SRSF2 mutations in the haematopoietic system (Bapat et al., 2018). Thus, assessing which 

mutations are true drivers is difficult because what the operational criterion intends to 

measure is itself a vague, open-ended, and transient category.

Moreover, there is no clear boundary between driver and passenger mutations, but rather 

a continuum, as the phenotypic impact of a mutation can vary broadly, from none to 

drastic. Originally ‘hitchhiker’ mutations were said to be carried along in a selective sweep 

driven by a cancer mutation (e.g. p16); currently there are open questions about whether 

purported passenger mutations play some functional role in cancer. Some have suggested 

a ‘mini-driver’ model, given that multiple nearly neutral mutations could have impacts 

similar to a driver mutation (Castro-Giner, Ratcliffe & Tomlinson, 2015). Conversely, a 

combination of mathematical modelling, computational analysis, and experimental work 

suggested that the burden of passenger mutations can be damaging (McFarland et al., 2013, 

2017) and could be a barrier to cancer progression (McFarland, Mirny & Korolev, 2014). 

The same mutation can be driver, neutral, or detrimental depending on the context. The 
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selective environment in which the cell finds itself, the level of expression of the gene in 

that cell, the associated mutations, and the order in which mutations occur, can all impact 

how the mutation affects a given cell. KRAS (Kirsten rat sarcoma) oncogenic mutations, for 

example, are the prevalent driver oncogene in pancreatic ductal adenocarcinoma (PDAC), 

but they lead to transformation in specific contexts only, such as chronically inflamed 

tissues (Guerra et al., 2007), or in specific cells like acinar cells in which telomerase is 

activated (Neuhöfer et al., 2021). Furthermore, the same mutation can be driver, neutral, or 

detrimental depending on the evolutionary trajectory of the cancer cell, which itself depends 

on intratumoral heterogeneity and drug-selection pressure (Swanton & Govindan, 2016). 

For example, in EGFR (epidermal growth factor receptor)-mutated lung adenocarcinomas, 

the T790M mutation only becomes a driver under the selective pressure of first-generation 

EGFR inhibitors. The concepts of driver and passenger mutations should thus be conceived 

as both quantitative and context dependent.

The success of targeted therapies in cancers with well-defined driver mutations such 

as BCR-ABL1 (breakpoint cluster region-ABL Proto-Oncogene 1) in chronic myeloid 

leukaemia offered hope that similar strategies might be used across different malignancies. 

However, applying this model to other cancer types has proved challenging, in part owing to 

limitations in identifying actionable driver mutations. Conceptual confusion between ‘driver 

mutation’, ‘oncogene addiction’, and ‘actionable addiction’ needs to be dispelled. A driver 

gene can be an oncogene for a given tumour, that is, can be so essential to tumour growth 

that the inhibition of this driver leads to oncogenic shock and immediate shrinkage of the 

tumour (Hahn et al., 2021). If a targeted therapy halts this process, then that driver gene 

is also an actionable mutation. But there are many driver genes that are not necessarily 

actionable. For example, until very recently the KRAS gene was considered ‘undruggable’ 

even though it is considered as a driver gene in 25–30% of lung adenocarcinomas. Finally, 

some actionable mutations are not driver mutations, and likewise, non-oncogene addiction 

has been described in cancer cells (e.g. Bermúdez-Guzmán, 2021). Philosophers have thus 

argued that in order to avoid pathologizing incidental mutations and/or essentializing the 

role of driver mutations in cancer, these three concepts should be extricated (Darrason, 

2017).

Overall, this shows that the concept of driver mutation is relative, not absolute, and 

it is important to disentangle its contribution either to clonal expansion and/or to 

oncogenic processes (partially overlapping processes). This distinction is important for data 

interpretation. For example, scientists are surprised that some driver mutations, such as 

SRSF2P95H in blood cancers, lead to clonal disadvantages in their experimental setting. 

But the expectation that this so-called driver mutation should provide clonal advantage to 

the cell reflects the implicit misleading assumption that a mutation is inherently a driver 

mutation or not, and a confusion between the contribution of a gene to clonal expansion 

versus to a phenotype. Additionally, conceptual clarification may have critical consequences 

in clinical practice. For example, disentangling the complexity of mutational dynamics has 

implications for the demarcation between normal, premalignant, and malignant cell growth, 

and pragmatic problems such as when and how to treat (is the mutation actionable?). 

Conceptual clarification may help avoid the common conflation of driver mutations and 

actionable variants, which may affect patients’ expectations regarding cancer treatment.
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III. CLONAL EVOLUTION IN CANCER

A major challenge for understanding and treating cancer is that tumours are composed 

of heterogeneous cells and change over time. As such, cancer progression is generally 

understood as an evolutionary process referred to as ‘clonal evolution’ (Nowell, 1976). 

New sequencing technologies and phylogenetic methods have been successfully applied to 

uncover cancer cell evolution. This proved a fertile approach. However, several conceptual 

questions remain open, particularly on the exact role of natural selection in cancer, on what 

promotes and maintains heterogeneity among cancer cells in a patient, as well as what 

counts as a ‘clone’.

(1) To what extent is natural selection explanatory?

The evolutionary framework in oncology is dominated by the idea that cancer cells evolve 

by natural selection, driving disease progression (Morange, 2012). But to what extent 

exactly? What can evolve by natural selection and under which circumstances is a question 

that has received much attention from philosophers and theoretical biologists (Lewontin, 

1970; Okasha, 2006). Cancer cells meet the minimal conditions for natural selection: they 

accumulate variations that can impact their fitness (i.e. the rate of their proliferation within 

the organism), and are inherited through cell division. There is therefore no doubt that 

they can evolve by natural selection, nor that they often do, sometimes exhibiting a large 

fitness advantage (Williams et al., 2018). However, recent work, in which mathematical 

modelling has played a key role, has shown that neutral evolution might be more preeminent 

than anticipated, at least after cancer initiation, and could occur in 30% of solid cancers 

(Williams et al., 2018). Key unresolved questions concern whether neutral evolution only 

occurs when natural selection has driven cancer cells to their local optimum, or whether 

genetic drift can sometimes be predominant. An interesting question is whether, and 

how often, pre-existing neutral variations become driver mutations when the ecological 

circumstances change, such as during therapy.

Measuring the fitness of cancer cells within a patient’s tumour poses mathematical as well 

as conceptual challenges. For example, the size of the clone is often taken as a sign of the 

cells’ fitness: cells with the same fitness should expand at the same rate, while higher clonal 

expansion indicates higher fitness. This widespread interpretation of clonal expansion relies 

on the assumption that the effective population size is large. The census population size 

is indeed high: 1 cm3 of tumour may contain around a billion cancer cells. The effective 

population size can however be smaller if only a subset of cancer cells can proliferate 

indefinitely, as posited by the cancer stem cells (CSCs) model (see Section VII). In this case, 

only the alterations acquired in the CSCs can meaningfully contribute to clonal evolution, 

the others being lost through cell exhaustion (Greaves, 2013). The quantity and proportion of 

cancer cells that are CSCs may vary drastically depending on cancer type and stage. If small, 

then mathematical modelling shows that clonal expansion could occur by mere chance 

(Calabrese, Tavaré & Shibata, 2004; Cannataro, McKinley & St Mary, 2017; Cannataro & 

Townsend, 2018). Clonal outgrowth may thus not always be driven by fitness advantages, 

as discussed by a mathematician, a philosopher and a biologist (Lyne, Laplane & Perié, 

2021). This distinction can have major consequences, for example during surveillance of 
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minimal residual diseases after treatments, or for the development of adaptive therapies 

against cancer. In all these instances, and many others, sorting out clonal expansion due to 

fitness advantage from drift is of critical importance to both scientific understanding and 

making clinical decisions (Lyne et al., 2021).

Natural selection is often perceived as central in explaining the emergence and development 

of cancer, and response to treatment. However, not all selected traits are explained in the 

same manner by natural selection. Selection can act as a mere sieve, changing the proportion 

of cells with different phenotypes and leading to ‘simple’ adaptations, or it can lead to the 

emergence of new traits, called ‘complex’ adaptations. Philosopher Peter Godfrey-Smith 

identified quantitative characteristics of a population which determine the likelihood that 

natural selection will generate complex, qualitatively novel adaptations (Godfrey-Smith, 

2009). In cancer, there is a widespread view that cancer cells regain the ability for complex 

adaptations, an ability typically repressed in somatic cells. The ‘hallmarks of cancer’ 

(Hanahan & Weinberg, 2011) have for instance been conceived as complex adaptations 

in that they represent convergences (Fortunato et al., 2017; Somarelli, 2021). However, using 

Godfrey-Smith’s framework, philosopher Pierre-Luc Germain (2012) questioned this view 

and showed that cancer cells properties depart from paradigmatic Darwinian populations, 

making complex adaptations highly unlikely. Many of their adaptations, such as the ability 

to metastasize, likely result from simple selection of properties that were already wired in 

the architecture of the normal cells. Finally, a further open debate in biology and philosophy 

of biology is whether evolution by natural selection occurs at a supra-cellular level in 

cancers, i.e. whether groups of cancer cells, such as metastases, could be the product of a 

multilevel selection process (Lean & Plutynski, 2016; Germain & Laplane, 2017).

(2) What is a clone?

Cancer cells form a dense phylogenetic tree of cells in which various alterations such as 

mutations, which may affect their phenotype, are inherited. In the clonal evolution model, 

this evolution is generally represented in a simplified tree of ‘clones’. Clones are groups 

of cells that come from a common ancestral cell and share the same genotype. In this 

traditional view, clones have different properties and fitness, depending on their mutations, 

and can evolve under the effect of natural selection (or neutral evolution, as discussed in 

Section II.1). The notion of clone therefore exemplifies what evolutionist Ernst Mayr (1959) 

described as ‘typological thinking’: all cells of a clone are conceived as exemplars of a same 

type.

The notion of a clone is a useful simplification, but it brings with it conceptual difficulties. 

As analysed by a group of philosophers and scientists (Jourdain et al., 2021), the cells of 

a given clone are not genetically identical, but are only identical with respect to a subset 

of mutations deemed relevant. As such, defining ‘clone’ precisely requires identifying the 

relevant mutations. This may be possible in principle by using the distinction between 

passenger and driver mutations, given that only driver mutations can increase the cells’ 

fitness and thus explain the evolutionary properties of the clone. But the concept of driver 

mutation itself is not consistently defined (see Section II). A change in the definition of 

driver genes thus implies change in how we conceptualise a clone, and in turn, track and 

Pradeu et al. Page 10

Biol Rev Camb Philos Soc. Author manuscript; available in PMC 2024 February 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



reconstruct clonal evolution. This has consequences for measures of clonal diversity. Current 

measures of clonal diversity rely on counting the number of clones (richness) and their 

relative size (evenness). Changing which traits are used to identify clones will change both 

the number and size of clones and thus will impact the evaluation of clonal dynamics.

The traditional genetic view of clonal evolution only offers a partial account of the inherited 

properties that can contribute to the evolution of cancer cells. Increasing attention is given to 

epimutations, which technical improvements help bring to light (Pan et al., 2015; Gravina, 

Ganapathi & Vijg, 2015; Ushijima, Clark & Tan, 2021). Heritable epigenetic alterations 

can occur without identified genetic mutations, and can sometimes even drive relapse (Li 

et al., 2016). Other traits such as altered tumour microenvironment can also be passed 

on through generations of cells and can benefit cancer cells’ growth (see Section V). The 

observation of the presence of microbes in cancer cells, and their potential impacts on cancer 

cells’ fitness led a group of biologists, mathematicians and philosophers to advocate for 

a multispecies view of clonal evolution in which both cancer cells and microbial lineages 

are tracked and integrated (Sepich-Poore et al., 2022). The respective causal contributions 

of these traits can vary from one cancer type to another. Chronic myeloid leukemia and 

ependymomas illustrate two extremes of a spectrum: while the former served as a model of 

well-characterised genetic clonal evolution, ependymomas are conceived as epigenetically 

driven tumours, with no recurrent genetic/genomic alterations (Mack et al., 2014; Michealraj 

et al., 2020).

As emphasised by an interdisciplinary group, some of these difficulties can be met by 

revising the definition of clones to encompass non-genetic traits (Duchmann, Laplane & 

Itzykson, 2021). This is increasingly feasible with single-cell multi-omics technologies, 

including spatial transcriptomics which can help track niche inheritance. Furthermore, 

tracking intra-clonal heterogeneity could promote new research. For example, the degree 

of heterogeneity inside a genetic clone could be measured to assess its consequences for 

clonal evolution and treatment escape.

However, the existence and plausible relevance of non-genetic traits pose the question of 

whether clonal lineages can accurately capture heterogeneous inheritance. It is, for instance, 

possible that genetically distinct clones inherit the same micro-environmental stimuli and 

hence epigenetic traits (e.g. Michealraj et al., 2020). In such a context, the clonal lineage 

approach would struggle to capture the epigenetic similarity. The possible mix of horizontal 

and vertical transmission of intracellular microbes (Sepich-Poore et al., 2022), as well as 

the horizontal transfer of mitochondrial DNA (Hekmatshoar et al., 2018; Burt et al., 2019), 

and cell fusion (Miroshnychenko et al., 2021), further complicate the picture. The clonal 

evolution model holds great potential for oncology, yet as we have shown here, conceptual 

analysis is required to implement and revise the model in directions that can lead to medical 

innovation.

IV. CANCER AND MULTICELLULARITY

Cancer is often conceptualised as a breakdown of the rules of multicellularity (e.g. 

Greaves & Maley, 2012; Aktipis et al., 2015; Trigos et al., 2018). This idea, integral 
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to the famous ‘hallmarks’ of cancer (Hanahan & Weinberg, 2011), is now widespread, 

even in textbooks (Pezzella, Tavassoli & Kerr, 2019). Trivially, cancer – whose definition 

involves uncontrolled cell proliferation – can occur only in multicellular organisms. Yet 

is there a more constitutive connection between cancer and multicellularity? Can the rich 

scientific (Bonner, 1998; Niklas & Newman, 2016; Herron, Conlin & Ratcliff, 2022) and 

philosophical (Michod, 2005; Okasha, 2005; Love, 2016) literature on multicellularity shed 

light on cancer, for example by contributing to explaining how and why it occurs, what its 

underlying principles are, and by suggesting novel experiments and therapies? The cancer–

multicellularity connection illustrates the fecundity of both better defining core scientific 

concepts and integrating into a unifying and coherent framework lessons from different 

disciplines (evolutionary biology, developmental biology, philosophy, and mathematics).

A prevalent claim is that cancer must be thought of as a disruption of the cooperative 

mode of life built in the evolutionary transition from unicellular to multicellular organisms 

(Nunney, 1999; Gatenby, Gillies & Brown, 2010; Aktipis et al., 2015; Trigos et al., 2018). 

This idea leads to two questions: (i) how do the features of cancer specifically relate to 

multicellularity; and (ii) does cancer constitute an instance of ‘cheating’?

(1) How do the features of cancer specifically relate to multicellularity?

One approach suggests that cancer is a deregulation of the core processes selected in 

evolution for their capacity to ensure the cohesion of multicellular organisms (Gatenby 

et al., 2010; Greaves & Maley, 2012; Aktipis et al., 2015). This includes traits such as 

control over cell proliferation and division of labour. Although that claim seems intuitive 

as these traits are undeniably disrupted in cancer, it raises at least four difficulties. First, is 

it saying that cancer correlates with a deregulation of multicellular cooperation (which is 

trivial), or that deregulations of multicellular cooperation cause cancer? Only the second 

claim would really be useful, but more detailed experimental evidence is required to 

substantiate it. Second, multicellularity appeared at least 25 times through evolution (Niklas 

& Newman, 2016), so saying that cancer is a disruption of multicellularity requires a 

precise account of how it emerged several times in different branches of the tree of life, 

whether these realisations of cancer share the same characteristics, and a detailed analysis 

in terms of evolutionary homologies or convergences. Third, the idea that cancer results 

from a loss of multicellularity traits neglects that unicellular organisms possess many of 

these so-called ‘multicellularity traits’ (e.g. division of labour, control of cell proliferation) 

and associated genes (Nedelcu, 2020). Fourth, some cancer features are novel instances 

of multicellularity rather than manifestations of a loss of multicellularity [typically when 

tumours are conceptualised as novel quasi-organs (Egeblad et al., 2010; Sprouffske et 
al., 2013)], including when cancer cells disseminate not as unicellular entities but as 

multicellular clusters (Cheung & Ewald, 2016). Given these difficulties, a more accurate 

and promising concept is that cancer is a partial breakdown of certain core features of 

multicellularity, but future research must clarify which features, and why. Past work of 

philosophers examining how the major evolutionary transitions to multicellularity occurred 

and defining rigorously the core features of the various forms of multicellularity (Okasha, 

2005; Arnellos, Moreno & Ruiz-Mirazo, 2013; Love, 2016) will be useful here. An 
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intriguing long-term prospect would be that future therapies may target only these specific 

features of multicellularity that are deregulated in cancer.

Another claim that often accompanies the first claim but is logically independent is that 

all multicellular organisms can develop cancer (Aktipis et al., 2015; Greaves, 2015). If 

true, this observation would undeniably strengthen the first claim. The obvious problem 

is that this necessarily presupposes a broad definition of cancer – one that most medical 

oncologists and cancer biologists will find unduly inclusive. For example, Aktipis et al. 
(2015) say that cancer or ‘cancer-like phenomena’ can be found in virtually all multicellular 

organisms, but their definition of cancer presupposes what is in question by assuming that 

cancer is a disruption of multicellularity, which allows them to count phenomena such a 

fasciation in plants as instances of ‘cancer’. With narrower definitions of cancer, focusing 

for instance on histological disorganisation and/or on dissemination and invasion (those that 

most cancer specialists adopt), many multicellular organisms do not get cancer. Plants are 

a prime example (Doonan & Sablowski, 2010) (although see White & Braun, 1942). It is 

of course expected that any account of where cancer can be found in the tree of life (i.e. 

any analysis in terms of comparative oncology) will depend on the definition one adopts 

of ‘cancer’. Yet an exclusively terminological discussion is not helpful. What proponents 

of the idea that cancer exists in all multicellular organisms must do is to show that 

this integrative conceptual framework generates novel testable hypotheses and promising 

therapeutic avenues. This approach has been tried (e.g. Aktipis, 2020, p. 161ff.), especially 

by citing ‘adaptive therapies’, which consist of controlling the tumour without destroying it, 

to avoid the development of treatment resistance (Gatenby et al., 2009; Chmielecki et al., 
2011). Yet adaptive therapies could work even if the claim that all multicellular organisms 

develop cancer is wrong, the two claims being logically independent. So, more work is 

needed to formulate predictions specific to the idea that cancer exists across all multicellular 

organisms.

Another obvious challenge to this idea is that some metazoans (paradigmatic instances of 

cohesive multicellular organisms), e.g. mole rats, almost never develop cancer (Seluanov et 
al., 2018). One possible explanation would be that certain multicellular organisms do not 

have cancer at all; another explanation would be that all multicellular organisms can have 

cancer but some have developed highly efficient anticancer mechanisms (Seluanov et al., 
2018). Another possibility would be that non-cancerous multicellular organisms like mole 

rats have a special kind of multicellularity. All this suggests that it would be more promising 

to explore how differences in the many multicellular modes of life that appeared through 

evolution lead to different potentialities and realisations of cancer than to make an overall 

claim about cancer being present everywhere multicellularity is.

(2) Does cancer constitute an instance of ‘cheating’?

Recently, the idea that cancer is a form of cheating with regard to the multicellular organism 

has gained traction (Nunney, 1999; Aktipis et al., 2015; Greaves, 2015; Aktipis, 2020). 

This hypothesis can have interesting clinical consequences, e.g. the possibility that there are 

pre-cancers that we miss because they do not form tumours (Aktipis et al., 2015).
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In a minimal and metaphoric sense, tumours cheat by hijacking the organism’s resources 

(Suijkerbuijk & van Rheenen, 2017; Plutynski, 2018a). Yet ‘cheating’ has a more specific 

meaning in theoretical evolutionary biology, related to the social evolution framework, 

developed by Hamilton (1964a,b), Maynard-Smith (1964) and others, and explored by 

theoretical biologists (Frank, 1998) and philosophers (Birch & Okasha, 2015; Birch, 2017): 

there is cheating if and only if an individual benefits from a cooperative group without 

contributing, and increases its fitness at the group’s expense. Cheating in this sense occurs 

even in non-cognitive organisms, e.g. social amoebae (Strassmann, Zhu & Queller, 2000) 

and bacteria (Velicer, Kroos & Lenski, 2000). If the social evolution framework also 

applies to cancer, then important consequences follow, such as the possibility of viewing 

cancer through the lens of kin selection (Hamilton, 1964a,b). A parallel can be drawn 

with microbes, where the application of the social evolution framework has proved to have 

far-reaching consequences (West et al., 2006). Interestingly, mathematical models integral 

to the field of evolutionary game theory, already used in oncology for describing various 

phenomena including cooperation between cancer cells (Archetti & Pienta, 2019), may also 

shed light on cancer cells defined as cheaters with regard to the organism’s normal cells 

(Csikász-Nagy et al., 2013).

Many evolutionists, however, reject the idea that cancer cells are strictly speaking ‘cheaters’, 

at least in the sense applied to paradigmatic ‘cheaters’ such as selfish genetic elements. In 

their view, cancer cells are evolutionary dead-ends (they die with the organism) (Gardner, 

2015a,b), so their capacity to proliferate at the organism’s expense does not influence the 

next generation (with respect to the higher level’s regeneration time) (Shpak & Lu, 2016) 

and ultimately cannot be considered an adaptation. Transmissible cancers [in Tasmanian 

devils (Sarcophilus harrisii), dogs, and bivalves] are an exception, as they do constitute a 

genuine instance of cheating (Shpak & Lu, 2016).

As recently demonstrated by philosopher Samir Okasha (2021), the main way in which 

(non-transmissible) cancer may be considered a genuine form of cheating is if the so-called 

‘atavistic’ hypothesis holds. Atavism says that cancer represents a reversion to a mode of life 

found in unicellular ancestors, for whom it was beneficial, and which was suppressed during 

the evolutionary transition to multicellularity (Davies & Lineweaver, 2011; Lineweaver, 

Davies & Vincent, 2014; Lineweaver et al., 2021). If atavism is true, then cancer cells 

are genuine cheaters because they express the selfish tendencies that our cells potentially 

possess, but which have been suppressed in the transition to multicellularity. It also follows 

from atavism that cancer therapies should target unicellular-associated processes.

Yet many objections have been raised against atavism. The genes described by atavism’s 

proponents as ancestral genes reactivated in cancer are not actually repressed in normal 

circumstances and then suddenly activated in cancer: instead, they are highly conserved 

genes, which play important roles in many normal developmental processes, such as cell 

proliferation. Moreover, genetic, genomic, cellular, and other dysfunctions found in cancer 

seem absent in today’s unicellular organisms and early metazoans. Cancer cells would be 

better seen as ‘defective’ unicellular entities, as they lack traits/genes that play important 

roles in unicellular organisms (Nedelcu, 2020). Perhaps more compelling arguments in 

favour of atavism will be developed in the future but, for now, it seems safe to conclude 
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that it has not been demonstrated that cancer is a case of cheating as defined in the social 

evolution framework.

Overall, connecting the scientific literatures on cancer and multicellularity constitutes a 

promising and highly interdisciplinary avenue for future research, provided that it builds 

on the rich work on multicellularity developed both by scientists (Bonner, 1998; Niklas & 

Newman, 2016, 2020; Herron et al., 2022) and philosophers (Okasha, 2005; Arnellos et 
al., 2013; Love, 2016; Bich, Pradeu & Moreau, 2019) and that it leads to more precise 

characterizations of cancer and novel testable hypotheses. Future collaborations between 

scientists and philosophers are likely to contribute to that programme.

V. DEFINING THE TUMOUR MICROENVIRONMENT

Beyond tumour-intrinsic properties, the role of the tumour microenvironment (TME) 

in cancer development and dissemination has been increasingly recognised over recent 

decades. An early approach, in the specific context of cancer dissemination and metastasis, 

was the suggestion of Paget (1889), that not only the ‘seed’ (tumour cells) but also the 

‘soil’ (the predisposition of certain tissues and organs to facilitate colonisation by cancer 

cells) played a role in metastasis (Fidler, 2003). Starting from the 1970s a convergence of 

insights from developmental biology, vascularization studies, and immunology affirmed the 

importance of the TME and spurred an entire field devoted to exploring it (Bissell et al., 
2002; Maman & Witz, 2018).

The TME is often conceived as the proximal tissue context in which the tumour cell 

population is embedded, i.e. all the non-malignant elements located in or around the tumour. 

Determining the exact roles of the TME in cancer development and treatment response 

remains an essential aim of current cancer research (Anderson & Simon, 2020). Key 

efforts include characterisation of TME components, their causal roles, either individually 

or together, and their interactions over time with cancer cells, especially before, during, 

and after therapy. However, as demonstrated by collaborative work by philosophers and 

scientists (e.g. Laplane et al., 2018), without a consensus definition of what the TME 

comprises or its boundaries, the pursuit of these goals can be hindered.

Conceptual analysis is useful to improve the TME definition by clarifying inclusion–

exclusion criteria. For instance, must all TME components be non-tumoral, or can they also 

include tumour or tumour-like features (e.g. populations of cancer cells serving as supportive 

niches for other cancer cells; field cancerization)? Under which conditions should a non-

TME entity or process be reconsidered a TME component? For example, recent research 

has suggested a role of the intratumoral and gut microbiomes in cancer (reviewed in Sepich-

Poore et al., 2021), an observation that raises central conceptual issues, as emphasised by 

work done at the interface of biology, medicine, and philosophy (Sepich-Poore et al., 2022; 

Sholl et al., 2022). Should we consider them part of the TME, and why? When microbes 

invade cancer cells within the tumour (Bullman et al., 2017; Nejman et al., 2020; Kalaora 

et al., 2021), are they part of the TME or of the tumour? Can one element be part of both? 

Do we consider the causal influence of an element differently depending on whether it is 

considered part of the tumour versus the TME?
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Loosely defining the TME as an encompassing list of components with no clear spatial 

delimitations makes it difficult to understand not only what the TME is, but where exactly 

the TME is located. For example, although the immune system, the nervous system, and 

the microbiome have all been grouped under the TME, their influence can extend from 

local to distant to systemic effects, which favours a broader macroenvironment, systemic, 

or organismal environment (McAllister & Weinberg, 2014; Laplane et al., 2018) rather than 

a neoplasm-circumscribed TME. Better assessing the spatial organisation of the tumour 

environment from the molecular scale to the organ and even the full body is not just a 

semantic goal. Spitzer et al. (2017) illustrated the practical importance of considering distant 

elements in a mouse model. They demonstrated that the efficacy of immunotherapies is 

highly dependent on immune responses at the systemic level. During tumour rejection, 

immune cell proliferation is not maintained in the TME, and instead occurs at the periphery 

(including lymph nodes and spleen). The clinical implication is that immunotherapies should 

favour peripheral immune responses and facilitate the migration of effector immune cells 

to and from the periphery. This is important across many cancer types, but especially so 

in PD-L1-negative tumours, where recruitment of effective antitumour immunity from the 

peripheral compartment turns out to be crucial (Hellmann et al., 2019).

As far as the microbiome is concerned, in certain cancer types, microbes may transit 

from other body sites to reach tumours but can also exert immunological effects from afar 

(Mager et al., 2020; Lam et al., 2021). In this case, should we consider both distal and 

proximal microbes as TME features? Are they always present or does their translocation 

to the tumour make them dynamic features? Notably, distal, proximal, and intracellular 

bacteria may influence cancer progression and patients’ response to therapies but through 

different pathways (Sepich-Poore et al., 2021). Facing such under-specifications of the 

spatial extension of the TME, Laplane et al. (2018) offered a conceptual and philosophical 

framework that proposes criteria to delineate different ‘layers’ of the microenvironment, 

from the most local to the most distant. This approach raised several key conceptual 

challenges: (i) ‘TME-intrinsic’ approaches neglect the role played by distal elements in the 

organism (Laplane et al., 2019a); and (ii) the relationship between an element’s location and 

causal role is often nuanced and associated with the various layers of environment (Laplane 

et al., 2018).

Empirical and conceptual understanding of the spatial role of TMEs in cancer progression 

and dissemination can be boosted by spatially explicit mathematical models (Anderson & 

Quaranta, 2008). In a landmark study, Anderson et al. (2006) proposed a model predicting 

that invasion results from cancer cells competing with each other for space and resources 

in a harsh tissue microenvironment (as opposed to the dominant view that the main factors 

would be mutations in key genes or a faulty signalling network). Although some medical 

oncologists question the empirical relevance of such mathematical models, they are very 

useful, including because they prompt biologists, medical doctors, and philosophers alike to 

offer explicit and formalizable definitions of central oncological concepts.

Temporal distinctions concerning the TME are equally important. Mina Bissell has played 

a key role on this topic since the 1970s–1980s (e.g. Bissell, Hall & Parry, 1982) – and, 

more generally, for putting the TME at the centre of cancer biology’s agenda. Conceptually, 
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she proposed to distinguish the normal microenvironment, which is not just without cancer 

but rather actively prevents tumorigenesis – especially by maintaining the normal three-

dimensional (3D) structure of the tissue and the extracellular matrix – and the transformed 
microenvironment, which promotes tumorigenesis (Bissell & Hines, 2011). Characterising 

the factors involved in the switch from one type of microenvironment to the other and 

enabling precise control of these factors would patently aid cancer treatment (Weaver et 
al., 1997). ‘Dynamical reciprocity’ (Bissell et al., 1982; Bissell & Radisky, 2001; Bissell & 

Hines, 2011) refers to the reciprocal causality between the cell and the extracellular matrix, 

active in health and disease. This framework is reminiscent of the dialectical approach 

developed in evolutionary biology and ecology, which explores the co-construction of the 

organism and the environment (Lewontin, 2000), and has played an important role in 

the literature on niche construction (Odling-Smee, Laland & Feldman, 2003). Bissell’s 

framework has had a significant impact on cancer science and medicine, illustrating 

how theoretical reframing of cancer causation can improve our understanding (Bertolaso, 

2016; Plutynski, 2018a,b; Bertolaso & Strauss, 2021). Another important conceptual 

framework based on temporal considerations has been put forward by Laconi (2007). He 

distinguishes what we could call the precancerous TME from the tumour-induced TME (the 

microenvironment inside the focal lesion that cancer cells contribute to create). Both play a 

key role in cancer origination, evolution, and progression (Marongiu, Serra & Laconi, 2018).

History and philosophy provide opportunities to revisit old notions, explore how their 

meaning has been transformed through time, and determine how re-defining them today can 

be fruitful. For example, a more rigorous conceptualization of Paget’s notions of ‘seed’ and 

‘soil’ may help assess the fecundity of newly proposed terms, e.g. ‘self-seeding’ (feedback 

loops between the primary and secondary sites) (Norton & Massagué, 2006) or ‘fertilizer’ 
(the capacity of some elements, especially immunological ones, to render a given soil 

more congenial to metastatic cells) (Ng, 2019). Such conceptual reframing inspired novel 

classifications of causal factors in cancer dissemination in collaborative work by biologists 

and philosophers (Rondeau et al., 2019). It may also generate new testable hypotheses about 

organ-specificity of metastasis (i.e. the non-equiprobability of dissemination to different 

organs for a given tumour, which was Paget’s founding observation) (Obenauf & Massagué, 

2015) and the concept of a premetastatic niche (Kaplan, Rafii & Lyden, 2006), and may also 

produce new experimental programs and therapeutic opportunities for preventing metastasis. 

Several mathematical models of metastasis building on the seed and soil hypothesis and the 

concept of self-seeding have been developed. For example, using a Markov chain/Monte 

Carlo stochastic mathematical model, Newton et al. (2013) propose distinguishing ‘sponges’ 

(organs with high absorption probability) and ‘spreaders’ (low absorption probability) and 

challenge the classic idea that metastatic spread occurs in a unidirectional way. Applying a 

similar model to breast cancer longitudinal data, the same group showed that patient survival 

depended on the location and characteristics of the first metastatic site to which the disease 

spread (Newton et al., 2015).

Finally, in addition to circumscribing what the TME is, it is also important to characterise 

how we can study it, because experimental tools and therapeutic strategies are intimately 

tied to and inform theoretical framework development. Techniques such as organoids 

and spheroids that model per-patient therapeutic efficacy are very promising, while also 
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raising numerous challenges because they exclude known or probable TME components 

(Alessandri et al., 2013; Shamir & Ewald, 2014; Huch et al., 2017; Simian & Bissell, 

2017; Tuveson & Clevers, 2019). Another interesting question deserving more conceptual 

attention concerns the myriad of innovative approaches developed to explore the TME. A 

multiscale investigation of the TME, both spatially and temporally, is required, though for 

this approach to work a complex hybridization strategy between these approaches will be 

needed. Physicists and engineers can help explore the TME in three dimensions (Wirtz, 

Konstantopoulos & Searson, 2011; Bhat et al., 2016; Nia et al., 2020). They can examine 

mechanical cues coming from the TME (extracellular matrix, ECM). Nanotechnologies 

used in neuroscience can be applied to the study of the TME (Soria et al., 2020). 

Physicists can also contribute to better understand, model, and experimentally test in 
vivo, with both controlled hyperproliferation and magnetic forces, the role of physical 

forces in tumorigenesis, most prominently pressure (Fernández-Sánchez et al., 2015; for 

a philosophical discussion, see Green, 2021). These approaches raise important questions 

about trade-offs in cancer modelling, such as the benefits and challenges of switching from 

traditional two-dimensional (2D) to more complex 3D models. Collectively, the combination 

of such perspectives from diverse fields not traditionally involved in cancer research or 

treatment, including philosophy and the physical sciences, may contribute key advances in 

cancer biology, diagnostics, prognostics, and therapeutics.

VI. UNDERSTANDING THE PARADOXICAL ROLES OF THE IMMUNE 

SYSTEM IN CANCER

There is now a consensus that the immune system influences cancer progression, both 

in animal models and in humans (Chen & Mellman, 2017). Depending on the context, 

the immune system can inhibit or, more paradoxically, promote cancer growth and 

dissemination (de Visser, Eichten & Coussens, 2006), simultaneously or sequentially. The 

original concept of immunosurveillance (i.e. the idea that the immune system can detect 

and eliminate cancerous tumours), suggested by Thomas and Burnet in the 1950s and later 

expanded by them (Burnet, 1970; Thomas, 1982), made the explicit evolutionary hypothesis 

that cancer was central in the emergence of adaptive immunity some 500 million years 

ago. It also connects immunology with multicellularity (see Section IV) by stating that 

the immune system has been a key policing mechanism in the evolutionary transition to 

multicellularity (Pradeu, 2013).

Since the 2000s, the ‘immunoediting’ concept has superseded ‘immunosurveillance’ (Dunn 

et al., 2002). According to the former, there are three phases in the interactions between 

the immune system and a cancerous tumour: elimination, equilibrium, and escape (by which 

some resistant tumour cells evade the immune system, and can disseminate into the body) 

(Schreiber, Old & Smyth, 2011). Immunoediting offers an evolutionary approach to the 

within-organism crosstalk between the immune system and cancer: one way by which the 

immune system may promote cancer progression is by selecting immuno-resistant variants 

in a population of cancer cells.
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In addition to the role of adaptive immune cells (responses mediated by lymphocytes and 

associated with immunological memory) in cancer, the importance of innate immune cells 

[especially macrophages, neutrophils, and natural killer (NK) cells] in either controlling or 

promoting cancer is increasingly recognised (Mantovani & Sica, 2010; Woo, Corrales & 

Gajewski, 2015). Innate components play a central role in inflammation, which depending 

on the context may favour or disfavour cancer (Mantovani et al., 2008). Emerging 

approaches combining immunology, evolutionary biology, and ecology have been suggested 

recently, and may open up novel research areas, with therapeutic potential (Kareva et al., 
2021).

Years of basic research have led to the development of various immunotherapies, which 

involve inducing and/or restoring anti-cancer immune responses. Immunotherapies have 

raised much enthusiasm (Kelly, 2018), especially after the award of the 2018 Nobel Prize to 

James Allison and Tasuku Honjo for their discoveries related to the lymphocyte inhibitory 

receptors CTLA-4 (cytotoxic T-lymphocyte-associated protein 4) and PD-1 (programmed 

cell death protein 1). Today, ‘checkpoint inhibitors’ and CAR (chimeric antigen receptors)-T 

cells are the most extensively studied immunotherapies (June & Sadelain, 2018; Sharma 

& Allison, 2020), while innate immunity-based immunotherapies are increasingly seen as 

promising and complementary (Mantovani & Longo, 2018; Demaria et al., 2019). Yet there 

is much to learn – for example why only a minority of patients respond to immunotherapies, 

or how one can clinically manipulate the dual roles of the immune system (‘anti’and ‘pro’ 

cancer) in service of therapy. An important development of the field is the increasing 

appreciation that most successful therapies are likely to combine immunotherapies with 

other types of therapies, including radiotherapy and chemotherapy.

Immune cells and molecules constitute an essential component of the tumour 

microenvironment and macroenvironment (Joyce & Fearon, 2015; Binnewies et al., 2018; 

Laplane et al., 2019a). The role of tumour-infiltrating immune cells in cancer control has 

been documented by many groups. The ‘immune contexture’ denotes the density, immune 

functional orientation, and spatial organisation of the immune infiltrate in relation to patient 

survival (Fridman et al., 2017; Bruni, Angell & Galon, 2020). This led to the concept of 

‘immunoscore’ (Galon et al., 2012), a quantification of immune cell infiltration shown to be 

a prognostic factor superior to traditional classifications in colorectal cancer and potentially 

in other cancer types (Pagès et al., 2018; Angell et al., 2020). The same group has shown 

the influence of the immune system as a selection pressure on the metastatic process 

through space and time (Angelova et al., 2018). Overall, the role of immune components 

is extremely complex, not only because they can be cancer-inhibiting or cancer-promoting, 

but also because how they influence cancer development and progression depends on their 

interactions with the tumour, the stroma, and the rest of the organism, and because all these 

interactions change through time (Binnewies et al., 2018). A clear manifestation of the fact 

that immune responses must be understood not just at a local level (e.g. tumour, lymph 

nodes) but also at the organismal level is that the efficacy of immunotherapies is dependent 

on system-level immunity (Spitzer et al., 2017). Related to this, an increasing number of 

experimental and clinical studies are exploring the influence of the microbiota, diet, or 

psychological stress on immune responses to cancer (Sepich-Poore et al., 2021). Thus, it is 
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crucial to understand the dialogue between the immune system and cancer both locally and 

systemically.

As examined by philosophers (Pradeu, 2019; Zach & Greslehner, 2023), the role of the 

immune system in cancer progression is at odds with most traditional views in immunology, 

especially those based on self–non-self and defence (Pardoll, 2003). Most tumours originate 

from the self, and yet are detectable by the immune system. This raises a conundrum of how 

exactly the immune system is able to detect and respond to tumours. It has been suggested 

that the immune system recognises tumour ‘neo-antigens’ (i.e. abnormal epitopes expressed 

by cancer cells following an accumulation of mutations) (Schumacher et al., 2019), the 

underlying idea being that the more tumour surface patterns differ from ‘self’patterns, the 

more likely they are to be detected and eliminated by the immune system. This approach 

ultimately connects immunogenicity with the tumour mutational burden (Klempner et al., 
2020). Yet it remains a challenge to define rigorously the notion of neo-antigen (Lu & 

Robbins, 2016) and situate it on the spectrum going from non-self to self through altered 

self (Houghton, 1994). Moreover, as philosophical analysis has shown, the very concept 

of an ‘altered self’ is tautologically defined, when an antigen is said to belong to the 

‘altered self’ because it is immunogenic, creating a logical circularity (Pradeu, 2012). A 

rigorous assessment of the neo-antigen notion may help determine how it can be used in 

clinical practice (Klempner et al., 2020; Capietto et al., 2020), including in cases where 

the connection between the tumour mutational load and the response to immunotherapies 

is questioned (Yarchoan et al., 2017; Chowell et al., 2022). Clarifying the nature of 

this connection through rigorous conceptual and empirical analyses is crucial, as the use 

of tumour mutational burden has been recently approved by the U.S. Food and Drug 

Administration (Subbiah et al., 2020).

Philosophical and conceptual analysis can help clarify cancer immunogenicity by proposing 

theoretical frameworks departing from the application to cancer of the traditional self–non-

self dichotomy. An important example is the ‘danger theory’, developed in the 1990s by 

Polly Matzinger (Matzinger, 1994) as an explicit critique of the empirical inadequacy of 

the self–non-self theory. This theory explains immune responses as responses to tissue 

damage. In the context of cancer, this led to the quest for damage-associated molecular 

patterns (DAMPs) (Krysko et al., 2013), based on the underlying idea that tumours would 

be immunogenic only in contexts of tissue damage or distress (Fuchs & Matzinger, 1996). 

In the ‘discontinuity theory’ formulated by a philosopher in collaboration with several 

scientists (Pradeu & Carosella, 2006; Pradeu, 2012), the immune system responds to the 

speed of antigenic change, i.e. the time derivative of antigenic difference. This theory 

leads to a new prediction, that tumours changing slowly are unlikely to be eliminated by 

the immune system. This theory opens new therapeutic possibilities: if true, the immune 

responses to cancer could be boosted by increasing antigenic change (Pradeu, Jaeger & 

Vivier, 2013). Such ideas have been tested (Liu et al., 2021) and modelled (Sontag, 2017; 

George & Levine, 2020) in different cancer settings, with potentially significant therapeutic 

consequences, including promises of innate immunity-based immunotherapies, such as 

transformed-induced NK cells that can have both a cytotoxic activity and promote the 

response of adaptive immune cells (Demaria et al., 2019). As predicted by the discontinuity 

theory, NK cells in cancer respond to rapid modifications in their environment and when 
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these alterations are long lasting, NK cells adapt to them by ceasing to be responsive 

(Boudreau & Hsu, 2018). In the future, other types of data could help decide whether this 

theory is valid. For instance, spontaneous or transplanted tumours with different growth rates 

in mice could be compared in the laboratory for their degree of immunogenicity.

Even more crucially, philosophical work can contribute to re-defining the immune system 

functionally. For example, conceptualising the immune system as a system of not only 

defence but also tissue regulation and repair helps understand how the immune system can 

favour cancer growth and dissemination via repair mechanisms (Pradeu, 2019), especially 

considering the connection between cancer and unsuccessful tissue repair (Dvorak, 1986, 

2015). Finally, philosophy in so far as it considers the big picture, could help put research 

on immune–cancer interactions into a wider integrative context (Plutynski, 2013, 2021a; 

Plutynski & Bertolaso, 2018). For example, several conceptually oriented biologists propose 

that immune responses to cancer can be understood only in the context of tissue-level 

regulation (de Visser et al., 2006), including via modulation of the extracellular matrix 

(Pickup, Mouw & Weaver, 2014).

VII. DO STEM CELLS PLAY A CENTRAL ROLE IN CANCER?

Human healthy tissues are maintained by a pool of stem cells that ensure the production of 

new cells necessary for tissue homeostasis and repair. They are also involved in cancers, but 

their role remains a topic of much debate in oncology.

(1) Stem cell division and the risk of cancer

The relationship between stem cell numbers and cancer has long been the focus of 

theoretical attention. Cairns (1975) hypothesised that stem cell tissue architecture may 

have been selected for the protection it confers against cancer: if only tissue stem cells 

can self-renew over long time periods, while all other cells have a limited proliferative 

capacity, differentiate, and die, then any cancerous mutation occurring in non-stem cells 

will be naturally expelled. For cancer to develop, multiple hits need to occur in the stem 

cell population. More recently, there has been an avid debate in the scientific literature 

about the significance of the total number of stem cell divisions in a tissue or organ for 

explaining the variation in the lifetime risk of developing cancer in various tissues. The 

debate started with a controversial publication from Tomasetti & Vogelstein (2015) arguing 

that there was a direct causal relationship between the number of stem cell divisions and 

relative cancer risk. They further argued that one can use this correlation to estimate the 

relative significance of endogenous causes of cancer risk in a particular cancer type or 

subtype and exogenous factors. Dozens of papers have criticised their argument, questioning 

their methods, reasoning, and conclusions. However, the debate has been obstructed by 

hidden premises, conceptual fuzziness, and argumentative inconsistencies. Philosopher 

Anya Plutynski (2021b) offered an analysis of the main issues at stake. For instance, she 

highlighted that many criticisms were due to a lack of clarity on the part of Tomasetti & 

Vogelstein (2015), particularly in the use of the concept of ‘luck’. Apparently opposing 

claims were made based on different understandings of luck. She also highlighted several 

flawed presuppositions in Tomasetti & Vogelstein’s argument, such as taking stem cell 
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turnover to be the exclusive cause of intrinsic relative cancer risk across tissue type. While 

differences in the total number of stem cell divisions in different tissues do provide a 

plausible partial explanation of the differences in lifetime risk of cancer in these tissues, this 

is only one of several endogenous factors at work in carcinogenesis. Moreover, their attempt 

at quantifying the causal implications of accumulation of mutations in stem cells versus 
inherited or environmental factors treated such factors as independent. This was a flawed 

assumption, as well as their assumption that the proportional risk adds to 100. Population 

attributable fraction – the incidence of all cases of a particular disease in a population 

that is attributable to a specific exposure – can add to more than 1 (Krieger, 2017). Some 

individuals with more than one risk factor can have disease prevented in more than one way, 

i.e. removing one cause does not necessarily lower the risk proportionally. This analysis has 

serious implications for cancer prevention. It undermines Tomasetti & Vogelstein’s (2015) 

argument that their quantification could serve as a basis to decide when to invest more effort 

on primary or secondary prevention.

(2) Cancer stem cells

Accumulating data have led to the idea that like normal tissues, tumour development and 

maintenance also relies on a pool of cancer stem cells (CSCs). The CSC model led to the 

hypothesis, in the early 2000s, that eliminating CSCs would be necessary and sufficient 

to cure cancer (Reya et al., 2001), opening new avenues for improving cancer treatment. 

But the identification of CSCs has proved challenging, and many data depart from the 

initial model, leading to confusion about what CSCs exactly are, whether they really exist, 

and debates about whether the CSC model holds. To know whether the CSC model holds, 

one needs to have a clear view of what stem cells are. Stem cells are defined by the 

ability to self-renew and differentiate but this definition faces several issues (Laplane, 2021). 

Philosopher Melinda Fagan framed a useful model that clarifies both what stem cells are 

and what we mean by self-renewal and differentiation. Her model depicts stem cells as cells 

belonging to a lineage in which they have the highest abilities to self-renew and differentiate, 

where these abilities are relative to a set of properties that are characteristic of stem cells and 

differentiated cells of that lineage (Fagan, 2013, 2021). This unifying model allows clearer 

thinking across tissues and species. Heterogeneity between stem cells across tissues creates 

much confusion. We thus also need a clear view of how different stem cells depart from 

each other. Philosophy has a tradition of characterising properties. There are different kinds 

of properties: constitutive, extrinsic, dispositional, relational, etc. Applying this tradition 

to CSCs, Laplane clarified the nature of ‘stemness’ – the property of being a stem cell 

(Laplane, 2016). Current evidence does not converge toward a unified view of stemness, 

but rather suggests that stemness is a different property in different types of stem cells 

(Table 1). In some tissues like the haematopoietic system, stemness is a constitutive property 

of stem cells, whose expression is regulated by the niche – a ‘dispositional property’ 

in philosophy. In others, like the colon epithelium, cells are more plastic, and non-stem 

cells can acquire stemness under the influence of the microenvironment, making stemness 

a ‘relational property’ (a property that is not constitutive and relies on a relationship 

between different entities). For example, physical cues, such as pressure induced by growth, 

were recently found to be able to induce stemness acquisition in mice colon cancer, a 

process blocked by Ret-kinase pharmacological inhibition (Nguyen Ho-Bouldoires et al., 
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2022). Some in vitro experiments performed on breast cancer cell lines, accompanied by 

mathematical modelling, also suggested that regeneration of lost stem cells can occur in the 

absence of a particular microenvironment, with a return of the whole cell population to its 

initial equilibrium in cell composition (Gupta et al., 2011), a case where stemness appears 

as a systemic property (stem cells are substitutable and which cell is a stem cell is regulated 

at the cell population/system level). In cancers, some alterations might change the nature 

of the stemness property. For example, alterations in some myeloproliferative neoplasms 

disrupt the signalling relationship between the leukaemic stem cells (LSCs) and the bone 

marrow microenvironment. This loss of regulation of the LSCs by their niche might make 

stemness become a ‘categorical property’ (still constitutive but no longer regulated by the 

microenvironment). Different types of alteration might impact stemness in different ways 

(Laplane & Solary, 2019), a question that needs further experimental exploration.

Such a conceptual analysis allows a clearer view of the diverse ways in which stem 

cells behave, and come to be, across different tissues, in both normal and pathological 

situations. It also has practical implications for fundamental research, regenerative medicine, 

and therapeutic strategies against cancers. First, for research, depending on what type of 

property stemness is in a given tissue, different experimental procedures will be required 

to understand the potential role of its stem cells. Second, regeneration of tissues relies on 

different requirements depending on what stem cells are. For example, tissues in which 

stemness is a categorical or dispositional property cannot regenerate if their stem cells are 

lost; successful regeneration of a tissue in which stemness is a relational property will need 

the presence of a functional stem cell niche; and so on. Third, the efficiency of anti-cancer 

therapies targeting CSCs or their niche will depend on the nature of stemness (Table 1). 

Targeting CSCs can actually be ‘necessary and sufficient’ to cure cancer when stemness 

is a categorical or dispositional property. Niche-targeting is an interesting alternative when 

stemness is a dispositional or relational property. Stemness as a systemic property appears 

as a blind spot, in need of innovative strategies, if we want to do better than the traditional 

approaches aiming at (but often failing in) eradicating all the malignant cells. More research 

will be required to understand better what triggers stemness acquisition, and what could 

block such acquisition. Overall, this analysis shows that whether the CSC model applies 

might not be the best way to frame research. A better way would be to ask how it may 

apply, which allows us to distinguish four situations and adapt therapeutic strategies to these 

situations.

VIII. CONCLUSIONS

(1) Philosophical, theoretical, and interdisciplinary approaches to oncology have great 

potential to enhance progress in our scientific and medical understanding of cancer (Fig. 

2).

(2) More precise definitions and conceptualizations of cancer biology, and more rigorous 

reasoning are instrumental to disentangling causal and non-causal roles in cancer 

development, a pillar of modern biology. This issue is pervasive throughout this article: 

which mutations are causal and under which conditions (Section II), whether the 

deregulation of multicellular cooperation is causal in cell transformation (Section IV), 
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what elements outside of the tumour cells play a causal role in oncogenesis and cancer 

progression (Section V), and what causal role stem cells play in the risk of transformation 

(Section VII).

(3) They can also help avoiding flawed inferences, as for example those made from clone 

size (Section III) or from characterising a mutation as a ‘driver’ (Section II); and help to 

identify under which conditions a claim is true (Sections IV and VII).

(4) Analysis of hidden assumptions and argumentative consistency can create new testable 

hypotheses, as in the case of the relationship between multicellularity and cancer (Section 

IV), new avenues for research, such as new or more complete evaluations of evolutionary 

dynamics in cancer (Section III), new therapeutic strategies, such as in the case of cancer 

stem cells (Section VII), or for preventing metastases (Section V).

(5) More generally, our review illustrates how more work on the theoretical foundations of 

cancer can have consequences for medical issues such as the demarcation between normal, 

premalignant and malignant stages, depending on the notion of driver mutation (Section II), 

when to treat, depending on the interpretation of clonal expansions (Section III), what to 

target, depending on the conceptualization of the TME (Section V) or of the CSC (Section 

VII), and how to intervene, for example depending on the theorization of the immune system 

(Section VI).

(6) An alliance between biologists, medical doctors, mathematicians, physicists, and 

philosophers is essential for advancing theoretical oncology in ways that will prove 

experimentally and therapeutically fruitful.
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Fig. 1. 
Six examples of cancer topics for which philosophical, conceptual, and theoretical thinking 

is useful.
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Fig. 2. 
A map showing that reaching a treasure sometimes requires a detour. The shortest and 

most obvious route (left) can be misleading. Conceptual, theoretical, and philosophical 

thinking is often a detour, but this detour can be productive or even necessary (right) for 

making scientific progress. The map illustrates that going through different philosophical 

steps can help us reach the final point (represented as a treasure), including by its capacity 

to connect (represented as bridges) different scientific issues, approaches, and communities 

(represented as different regions on the map).
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