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Abstract 
The productivity, precision and performance benefits of Smart Manufacturing are 
unleashed when there is frictionless movement of information – data in context, at the 
right time, among systems, operations and people, that can create value within and across 
all manufacturers and all sizes of plants throughout enterprise supply chains. Line of sight 
to the full economic potential of Smart Manufacturing requires business, leadership, 
market and infrastructure realignments for the “democratization” of “smart” business, 
technology, operational and workforce data practices industry-wide. Access and the 
ability to effectively use operational data in cyber operations (Operational Technologies, 
OT) that are enabled by Information Technologies (IT) and the knowhow to deploy 
Smart Manufacturing solutions are therefore increasingly important to small, medium and 
large manufacturers, providers, integrators and innovators alike, but increasingly 
constrained with today’s manufacturing infrastructure practices. Addressing 
democratization, breaking through barriers and transforming manufacturing to a new data 
centric orientation are key objectives for CESMII, the Clean Energy Smart 
Manufacturing Innovation Institute, the third Institute sponsored by the Department of 
Energy and the ninth out of the fifteen Manufacturing USA national institutes (see 
https://www.cesmii.org).  
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1. Introduction 
 

“Smart Manufacturing” is the transformation of U.S. manufacturing that results 
from disrupting traditional business, organizational, operating, and market structures with 
a radical increase in the availability and use of real time operations data to produce value 
in previously inconceivable ways—a transformation process known as “manufacturing 
digitalization” or “manufacturing digital transformation.” There are significant economic 
and investment opportunities with substantially increased supply chain productivity and 
far better product design with process and machine precision and performance for higher 
value products manufactured better, faster, cheaper with less energy and material.  
Manufacturing processes can be fundamentally improved and made safer with profoundly 
better use of human, control and automation capabilities. New global manufacturing and 
market growth opportunities—powered by next generation digital technologies, 3D 
printing, next generation IT hardware and firmware, 5G, advanced sensors, controls and 
modeling, including artificial intelligence (AI), deep learning and machine learning—are 
all expected to exploit data and information in unprecedented breadth and at a previously 
inconceivable scale. The steady march of digitalization is both accommodating and 
upending legacy manufacturing business transaction structures and markets (how, where 
and among whom manufacturing is done) with shifts toward partnership structures for 
business and operational interoperability and improving what is manufactured.  
 

The reality, however, is that the pace of Smart Manufacturing adoption is highly 
constrained for small, medium and large manufacturers and vendors alike, and slowed 
because of technical and non-technical challenges that include leadership readiness, 
availability of skills, financial constraints, counterproductive market drivers, business 
risk, cybersecurity, and legacy operations. At their core, these challenges combine to 
make accessing data and putting them to use costly, risky, or out of reach. Not only is the 
adoption of Smart Manufacturing slowed, but importantly, the innovation and 
entrepreneurship of developing and deploying the myriad of possible smart, data-based 
applications are curtailed. Manufacturers struggle just to gather the right data. There are 
repeated scenarios of running out of resources before the data can be put to use or 
applications that die because they are one-off systems.  
 
1.1 Smart Manufacturing from a business perspective 
 

Manufacturers that have begun Smart Manufacturing explorations or initiatives 
tend to start with sensing and collecting data to manage operational assets or for better 
quality assurance. For some, the challenge is being able to sense in real time. For others, 
it is the effort to connect legacy equipment cost effectively, even if the sensing 
technology is available. For larger companies, Smart Manufacturing is encompassing 
managed assets in line operations and the integration of upstream and downstream 
effects. For small companies deploying even a single sensor application can be resource, 
skill, time, and risk prohibitive. Data access and interoperability in supply chain 
operations involving small, medium and large companies together have some early 
traction in some industries where tracking and traceability are important, e.g. food 
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industry, but are generally fragmented. Supply chain optimization remains a highly 
complex, risky, and expensive challenge even though many of the economic benefits in 
Smart Manufacturing are with supply chain productivity improvements.  
 

A major common constraint is the increasing complexity of interconnectedness 
with today’s emerging data and information technologies. There is a huge proliferation of 
new software products, platforms and niche solutions for collecting data and addressing 
some operational problem. While IoT and the increasing numbers of automation, sensor, 
robot, machine, and process software platforms add local value, they are significantly 
increasing factory and supply chain complexity and are making data increasingly 
complex to access and use. New cloud platform technologies trap data and exacerbate 
this complexity because vendor markets still drive value from complexity and closed 
infrastructure, not simplicity and operational value. These data complexities increase 
security and operational risks, impacting the speed of implementation and scale up even 
further.  
 

Not only is it a challenge to determine where to start, what product to use, what 
data to collect, and how to scale, it is even more challenging to derive value because the 
data lack context. Manufacturing data are not only “big” but also complex, creating the 
need for context at multiple levels. While critical pathways to economic benefit exist for 
predictive analytics, operational interrogation and advanced diagnostics, they are severely 
constrained by a lack of access to data with the right context, a skills vacuum with the 
modeling practices to take advantage of the data, and the complexity in scaling data use 
across a diversity of use cases. For smaller companies, these are insurmountable barriers. 
The practical reality is that the manufacturing industry overall is creating a marketplace 
flooded with predictive analytics and IoT solutions, leaving manufacturers across the 
country with application ‘pilots,’ questionable ROI, and no way to effectively scale up.  
 

Lastly, it is not uncommon to hear from manufacturers that technology alone is 
not a barrier for them in adopting and scaling Smart Manufacturing. It is instead 
transforming the organization to adopt a digital culture at every level. This cultural 
change is a huge challenge in many industries where change impacts multiple, 
interconnected functions. Finding the right champions to enable this change is not easy, 
particularly when ROI needs to be defined in new ways. Data-driven manufacturing has 
created a significant need for everyone to have skills in consuming and using data, while 
not reducing the need for subject matter expertise to ensure that the data are right, are 
being used in the right context, and the right technologies are being used to solve the 
problem at hand. Complexity, cost, and lack of integrated workforce skills put 
digitalization and Smart Manufacturing out of reach for most manufacturers.   
 
 
2. Smart Manufacturing and democratization 
 

While the barriers to change loom large, the benefit drivers for change are also 
large. U.S. manufacturers are facing even larger cost and regulatory pressures today in a 
global market, driving up an already intense and relentless focus on productivity, 
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precision and performance that now involves restructuring how and where manufacturing 
is done. Decades of investment in continuous improvement and productivity programs 
have exhausted the low-hanging fruit, with these programs plateauing in their search for 
diminishing returns. Fueled by new sensor, data, control, platform, and modeling 
technologies, including the revival of AI and machine learning, the potential with Smart 
Manufacturing and Industrial IoT has sparked new expectation and opportunity. Smart 
Manufacturing is at an early stage of transformation and it is safe to say that most 
manufacturers are in a mode of investigating, learning and developing their Smart 
Manufacturing strategy.  
 

At issue is that much of the innovation and the research is following the same 
patterns seen for the past 25 years. There has been no effort to standardize any of the 
technologies/capabilities in the manufacturing software stack, and, unlike other 
industries, all efforts to consolidate capabilities (through either acquisition or organic 
development) have failed to create organized industry infrastructure (with any level of 
critical mass). Rather, the outcome of 25 years of investment in manufacturing systems 
has resulted in an unbelievably complex installed base of point solutions that is now 
getting worse. There is an incredible proliferation of innovative new IoT and analytics 
startups selling their solutions, each one addressing a narrow slice of a highly complex 
set of operational challenges. The result though is that the pace of increasing complexity 
is now accelerating with the downside effect of increasingly constrained innovation. 
Cybersecurity issues are growing so acute that most manufacturers are making 
impossibly difficult choices every day, weighing production continuity against the risk of 
a security incident. If manufacturers invest in these new point solutions, they are 
propagating and amplifying the very complexities they’re trying to eliminate as they 
work to refresh and consolidate their legacy installed base of solutions. We argue that 
‘what got us here, will not get us there’ (to Smart Manufacturing). 
 

Democratization of “smart” business, technology, operations and smart workforce 
skills, extending and expanding the use of data and advanced operational modeling 
practices to all who can create value, is a business concept that underpins the success of 
Smart Manufacturing and the realization of the full economic and social benefits of 
digitalization. Shared digital infrastructure and application building capabilities that are 
structured and sourced for extended reusability are needed to enable the frictionless 
movement of information – data in context, among real-time operations and the people 
and systems that can create value for every organization. Smart Manufacturing solutions 
are vital for all manufacturers and all sizes of plants, and all of the supply and value 
chains in which they participate. 
 

The legacy of today’s manufacturing systems and transaction-based business 
systems make democratization a business transformation challenge. If democratization 
can approach critical mass, however, siloed, legacy business and operational systems can 
give way to a far more secure, dramatically simpler manufacturing IT environment, 
enabling productivity and performance improvements in every part of the enterprise, 
from sensor to supply chain. U.S. manufacturing and global markets can realign. 
Business and economic opportunities will shift from data isolation strategies to ‘smart’ 
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data interoperability, empowering every employee and every sanctioned partner in a 
supply chain to become an information worker. Manufacturing operations can rebalance 
for data-centric automation and smart worker productivity. The longstanding cultural rift 
between OT and IT will break down as convergence and vendor platform infrastructure 
siloes shift toward the value of open interoperability. Software application markets will 
shift the focus to the operational value of an application, not the value of infrastructure, 
and the creation of de facto standards for manufacturing data infrastructure will enable 
the entire app development and implementation ecosystem to innovate on a scale not 
feasible today. Every stakeholder will be affected by and can take advantage of the 
democratization of information. 
 
3. Today’s complexity of interconnectedness 
 

Fig. 1 illustrates the underpinning of technical complexity with software 
applications in manufacturing operations today. As shown, software products tend to be 
developed specifically for production and work order combinations forming nine largely 
isolated software product cells based on discrete, continuous and batch production types 
and engineer-to-order, made-to-order and made-to-stock work order modes. Software 
products have tended to lock down architecturally first on physical assets, processes and 
production/work order functions. Operational data functions are then embedded and the 
information technology and hardware/software requirements are developed specific to the 
vendor product, production types, work order types and industry. It is very difficult for 
software applications to be reused for other production/work order applications. It is also 
very difficult for embedded information and operational data technologies to be reused 
for other applications. It is not only difficult but counter to market drivers to integrate 
across vendor products. 

 

 
Fig. 1. Legacy software application siloes. 

 
The result of these legacy ‘silos’ is a huge proliferation of independently built 

software applications that offer little reusability. Each comes with its own infrastructure 
and each requires a great deal of individual integration and maintenance. 
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As manufacturers push for more contextualization, information, insights, and 
smart applications, the ensuing complexity is revealed as shown in Fig. 2. Pictured are 
the data interconnections from an actual taxonomy of mission critical manufacturing 
systems required to produce an end-of-shift report. Each individual system (each colored 
box) – generally from different vendors, requires an estimated 1,000 configuration and 
parameter settings to connect the system to data, contextualize the data and bring the 
system into operation. If each of the cross-system data interconnections is automated for 
an enterprise Smart Manufacturing factory or supply chain application, an average of 250 
person-hours per secure interconnection is required. Orchestration of the systems 
information and the modeling of the data to do the end-of-shift report occur in a 
spreadsheet limiting the ability to use the information further. Modern cloud products 
help the IT infrastructure requirements but do not reduce the OT configuration, 
connectivity, and interconnections, effectively trapping data just like on-premise siloed 
vendor applications.  

 
Fig. 2. The complexity of legacy siloes for digitalization. 

 
 
4. Reducing the heavy lift of data modeling and contextualization 
 

Considerable time, effort and expense are invested in the design, development and 
deployment of an individual operational data/modeling system. Each application 
developed produces data models for contextualized data and model configuration, 
knowhow that are not readily reused because of lock-in with physical operation modeling 
and with vendor, type, mode and objective, as shown in Fig. 1. Consider the potential for 
building a data/model system and being able to leverage the knowhow with templates for 
a next similar application. As an example, we use the smart performance application for a 
Steam Methane Reformer (SMR) (see Ref. [1]).  
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The SMR has a large cubical shaped structure with elevation and side dimensions 
approaching 50 ft. and a combustion chamber insulated with refractory walls. The top-
fired furnace has 336 reformer tubes (7 rows each with 48 tubes) and 96 burners and 8 
flue gas tunnels. The burners are arranged in 12 rows of 8 burners. Fuel can be adjusted 
with throttle valves located on each burner. Each of the reformer tubes are 40 ft. in 
length. Careful management of the temperature spatially throughout the furnace is 
required because a persistent temperature of greater than 20 C above the maximum tube 
wall temperature reduces the life expectancy of reformer tubes by half [2]. There are 
significant variations in local furnace temperatures due to variations in fuel and air flows 
to each burner as well as non-ideal flue gas flow patterns inside the furnace.  
 

The Performance objective is to measure and control for a much more even 
spatial temperature distribution at all times avoiding hot or cold spots so the overall 
furnace temperature can be increased to increase energy efficiency and therefore 
hydrogen productivity of the SMR. A total of eight infrared (IR) cameras and 70 
thermocouples were installed to measure the tube wall temperatures and spatial 
temperature distribution throughout the furnace in real time. The harsh, high temperature 
furnace environment and the vibrations of the furnace produce noisy, and at times 
corrupted, IR camera data. Thermocouple data were short lived and rapidly became 
missing information. Real-time IR camera image data were mapped into spatially located 
temperature data points and stored in an on-premise (edge) historian. Additional data, 
such as fuel and production flows, were drawn from the control systems. 
 

As shown in Fig. 3, there are multiple ways to reuse the engineering knowhow of 
having developed and implemented the smart application. Mapping the IR camera image 
data to temperature data, spatially located throughout the furnace, required considerable 
development to ensure spatial coverage, address overlapping camera data, and cross-
verify the spatial temperature measurements from IR images with point values of 
thermocouple data. When the proprietary operating data are separated out, what is left is a 
data model for an IR camera temperature sensor system for a geometrically square SMR 
furnace. We call this an SM Profile for the sensor system as a device (see upper left-hand 
box). To actually use the operational temperature data, the data needed to be further 
contextualized and configured for the subsequent model transformations. Again, 
significant effort went into determining that an axial temperature plane 15 ft from the top 
of the SMR furnace, corresponding to the length of the burner flame, was the best 
location for estimating where tube temperatures would be highest at any point in time. 
Also, axial plane temperatures collected at one-minute intervals and averaged over one-
hour time horizons produced sufficient accuracy and precision. Corrupted IR camera data 
could be crossvalidated and replaced with readings from overlapping camera images. As 
previously mentioned, when the operating data are removed what is left is a 
contextualized data configuration and data template for using the real-time spatial 
temperature data in SMR furnace models (see upper middle box). 
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Fig. 3. Example of knowhow reusability in a smart application. 

 
As shown, real-time operating data are continuously going into a store of 

historical data that are available to build and update a reduced order model (ROM) that 
maps spatially distributed furnace temperatures to spatially distributed fuel settings for 
the 96 burners. The ROM can run fast enough to be used in operation. A Run Optimizer 
is used as a Data Transformation model configured to iterate with the ROM to determine 
optimum burner settings and the size of changes. These are output as a Run Visualization 
for operator action. The configuration of the Run Optimizer as an optimizing controller 
and how it interacts with the ROM is reusable engineering knowhow in the form of 
configurations and workflows about how to configure and use the models. 
 

Two different modeling approaches were applied. One was to build an ordinary 
least squares (OLS) model directly from historical data (see Ref. [3]). Once the OLS Data 
Transformation model was worked out, there remains a reusable ROM configuration and 
a machine learning strategy and routine using furnace temperature and burner setting 
data. We call this a Model Orchestration Activity. These are illustrated in the boxes on 
the left of the graphic. The other modeling approach was to develop a Digital Twin of the 
furnace and use the temperature predictions to build the ROM by iterating between the 
Digital Twin temperatures and the ROM predicted temperatures until convergence. The 
Digital Twin strategy is illustrated with the lower green boxes where there is the Digital 
Twin Data Transformation model itself and a Model Orchestration Activity using the 
Digital Twin to build the ROM. The Digital Twin model is a Computational Fluid 
Dynamics – CFD model (see Refs. [4, 5]), of the furnace developed as an Ansys Fluent 
model constructed with a computational mesh of 30 million nodes that runs on 128 
parallelized CPU cores. A single calculation could take up to 72 h of CPU time to 
converge. Just using the Digital Twin involved another workflow to automate changing 
conditions and converging the computation. The Data Transformation model 
configuration templates and the Model Orchestration Activities are associated with an 
SMR furnace SM Profile. 
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Finally, there is an overall optimizing-control application for leveling and raising 
the temperature distribution in the furnace with the ROM-Optimizer shown in the lined 
box that brings all of the components together. When all of the data models, data 
configurations, data transformations and model orchestration activities are orchestrated 
together they form an Application Orchestration Activity for the SMR furnace. 
 

This SMR example brings out how data modeling, data configurations, model 
configurations, and model and application orchestration activities can be captured as 
reusable templates and workflows that are associated with devices and processes. The 
example also brings out that when appropriately structured these templates can build 
from each other through multiple efforts to extend capability and/or applicability under 
different physical situations. We address this kind of data and modeling application 
capability with Data Centricity. 
 
5. The data-centric view of smart manufacturing 
 

See publications by Davis et al. [6, 7] for a history of Smart Manufacturing and 
the national discussions that influenced its definition. More recently, there have been 
additional characterizations (see Ref. [8]). For this chapter, we use the data-centric 
characterization of Smart Manufacturing developed within CESMII, The Smart 
Manufacturing Innovation Institute. As emphasized on the left of Fig. 4, Smart 
Manufacturing builds first on the concept of “Right Information.” Right Information is 
defined as contextualized, interpreted data in the Right Form, at the Right Time and in the 
Right Place, ready for consumption. Data and Information (i.e. actionable data) are used 
to set up for various manufacturing execution and operational actions through data 
transformations and model orchestration activities. Shown in the blue box are common 
data transformation and model orchestration objectives encompassing exploration 
(model, analyze), reaction (monitor, diagnose, control) and pro action (predict, optimize, 
self-interrogate).  

 
As shown in the middle of Fig. 4, the Right Technology, the Right People, and the 

Right Automation are application orchestrations to enable smart decisions and actions 
and to achieve business and operational objectives. Execution is used to mean any level 
of manufacturing process operation (individual asset to supply chain) that is run to a 
specified set of demand instructions, i.e. a recipe. Human-centered operations are any 
aspects of manufacturing execution run or changed using human decision making. 
Automation is any execution run or changed using algorithmic decision making. 
Operational Technologies (OT) are the digital control, automation, visualization 
execution and business systems and the “OT Data” that reflect physical operation and 
interface with the physical manufacturing facilities. Included in OT are the instantiated 
data models and configurations, data transformations, model orchestrations and 
application orchestrations that are designed, sustained and used in operation. Information 
Technologies (IT) are the data networking, streaming, storage, computation, 
management, security and communications that are conjoined with OT.  
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Fig. 4. The data-centric characteristics of smart manufacturing. 
 

In this data-centric view, IT refers to data that are generated, stored, 
communicated without operational context, while OT data are contextualized, analyzed, 
transformed and used in operational context to actuate physical operations. OT/IT 
convergence foundationally implies OT Data at all times, i.e. data have operational 
context at all times and all places, but are used and enabled by IT capabilities. Data 
transformations in the form of algorithms, machine learned models, simulations, digital 
twins, etc. are synonymous with data in that they are constructed or validated with data 
and are used to produce/transform data for operational use.  
 

Orchestration is used at two levels. First it is used to describe how data 
transformation models are orchestrated with data models and configurations instantiated 
with OT data to meet an individual data transformation objective. Orchestration is also 
used at an application level to describe how multiple data transformations, time, and 
human centered and automated execution come together into an economic, sustainable, 
safe manufacturing enterprise application. Time is a distinguishing attribute for Smart 
Manufacturing in that the value of a Right Action is highly dependent on whether it is ‘at 
the right time’ or ‘in time.’ At a fundamental level Smart Manufacturing requires time to 
be a primary variable such that the overall orchestration, transformation, and execution 
are all responsive to time. 
 
6. The building blocks of smart manufacturing  
 

Fig. 5 illustrates the generalized data-centric building block functions and 
processes that make up Smart Manufacturing. As shown, there is a process comprising 
physical assets, for example a machine, a process operation, or an enterprise, and the 
associated physical sensors and the physical and human means for actuation. Moving 
clockwise, there are physical assets and people that sense, infer, generate and stream 
digitized data of many types, some of which are acted upon at device level forms of the 



	

	 12	

data, e.g. safety functions, interlocks. The two shaded ovals indicate cyberphysical 
interfaces. For example, a sensor is a physical device that generates and stores digitalized 
data. We use the light-colored ovals to indicate a cyber activity. The dark storage icons 
indicate levels of reusable data banks of contextualized data in appropriate storage and 
database management systems.  

 

 
 

Fig. 5. The data-centric building blocks of smart manufacturing. 
 

For operating data to be used for higher level modeling functions, such as 
integrated alarms and visualizations, data are modeled, aggregated, contextualized and 
interpreted to form information – data for purpose. These contextualized data are now 
consumable after appropriate data transformation with model orchestrated activities such 
as analytics, monitoring, diagnosis, etc. which provide higher level operational insights. 
At the highest level of operational execution, data, information and additionally-
transformed data are further contextualized and orchestrated together for optimization, 
prediction, and automated and operator-involved actions that drive high-level operational 
and business objectives. Smart Manufacturing comprises not only the component cyber 
and physical technologies that produce and use data but also the necessary instantiation, 
integration, orchestration and execution of any or all four levels of data-driven action 
throughout a manufacturing enterprise. From a business perspective, Smart 
Manufacturing allows manufacturers and their supply chain partnerships to transform 
their operations from being reactive (responding to what happened) to being proactive 
(predicting when things will happen and influencing future outcomes). 

   
Fig. 5 brings out data as the focus of attention, acting on the physical process. 

There are the cyber functions in the ovals producing progressively greater levels of 
contextualized, transformed and orchestrated data repositories. The lines are data 
connections, interfaces, communications, and security to provision and operationalize the 
data, which we call core capabilities. The storage icons are the database management 
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systems from which the data are provisioned. The vertical bar to the right is the 
Application Orchestration required to make all elements work together and act as an 
overall application in time. From a data-centric perspective, we view the contextualized 
OT data as key assets. There is an overall mindset change in that data are key assets and 
models that act to transform and produce data into useful forms that drive the process. 
 

With reference to Fig. 5, data generation, ingestion, data contextualization, data 
transformation and orchestration are recognized as a repeatable Data Lifecycle pattern, 
which is shown in Fig. 6. Data centricity is the key principle that makes it possible to 
structurally leverage this repeatability. As shown on the left of Fig 6, physical operations, 
facilities, humans-in-the-loop and sensor assets generate data. There needs to be a cyber 
physical interface and the physical OT side framework for validating and contextualizing 
data. Similarly, on the right-hand side, data, after they have been ingested, 
contextualized, transformed, and orchestrated, are provisioned for physical execution 
and/or visualization and human-centered actualization, again requiring a cyber physical 
interface.  

 
 

 
Fig. 6. End-to-end cyber OT data lifecycle model. 

 
This Data Lifecycle view makes it possible to establish Core cyber OT 

capabilities that are reusable and/or sharable for cyber-side data operations (see Refs. [9, 
10]). When separated from physical model types and modes, these cyber capabilities 
make up reusable OT/IT infrastructure that does not need to be reconstructed for each 
physical application even though the physical operation and modeling type may be quite 
different. This separation of cyber and physical data modeling is key to managing a much 
smaller set of core cyber data capabilities and the utility of infrastructure that does not 
need to be built for every application.  
 

The cyber physical endpoints in the two color bars are addressed with SM 
Profiles™ that are templatized operational data contextualization models, data 
configurations and data transformations for physical assets. SM Profiles contain the 
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interfaces and are architected for interfacing physical- and cyber-side data generation and 
first level contextualizations and physical-side visualization, actuation and execution. 
Leveraging cyber and physical in this manner supports vendor agnostic software 
interoperability since the cyber infrastructure can be common for modeling products and 
interoperable with sensor and execution systems through the SM Profiles that are 
structured to integrate with core cyber OT capabilities. 

 
7. Operational data models, SM Profiles, and the SM Innovation Platform 

 
Taking the SMR example in Fig. 3 into more technical detail and, as an 

introduction to the more detailed treatment to follow, data centricity offers the technical 
foundations for OT/IT–converged, “core” cyber-side data services as specifications for a 
Smart Manufacturing (SM) Innovation Platform, which operates as a wireframe. The 
term ‘wireframe’ importantly connotes open platform services with the necessary digital 
interface specifications and services that vendor, experimental, open and community 
source software products and platforms can “slot” into [the wireframe]. Users can more 
easily access and operationalize application products over a full range of on-premise, 
edge, cloud and hybrid data network structures. These wireframe specifications need to 
be instantiated as a de facto standard for deploying ‘smart’, real-time data-centric 
manufacturing operational applications that draw benefit from shared infrastructure. We 
use the term “de facto standard” to mean there needs to be an agreed position taken on 
how these core cyber-side capabilities are structured and integrated and how data models 
and data modeling functions are structured, selected, composed, and orchestrated in the 
SM Innovation Platform [wireframe] to form data-driven applications that address 
operational objectives. The wireframe services themselves are closed in order to manage 
the de facto standard, the cybersecurity and trusted business data exchange processes. 
 

The SM Innovation Platform is purpose-built code that makes it possible to 
construct sets of core cyber OT data services from software products produced by others. 
Corresponding to Figs. 5 and 6, the SM Innovation Platform’s core services include 
secure wireframe capabilities for slotting in software products for data ingestion, data 
contextualization/configuration, and the workflow orchestration of selectable, 
composable and fillable SM Profiles, once instantiated and bound with data. The SM 
Innovation Platform also builds in core data store and management products for 
provisioning data transformations and core trusted services for securely exchanging 
selected business data with a wide range of exchange formats. SM Profiles are OT data 
model templates and device/process model configurations constructed, merged or 
inherited to expose structured data to the wireframe. “Filling in” operational-specific 
information into data contextualization templates and model configuration schema for 
proven manufacturing applications populates an SM Profile instance for ready 
interoperability with and execution in core data services.  
 

As illustrated with the SMR example in Section 4, SM Profiles are physical asset 
data models that have been developed once. When the proprietary operational data are 
removed, what remains is a data model template and model configuration that can be 
scaled for broader industry use when data and/or physical assets are used similarly. When 
multiple SM Profiles are instantiated and augmented with intermediate data 
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transformations, they form Model Orchestration Activity ProfilesTM that may also have 
scalable or reuse value as an orchestrated data transformation in application. When all 
elements are orchestrated together they form an SM Application Orchestration Activity 
ProfileTM. 
 

While these shared core data services radically reduce the cost and time of setting 
up infrastructure for ingestion, contextualization and consumption of data, SM Profiles, 
SM Model Orchestration Profiles, and SM Application Orchestration Activity Profiles are 
the frontline application OT data templates and model configurations that define the 
contextualized data for sensors, devices, machines, and process assets. They are reusable 
and searchable “building blocks” that are manufacturer-independent and vendor-agnostic. 
Furthermore, they are defined for practical use at that level of device or process 
decomposition that offers value in the reusability of the template. For example, a sensor 
and the data models for the data generated are likely useful but data models for individual 
components and circuitry of the sensor are probably not useful.  
 

Fig. 7 brings out the concepts of the SM Innovation Platform and SM Profiles 
together and how they change and impact today’s manufacturing infrastructure. The left-
hand LEGACY view depicts typical single legacy applications in which all OT and IT 
technologies are vertically developed and implemented to the operational application. 
The results are monolithic technology stacks designed uniquely for each product. In the 
TODAY graphic the manufacturing market has seen value in common connectivity 
standards with some emerging headway. OPC or Open Process Communications 
standards are illustrated as an example. Another example is Industrie 4.0, which has 
standardized on physical hardware connections (see Ref. [11]). Also shown are examples 
of how providers of data management capabilities tend to play in TODAY’s 
infrastructure, making it difficult to impossible to use and reuse data across applications. 
The TOMORROW view illustrates that there is continuing progress at the data 
connectivity layer with OPC Unified Architecture (OPC UA), Message Queuing 
Telemetry Transport (MQTT), etc. Importantly, the TOMORROW graphic shows how 
the SM Innovation Platform makes it possible for vendor products to interoperate and for 
contextualized data to be shared and reused within a common infrastructure stack.  

 
The SM Innovation Platform captures four primary leverage points of a common 

infrastructure stack for greater interconnected simplicity: (1) access to expanding data 
ingestion protocols that can be specified and aligned for different SM Profile data models 
or when a single profile may have adapters for multiple protocols; (2) a platform 
“wireframe” for slotting in various software capability services and products into an 
interoperable technology stack of core OT Data contextualization services; (3) the ability 
to build application data model templates and model configurations by separating out 
proprietary operating data (Profile BuilderTM); and (4) the ability to use workflows to 
integrate a wide diversity of vendor application products as Profile products used within 
profile interface structures and data contextualization configurations to form operational 
application systems.  
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Fig. 7. The SM Innovation Platform as new baseline OT infrastructure for ALL vendors 

and App developers to build on and create value. 
 
 
 
7.1 SM Profiles 

 
In a data-centric view, the use of materials and energy, the processing and 

transformation of materials, the formation of parts, and the assembly and packaging of 
units and products in manufacturing operational steps and stages are described by the 
flow and transformation of data. However, data centricity alone is insufficient to address 
contextualized OT data requirements and needs to be enhanced with decision-centric 
modeling to drive contextualization, model transformations and orchestration. For 
example, data contextualized and used for abnormal situation monitoring is very different 
than that same data used for diagnosis. In our earlier SMR example, the use and 
orchestration of data in the simple OLS model leads to an extended derivative profile 
when used with the optimizer. Data centricity together with decision centricity (see Data 
and Decision Centricity Approaches–adapted from INFORMS Analytics Body of 
Knowledge, edited by Cochran, [12]) produces different sub-profiles that enrich a 
common base profile. 
  

As another example, new sensor and modeling systems offer new kinds of data 
and features about how operations and the properties of the product generated by those 
operations come together, but these are contextualized within a framework of expected 
decisions or function. A physics-based process model can produce data and shed light on 
dominant process features acquired with a data-driven model. Similarly, a data-driven 
model can be used to improve the physics of a first-principles model. The two kinds of 
models can be used together operationally to the benefit of the manufacturing objectives. 
This synergy around purpose is brought out with the SMR example. Data and decision 
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centricity are also aligned to significant opportunity with autonomous manufacturing 
assets within an entire value chain enterprise. This is the concept that, as a product moves 
through the steps and stages of production, the product and the operations that make it, 
can communicate to establish and control what is needed locally to ensure the product at 
the end of the value chain. This is the basis for all of the “self’s”—self interrogation, self-
awareness, self-organization and self-repair.  

As brought out in Fig. 6, SM Profiles are the device, system and/or process 
centric and application-oriented operational data models that interface physical- and 
cyber-side data generation and cyber-side data transformations and physical-side 
actuation and execution in context. Profiles include the configurations for data 
contextualization and transform models for different objectives, e.g. prediction, health, 
associated with the device. Importantly, an SM Profile contains the data connectivity, 
contextualization and model transformation forms for an ‘atomic’ cyber physical system 
(CPS). With respect to the cyber-side perspective, an SM Profile is a building block CPS 
device and operational domain that defines the data, information and time environment 
for the data cyberspace associated with the device or process based on the NIST Cyber 
Physical System workgroup report (see Ref. [13]).  
 

An SM Profile cyberspace is typically defined by a vendor product for a system 
but could be defined by a firewall, or an on-premise edge structure. A single sensor that 
stores digital data, a sensor system that is networked to its own historian, a machine that 
collects and stores data, a single actuator supported by a digital data system and a 
controlled operation or set of control operations are all examples of SM Profile device 
and operation cyberspaces. A tightly coupled control system on a device or process forms 
a single SM Profile cyberspace because the data and models are so integrated, and 
individual tasks are indistinguishable. A system that contains the sensor, actuator and set 
of control operations may have a Profile that exposes aggregate data for that system, or it 
may have a compound Profile that depends on the Profiles for each of the constituent 
parts. 
 

Leveraging cyber data and physical operations with structured SM Profiles 

supports vendor agnostic software interoperability since the cyber infrastructure can be 
common for modeling products. Repeatedly-used connections and interfaces with sensors 
and human and machine execution systems are captured in the SM Profiles which are 
architected to use core capabilities of data ingestion, contextualization, management, and 
workflow-based orchestration tools certified by CESMII. 
 
7.2 An SM Profile machine example 
 

We illustrate an SM Profile with a simple machine example for an Extrusion 
Cylinder (see Fig. 8). The Extrusion Cylinder is one device component of an Extrusion 
Press, which is comprised of a Cylinder, Pump, Die and Servo-Valve. It has been 
determined there are actionable advantages to considering each device function and 
operation in its own cyberspace and time view and then orchestrating the data and models 
of each as a system-of-systems to manage the overall function of the Extrusion Cylinder 
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in the Extrusion Press. The actionable advantage has to do with managing and optimizing 
the precision of the product quality as a direct result of the cylinder operation.   
 

 
 

Fig. 8. An example SM Profile with data expectations for an extrusion cylinder. 
 
As shown in Fig. 8 there are equipment specifications, operating inputs, measured 

outputs, modeled measurements, data transformation and model orchestration activities in 
a defined schema that can be associated with this particular device and its associated 
cyberspace time. Importantly, the SM Profile embeds the standards-based physio-cyber 
mechanisms for converting a measurement of interest into digitally communicable data or 
converting digital data into an actuation and a standards-based way to determine 
conversion time and rate of data so that the operational function of the device can be 
predicted and communicated. The SM Profile is able to reference time from an 
appropriate source and it defines the time horizon that establishes the smallest periodicity 
for raw data collection and the smallest window in time that data are to be modeled. 
Reusability addresses structuring and/or building standardized capability so that the clock 
information is explicit and the Profile can do timing calculations within the cyberspace. 
All data produced is used or ingested into data stores where each data point carries 
associated information on time and a set of standards-based structural, descriptive and 
administrative operational meta data. Reusability addresses digitization of measurements 
into communicable data, time and meta data in a standards-based format.  

While Fig. 8 provides a static view of a profile, the importance and value of the 
SM Profile approach is illustrated much more strongly when used in a process of 
developing an SM Profile for an operational application. Consider Fig. 9A-C in sequence. 
Fig. 9A shows Base SM Profile A that has, for example, been produced by the vendor of 
the extrusion press as a deliverable with the device. Shown as a rough XML example are 
specific data points and names, data points as operating inputs, and data points as 
measured outputs. In other words, the vendor provides data names and contextualized 
data useful in the operation of the device. Now consider Fig. 9B where, for example, an 
integrator has worked out how to populate the data using CIP (Common Industrial 
Protocol). By using the Base Profile A and extending it with the CIP Profile B for the 
device there is now a usable combined profile produced by the vendor and the integrator.  
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In Fig. 9C there is a Model Orchestration Activity Profile that calls and executes a data 
transformation with needed data identified and gathered.  
 

 
 

Figure 9A. A Base SM Profile. 
 

 
 

Figure 9B. A user profile inheriting properties from a base profile. 
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Figure 9c. Executing SM Profiles with a model orchestration activity profile. 

 
8. Overarching R&D considerations 
 
8.1 Discretized modeling 
 

With reference to both this extrusion cylinder example and the earlier SMR 
example, when proprietary operating data and modeling information are removed from 
the data model what is left is a contextualized data model template or SM Profile for the 
device. Similarly, when the proprietary data and operating information are removed from 
a model transformation what is left are the model type, the configuration and a model 
orchestration activity workflow.  
 

Importantly, emphasizing the data lifecycle pattern architecturally, i.e. data 
generation, contextualization, transformation, orchestration and execution in a discretized 
manner, we are able to capture data model templates, model configurations for devices 
and workflows for the different model transformations and their respective objectives, i.e. 
control, as explicit elements of SM Profiles.  
 

As discussed in the SMR example, there is template-based reusability for an SM 
Profile for an IR camera data model used similarly to measure temperatures spatially. 
There is reusability for a workflow-based SM Model Orchestration Activity Profile for 
orchestrating a ROM builder using a high fidelity Digital Twin. There is reusability with 
an SMR profile containing the CFD model configuration, mesh and convergence strategy 
for a similar furnace, a profile containing the configuration and training strategy for a 
similar OLS MATLAB model, and a workflow-based model orchestration activity profile 
for orchestrating an operational optimizer and control ROM. Importantly, each profile 
defines the contextualized data, model configurations, data connectivity protocols for the 
device, process or data transformation in a declarative template which is reusable as a 
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starting point template for similar physical and cyber applications (don’t need to build an 
application from scratch). These can all roll up into an SM Profile for an SMR furnace as 
a device.  
 

Discretized workflow orchestration is used in a foundational role as a form of data 
modeling that uses workflow at an activity level as a fundamental construct. A workflow 
construct makes it possible to distinguish and work with individual data contextualization 
models and data modeling transformations as individual steps, in orchestrated 
combinations and with different approaches for different application objectives. Each 
step is an activity that can be associated with a distinguishable cyberspace such that time 
can be managed with orchestration and system-of-systems properties. Discretized 
modeling vs. tightly coupled modeling or blackbox machine-learned models has 
orchestration and execution advantages, for example when data need to be exchanged by 
business agreement, there are smart workers in-the-loop, there are cross architecture, 
cross vendor, security management and mitigation opportunities. Discretized modeling 
also has domain knowledge advantages in that sequencing, branching, conditional and 
causal logic are explicit and make it possible to include tightly coupled models in an 
interpretable operational context. Data executed in workflow activities provide execution 
data patterns for further operational optimization as well as operational behaviors useful 
for security. Discretized modeling also has advantages of reusability, composability, 
orchestrated management and DevOps (Development Operations) application 
development approaches. Key research areas include leveraging hybrid model approaches 
and predicting properties of these workflows for operational timeliness, viability, 
stability, and resilience. 
 
8.2 SM Innovation Platform and a de facto standard 
 

There is a need to operationalize a de facto standard for the manufacturing 
industry to drive advantageous properties for the SM Innovation Platform so that the 
infrastructure can be consistently shared. From a CESMII perspective, this requires a new 
form of open access but hyper-scaled digital infrastructure at national and global scales 
that can only be provided by the vendor community. However, a shared, de facto 
standard needs to be managed for industry by industry through trusted governance. The 
SM Innovation Platform therefore provides the operational vehicle in which a de facto 
standard can be governed and managed as a wireframe specification that can be scaled by 
the vendor community. The platform wireframe defines the particular construction of 
digital services that can be instantiated into an openly accessible platform. All 
stakeholders, e.g. manufacturers, providers, integrators and innovators, can use it to 
individual and collective advantage through business agreement. Democratization as a 
business objective is baked into the wireframe specification through properties and 
operating definition for accessibility to certified profiles that can be instantiated as apps 
and secure core data services built with converged OT/IT properties for shared 
infrastructure. 
 

More broadly, a de facto standard can be designed and manipulated to drive the 
desired properties of a stack architecture to address democratizing and accelerating the 
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adoption of Smart Manufacturing while addressing cybersecurity protection and 
mitigation strategies with interconnectedness. As shown in Fig. 10, CESMII has 
converged on a set of industry-defined business and operational properties. These are 
properties that small, medium and large manufacturers and their supply chains need 
individually and together to pursue productivity, precision and performance opportunities 
faster, more easily and more cost effectively. In addition to application accessibility, the 
wireframe properties address technology and business practices that reduce complexity, 
lower cost, expand application extensibility and make it possible to change market 
drivers with lowered risk. These are digitally-enabled business and operational properties 
that in turn define the IT required for interconnectivity cybersecurity and comprehensive 
management of business, operational, information and implementation agreements 
involving data. Agreement and adoption of a de facto standards-based wireframe is 
driven first and foremost as a business decision about individual value that is achieved as 
a collective and not the standard itself.  

 
 

Fig. 10. OT/IT converged properties for business and technology democratization 
access and extensibility. 

 
In the right- and left-hand arrows, Fig. 10 lists these cyber-side OT/IT converged 

properties that have been advocated by industry and are baked into the SM Innovation 
Platform’s wireframe service design. Fig. 10 illustrates the data-centric view as a cyber 
flow of data that is distinct from the physical material and energy flows. This distinction 
is technically and operationally important since we now wish to build cyber-side 
operational data infrastructure that can interoperate with the physical-side structure in a 
dominate manner instead of a subordinate manner. While the physical-side and cyber-
side flows and their respective operational data and material transformations are 
necessarily tightly aligned, cyber data operations and physical manufacturing operations 
are free to realign differently to address new demands for productivity, precision, and 
performance. Just as there are important properties and expectations with physical 
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manufacturing structures and the use of physical assets, there are properties and 
expectations for cyber infrastructure and the use of data assets.  
 
8.3 Technical foundations and instantiation of the SM Innovation Platform 
 

As developed in this paper, Data Centricity is the key foundation making it 
possible to orchestrate data in ways that do not need to directly align with function, 
structure or behavior of the physical operations. The explicit distinction of physical-side 
cyberspaces from physical asset operations makes it possible to structurally leverage a 
repeatable, far less diverse cyber-side lifecycle pattern of data. Data are transformed and 
applied separately from the physical-side manufacturing operation even though there can 
be a great diversity in the function of the physical operation. The data lifecycle pattern 
makes it easier to configure cyber infrastructure that is reusable and/or sharable based on 
common cyber-side patterns of data generation, ingestion, contextualization, 
transformation, workflow-based orchestration and physical-side interfaces [8].  
 

Fig. 11 shows how the CPS-layered view published by the NIST CPS workgroup 
(see Ref. [13]) is used to map and enable Core Cyber OT Services with SM Profiles and 
Orchestration. The arrow on the left indicates the driving emphasis on cyber, not physical 
or IT (Internet). With reference to Fig. 6, the Data Generation, Data Execution and 
Visualization endpoints that interface with the physical layer are shown on the right of 
Fig. 11 as cyber-data modeling interface capabilities that are overlaid on the physical-
layer. The Data Device/Process SM Profiles contain the data model templates for 
interfacing cyber-layer with the physical layer. The four Core Cyber OT Data Platform 
Capabilities, corresponding to the data lifecycle, emphasize cyber layer modeling 
overlaid on the IT/Internet layer that enables them. As shown on the right-hand side of 
the figure, the SM Innovation Platform captures all of these capabilities as Core Cyber 
OT Platform Capabilities (left-hand top). CPS OT Data Device/Process Profiles (left-
hand bottom) are combined with data and modeling functions, implemented using the 
Core Cyber OT Platform Capabilities. These are orchestrated broadly (right) to build 
Cyber OT Data/Decision Centric applications (bottom). The De Facto Standard (top) 
specifies how these services come together in a wireframe set of services. 

 
To encourage broad use and access to platform properties by manufacturers, the 

CESMII SM Innovation Platform is developed as an open, collaborative and integrateda 
platform as properties of the wireframe de facto standard. This platform design position is 
key to enabling manufacturers to solve problems using operational technology (OT) tools 
and applications developed by technology providers and subject matter experts in 
CESMII’s ecosystem [8]. This is illustrated in Figure 12. 
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Fig. 11. Cyber physical system foundation of the SM Innovation platform structure. 

 
 

 
 

Fig. 12. Functional Illustration of the SM Innovation Platform wireframe. 
 

As shown, data can be ingested in different forms from multiple sources. 
Different data stores for different types of data are available, ingestion and 
contextualization engines and tools are managed as platform core capabilities and not just 
individual vendor production functions. Apps in the form of “filled in” SM Profile data 
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models and common data model transformations, and conversion and visualization tools 
that are selectable from a marketplace are managed through an enterprise orchestration 
workflow construct that is vendor agnostic and also provides secure business data 
exchange tools. As an overall platform-of-platforms wireframe service for integrating 
commercial and other available platform services, the SM Innovation Platform makes it 
possible to more readily integrate and orchestrate vendor products for overall objectives 
but also for one vendor product to use the service of another vendor product.  
 

The de facto standard further describes how the suite of services integrates and 
how the overall properties become outcomes of the structure. As stated, Open Access is 
also defined by the de facto standard, specifying the access and ability to integrate with 
the wireframe core services and with application profiles, additional data transformation 
services and tools in a marketplace as a user, provider or integrator. The wireframe 
services themselves are closed in order to manage the de facto standard, the security and 
and trusted business data exchange processes. A particularly important closed OT/IT 
converged service is with the data stores. Rather than data stores for every product and 
the multiple copies of data that result and need to be interfaced, fewer data stores and 
fewer copies of data with greater selectivity of data through the business exchange 
services reduces complexity and security vulnerabilities, and enhances application 
interoperability, security management and mitigation. 
 

The SM Innovation Platform has been designed and operationalized for 
manufacturing cyberspace services as a Platform-as-a-Service (PaaS) set of wireframe 
services for Smart Manufacturing data-centric applications using the NIST 800-145 
definition (see Ref. [14]) as illustrated in Fig. 13. It is functionally distinguished as PaaS 
infrastructure designed to support the prescribed set of integrated wireframe OT services. 
In order to scale, the SM Innovation Platform de facto standard is built on top of 
commercial hyperscale Infrastructure-as-a-Service (IaaS) platforms and virtual machines 
so that cloud and edge capabilities/features, such as service-oriented architecture, 
portability, scalability, programmability, costing, security, etc., interoperate with other 
commercial and open source IaaSs, PaaSs and SaaSs (Software-as-a-Service) based on a 
set of cloud and edge architecture and integration IT standards. As shown in the Enabler 
area, the SM Innovation Platform, when instantiated (filled-in) with service products, 
provides the services for the development, deployment, orchestration, and operation of 
data workflow environments based on SM Profiles so these can co-exist seamlessly and 
readily shift between design and operational roles, creating a DevOps environment. 
Ultimately, the SM Innovation Platform is instantiated with vendor products for core 
services and for the apps. The SM Innovation Platform lays the foundation for multiple 
partners to create and disseminate innovative, cost effective solutions for small, medium 
and large manufacturers alike.   
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Fig. 13. The SM Innovation Platform as a wireframe of OT/IT and API services  

operating in edge-cloud structures. 
 

The SM Innovation Platform uses cloud orchestration services at the 
infrastructure layer and extends declarative templates to describe how to construct data 
workflow environments and resources as reusable SM Profiles [15]. A common profile 
template provides the de facto standard for interoperability. An important artifact of this 
platform-of-platforms approach in Fig. 12 is that the SM Innovation Platform is not just 
bringing OT and IT services together but is building OT and IT systems-of-systems cyber 
spaces with emergent behaviors and characteristics that do not need to be fully 
prescriptive. Behaviors and characteristics can change as systems within systems 
dynamically change as a result of changing operational and business conditions or 
decisions. This is an open research area where the ability to orchestrate systems-of-
systems across cyber products, operations, companies, and cyber spaces with different 
time constants requires predicting and managing the resilience, stability, and 
controllability properties of an end-to-end enterprise systems-of-systems implementation. 
 

As illustrated earlier with the SMR use case, the SM Innovation Platform is set up 
for manufacturers to access a marketplace and select SM Profiles that match or are 
reasonably close to the needs of new applications of interest, i.e. furnace similar to the 
SMR furnace. These profiles can be used on premise with edge capability that reflects the 
de facto standard, directly through the SM Innovation Platform or as a hybrid of both to 
form an edge-cloud structure. An SM Profile will have defined the contextualized data 
requirements and may itself associate with application environments, i.e. MATLAB and 
particular MATLAB toolboxes configured for an application. Profiles in the marketplace 
can contain device, model orchestration, or application orchestrations as extended 
profiles or as separate device and model orchestration activity profiles that can be 
orchestrated differently in new applications. Applications like the SMR, therefore, 
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stimulate multiple profiles depending on the reusable value of constituent profiles and the 
nature of the models.  
 

When an SM Profile is in the marketplace at any level, a user can select, instantiate 
their own version of that Profile, and either use it as is or extend it for another application, 
creating another unique profile. CESMII’s roadmap includes developing a Profile Designer to 
facilitate the creation of a large library of SM Profiles. It also includes a number of cross-
industry and platform projects to build a portfolio of SM Profiles in the marketplace, while 
simultaneously continuing to build core capabilities so the profiles can be bound to the data 
and application environments and executed as workflow orchestrations. This approach is 
designed to stimulate multi-level profile building to drive application profiles into the 
marketplace for evaluation and expansion, and monetization when used in production. It also 
makes it possible to do R&D on applications and profile structures at the same time. The core 
capabilities that underpin the marketplace are maintained in a ready-to-execute state. 
 
9. Conclusion 
 

With a lens on industry-wide cyberinfrastructure for more rapid adoption and 
scaling of Smart Manufacturing, our CESMII conclusion is the need for an open, 
standards-based (de facto standard) manufacturing data and application platform that 
facilitates ubiquitous access and orchestration of multi-source data and multi-vendor 
modeling solutions. This is paramount to access and integration for all manufacturers and 
a refocusing of attention on the operational value of the application and not on its 
infrastructure. The market corollary is that the current need for vendors to develop and 
sustain their own proprietary platforms needs to give way to shared core capabilities and 
the use of the de facto standard (the wireframe). This enables multiple vendor products to 
be integrated securely for interoperability and it drives economic value for manufacturers 
and providers alike.  
 

A key objective for cyberinfrastructure, therefore, is striving for a new 
democratized pattern of development, innovation and value creation at scale with an open 
platform that focuses on horizontal interoperability, leverages contemporary 
technologies, and enables crowdsourcing of vital domain expertise. Again, the potential 
stems from spurring an industry-wide reach to the productivity, precision and 
performance benefits of Smart Manufacturing while substantially reducing the cost of 
implementation. While it is a heavy lift to change innovation practices and economic 
drivers established over years, there are new economic drivers, global forces and new 
technologies to re-consider taking on a platform-supported approach in a new way. For 
the manufacturing industry there needs to be a line of sight to dramatically increasing the 
velocity of solution acquisition, development and deployment that is just not possible 
with today’s verticalized, transaction-based structures. There is both the need and the 
opportunity to substantially free up the new economic potential to be a pull on expansion 
and democratization of Smart Manufacturing.  
 

It is with these broad industry goals and aspirations that this paper describes a 
data- and decision-centric approach to shared Smart Manufacturing cyberinfrastructure 
based on a layered physical, cyber, and Internet analysis by the NIST CPS workgroup. 
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The data-centric view leverages the reusability of a repeatable operational data lifecycle 
between data generation and physical actuation by separating cyber and physical layers 
and emphasizing the cyber-side data orchestration. An inherent general challenge with 
operational data and modeling is developing actionable insights from the right set of data 
and taking into account the uncertainty in both the data and model. In applying data and 
decision centricity together, decision centricity defines data contextualization based on 
meaningful application objectives.  
 

Shared cyberinfrastructure called the SM Innovation Platform is described as a set 
of wireframe services that make it possible for different vendor products to slot in as 
Core OT Data Services. A de facto standard drives a set of properties for the integrated 
services that include interconnected cybersecurity, secure data exchange, execution 
resilience, smart worker in the loop, vendor agnosticism, hyperscaling, a DevOps 
approach to application design, and deployment and design from previously applied data 
contextualization templates and model configurations for similar applications. SM 
Profiles provide the device/process data contextualization data model templates and data 
model transformation configurations. The SM Innovation Platform also provides an R&D 
scaling capacity to study groups of cross-industry applications. There is R&D on the SM 
Innovation Platform and R&D through it since it provides the scaling to expand and 
accelerate the necessary research and the vehicle to test, evaluate and assimilate the 
continued development at scale. Significant R&D questions on SM Profiles and the SM 
Innovation Platform remain as illustrated in Fig. 12. Profiles and the platform need to 
align further technical, architecture, business and interface developments together. We 
have started with the simplest SM Profiles and the simplest of core services in the SM 
Innovation Platform. What is unique is the integration that underpins the wireframe 
services developed with the data- and decision-centric view.  
 

The CESMII SM Innovation Platform distinguishes itself from the vast majority of 
IIoT (Industrial Internet of Things) platforms that are being proliferated in the market 
today: 
 

• Span: The SM Innovation Platform spans operational endpoint data sources to on-
premise, edge data aggregration and computation to human-in-the-loop to cloud, 
and back to human-in-the-loop and/or execution/actuation endpoints. Span is also 
across vendor products, process operations and manufacturers in a supply chain. 
Data centricity and a new operational data lifecycle concept provide the technical 
foundations for enterprise business execution properties and cross boundary smart 
manufacturing systems to be comprehensively evolved and managed as 
converged OT and IT functions.  

 
• OT/IT integration with OT data centricity: Nearly all IIoT platforms available 

today have the flavor of “connect your device to my cloud platform and our 
product will monitor and manage your data.” This is still an IT service that 
remains function–and physical asset-centered, not data-centered. 
Contextualization and data preparation before data becomes useful is not reusable 
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and it is still heavily dependent on subject matter experts. OT data centricity 
focuses on creating data models, physics-based models, predictive tools, and 
workflow-based solutions as OT apps based on reusable data models. Hyperscale 
cloud platform partners provide a ready, standards-based IT infrastructure that 
makes it possible to plug in OT core capabilities and profile- and model-based OT 
apps into an OT marketplace that can reside, operate and scale using the IT tools 
in their IIoT services platforms.  

 
• Vendor agnostic collaborative innovation: Most existing IIoT platforms tend to 

lock down manufacturers into using single vendor technologies for acquiring data, 
contextualizing it and consuming it for analytics on a specific cloud-based 
platform. While some of these platforms do provide flexibility in using different 
vendors for various data functions, the integration is typically a one-off solution.  
The SM Innovation Platform is designed for integrating content and technologies 
in a vendor agnostic framework. As a cloud platform for integrating platforms, the 
SM Innovation Platform provides the means for applications to interoperate 
through configuration and integration standards that are based on an industry-
managed de facto standard for the wireframe services and embodied in the SM 
Profile specification. Profile-based applications in the SM Innovation Platform 
marketplace will be “certified” to interoperate.   

 
• Data ingestion: Making data ingestion a core capability ensures that the platform 

can connect to and acquire data from multiple source endpoints including sensors 
and systems on the manufacturing floor as well as data from sources beyond the 
boundary of the factory. Data ingestion involves the ability to select from many 
connectivity protocols and encompasses the ability to transmit, stream and store 
data in databases or historians for extended and broader use. Conversely, the 
connectivity to the data sources is needed to transmit results back to the 
manufacturing floor control and execution systems or as visualizations for  
human-in-the-loop actions.   

 
• Data models and contextualization: The heavy lift with operational data systems 

is contextualization. For ingested data to be consumed by the applications, the 
data need to be connected, integrated, aggregated, normalized, and interpreted 
across the various data streams at multiple levels to provide the necessary context 
for the multiple applications that need to use the information. This requires 
subject matter expertise, and is typically manifested in a data model configured in 
a traditional Relational Database Management System (DBMS). The SM Profile 

is the key construct that makes it possible to develop a contextualized data model 
once, expand it and extend it rather than building a new profile every time. 
Reusability and extendibility for a manufacturer to grow its base of contextualized 
data is a critical pathway capability. 
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• Information management complexity: Information management deals with the 
storage and retrieval of contextualized data and information so that far fewer data 
stores are used by far more software applications. Reducing the complexity of 
interconnectedness requires the reduction of data stores and data flows between 
them. This can be accomplished either through an “information bank” in the form 
of a database, or an information map that allows data to be accessed from its 
original source without duplication in additional databases. The information 
management system in the SM Innovation Platform allows multi-vendor 
applications to access and consume data in a consistent/standard manner 
providing architectural guidance to explicitly reduce databases and data 
interconnections and manage data exchanges. This is a critical pathway capability 
to reduce the complexity and address the cybersecurity challenges of 
interconnectedness. 

 
• Workflow as a modeling construct: Workflow orchestration of data as a platform 

core capability provides the systematic means of automating analyses and data 
transformations, exchanging information, and managing diverse datasets and 
applications that can achieve operational ‘span.’ When developed as a 
fundamental discretized modeling construct, workflow provides an alternative or 
extended means of modeling the flow of data transformations for a process 
operation so that transformations and operational impacts can be interpreted and 
time can be managed explicitly compared to tightly-coupled modeling 
approaches. Workflow also allows the orchestration of the data to be reproduced 
and methods repeated and adapted as activity profiles. In the context of the SM 
Innovation Platform, a workflow utilizes other building blocks of the platform to 
create the capability to solve a problem in a systematic manner. As an operational 
utility, workflow provides the application orchestration with humans in the loop. 

 
• Application marketplace: The SM marketplace is distinguished from other 

platforms as a marketplace and full functioning operational utility. It is a 
convenient location for end users to access Smart Manufacturing profile-based 
applications for use in edge or cloud applications. The marketplace is also a 
convenient location for application developers to integrate their products based on 
the profile specification to be used as reusable components in the SM Innovation 
Platform. As an operating utility with core capabilities, a profile-based application 
can be selected, data can be connected, ingested, bound and executed 
independently as an orchestration workflow. The marketplace also integrates 
trusted business data exchange and secure management of data partnerships and 
provides the interfaces and tools for using applications all together based on 
business agreements.  
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• Scalability, extensibility and interoperability through SM Profiles: Traditional 
IIoT platforms are built to solve specific problems. Every time a new problem 
needs to be solved, the manufacturer typically starts afresh by building new 
connections to the data sources, re-creating data models for contextualization, and 
re-configuring data connectivity to applications. This results in replication of 
effort and a multitude of point solutions. Instead SM Profiles (data models) for 
factory assets and SM Model Activity Profiles that allow seamless integration 
between data ingestion, data contextualization and data consumption emphasize 
reusability and extendability.  Profiles include data necessary for a variety of 
applications to interoperate and create solutions for productivity, performance and 
precision. Scaling occurs as a result of reusing contextualized data models and not 
having to generate and connect data models for every device, every time. The 
focus shifts to orchestration and value.	

Broadly, the Smart Manufacturing cyberinfrastructure described in this paper is 
premised on a need to build capability and capacity for small, medium and large 
manufacturers to engage aggressively in respective Smart Manufacturing explorations, a 
critical outcome for this cyberinfrastructure democratized innovation. Needed R&D on 
new value-driven uses of data and on scaling the potential of the platform can become 
force multipliers when done at scale throughout the manufacturing eco-system. When 
application innovation is on a consistent infrastructure, it can proceed faster through the 
TRLs  (Technology Readiness Levels) to production use; integrated system solutions can 
be developed and studied more easily building on the work of others; and the non-
proprietary knowhow can be extended at scale. Larger manufacturing organizations are 
able to build on secure, sanctioned and scalable platforms that all future vendors can 
leverage for model-based access to the plant floor and for application interoperability. 
Small and medium manufacturers can afford Smart Manufacturing solutions for the first 
time, and not require significant engineering or IT domain expertise on staff. The lofty 
goal is for manufacturers, vendors, integrators and researchers throughout all stakeholder 
institutions to work toward empowered employees – with secure access to real-time data 
– to innovate, improve and create sanctioned solutions and drive economic growth based 
on value instead of ‘shadow IT’ solutions.  
 

Exploration and adoption of Smart Manufacturing is recognized as a process, a data 
and digitalization journey (not a single project), that derives staged benefit and builds 
readiness for collaborative supply chain interoperability, where a significant portion of 
the untapped Smart Manufacturing potential resides. However, this journey needs to 
avoid the compartmentalized patterns of vertical innovation and change that have been 
used for the past twenty-five years. Smart Manufacturing fundamentally is about the 
substantially untapped opportunity of “horizontal” integration that is amplified with new 
technologies that drive greater precision and performance. We have stressed the point 
that if Smart Manufacturing is left on its current trajectory, the dilemma of interconnected 
complexity will dramatically impede the anticipated value creation and U.S. 
manufacturing competitiveness in the global market.  

 
 



	

	 32	

Acknowledgments 
 

“This material is based upon work supported by the U.S. Department of Energy’s 
Office of Energy Efficiency and Renewable Energy (EERE) under the Advanced 
Manufacturing Office Award Number DE-EE0007613.” 
 

Disclaimer: “This report was prepared as an account of work sponsored by an 
agency of the United States Government. Neither the United States Government nor any 
agency thereof, nor any of their employees, makes any warranty, express or implied, or 
assumes any legal liability or responsibility for the accuracy, completeness, or usefulness 
of any information, apparatus, product, or process disclosed, or represents that its use 
would not infringe privately owned rights. Reference herein to any specific commercial 
product, process, or service by trade name, trademark, manufacturer, or otherwise does 
not necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government or any agency thereof.  The views and opinions of authors 
expressed herein do not necessarily state or reflect those of the United States Government 
or any agency thereof.” 
   
References 
 
[1] DOE Report, T.F. Edgar, M. Baldea, O. Ezekoye, H. Ganesh, A. Kumar, D. Wanegar, 

V.M. Torres, J. Davis, P. Christofides, P. Korambath, V. Manousiouthakis, R. 
Graybill, B. Schott, L. Megan, F. Flores-Cerillo, G. Hu, T. Vispute, J. Chup, T. 
Albertson, S. Cannizzaro, D. Schuster, P. Callahan and D. Swink, Industrial Scale 
Demonstration of Smart Manufacturing, Achieving Transformational Energy 
Productivity Gains, 2018, USDOE Office of Energy Efficiency and Renewable 
Energy, Washington, D.C. 80-83, https://doi.org/10.2712/1454266. 

[2] G. Pantoleontos, E.S. Kikkinides and M.C. Georgiadis, A heterogeneous dynamic 
model for the simulation and optimisation of the steam methane reforming 
reactor, Int. J. Hydrog. Energy 37, 2012, 16346–16358. 

[3] A. Kumar, M. Baldea, T. Edgar and O.A. Ezekoye, Smart manufacturing approach for 
efficient operation of industrial steam-methane reformers, Ind. Eng. Chem. 
Res. 54 (16), 2015, 4360. 

[4] A. Aguirre, Computational Fluid Dynamics Modeling and Simulation of Steam 
Methane Reforming Reactors and Furnaces, Doctoral Dissertation. 2017, Chemical 
Engineering, University of California, Los Angeles, California. 

[5] A. Tran, A. Aguirre, H. Durand, M. Crose and P.D. Christofides, Steam methane 
reforming furnace temperature balancing via CFD model-based optimization, Proc. 
Am. Control Conf. 2017, 4165–4170, https://doi.org/10.23919/ACC.2017.7963595,  
Available at:. http://ieeexplore.ieee.org/document/7963595/. 

[6] J. Davis, T. Edgar, J. Porter, J. Bernaden and M. Sarli, Smart manufacturing, 
manufacturing intelligence and demand-dynamic performance, Comput. Chem. 
Eng. 47, 2012, 145–156. 

[7] J. Davis, T. Edgar, R. Graybill, P. Korambath, B. Schott, D. Swink, J. Wang and  
J. Wetzel, Smart manufacturing, Annu. Rev. Chem. Biomol. Eng. 6, 2015, 141. 

[8] J. Davis, Smart manufacturing, In: M.A. Abraham, (Ed), Encyclopedia of Sustainable 
Technologies, 2017, Elsevier, ISBN: 9780128046777417–427. 



	

	 33	

[9] P. Korambath, J. Wang, A. Kumar, L. Hochstein, B. Schott, R. Graybill, M. Baldea  
and J. Davis, Deploying Kepler workflows as services on a cloud infrastructure for 
smart manufacturing, Procedia Comput. Sci. 29, 2014, 2254. 

[10] P. Korambath, J. Wang, A. Kumar, B. Schott, R. Graybill, M. Baldea and J. Davis, A 
smart manufacturing use case: furnace temperature balancing in a steam methane 
reforming process via Kepler workflows, Procedia Comput. Sci. 80, 2016, 680. 

[11] K. Thoben, S.A. Wiesner and T. Wuest, “Industrie 4.0” and smart manufacturing—a 
review of research issues and application examples, Int. J. Autom. 
Technol. 11, 2017, 4–19, https://doi.org/10.20965/ijat.2017.p0004. 

[12] J.J. Cochran, INFORMS Analytics Body of Knowledge, 2018, Wiley. ISBN: 978-1-
119-48321-2. 

[13] E. Griffor, D. Wollman, C. Greer, et al., Framework for Cyber-Physical Systems,  
https://s3.amazonaws.com/nist-sgcps/cpspwg/files/pwgglobal/CPS_PWG_ 
Framework_for_Cyber_Physical_Systems_Release_1_0Final.pdf, 2016. https://nvl
pubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.1500-201.pdf. 

[14] P. Mell and T. Grance, The NIST Definition of Cloud Computing, 2011, NIST 
Special Publication 800-415. http://faculty.winthrop.edu/domanm/csci411/ 
Handouts/NIST.pdf. 

[15] P. Korambath, H. Ganesh, J. Wang, M. Baldea and J. Davis, Use of on-demand cloud 
services to model the optimization of an austenitization furnace, Smart Sustain. 
Manuf. Syst. 2, 2018, 165–179, https://doi.org/10.1520/SSMS20180024. 

 
Footnotes 

 
ahttps://www.thecge.net/archived-papers/the-rise-of-the-platform-enterprise-a-global-
survey/. 




