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ABSTRACT OF THE DISSERTATION

Probably Approximately Correct Learnable Fuzzy System

by

Yan Wang

Doctor of Philosophy in Biostatistics

University of California, Los Angeles, 2019

Professor Honghu Liu, Chair

This dissertation develops the probably approximately correct (PAC) learnable fuzzy system

to predict clinical outcomes from a small number of survey questions (short form). There

are five layers in the system: input, fuzzification, inference, defuzzification, and production.

The major product in this dissertation is to derive the PAC learnable knowledge-driven

machine learning algorithm by growing sample using Bootstrap samples with Gaussian dis-

tributed noise. The input layer is the procedure for preparing data input. In the fuzzification

layer, sample size is significantly increased using bootstrap re-sampling with replacement.

The fuzzy set with proposed membership function is generated by introducing Gaussian

distributed noise to survey responses of the bootstrap samples to reflect uncertainty. This

is a natural language extension from the point option in survey questions to region input

with probabilities from survey design space. The inference layer includes both classifica-

tion and prediction. Here we use machine learning techniques to derive the algorithms in

this layer, e.g. Naive Bayesian method and eXtreme Gradient Boosting (XGBoost). The

final predicted values require a defuzzification process in the next layer to remove noise in

prediction. There are four types of input after fuzzification, original input, fuzzy input, in-

put required interpolation and input required extrapolation. The defuzzification process is

based on weighted means of related information. The last step of the system is the output

layer with algorithms, final prediction and validation internally and externally. Lastly, we

apply this fuzzy system to derive PAC learnable algorithms to predict oral health clinical

outcomes. The input predictors include short forms and demographic information. The
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short forms, developed from Graded Response Models in Item Response Theory, have two

versions (children and their parents). The clinical outcomes are referral for treatment needs

(categorical) and childrens oral health status index score (continuous). The prediction is

evaluated internally and externally by sensitivity and specificity of a binary variable, cor-

relation (between original value and predicted value) and root mean square error (RMSE)

of a continuous variable. Both internal and external validation show the improvement of

prediction when new information is added and generalizability as well as the stability of the

algorithm. The best prediction (high sensitivity and relatively high specificity for categorical

variables, low RMSE and high correlation) is reached when using child’s self-reported short

form, plus parent’s proxy-reported short form, and demographic characteristics.
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CHAPTER 1

Background

1.1 Introduction

1.1.1 Background

In this dissertation, we develop a fuzzy system that is based on the input value of survey

responses to predict clinical outcomes. The motivation of the study is the vagueness of

linguistics variables. During the survey design, response options are designed with a variety

of cut-off points to measure a potentially continuous variable. For example, frequency might

be categorized into six options: always, almost always, often, sometimes, almost never and

never. When the participants answer the survey questions, they provide a response on

the categorical response scale that they judge to best represent their underlying position.

This categorical process could be misleading because of different cut-off options and the

vagueness between options, e.g. “always” and “almost always”. Items with more quantitative

response options are not necessarily better than more qualitative response options [1, 2].

In this dissertation, we propose fuzzy membership functions of the original responses with

probabilities (membership function) to fuzzify the input values in surveys options. The fuzzy

system does not only expand original observations plausibly but also increase uncertainty

by adding noise to original survey options. In this way, we take into account the uncertainty

coming from both randomness and vagueness of languages. We will explain this uncertainty

next.

In linguistics, the meanings of all terms have a lesser or greater degree of vagueness [3, 4].

The boundary of any term, e.g. any selection in a survey question, is never a point but a

region, where the term can move with probability from 0 to 1. Fuzzy set theory is a formal
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way of dealing with such vagueness in natural language. In survey selections, the negative

markers (e.g. never), adjectives (e.g. good), and adverbs (e.g. very often) are assessed

empirically in fuzzy sets. The survey is a process in fuzzy set theory of transmission of

quantitative information between the respondents and survey designer. Recently, there is

great interest in combining linguistics and computer science to study the role of vagueness

in natural language and quantification of meaning, which is very hard to measure precisely.

The first attempt of quantifying the meaning of a word was in 1941 [5], defining the meaning

of a word as a formula of three components. The constant component is overall meaning over

people and over context. The random components represents the variation in the meaning.

One part is the variation due to context and the other part is the variation due to the

individual. The three parts together represents the meaning of the word. The assumption

is that there is a unidimensional meaning of the word that is continuous. The individual

variation and context variation are independent of this unidimensional meaning [5]. In the

present work, adding random noise to individual cases is intended to reflect that there will

be cases in the population that differ somewhat from observed individuals, similar to the

way that a given word can have shades of meaning in different settings.

The input observations are usually not comprehensive enough to cover all possible com-

binations in the survey design space. It is impossible to collect samples that can cover

all possible combinations of the item options. A common rule of thumb when using Item

Response Theory (IRT) is that we need at least three to five subjects to endorsed each re-

sponse option in order to yield a stable threshold parameter estimate [6, 7] or using rule of

thumb at least using 10 subjects per parameter [8]. The traditional way in IRT theory is

to combine the categories with lower endorsement. The naive goal for the fuzzy system is

to grow enough sample size to cover the response space and therefore to derive the machine

learning algorithms from the available resources to predict the new input. The main aim

of the algorithm is to predict the outcome with some level of uncertainty and some level of

confidence from new input of the survey. We show the algorithms derived from fuzzy system

on certain hypothesis spaces are Probably Approximately Correct (PAC) learnable. The

new input may or may not come from the sample population.
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Fuzzy random variables were first introduced in 1986 [9] as a generalization of random

variables. The uncertainty comes from two important sources, randomness (stochastic vari-

ability of all possible situations) and fuzziness (no clear boundaries of parameters) [10], where

randomness is for future and fuzziness is for the past and its implication. The fuzzy random

variables are a combination of fuzziness (possibilities) and randomness (probabilities) that

are naturally compatible. In the context of oral health, the fuzziness and randomness can be

explained in distributional differences and membership differences in the context of survey

questions [11, 10].

1.1.2 Motivation

The motivation of the study is to develop an algorithm that supplements available data

with plausible representations of other values in the underlying population in a way that can

be expected to yield the greatest possible predictive accuracy from fitted statistical mod-

els, while representing both sampling variability and vagueness in the contextual meaning

of latent measurements. The algorithms are from a pre-determined hypothesis space that

ensures the prediction can be generalized with certain level of confidence. This is a process

in between supervised and unsupervised learning. Besides the efficiency of learning, the

supervised learning focuses on the predictive accuracy of a model, which is the most impor-

tant quality criteria [12]. The predictive accuracy is usually evaluated by the loss function

l(·), defined by the difference between expected value and observed value. The supervised

knowledge-driven learning approach focuses on the ability to make accurate predictions of

so far unseen inputs, rather than to discover the local patterns or associations. The ability

of learning from experiences and adapting to new situations, is the integral part of artificial

intelligence (AI) [13, 14]. Knowledge-based learning is the bottle neck of AI.

Besides knowledge-based learning, in practice, the boundary between the classifications is

not always strict and clearly defined [12]. For example, there is no clear cut-off clinically be-

tween urgent need of dental care and necessary early attention. The overlap across categories

are very natural (there is no clear cut-off between often and sometimes) and even sometimes

3



counter-intuitive. For survey response, the boundaries between different categories are often

smooth and unclear. The responses of, for example, “often” and “always” are more similar

than the ordinal score 2 and 3 assigned to the options. In fuzzy analysis, the same original

survey response could be assigned to adjacent categories with membership function. The

fuzziness between response options allows the survey options to cover the entire real line of

the underlying trait. It is an extension of the classical set theories, where the elements either

belong or not belong to the set. In fuzzy set theory, the membership function is used to

extend classical set theory, either or not belong to the set, to robust belonging in terms of

probabilities, which model the reality better than classical set theory [15]. In the past, the

uncertainties of reality were modeled as randomness by probability theory in statistics. We

introduce the uncertainty at the data level by generating fuzzy random variables with both

randomness and fuzziness. The uncertainty comes from two level fuzziness and randomness

[10]. The inferences are made through fuzzy system.

1.1.3 Scientific approach

We develop this fuzzy system based on available resources of observations to extend the in-

formation to a certain degree to its boundary. The prediction is not based on only available

limited observations, but based on the observations with membership functions defined in

the fuzzy set. The widely accepted definition for Knowledge Discovery in database (KDD)

is a non-trivial process of identifying valid, novel, potentially useful, and ultimately under-

standable structure in data [16]. The core part of KDD is data mining and exploring with

an application of a discovery of patterns and associations and eventually knowledge, and

automated learning process as well as AI.

In the context of the study, field test data are collected from two metric spaces, the survey

response space and the clinical results space. We aimed to predict the results from clinical

space from the survey response space. Manually introduced noise is used to generate the

fuzzy grid for each response to oral health related survey items based on probabilities. This

fuzzy grid is defined on the survey response space according to possible responses from survey
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design. On the grid, the original response is expanded throughout the designed options in a

random manner, the shorter distance from original option, the higher the probabilities that

original value may shift. In this manner, we increase the sample size by adding noise to

bootstrap sample to cover the uncertainty.

The uncertainty of final prediction of the outcomes is from three parts: the probability

of final machine learning algorithm being calculated, the fuzzification process of the soft

boundary among survey responses, and the bootstrap sampling of original observations (crisp

data), from which sample size significantly is increased. The learning process is fuzzy and

unstable, due to the manually introduced variation in fuzzy data. The possible rule under

this is that if subject A’s survey response is similar to subject B’s survey response, then

the clinical result of A is also similar to the clinical result of B. That is the rule of “similar

objects have similar class labels” [12]. This is the most fundamental assumption of using

survey questions and machine learning algorithms to predict clinical outcomes, that is to

link self-perceived health and clinical determined health. A crucial ingredient of the present

investigation is the availability of “gold-standard” information from a clinical oral health

examination that can be used to evaluate predictions from statistical models.

1.2 Organization

In the following, the methodology part is organized as the flow of the proposed fuzzy system

shown in Figure 1.1, from input of observations to output of predictions. The fuzzy system

includes the process of fuzzification and defuzzification. Machine learning algorithms are

derived during the inference layer. After the introduction of the entire flow of the fuzzy

system, theoretical proof is provided to show the fuzzy system is Probably Approximately

Correct Learnable in large samples. Figure 1.1 provides more details of the connection

between different layers. In the fuzzification layer, including the process of growing original

sample observations (crisp set) using bootstrap methods with introduced noise. We added

Gaussian noise to bootstrap samples.

In practice, the bootstrap step can be extended to sample sizes larger than the original

5



Figure 1.1: Flowchart of the fuzzy system

sample size, and fuzzification can be understood as adding noise to the bootstrap samples.

The process thus gives rise to replicate data sets as representations of a broader population

that have the potential to yield either better or worse predictive accuracy for statistical

modelling purposes depending on the relationship of the additional sample size to the added

noise. A goal of the investigation that follows is to gain insight into the corresponding trade

offs between sample size and added noise. The larger additional sample size and additional

noise may move the original sample with great degree of uncertainty. We will show this by

a figure in the following section.
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CHAPTER 2

Fuzzy System

2.1 Input Layer

2.1.1 Sample space

Sample space X consists of the observations collected from the survey response space R.

Usually X ⊆ R, in practice, it is impossible for sample space X to cover all possible

combinations in R. In our scenario, the sample space is the survey responses from children

and parents XC and XP , i.e. X = [XC ,XP ]. For convenience, we will use the vector

~Xi, i = (1, · · · , n) to represent the input variables from each family, i.e. the survey response

from the subjects (the participating families) 1, · · · , n. The corresponding output variable

is denoted by ~Yi, i.e. for each input of survey response, there are corresponding clinical

outcomes in the training sample. The outcomes are selected as the categorical variable,

continuous variable and rank variable to illustrate the methods.

The sample space X is defined by the observed (or is labeled by function f in ma-

chine learning theory) input vectors (survey responses) and output vectors (outcomes) for n

subjects as, 
~X1

~Y1

~X2
~Y2

...
...

~Xn
~Yn

 (2.1)

Each vector ~Xi represents a family, including the responses from Child’s input and Par-

ent’s input about child’s oral health [17, 18]. We have previously constructed two short forms

independently for children [17] and for parents [18]. In PROMIS literature, short forms are
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defined as a fixed set of 4-10 items or questions for one domain. More details of the two

short forms are discussed in the example (chapter 3 Data Application part). The vector ~Xi

includes short form survey items as well as demographic questions [17, 18, 19]. The sample

space generated by these vectors is finite (defined on Rp×d) due to the number of survey

questions (denoted by p) are fixed and the response options are also fixed (maximum d)

as shown in Figure 2.1. The input vectors determine a grid level space with 2 dimension.

The survey space R is finite with p × d dimension. We include an example of input vec-

tors Xi on Figure 2.1 as xij = k, for subject i answered question j with category k, where

i = (1, · · · , n), j = (1, · · · , p) and k = (1, · · · , d). The samples are subjects with different

lines on the surface R. The clinical outcomes are parameters from another dimension θ. The

problems can be stated as using the survey response surface R to predict θ with a smooth

function. The samples are lines from the response space R.

Figure 2.1: Survey response space and θ

Figure 2.1 is a visualization of the relationship between clinical results θ and survey

response R, i.e. they are not in the same space. It is possible to use the vectors on R to

estimate the corresponding θ for each individual. However, the estimation is never perfectly

accurate. In application, it means the survey results can never replace the “real” clinical

examination. For any algorithms that are developed to link the two space or estimate the

relationship between θ and R, the estimation of error should be under consideration.

As d is categorical, it is hard to cover all the points on R. For simplicity, we can assume

all questions have the same number of response categories dj = d. The X-axis is the list of
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all survey items from 1, 2, · · · , p with options as the score of Y-axis. Assume the options are

bounded by d, without loss of generalizability (WLOG). Each input ~Xi corresponds to the

output (clinical outcomes) variables ~Yi.

In this entire document, we acknowledge the fact that the survey result could be used to

estimate the result of the clinical outcome, but with some error Ξ that is unknown and can

never be fully eliminated. We assume,

~Y = f( ~X) + ~Ξ (2.2)

The best scenario in this dissertation is to find the function or algorithm that can be close

to the result of f . The complete description of a real link function f and system requires far

more detailed and elaborate data source, which is usually a challenge in practice.

Definition 2.1. (Realizable) The space D is realizable by hypothesis H if there exists an

optimal h∗ ∈ H such that the error function is zero, i.e. error(h∗,D) = 0.

Based on above, we know the clinical outcome space is not realizable by any hypothesis

H from survey response space.

2.1.2 Vagueness in Linguistics

In linguistics, the meanings of all terms have a lesser or greater degree of vagueness [3, 4],

e.g. the meaning of “very good” oral health. This idea was first brought by Labov and Lakoff

in 1973 [20, 21]. The boundary of any term, e.g. any selection in a survey question, is never

a point but a region, where the term can move with probability from 0 to 1. Linguistics

variables were defined by Dr. Zadeh as those variables whose values are not numbers but

words or sentences in a natural or artificial languages [4]. The language is vague when

describe the different scenario among pre-determined options. The problem of vagueness is

a property of natural language .

The first attempt of quantifying the meaning of a word was in 1941 [5]. The meaning of

the word M is defined as,

M = x+ i+ c (2.3)
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In 2.3, the constant component of the word over people, over context is denoted by x. The

meaning of the word varies due to individuals is denoted by i. The meaning of the word

varies due to context is denoted by c. The data supported the idea that assign each word

to a scale value along a unidimensional continuum and the variation in meaning about this

scale value was normally distributed [3, 22].

The vagueness of a word implies [3] the variability of using the term by a group of

users. Black in 1937 first described vagueness quantitatively using consistency profile. The

consistency of using a term T to an element s is defined as,

C(T, s) = lim
M→∞,N→∞

M

M +N
(2.4)

In this definition, M is the number of judgments that T applies to s and N is the number of

judgments that not T applies to s. The range of the consistency is from 0 to 1, the probability

of T to s. The most doubtful case is 0.5. That is, in this case, the greater vagueness of term

T , the more likely that consistency of the profile is close to 0.5.

2.1.3 Linguistics and fuzzy set theory

We will use the simple linguistics concept of temperature (only three levels, cold, warm and

hot) to connect with the fuzzy set function. In Figure 2.2, we describe the temperature

of the water using a survey item with three categories, cold, warm and hot. The vertical

line crosses the functions at about 0.8, 0.4, 0 may correspond to language that describes

temperature as fairly cold, slightly warm and not hot as shown in 2.3 [23]. This is the

vagueness of the language. The randomness comes from the percentage of cold, warm, and

hot in the population. The fuzziness opens the boundary among cold, warm, and hot.

This is similar to Item Response Theory (IRT) for ordinal response, e.g. Graded Re-

sponse Models (GRM). The item characteristic curves (ICC) are based on the normality

assumption. We combine the normality assumption among the different survey responses

and the vagueness in survey process. In this fuzzy system, the membership function is a

step function that categorizes the Gaussian membership function, which will be described in

detail in the fuzzification layer.
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Figure 2.2: The linguistics variable structure

Fuzzy set theory is used when we need to model the uncertainty more than just probabil-

ities and when we face the problems of gradual boundaries, i.e. the boundary of information

is not clearly cut. For example, words such as good (oral health), happy (with teeth look),

are fuzzy. The concept of good oral health has no clear boundary. Fuzzy set theory is an

extension of the classical set theory (CST), where the elements of the set are associated with

membership functions. In reality, there is fuzzy knowledge, which involves human thinking

and human reasoning, for example, the knowledge and information we learned from the sur-

vey response space. Fuzzy set theory deals with unreliable, incomplete and often uncertain

information.

The survey questions are designed to incorporate the idea of fuzzy input. The crisp set

in CST for a survey question only has yes and no response, which is insufficient to describe

human reasoning. It has clear and sharp boundaries. With the fuzzy idea, the survey

questions might have these response options: Very true, somewhat true, neutral, somewhat

false, false, and even do not know.

An example of using fuzzy logic in reasoning, from Aristotelian logic to inductive logic

[24], in the context of oral health, the statements could be formulated in the following as

an example, the information from responses a survey item is summarized in A2. The oral
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Figure 2.3: The fuzzy function of temperature

health knowledge beyond the survey item is stated is A1. The fuzzy logic leads to possible

conclusion in both A3 and A′3. There is no sharp boundary between A3 and A′3.

• A1: Brushing teeth every day leads to good oral health.

• A2: David brushes his teeth every day.

• A3: It is likely that David has good oral health.

• A′3: It is very likely that David has good oral health.

Both A3 and A′3 could be the approximate conclusions of A1 and A2.

2.2 Fuzzification Layer

2.2.1 Bootstrap re-sampling stage

The Bootstrap was first proposed by Efron in 1979 [25, 26, 27] to represent the sampling

distribution of complex statistics by using simple random samples with replacement from
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the original sample. It is commonly used to estimate the sampling distribution of a test

statistic [28]. It is also used in survey re-sampling for small-area estimation [29] that is to

produce estimates for smaller geographic areas and subpopulations, for which large sam-

ples are not available. However, developing valid bootstrap procedures is a challenge. For

small-area estimation, a frequentist predictor, such as an empirical best linear unbiased pre-

dictor (EBLUP), or a hierarchical Bayes estimator is often used. Developing valid bootstrap

procedure survey samples [29] is challenging because of the complex correlation structure in-

duced by survey design, sampling weights, stratification, imputation schema, and small-area

estimation.

The bootstrap is a resampling procedure. Efrons bootstrap sample is defined as a sample

of n independent identically distributed random variables X1, · · · , Xn. The parameter θ̂ is

estimated by the empirical distribution Fn, which is assign probability 1/n to each obser-

vation Xi. Usually, there are two numbers to determine before the procedure, the total

number of bootstrap samples B and the number of observations in each bootstrap sample

n∗. Usually, the sample sizes of all bootstrap samples are the same and most commonly

n∗ = n, when the aim of using bootstrap is to estimate the sample mean and variance.

For finite population of N <<∞, labeled as {1, 2, · · · , N}, let ~Xi be the vector of survey

responses for i = (1, 2, · · · , N). We are interested in estimating a nonlinear function of ~Xi.

We can estimate

• A smooth function of the finite population mean, θ = g(X̄), where X̄ =
∑N

i=1
~Xi

• A smooth function of a vector of function of means, θ = g(X̄1, X̄2, · · · , X̄p), common

statistics, such as variance, ratio, and correlation can all be written in this format.

Note the above situation is a special case of this scenario;

• Nonsmooth function (e.g. quantile).

In traditional randomization survey sampling theory, the response space X ∈ R is fixed.

The unbiased estimator is calculated based on the probability that a response is selected
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from the finite population. This is called design unbiasedness, with respect to the sampling

design probabilities [29].

In survey sampling, it is important to evaluate the bias of an estimator. For a linear

function, the bias of an estimator can be estimated directly. The complex function is ex-

pressed in the linear format using Taylor Series. For other cases, when the function is not

explicitly expressed in math formula, or for non-linear functions, the bootstrap is used. The

common bootstrap steps are [29],

1. Generate resamples from original sample using suitable probability sampling scheme.

2. Calculate θ̂∗b from the resamples, here θ̂∗b is a nonlinear statistic.

3. Calculate θ̂ from a large number (B) of independent resamples as

θ̂∗ =
1

B

B∑
b=1

θ̂∗b (2.5)

The bias for the bootstrap estimator θ̂∗ is,

Bias =
1

B

B∑
b=1

(θ̂∗b − θ̂∗) (2.6)

The variance is estimated by,

Variance =
1

B − 1

B∑
b=1

(θ̂∗b − θ̂∗)
2 (2.7)

To obtain a confidence interval (CI), one can use the percentile method [30]. It is not

appropriate to simply calculate CI using the parameter estimate and variance. Usually, the

percentile method works fine to construct a CI for a parameter based on bootstrap estimates.

Rank all bootstrap estimates θ̂∗b . The 90% CI excludes the highest 5% and the lowest 5%.

The percentile method is referred to as Efron’s percentile method CI. The CI in this method

contains the true value of θ with probability 1 − α but it has some restrictions on the

estimator, The Typical Value Theorem only needs to assume the population distributions is

symmetric.
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For this problem, the true population parameter is both continuous and categorical.

The continuous distribution is the childrens oral health status Index (COHSI) score and

its percentile. Both COHSI score and percentile have possible ranges from 0 to 100. The

percentile is similar to rank value and has lowest and highest percentile. However, in practice,

it is impossible to observe extreme values of COHSI. The lowest COHSI happens if a child

lost all primary teeth or an adolescent lost all permanent teeth. This rarely happened in

practice. The estimation for the population COHSI range is not available in the literature,

though the observed range of the COHSI in the field test was 59.18 to 100 [31, 32, 33, 34].

The limitation is that when field tests were conducted at dental clinics among those children

who already have a dental home [35] (mostly preventive care), COHSI is highly skewed to

the left (negative skewed), with a higher sample mean than the general population. A higher

COHSI score was associated with better oral health [36, 31]. Most of the children have better

oral health status than the general population. This limits the generalizability of machine

learning algorithms to predict oral health of the general population. If the algorithms are

derived from a biased sample (Figure 2.4), no matter how good the algorithm is on the

training set without overfitting problem, the generalization is still limited.

Figure 2.4: Biased sample in population

In our data, the missing or low endorsement of lower categories (the survey options of

lower assigned score associated with poor oral health) makes most traditional estimation

methods biased. For example, the graded response model needs at least three to five cases

per response options in order to estimate threshold parameters. We can combine adjacent

categories to increase the sample size. The dental clinic sample makes the lower level of

categories (usually predict poor oral health status) hardly being endorsed by those who

already have a dental home. Therefore, the distribution of the sample is skewed with a large

portion of the sample having better oral health status than population. The combination
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of lower adjacent categories reduces the number of threshold parameters and can lead to

problems in generalization to other samples.

Figure 2.5: Partition real line into B + 1 section

2.2.2 Adding noise stage

In this dissertation, to address situations, such as in Figure 2.4, where a re-sampling method

would not be expected to represent the full range of values in an underlying population

distribution. we developed a technique by adding noise to the original sample so that the

sample can better reflect the range of the population. This approach requires knowledge

about the population to be estimated. In the scenario of the motivating example, we know

the sample is collected from dental clinics with better oral health than the general population.

Suppose further that the goal is to generalize to a school-based population, as shown in Figure

2.4. A natural way to expand the original set observations to a broader set of plausible

observations is adding noise to fuzzify the sample so that the boundary of the fuzzy set

could reach to lower or upper limit of population. The more different the sample is from the

population, the more ambitious the added noise may need to be to extend the boundary of

original sample, and the more uncertainty of the prediction.

A natural way in statistics to add noise to a sample is with a standard normal distribution,

as shown in an illustrative example in Figure (2.6). The figure indicates the probability of

transferring Xi symmetrically into six neighbor options Xi±3 and itself Xi until the values hit

the boundaries of the response options. Figure 2.6 corresponds to the membership function

in Figure 2.7.

In this section, we show that the manually introduced noise extended the original data

set or crisp set into a fuzzy set with probability defined by the fuzzy membership function,
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Figure 2.6: The membership function of original response with probabilities

as shown in Figure 2.7. Each unique response forms a crisp set in fuzzy set theory, which

belongs to the fuzzy set that is generated by the unique response with probability 1. The

noisy set generated by this response xi is the fuzzy set Axi defined by,

Axi = {ai|ai ∈ R, ai = [xi + ε], ε ∼ N(0, 1)} (2.8)

Here [·] means rounded to the nearest integer. This integer is bounded by the response

space R. The membership function is restricted on the boundary of the sample space. For

example in Figure 2.8, the noise dilutes the extreme response to the neighbor categories. For

example, for x = 1 in a six response category, after adding the noise, 69.1% of the original

response stays at category X = 1, the original response. As shown in Figure 2.8, 30.9% of

the original responses of x = 1 are now distributed as x = 2 (24.2%), x = 3 (6.1%), and

x = 4 (0.6%). When the response is at the boundary, the responses can only be distributed

to one direction. This is the only restriction when we introduced noise.

As shown in the graph, the extreme response is forced by the manually introduced noise

to reallocate to its neighbors by roughly 30%. The nearest neighbor category is increased by

24.2% from the original response category of X = 1.

The membership function of ai is defined by the standard normal distribution of ε, i.e.

P (ai ∈ Axi) = Zε (2.9)
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Figure 2.7: The membership function for Xi

This is a categorized version of the Trapezoidal membership function.

For the simplest case, for only one survey item X ∈ R1 the noise ε transfer the response

space from X to X ′, where X ′ = X+ ε. Assume X is Multinomial distribution with six level

of categories, i.e.

X ∼ Multinomial(n, p1, p2, · · · , p6), where
6∑
1

pi = 1

The distribution for X ′ is given by,

X ′ ∼ Multinomial(n, p′1, p
′
2, · · · , p′6), where

6∑
1

p′i = 1

The probability p′i can be calculated from the matrix,

p′1 = 0.691p1 + 0.309p2 + 0.067p3 + 0.006p4

In the above formula, the coefficients are directly from the transition matrix as shown in

Table 2.1 in the first column.

In vector format, the relationship between p′ and p (where transition matrix is defined

as Table 2.1) is:

p′ = T tp
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Figure 2.8: The effect of noise on an extreme response in an item with six categories

Table 2.1: Probability of noise for 6-category response transition matrix

Response category 1 2 3 4 5 6

1 0.691 0.242 0.061 0.006 0 0

2 0.309 0.382 0.242 0.061 0.006 0

3 0.067 0.242 0.382 0.242 0.061 0.006

4 0.006 0.061 0.242 0.382 0.242 0.067

5 0 0.006 0.061 0.242 0.382 0.309

6 0 0 0.006 0.061 0.242 0.691



p′1

p′2

p′3

p′4

p′5

p′6


=



0.691 0.242 0.061 0.006 0 0

0.309 0.382 0.242 0.061 0.006 0

0.067 0.242 0.382 0.242 0.061 0.006

0.006 0.061 0.242 0.382 0.242 0.067

0 0.006 0.061 0.242 0.382 0.309

0 0 0.006 0.061 0.242 0.691





p1

p2

p3

p4

p5

p6


The matrix is not symmetric because the categories are truncated at the boundaries. For

example, the probability for category 1 to 3 (= 0.061) is different from category 3 to 1

(=0.067), because category 1 has small chance to change to 4 (0.006) but it is not possible
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for category 3 change to −1 (the fuzzy observations with noise are restricted on the design

space).

For a particular response Pij adding noise εij,

P ∗ij = Pij + εij (2.10)

The noise εij is with respect to the ith subject and jth question.

P ∗ij =



Pij − 3 if ε ∈ [−3.5,−2.5), with probability 0.006

Pij − 2 if ε ∈ [−2.5,−1.5), with probability 0.061

Pij − 1 if ε ∈ [−1.5,−0.5), with probability 0.242

Pij if ε ∈ [−0.5, 0.5], with probability 0.382

Pij + 1 if ε ∈ (0.5, 1.5], with probability 0.242

Pij + 2 if ε ∈ (1.5, 2.5], with probability 0.061

Pij + 3 if ε ∈ (2.5, 3.5], with probability 0.006

(2.11)

The expectation of changing categories from the original response after adding noise is

to not change.

For an original response in category 1, the expected category change is,

0× 0.691 + 1× 0.242 + 2× 0.061 + 3× 0.006 = 0.382

For original response in category 2, the expected category change is,

−1× 0.309 + 0× 0.382 + 1× 0.242 + 2× 0.061 + 3× 0.006 = 0.073

For an original response in category 3, the expected category change is,

−2× 0.067− 1× 0.242 + 0× 0.382 + 1× 0.242 + 2× 0.061 + 3× 0.006 = 0.006

For an original response in category 4, the expected category change is,

−3× 0.006− 2× 0.061− 1× 0.242 + 0× 0.382 + 1× 0.242 + 2× 0.067 = −0.006
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For an original response in category 5, the expected category change is,

−3× 0.006− 2× 0.061− 1× 0.242 + 0× 0.382 + 1× 0.309 = −0.073

For an original response in category 6, the expected category change is,

−3× 0.006− 2× 0.061− 1× 0.242 + 0× 0.691 = −0.382

The overall expected change of categories is zero.

Assume the original sample includes n subjects, in each bootstrap sample with noise,

additional sample n with noise will be added to the original sample. In this setting, the

sample size n is usually small.

2.2.3 Fuzzy Set Theory in Statistics

The fuzzy set theory (FST) is very popular recently due to the knowledge-based machine

learning and artificial computational intelligence [12, 15]. FST was developed in the direc-

tion of fuzzy mathematics [15], though it was originally an extension of logic and classical

set theory. It models reality better than traditional models in pattern classification and

information processing. Data mining and statistical modeling has shifted from analyzing

homogeneous data sets of closed populations to the analysis of more complex and diverse

data sources from dynamic populations [12]. The uncertainty of the estimation is not only

coming from the variance of the population but also from unexpected heterogeneous infor-

mation. The idea of fuzzy is that the imprecision of the meaning of English word is more

from the vagueness of its meaning rather than lack of knowledge of the parameters.

Fuzzy rules are useful for modeling human thinking, perceptions, and judgment. The

idea of fuzzy set was first introduced by Lotfi A Zadeh in 1965 [37] to accommodate non-

statistical uncertainties, which are sometimes referred to as Vague in Linguistics [38]. It

provides a tool that can capture the uncertainties associated with human cognitive functions,

such as thinking and reasoning. In FST, the exact reasoning or association of causes with

effects derived from the sample is a limited approximation of reasoning, that is truth-values
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(meaning or concept of a word) are fuzzy subsets of the unit interval [24].

It is worthwhile to develop the data-driven adaption of fuzzy systems, which is an inte-

gration of statistics, machine learning, data management, and computer science. The fuzzy

set is a simple definition from the idea of extending one dimension source of information to

two dimensions. For example, the easy fuzzifier process is to change the line to a triangle by

introducing an additional point not on the line.

FST has been used in data selection and preparation [12], such as condensing several crisp

observations into a single fuzzy observation, creating fuzzy summary of data, and modeling

vague data, all of which are part of the fuzzy data analysis. There are two different ways

of analyzing fuzzy data [12]: (1) extending traditional statistical methods directly to fuzzy

data sets and (2) embedding data into the fuzzy metric spaces (a more sophisticated and

complex approach).

2.2.4 Preliminary about fuzzy set theory

The Fuzzy Set is defined as below,

Definition 2.2. The set Ā = {(x, fĀ(x)), x ∈ X} is fuzzy set, where the function fĀ is the

membership function mapping x→ [0, 1]

The membership function fully described the fuzzy set and described the degree of simi-

larity between the elements in the fuzzy set and the crisp set. The membership function can

be selected based on experiences of the data set or based on a machine learning method, e.g.

fuzzy artificial neural networks [38]. The typical shape of membership functions are triangle,

trapezoid, or Gaussian. In this dissertation, we created the membership function as a step

function shown in Figure 2.7.

Definition 2.3. The crossover point in A is defined as the element x with fĀ(x) = 0.5.

Sometimes, the crossover point is not considered a member of A.

Definition 2.4. Two fuzzy sets, A and B are equal, if and only if fĀ(x) = fB̄(x) for all

x ∈ X.
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With similar definition, the relationship between the two fuzzy set A ⊂ B if and only if

fĀ(x) ≤ fB̄(x) for all x ∈ X. As part of the axiomatic system of fuzzy set theory, Zadeh

(1968) generalized the membership function to the probability of an event A as [39, 3],

P (A) = E(fĀ) (2.12)

Using the generalization from membership function to probability, the distribution of the

event A can be related to the grade of membership of the element in fuzzy set A.

Definition 2.5. The fuzzy set A is a convex normalized fuzzy set of the real line R if

there exists exactly one x0 ∈ R such that fĀ(x0) = 1 and the membership function fĀ(x) is

piece-wise continuous. In this case, the value x0 is called the mean value of A.

Definition 2.6. The fuzzy set A is a convex if

fĀ(λx1 + (1− λ)x2) ≥ min{fĀ(x1), fĀ(x2)} (2.13)

The classical operations for set, such as union, intersection, and complement of set oper-

ations are easy to define in FST [40]. The union is defined as the maximum of the member

functions. The intersection is defined as the minimum of the member functions. The com-

plement is one minus the membership functions.

The union of fuzzy sets A and B is defined as,

Ā ∪ B̄ = {x|fĀ∪B̄(x) = max{fĀ(x), fB̄(x)}} (2.14)

The intersection of fuzzy sets A and B is defined as,

Ā ∩ B̄ = {x|fĀ∩B̄(x) = min{fĀ(x), fB̄(x)}} (2.15)

The complement of fuzzy sets A is defined as,

Āc = {x|fĀc(x) = 1− fĀ(x)} (2.16)
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The support function of fuzzy set is defined as,

Support(Ā) = {x|fĀ(x) > 0} (2.17)

Fuzzy set with support as a single point x is called fuzzy singleton,

fĀ(x) = 1

The core of fuzzy set is defined as,

Core(Ā) = {x|fĀ(x) = 1} (2.18)

The power set (or powerset) is defined as the set that included all subsets, including

empty set and itself. If A is a finite set with |A| = n elements, then the number of subsets

of A is |P (A)| = 2n.

The algebraic product is directly calculated at the function level as,

Ā · B̄ = {x|fĀ·B̄(x) = fĀ(x) · fB̄(x)} (2.19)

The algebraic sum of fuzzy set is calculated as,

Ā+ B̄ = {x|fĀ+B̄(x) = fĀ(x) + fB̄(x)− fĀ(x) · fB̄(x)} (2.20)

For algebraic summation, is can be written as,

Ā+ B̄ = {x|fĀ+B̄(x) = 1− (1− fĀ(x) · (1− fB̄(x)} (2.21)

There are some bounded operations [40] specifically designed for set operations, because

the membership function is defined on the closed interval [0, 1]. To ensure the function is

still a membership function, the bounded-sum is defined as,

Ā⊕ B̄ = {x|fĀ⊕B̄(x) = min{1, fĀ(x) + fB̄(x)} (2.22)

The bounded-difference is defined as,

Ā	 B̄ = {x|fĀ	B̄(x) = max{0, fĀ(x)− fB̄(x)} (2.23)
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The bounded-product is defined as,

Ā⊗ B̄ = {x|fĀ⊗B̄(x) = max{0, fĀ(x) + fB̄(x)− 1} (2.24)

The classical laws in set theory can all be easily carried over to FST for (2.14 to 2.20),

such as Idempotent laws, commutative laws, associative laws, absorption laws, distributive

laws, involution laws, De Morgan’s laws, and identity laws [40]. In traditional fuzzy set

theory, fuzzy sets does not form a Boolean Algebra because the complement laws are not

satisfied due to,

Ā ∪ Āc 6= Ω and Ā ∩ Āc 6= ∅ (2.25)

2.2.5 Bootstrap re-sampling with noise

First we need to prove the fundamental theorem, Typical Value Theorem (TVT) still holds

when noise is added to the original samples. The TVT is stated as below.

Theorem 2.1. (The TVT of Bootstrap samples). For independent identically distributed

(i.i.d.) observations, X1, X2, · · · , Xn, the observations are indexed by integers i = (1, 2, · · · , n).

Assume Sb, b = (1, 2, · · · , B) are the bootstrap subsamples randomly selected without replace-

ment from X1, X2, · · · , Xn, indexed by 2n− 1 non-empty subset of integers i = (1, 2, · · · , n).

Let θ̂b be the estimates based on set Sb. These estimates divide the real line into B+ 1 parti-

tions, denoted by I1, I2, · · · , IB+1, where I1 = (∞, θ̂1), · · · , Ib = [θ̂b−1, θ̂b), · · · , IB = [θ̂B,∞).

Then the probability for true θ ∈ Ib is 1/(B + 1).

The TVT defined a procedure that can be used to generate random subsampling (inde-

pendent). In this way, the estimated values θ̂1, · · · , θ̂B are independent. This is because all

samples are selected without replacement. We can use the percentile method to generate

confidence intervals, which are exactly j/(B + 1)%. In this case, the 100(j/(B + 1)) confi-

dence interval can be constructed by selecting the corresponding range in the middle [30].

But for small samples and asymmetric distributions, this method does not work well. Efron

[41] has proposed four methods to correct for bias in confidence intervals.
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The original sample is X = (X1, X2, · · · , Xn). Each Xi represent a person’s response to

survey space, i.e. a vector of p× 1. After adding noise, Each Xi is a probability band. Each

Xi is not fixed as traditional bootstrap sampling, it is a probability sample on the band

instead.

(Boundary) Boundary is defined as the extreme responses, where most properties do

not hold mathematically. In the noise added to extreme responses, there is 69.1% chance

that the response will stay the same after noise. In this way, roughly 30% of the responses in

the more extreme categories can be used to represent plausible population values for nearby

categories.

The response with noise generates a probability response band centered on current re-

sponse with probabilities and bounded by the response space, as shown on Figure 2.9. Further

away from ~Xi has less probability of being endorsed in the sample with noise.

Figure 2.9: The probability response band centered at ~Xi

The probability distribution for the probability band is explained on Figure 2.6. The

probability band is generated by adding Gaussian noise. Instead of using only ~Xi to predict

θ, we use sampled ~X∗iε from the probability band centered at ~Xi bounded by R to predict θ.

Theorem 2.2. (Pointwise Bounded Theorem) For any continuous and differentiable func-

tion g : X → R,

‖g( ~X∗iε)− g( ~Xi)‖ ≤ g′(ε)‖ ~X∗iε − ~Xi‖ = εg′(ε) (2.26)
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and

E(g( ~X∗iε)− g( ~Xi)) = 0 (2.27)

This theorem is easy to prove by Middle Value Theorem or Rolle’s theorem.

Now we can generate the very similar noisy version of TVT. We defined the original

observations as, X1, X2, · · · , Xn and bootstrap sample Sb, b = (1, 2, · · · , B) the same as

Theorem 2.1. The noise is introduced to bootstrap samples by X∗i = [Xi + ε] ∈ R, bounded

within R, with ε ∼ N(0, 1). The bootstrap sample with noise is denoted as S∗b . Let θ̂∗b be

the estimates based on set X∗ib ∈ S
∗
b . Then we have the following theorem.

Theorem 2.3. (Noisy Typical Value Theorem) The estimates θ̂∗b divide the real line into

B+1 partitions, denoted by I∗1 , I
∗
2 , · · · , I∗B+1, where I∗1 = (∞, θ̂∗1), · · · , I∗b = [θ̂∗b−1, θ̂

∗
b ), · · · , I∗B =

[θ̂∗B,∞). Then the probability for true θ∗ ∈ I∗b is 1/(B + 1).

Theorem 2.4. For fixed continuous and differentiable function g, we can show E(θ̂∗b − θ̂b) =

0. If further g′ is uniformly bounded, i.e. g′ ≤M , we can show,

θ̂∗b ≈ θ̂b + εM (2.28)

Here ε is normally distributed with mean 0 and variance 1. M is a constant.

By Taylor Series, θ̂∗b is estimated based on the bootstrap sample S∗b . We use X∗ib to denote

the observations contained in the subsample S∗b .The N th order of Taylor Series for function

g at X∗ib ∈ Sb is,

θ̂∗b = g(X∗ib) (2.29)

and

g(X∗ib) = g(Xib) + g′(Xib)(X
∗
ib
−Xib) +

g′′(Xib)

2!
(X∗ib −Xib)

2 + · · · (2.30)

Therefore, we can show

E(θ̂∗b − θ̂b) = E(g(X∗ib)− g(Xib)) ≈ E(g′(Xib))× E(ε) = 0 (2.31)

This theorem indicates that the expectation of noisy bootstrap sample estimation is similar

to the original sample for the same smooth function.
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The standard error for bootstrap sample is, here
¯̂
θ is the average of all the bootstrap

sample estimates.

V ar(θ̂b) =
1

B − 1

B∑
b=1

(θ̂b − ¯̂
θ)2 (2.32)

For noisy version, we directly calculated the variance from the bootstrap sample,

V ar(θ̂∗b ) =
1

B − 1

B∑
b=1

(θ̂∗b −
¯̂
θ∗)2 (2.33)

We can use Theorem 2.4 and the fact V ar(x) = Ex2− (Ex)2 to show the difference between

the two variances is,

V ar(θ̂∗b )− V ar(θ̂b) = E((θ̂∗b )
2)− E(θ̂∗b )

2 − E(θ̂2
b ) + E(θ̂b)

2

= E((θ̂∗b )
2)− E(θ̂2

b ) + (Eθ̂b − Eθ̂∗b )(Eθ̂b + Eθ̂∗b )

= E((θ̂∗b )
2)− E(θ̂2

b )

≈ E((θ̂b + εM)2)− E(θ̂2
b )

= E(θ̂2
b + 2εMθ̂b + ε2M2)− E(θ̂2

b )

= 2ME(ε)E(θ̂b) +M2E(ε2)

= M2 (2.34)

As expected, after introducing standard normally distributed noise, the variance of the boot-

strap sample increases but the level of increment is bounded as a constant.

2.2.6 Fuzzification process

Fuzzification is the process of converting each data point X∗i from the bootstrapped samples

(sampled from Xi) to fuzzy data point Z∗i . The process could be either a lookup table or a

transform function with probabilities. The membership function of a fuzzy set is defined in

this step. After this process, each re-sampled response X∗i is fuzzified with a probability that

the fuzzy response Z∗i is close to the corresponding data point Xi in original sample space,

which is referred to crisp set Cr. The fuzzified observations are denoted as Z∗i ∈ AXi
. The

fuzzy set AXi
is generated by the original sample Xi after bootstrapping and introducing

noise.
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The fuzzy set AXi
is generated by Xi ∈ Cr. The fuzzification process is only applied to

the short form items of survey response vector Xi. We do not add noise to demographic

questions under the assumption that the population should have similar characteristics as the

sample. The fuzzy observations include fuzzy short form responses, similar demographics,

and associated oral health outcomes. Therefore, for each input pair (Xi, Yi) in the boot-

strap samples, the fuzzification layer generates observations with the probability ( ~Xi, ~Pε).

The probability will be later used as a weight in estimating the fitted outcomes. For each

observation, an identically independently distributed (i.i.d.) noise from the standard normal

distribution will be added as,

~ZXi
= ~Xi + ~ε (2.35)

The probability of ZXi
is the probability of the maximum noise element of ~ε,

PZXi
= ‖~ε‖∞ (2.36)

The fuzzy set AXi
is defined as all observations in the bootstrap sample that is generated

by Xi with its probability as membership function.

Theorem 2.5. The fuzzy set AXi
is a convex normalized fuzzy set with mean value Xi and

variance greater than V ar(Xi).

Proof:

The convex normalized fuzzy set is defined in 2.5. For fuzzy set AXi
, we let the probability

of Xi ∈ AXi
= 1. The membership function defined as above is a piece-wise continuous as

shown in Figure 2.7.

All the noise εbj, for j = 1, · · · , nb and b = 1, · · · , B are i.i.d. from standard normal

distribution. Given all X∗i are equal, we have,

E(Zi) = E(Xi + ε)

= E(Xi) + E(ε)

= Xi

(2.37)
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For categorized noise version, we have

E(Zi) =

Zi=Xi+3∑
Zi=Xi−3

ZiPZi

= (Xi − 3)PZi=Xi−3 + (Xi − 2)PZi=Xi−2 + · · ·+ (Xi + 3)PZi=Xi+3

= Xi ×
Zi=Xi+3∑
Zi=Xi−3

PZi

= Xi

(2.38)

and

V ar(Zi) = V ar(Xi + ε)

= V ar(Xi) + V ar(ε)

= V ar(Xi) + 1

(2.39)

For categorical noise version, we have

V ar(Zi) = E(Zi − E(Zi))
2

=

Zi=Xi+3∑
Zi=Xi−3

PZi
(Zi − E(Xi))

2

=

Zi=Xi+3∑
Zi=Xi−3

PZi
(Xi − E(Xi))

2(9PXi−3 + 4PXi−2 + PXi−1)× 2

= V ar(Xi) + 1.08

≈ V ar(Xi) + 1

(2.40)

In the variance part, there is rounding error when the probabilities are squared. In this way,

we show that adding noise at response options does not change the means and variances

when rounding the noisy responses at design options.

The aim of the fuzzification layer is to combine the randomness and fuzziness and there-

fore generate fuzzy random variables for the next layer to make inferences. The simple

definition is from [42, 43] as the random variables with values as fuzzy numbers. It is a

natural combination of randomness and fuzziness as shown in Figure 2.10 using previous

simple temperature example. The fuzzification is one way to re-construct the uncertainty

30



Figure 2.10: Combine fuzziness and randomness

in statistical literature. In this dissertation, the uncertainty of fuzzy system is from two

parts. One is from the randomness when using bootstrap method to resample from original

observations. Another part is using fuzzy set to blur the boundary among survey options

by adding a simple noise structure to observations. In this way, the sample is expanded

to plausible observations with roughly Gaussian distribution with mean at itself except at

boundaries.

2.3 Inference Layer

The inference layer develops the algorithms that are used for prediction. The algorithm is

developed based on the sample size (N) in the previous section. In the following, we discuss

several algorithms, that are different based on the outcomes.

2.3.1 Categorical variables - Classification

For categorical outcome, the simplest form of classification is using the Naive Bayesian

(NB) classifier [44]. NB has been used intensively for classification problems because of its
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simplicity but surprisingly high accuracy [45, 46]. In classification, it has been recently used

for diagnosis, disease prediction, and classification [47, 48, 49]. NB [50, 51] is based on Bayes

Theorem and has a smaller error rate than other tree-based algorithms for classification

[49]. It directly converts the conditional probabilities between clinical exam results and

survey responses. We use R to denote the response space of survey questions. The outcome

from clinical exam is denoted by E, with Ecat denotes the categorical outcomes referral for

treatment needs (RFTN), with k denoting categorical level. I use Econ to represent the

continuous outcome, children’s oral health status index (COHSI).

Using Bayes’ theorem, the conditional probability can be expressed in general,

P (E|R) =
P (E)× P (R|E)

P (R)
(2.41)

In this notation, R = (P1, P2, · · · , PJ , C1, C2, · · · , CH). In plain language, the equation can

be explained,

Posterior =
Prior× Likelihood

Evidence
(2.42)

The classification is determined by the posterior probability that is calculated by the prior

information, the sample statistics (Likelihood in 2.42), and the sample response space (Ev-

idence in 2.42). In the context of the study, the posterior information is the prediction of

the clinical outcomes, given the survey responses. The prior information is estimated by the

probability of treatment needs in the field test sample. The sample statistics are estimated

by the conditional probability of the survey responses, given RFTN. The translated version

is,

Prediction from survey =
Incidence× Field Test

Survey Response
(2.43)

The predicted RFTN falls onto the category with the highest posterior probability. This

is called maximum a posteriori (MAP). NB is widely used in the prediction of categorical

outcomes. The only assumption in NB is conditional independence among predictors (short

form and demographics), which is the same assumption used in item response theory (IRT).

The conditional independence is used in Graded Response models among the short forms

items.
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The estimation procedures are separated for if only children’s information is available, if

only the response from parents’ are available, if both information are available, and if addi-

tional information are available, e.g. demographics. Below are the derivation for categorical

outcome Ek, i.e.Ecat = k. The posterior probability (P (E|R)) can be estimated by maximum

probable hypothesis (MAP). The chain rule is used to calculate the joint probability of the

responses from children (RC) and outcomes E,

P (RC , Ek) = P (C1|C2, · · · , CH , Ek)P (C2|C3, · · · , CH , Ek) · · ·P (CH |Ek)P (Ek)

If we assume “naive independence”, the joint probability is,

P (RC , Ek) = P (C1|Ek)P (C2|Ek) · · ·P (CH |Ek)P (Ek)

The assumption is very strong in practice, but even if the assumption does not hold, the

results are not affected much. Therefore, the posterior probability of Naive Bayesian is,

P (Ek|RC) =
P (RC , Ek)

P (RC)

=
P (Ek)×

∏H
h=1 P (Ch|Ek)

P (RC)

=
P (Ek)×

∏H
h=1 P (Ch|Ek)∑

k P (Ek)×
∏H

h=1 P (Ch|Ek)
(2.44)

The classifier for the outcome of subject i, given the self-reported survey responses is yi is

(i = 1, · · · , N),

yi = k, argmaxk (P (Ek|RC)) (2.45)

Using the fact the response space P (RC) does not change from population to population,

only numerator counts in the final prediction. Further expanded the above formula, with

consideration of being very conservative about the prediction (always assign smaller cate-

gory),

yi = min
k

{
argmaxk

(
P (Ek)×

H∏
h=1

P (Ch|Ek)

)}
(2.46)

In this model, the probability is estimated by two parts P (Ek) and the products of all con-

ditional probabilities P (Ch|Ek). The probability P (EK) can be modified if the information
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is available in new population. The other part of the formula is the probability estimated

based on the field test data. Given the oral health status, the probability of response falls

into different categories across all questions answered by children.

In certain situations, only the answers from parents are available and appropriate to

use, for example, when the children are too young for the survey questions. The parent

can provide proxy responses for the surveys, RP . Except for the level of accuracy for some

questions related to the child’s personal experiences (e.g. pain, quality of life, satisfaction),

the response from parents has a broad range. Though the accuracy of the estimation still

depends on the dental literacy of parents, the responses are treated an additional information

for children’s response. Similar as children’s estimation, the posterior probability for NB of

parents is,

P (Ek|RP ) =
P (Ek)×

∏J
j=1 P (Pj|Ek)∑

k P (Ek)× P (RP |Ek)
(2.47)

Then the classifier for the outcome of subject i, given only the survey response of his or her

parent,

yi = k, argmaxk (P (Ek|RP )) (2.48)

Therefore, the final estimation for parents response only can be estimated as,

yi = min
k

{
argmaxk

(
P (Ek)×

J∏
j=1

P (Pj|Ek)

)}
(2.49)

The explanation for the parents’ model is the same as the children’s model. The prediction

is based on two parts of the probabilities, the incidence rate of the current population and

the field test sample estimation.

2.3.2 Continuous variables - Prediction

For the continuous outcomes, we elected to use XGBoost [52, 53], eXtreme Gradient Boost-

ing, among many available algorithms. XGBoost is a scalable tree boosting algorithm widely

used recently on many machine learning challenges and can achieve better prediction results

while using less resources for complicated computations [54, 55]. It is the most popular

machine learning algorithm since it was introduced in 2014 and is widely used in the re-
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cent decade on many machine challenges. It is highly effective for sparse data due to its

scalability. In this section, we briefly review the techniques used in XGBoost. It is also a

supervised learning algorithm built on a gradient boosting method. We predicted COHSI

scores obtained from the dental exam by several additive functions [31, 34] developed from

the short form responses and demographic information. The parameters of the model are

derived from the loss function (better prediction) and regulation function (less overfitting).

XGBoost is very efficient on sparse data and large data sets.

Assume we have a data set {(X1, Y1), (X2, X2), · · · , (Xn, Yn)} with size n, where Xi is a

vector of Rp. Here we assume Yi is a continuous variable in R. Then it is estimated by K

additive functions in F [52],

Ŷi =
K∑
k=1

fk( ~Xi), ∀fk ∈ F (2.50)

Here fk denotes an independent tree structure with leaf weights ~ω and F is the space of

regression trees. The weight is,

~ω = (ω1, ω2, · · · , ωT )

The number of leaves is Tk for each tree for k = 1, 2, · · · , K. The total number of leaves is

T . The risk function is defined as the loss function and the regulation function [53],

L =
n∑
i=1

l(Ŷi, Yi) +
K∑
k=1

Ω(fk) (2.51)

In the risk function 2.51, the loss function is choosing among differentiable and convex

functions. The regulation function is defined as,

Ω(fk) = γT +
1

2
λ

T∑
j=1

ω2
j (2.52)

The regulation function aims to penalize the complexity of the model to avoid over-fitting.

The regulation parameters γ is for total number of leaves T and λ is for the weights of leaves

when using L2 norm.

In gradient tree boosting, use the fact that Yi can be estimated by the additive function

in F, the tth iteration of Ŷi is,

Ŷ
(t)
i = (Ŷ

(t−1)
i + ft(Xi)
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The risk at (t)th iteration can be written as below [53],

L(t) =
n∑
i=1

l(Ŷ
(t−1)
i + ft(Xi), Yi) + Ω(ft)

=
n∑
i=1

l(Ŷ
(t−1)
i , Yi) + gift(Xi) +

hi
2
f 2
t (Xi) + Ω(ft) (2.53)

The above formula is proved by Taylor expansion to the second order expanding at Y
(t−1)
i .

The first order partial derivatives in 2.53 is,

gi =
∂l(Ŷ

(t−1)
i , Yi)

∂Y
(t−1)
i

The second order partial derivatives in 2.53 is,

hi =
∂2l(Ŷ

(t−1)
i , Yi)

(∂Y
(t−1)
i )2

Now the goal is to find the best set of ~ωk that minimize 2.53. Revisiting the leaves on

the tree, assume q(x) is a function that map each observation Xi ∈ Rp to the leaves of tree

(T ). Denote the set of all leaves j as Ij,

Ij = {i|q(Xi) = j} (2.54)

Rewrite the risk function in 2.53 as (remove constant items) below, by rearranging the

summation items by leaves [53],

L(t) ∝
n∑
i=1

gift(Xi) +
hi
2
f 2
t (Xi) + γT +

1

2
λ

T∑
j=1

ω2
j

=
T∑
j=1

(
∑
i∈Ij

gi)ωj +
1

2
(
∑
i∈Ij

hi + λ)ω2
j + γT (2.55)

For any fixed structure (fixed T ), we can find ω∗ that minimizes the risk function 2.55 by

setting the first derivative with respect to each ωj to zero. The weight for each leaf j is,

ω∗j = −
∑

i∈Ij gi∑
i∈Ij hi + λ

(2.56)

The risk function is equal to (the quality of the tree structure),

L(t) ∝ −1

2

T∑
j=1

(
∑

i∈Ij gi)
2∑

i∈Ij hi + λ
+ γT (2.57)
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Once the structure of the tree with weights on each leaf is determined, the outcome can

be directly predicted from the regression trees. The R function is fully available based on

greedy algorithm [56], which starts from one leaf and adding branches in each step.

2.3.3 Training and Testing

When developing an algorithm using Machine Learning theory, we need to split the original

data into a training set and a test set. The training set and test set are used in machine

learning to derive the algorithms. The test data if separated from the original sample is

called an internal test set. If a new source of information is collected, independent of the

training set and test set, then the test set is called an external test set. The aim of the test

set is to estimate the true error of the learning algorithm. The training set and test set are

used in machine learning to derive the algorithms.

When the learning fails, the main approaches to fix the failure is noted in the literature

[57]. The most common situation is to get enough sample size for training the algorithm.

Alternatively, one can update the hypothesis class about the available algorithms or models,

in order that a model of good fit can be learned. Another remedy could be updating the

features that represent the data. If the selected Xi’s cannot be linked to Yi’s, the least used

remedy is to change the criteria of optimization. For example changing the rule to accept

error rate.

Both NB and XGBoost are supervised learning and require a large sample size for the

training set to achieve accurate prediction, stable parameters, and generalizable algorithms.

The supervised learning algorithm means that the algorithm is taught by the training data

set with the existing mapping between the outcome and predictors. The test set is used to

correct the learning from training. The training process stops if the prediction satisfies the

criteria. Then the training algorithm is used on the test data set.

Given a fixed sample size, there are several recommendations for splitting data into

training set and test set, for example 60% for training and 40% for testing, 70% and 30%,

or 80% and 20% . No matter how the sample is split, the sample size gets smaller overall. If
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one spends too much of a share of available resources on training (e.g. 80% in training), we

may not be able to fully evaluate the performance of the model. Hence, overfitting problems

may exist. Meanwhile, if one spends a lot of resources on evaluation (e.g. 40% in testing),

the parameters in the model may not be stable and well-trained. We use 70% and 30% as

our training set and internal test set. The way used to split the data is completely random.

Therefore, the original data were divided into 70% for training the algorithm, and 30%

for testing the generalizability and stability of the algorithm as suggested above and in the

literature [58, 59]. In this case, we can reduce the overfitting problem during training the

algorithms or models and develop a more stable and generalizable algorithm. The commonly

used statistics for validating the prediction are sensitivity and specificity for categorical

outcome. For continuous outcomes, we commonly use Pearson correlation and root-mean-

square error (RMSE) to evaluate the predictive of the algorithms. The 30% test data is used

in each step to estimate whether the algorithm satisfied the pre-determined criteria (e.g.

90% sensitivity and higher specificity). The error estimated from this part of data is internal

test. To fully estimate the error of the learning, we also recruit data from one more dental

clinic using the same method to collect additional data to evaluate the performance of the

algorithm. We expected the algorithm from the fuzzy set system to perform better than the

original observations, due to it being more “knowledgeable” on the response space R. The

new data were used only for external test and never used for training the algorithm.

2.4 Defuzzification Layer

In the literature, there are many different methods of defuzzification [60]. In this fuzzy

system, we use two steps, at fuzzy set level and at prediction level. At the fuzzy set level,

the observations are converted to the response on a grid (i.e. the categorical response on

the survey space). This step ensures all fuzzy observations still belong to response space

R. It is a trivial step of defuzzification. The other step is using the predicted algorithm at

the estimation stage after making inferences. At this step, the defuzzification process uses

the weighted average of the estimates from the derived algorithm to accommodate the fuzzy
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observations and membership functions so that any new input is predicted by all available

learning resources. In previous sections, we list several methods that can be used in the

inference layer to either make predictions or develop rules for classification. We will assume

in this section the algorithm f ∈ F is learned from the above inference layer.

2.4.1 Type of new input

We know in almost of all the surveys, X ⊆ R, i.e. the survey response can not cover the

entire survey space completely. For example, a simple survey of 10 questions with only yes

and no options in response may have 210 = 1024 possible combinations in response space.

We must collect at least 1024 samples with unique responses to cover the complete response

space in design. This is very difficult in practice.

This problems exists in most samples and survey designs. There is not enough sample

size to cover most of the scenario in the survey response space X . That is, the sample space

is incomplete. There is always a new input that is not covered in the sample space. The set

Cr = {X1, X2, · · · , Xn} includes all observations that can be reached by the original sample.

The new input is Xn+1. The fuzzy set generated by Xi is denoted as AXi
.

In the following, we define four type of new inputs as show in Figure 2.11,

• Observations from Crisp set, i.e. Xn+1 ∈ Cr. This is sometimes referred as estimation;

• Observations from fuzzy set but not in Crisp set Cr that need interpolation, i.e. Xn+1 ∈

AXq for some Xq ∈ Cr but Xn+1 /∈ Cr. There exist observations in Crisp set Xl ∈ Cr

and Xm ∈ Cr, such that Xl < Xn+1 < Xm, i.e. Xn+1 is bounded by two observations

in Cr;

• Observations from fuzzy set but not in Crisp set Cr that need extrapolation, i.e. Xn+1 ∈

AXq but Xn+1 /∈ Cr, i.e. Xn+1 cannot be bounded by two observations in Cr;

• New observations neither in fuzzy set or Crisp set, i.e. new data input, ∀1 ≤ q ≤

n,Xn+1 /∈ AXq and Xn+1 /∈ Cr;
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Figure 2.11: Four types of new input values

The fuzzy system is designed to predict new observations, with the “smallest” general-

ization error, defined as,

Definition 2.7. (Generalization error). The generalization error is in general defined as the

difference between the prediction function f ∈ F and real function fT ,

P∀x(f(x) 6= fT (x)) = Ex(1f(x)6=fT (x)) (2.58)

2.4.2 Defuzzification for Crisp set (Type I)

In Crisp set Cr, all observations are from sample data. For the new observation Xn+1 ∈

Cr, the estimation is from all potentially related observations. All fuzzy sets potentially

contained Xn+1 contribute the estimation. Assume the new observation Xn+1 = Xq ∈ Cr It

is the weighted average based on probabilities of crisp set and fuzzy set as,

Yn+1 =

∑n
i=1,i 6=q P (Xn+1 ∈ AXi

)f(Xi) +
∑B

b=1

∑nb

j=1 P (Z
(b)j
q ∈ AXq)f(Z

(b)j
q )∑n

i=1,i 6=q P (Xn+1 ∈ AXi
) +

∑B
b=1

∑nb

j=1 P (Z
(b)j
q ∈ AXq)

(2.59)

By using all the available information to predict the data point in crisp set, the prediction is a

weighted average of the prediction functions of fuzzy set data that are close (by probabilities)

to the observation Xn+1.
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2.4.3 Defuzzification for fuzzy set (Type II)

In fuzzy set, the predicted outcome (type II) is the weighted average based on probabilities

of fuzzy set observations. Since the fact that interpolation input is bounded from below and

up by fuzzy observations, the estimation is directly made from the weighted averages with

all covered fuzzy observations,

Yn+1 =

∑n
i=1 P (Xn+1 ∈ AXi

)f(Xi)∑n
i=1 P (Xn+1 ∈ AXi

)
(2.60)

2.4.4 Defuzzification for fuzzy set (Type III)

In fuzzy set, the observations (type III) is related to the weighted average based on proba-

bilities of fuzzy set observations but is not fully bounded by the fuzzy observations. Part of

the uncertainty is from outside of the fuzzy set. The estimation is from both the weighted

average of nearby fuzzy observations and the algorithm directly applied onto the data point.

Yn+1 =
[
∑n

i=1 P (Xn+1 ∈ AXi
)f(Xi)] + f(Xn+1)∑n

i=1 P (Xn+1 ∈ AXi
) + 1

(2.61)

The prediction for this type both depends on the information from the fuzzy set, and the

algorithm itself. The observations is usually outside the original sample. The uncertainty of

the estimation is larger than Type I and Type II above.

2.4.5 Defuzzification for new input (Type IV)

If the observation is completely new (neither from the original sample or the fuzzy set),

the only information is the function or algorithm developed from the fuzzy system, it is the

direct estimation from,

Yn+1 = f(Xn+1) (2.62)

In this way, the estimation is beyond the representativeness of the sample. The system

can generate the estimation value, but the uncertainty is the largest among all types of

predictions.
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2.5 Production Layer

2.5.1 Sample Size and Sample Complexity

In Machine Learning Theory, sample complexity needs to be taken into account to deter-

mine the required sample size. This is well-defined in Probably Approximately Correct

(PAC) Learning, which is the first to define learning in Machine Learning Theory. Before

defining what is PAC learning, we first introduce the sample complexity (SC) [61]. The sam-

ple complexity can be defined as a function of the two approximation parameters in PAC,

the accuracy parameter ε and the confidence parameter δ [57]. The accuracy parameter ε

describes how close the estimate is to the optimization, i.e. approximately correct. The

confidence parameter δ indicates how confident the learning algorithm meet the accuracy

requirements. The function defined on the hypothesis space H maps the two parameter to

an integer N. It is the requirement of minimum sample size for PAC learnable. It has shown

that [57] for finite hypothesis class, it is PAC learnable if the sample complexity,

NH ≤
log(|H|/δ)

ε
(2.63)

We will introduce ε-representative for sample complexity and sample size of finite space

R. First we define the representativeness of the sample for [57] as below.

Definition 2.8. (ε-representative). A training set T is called ε-representative, with respect

to domain Z, hypothesis function class H, loss function l, and the distribution D , if ∀h ∈ H,

|LT (h)− LD(h)| ≤ ε (2.64)

Here L(h) is the risk function, defined as the expected loss of an algorithm in H,

LD(h) =∆ ED l(h, (X, Y )) (2.65)

The empirical risk or training error is defined as the expected loss over the sample T ,

LT (h) =∆
1

n

n∑
i=1

l(h, (Xi, Yi)) (2.66)
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Sometimes, we can simply write the loss function as below when l is defined in the context

of Xi,

l(h, (Xi, Yi)) = l(h(Xi), Yi) (2.67)

For most of learning algorithm, it is searched by minimizing the risk function on training

set. Find an algorithm h to minimize LT (h), which is called Empirical Risk Minimization

(ERM). To avoid overfitting, the searching process is restricted on a finite class of functions

H. The algorithm hT ∈ H is the results of applying the ERMH to training set T [57],

hT = argmin
h∈H

LT (h) (2.68)

A simple theorem has been proved [57] that if the sample is ε/2-representative, then ERM

process will return an algorithm with risk close to the distribution D , even though D is

unknown. Now we extend this theorem to the fuzzy set Tε, T with noise.

Theorem 2.6. If the sample set T is ε-representative, the fuzzy set with noise on T is also

ε-representative.

Proof: For all algorithm hε ∈ H, we have

|LTε(h)− LD(h)| ≤ |LTε(h)− LT (h)|+ |LT (h)− LD(h)|

≤ |LTε(h)− LT (h)|+ ε (2.69)

For the motivating example considered here with a seven-level categorical variable, for each

observation (Xi = x, Yi = y) ∈ T , the corresponding fuzzy set of observations is,

(Xi = x, Yi = y)⇔



(Xi = x− 3, Yi = y), with probability 0.006

(Xi = x− 2, Yi = y), with probability 0.061

(Xi = x− 1, Yi = y), with probability 0.242

(Xi = x, Yi = y), with probability 0.382

(Xi = x+ 1, Yi = y), with probability 0.242

(Xi = x+ 2, Yi = y), with probability 0.061

(Xi = x+ 3, Yi = y), with probability 0.006

(2.70)
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Therefore, the risk of fuzzy set (Tε without noise) is,

LTε(h) = ETεl(h, (X, Y ))

=
1

n

n∑
i=1

∑3
−3w(k)l(h, (xi = x+ k, Yi))∑3

−3w(k)
(2.71)

The crisp set (T without noise) is estimated directly as,

LT (h) = ET l(h, (X, Y ))

=
1

n

n∑
i=1

l(h, (xi = x, Yi)) (2.72)

As long as the loss function in (2.72) can be estimated by the weighted average of loss

function in (2.71), the sample space with noise is also ε-representative.

We assume the weighted average loss function is approximately estimate the the loss

function of ε-representative the expected loss function on sample space with a small bias ξ,

we will later show this bias is zero almost everywhere in the fuzzy set when the fuzzy set is

large enough. A theorem can be immediately derived as below,

Theorem 2.7. If the sample set T is ε-representative, w.r.t. domain Z, hypothesis function

class H, loss function l, and the distribution D , then any algorithm derived from the ERM

process, i.e., has the following property,

LD(hTε) ≤ min
h∈H

LD(h) + small amount (2.73)

The ERM algorithm is defined as,

hTε = argmin
h∈H

LTε(h) (2.74)

Proof: The risk function of hTε from fuzzy set is,

LD(hTε) ≤ LT (hTε) + ε

≈ LTε(hTε) + ε+ ξ

≈ LTε(h) + ε+ ξ

≈ LT (h) + ε+ 2ξ

≈ LD(h) + 2ε+ 2ξ (2.75)
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The small amount 2ε+ 2ξ in probability very small.

The “No-Free-Lunch” theorem [57] indicates the estimation bias and sample complexity

are trade off to ensure the learning algorithm is PAC learnable. If the sample space is

arbitrarily complex, e.g. infinite domain set, and the hypothesis space H is the set of all

functions, then it is not PAC learnable. There is an important class of hypothesis space H

with uniform convergence property [62, 57].

Definition 2.9. (Uniform convergence property) The hypothesis function class H sat-

isfied the uniform convergence property w.r.t. domain Z and loss function l if ∃NH < ∞

and ∀ε, δ ∈ (0, 1), for any distribution D over Z, a sample X1, X2, · · · , Xn with n = NH, we

have

P

(
sup
h∈H
| 1
n

n∑
i=1

lh(Xi)− ED(lh)| ≤ ε

)
≥ 1− δ (2.76)

This definition guaranteed PAC learnable of hypothesis space H using empirical risk

minimization (ERM).

When the sample is not fully represent the response space R, we will study the subset

X ∈ R, which is the available sample due to design, missing response, or skewed distribution.

We show by extending the sample space using fuzzy responses, the derived algorithm is

improved. Before prove the major theorem, we introduced a few definitions in PAC learning

theory.

Another important definition in PAC learning is VapnikChervonenkis (VC) dimension

[57]. When restricted the hypothesis space H to T = {t1, t2, · · · , tm} ⊂ X on only a set of

functions derived from H that map T to {0, 1}. The H restricted on T is denoted by HT ,

which is a subset of {0, 1}|T |. We say H shatters T if H restricted on T is all the functions

from T to {0, 1}, i.e.,

|HT | = 2|T |

Definition 2.10. (VC dimension) The VC dimension of hypothesis H is defined as the

maximal size of T shattered by H.
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When we add noise to set T ∈ R, because Tε ∈ R, then |Tε ∪ T | ≥ |T | and hence,

HTε∪T ⊆ HT (2.77)

The possible new observations generated based on the probability provided in 2.70 in fuzzy

set from {ti} → {0, 1} is,

{ti, ti ± 1, ti ± 2, ti ± 3} → {0, 1}

Therefore, H restricted on Tε ∪ T is

|HTε∪T | = 27|T | (2.78)

Then for finite classes H, for any set T , we have,

|HT | ≤ |HTε∪T | ≤ |H| (2.79)

Thus, T cannot be shattered if,

|H| ≤ 2|T | (2.80)

and Tε cannot be shattered if,

|H| ≤ 27×|T | (2.81)

The fuzzy set has finite but larger VC dimension if the sample has finite VC dimension.

This implies the following for VC dimension of the fuzzy set Tε,

Dimvc(HTε∪T ) ≤ log2(|H|) ≤ 7× |T | (2.82)

This will further implies the PAC learnability of HTε∪T from fuzzy set Tε.

Note, the VC dimension can be much smaller than the above bound.

2.5.2 Loss function in PAC learning

In this entire documents, we introduce two types of loss functions that are commonly used

in machine learning theory. For categorical outcomes Y = y, we use 0-1 loss function l01 in

ERM process. It is defined as, for algorithm h ∈ H,

l01(h, (x, y)) = 0, if h(x) = y; else l01(h, (x, y)) = 1 (2.83)
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It is very common to use this type of loss function in classification, either classified right or

complete wrong [57].

When the continuous outcomes Y = y, we commonly use square loss function lsq as,

lsq(h, (x, y)) = (h(x)− y)2 (2.84)

In this case, the expected risk minimization process is the same with least square in regres-

sion, and the loss function is the same as the square error.

We defined ε-close by the L1 norm, i.e. the distance between Z∗Xi
and Xi is defined as

‖ε‖1. Suppose Xi is r-dimensional. Recall the fuzzification process,

~Z∗i = ~X∗i + ~ε

All values in the above process are r-dimensional. The distance between the fuzzified vector

and original sample vector is A ball covered Xi and generated by Zi is defined as,

‖ε‖1 = max
1≤k≤r

εik (2.85)

It is the smallest ball generated by the additional noise centered at Xi such that all

the fuzzified observations lie in the ball Bε. In this way, we define the prediction is ε-close

with probability FZ(|ε|), where F is the cumulative distribution function (CDF) of standard

normal distribution.

2.5.3 Probably Approximately Correct Learning

“Not everything that can be defined can be computed” [63]. But using enough sample with

great representativeness, we can find the approximately correct prediction with certain level

of confidence that it is almost right.

The major result we show in this section is that the fuzzy system outlined in this dis-

sertation is PAC learnable. We first recall the definition of (Agnostic) PAC learnable and

predictive PAC learnable. In this entire chapter, we restrict R on the finite response space,

i.e. grid point only. Here we always refer to (Agnostic) PAC learnable, without assuming
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the perfect algorithm that link the response space R to clinical outcomes Ω. Given the finite

training sample Tn and hypothesis space H, the leaning algorithm is derived from,

hTn = Υ(Tn,H) (2.86)

Definition 2.11. (PAC learnable). A hypothesis class H is PAC learnable if there exist a

function mH of |H|, ε, δ, such that when the sample size m ≥ mH, then the derived algorithm

h has the following property of,

P
x∈R

(
sup
h∈H
|LT (h)− LR(h)| ≥ ε

)
≤ δ (2.87)

The idea is, given the finite hypothesis space, the approximate error, the confidence level,

we can derive the PAC-learnable algorithm from the larger than calculated samples size such

that the prediction error compared to all available algorithms in hypothesis space is small

enough with high chance. The difference between PAC learnable and Agnostic PAC learnable

is that whether there exists a perfect algorithm h∗ that link every observation in R to Ω.

Now we prove that when the hypothesis space is finite, and when training set is PAC

learnable, the learning error from the noisy data can be bounded by enlarge the sample size.

We introduced an important inequality, Hoeffding inequality [57], which is used to prove the

later theorem.

Definition 2.12. (Hoeffding inequality) Let X1, X2, Xn be i.i.d. observations with expecta-

tion µ and ∀i, P (Xi ∈ [a, b]) = 1. Then for any ε > 0,

P

(∣∣∣∣∣ 1n
n∑
i=1

Xi − µ

∣∣∣∣∣ ≥ ε

)
≤ 2 exp

(
− 2nε2

(b− a)2

)
(2.88)

Theorem 2.8. Assume the hypothesis space is finite defined as H = {h1, h2, · · · , hm}. The

training observations is T of size n and fuzzy set with noise generated directly from T is

denoted as Tε. The approximation error is bounded and it is PAC learnable.

Proof: We define the possible misleading samples as Bk, k = 1, · · · ,m, the loss for these

data points are larger than expected with respect to the algorithm hk,

Bk = {(Xi, Yi) ∈ R, i = 1, · · · , n : LTε(hk)− LT (hk) ≥ ε} (2.89)
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Then probability of existing a h ∈ H with large approximation error in the fuzzy set system

is,

P (∃h ∈ H : LTε(h)− LT (h) ≥ ε)

=P (∪mk=1(LTε(hk)− LT (hk) ≥ ε))

≤
m∑
k=1

P ((LTε(hk)− LT (hk) ≥ ε))

≤
m∑
k=1

(P (LTε(hk)− LR(hk) ≥ ε) + P (LR(hk)− LT (hk) ≥ ε))

≤2me−2nε2 (2.90)

The last part of the proof applied Hoeffding’s Inequality. Let the above result (2.90)=δ, we

have the following,

ε =

√
1

2n
× log

2m

δ
(2.91)

By control the level of two parameters ε and δ, we can estimate the sample size for each

iteration when adding noise for the fuzzy system.

Now we are ready to prove one of the major results. For any response in the sample

space Xi = {xi}pj=1 ∈ X . Usually X is not complete, i.e. not all points on the grid level

can be covered. X is finite, with at most νp grid points. Here ν is the number of options

for each {xij}. Without loss of generalizability, we assume the number of options are equal

for any j. Hence, on the sample space X , the ranging of the points is [1, 2, · · · , νp].

Theorem 2.9. Let H be the hypothesis space of functions from the the sample space X ∈ R

to dichotomous outcomes {0, 1}. To find the optimal threshold in H to classify Xi = {xi}pj=1

that is PAC learnable, with respect the approximation parameter and confidence parameter

ε× δ ∈ (0, 1)× (0, 1), we show H is PAC learnable as long as the sample satisfy,

nH ≥
log(2νp)− log δ

2ε2
(2.92)

Proof: The formula nH is directly derived from the error bound in (2.91). The size of

hypothesis space is |H| = νp. During the defuzzification process at observation level, we
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already project the fuzzy observations on the grid of X . In this case, |H| did not change,

though training observations may shift.

This theorem ensures the learning from fuzzy system with 0-1 loss function, is PAC

learnable. A simple example for the PAC learnable sample requirement is as below. Assume

we have a total of 20 questions, with each question 5 options. If we need the approximation

of the error is less than 0.01 and with at least 80% confidence, then the required learning

sample size would be,

N ≥ log(2× 5× 20)− log(1− 0.8)

2× 0.012
≈ 17270 (2.93)

When applied the fuzzy system, we can generate enough bootstrap sample observations,

together with the original observations in order that sample space is as close as X . Hence

the learning is PAC learnable with approximate error less than 0.01 and the sample size is

greater than 17270.

In practice, if we can tolerate approximate learning with error 0.1 and but with a confi-

dence of roughly 90% level of confidence. The sample size is reduced significantly to about

380, which is later on our case in practice.

2.5.4 PAC learning for tree-based model

The most popular way to construct machine learning algorithm is to use a hypothesis base

class B. We will show the VC-dimension is finite for the fuzzy system with a linear com-

bination of base hypothesis. Assume the hypothesis class of tree-based model has the VC-

dimension d.

We state the follow lemma first before the main theorem of tree based algorithms. The

following lemma about the growth function τH is called Sauer-Shelah-Perles Lemma [57].

Let H be a finite hypothesis class with VC-dimension less than or equal to d. Then for

all m, we have the growth function,

τH ≤
d∑
i=1

mCi (2.94)
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If m ≥ (d+ 1), we have,

τH ≤
(em
d

)d
(2.95)

The growth function is the number of different functions from a set of size m to {0, 1}.

Theorem 2.10. The VC-dimension in the fuzzy system is finite and bounded by the following

formula.

T (2d+ 2)(3 log(T (2d+ 2) + 2) (2.96)

Hence the system with tree-based model is PAC-learnable.

Proof: Assume C is a set that can be shattered by fuzzy system, with {X1, X2, · · · , Xm}.

Using Sauer’s lemma [57], there are at most(em
d

)d
(2.97)

different ways of combinations induced by the hypothesis B over its shattered set C. If we

need to choose T hypothesis for the tree leaves of the observed data, there are at most below

ways to do it for the fuzzy system, (em
d

)2dT

(2.98)

As the manually introduced noise may added one more possible leaves for some observations,

with probability less than or equal to 0.5. We assume it is 0.5 for simplicity. Using Sauer’s

lemma again, we have at most following number of choice for the linear predictors,(em
2T

)2T

(2.99)

Then total number is the product of 2.97 and 2.99,(em
d

)2dT

×
(em
T

)2T

=
e2dT e2T × (m)(2d+2)T

d2dTT 2T
≤ m(2d+2)T (2.100)

Use the fact d and T are greater than 2. As C is shattered, then

2m ≤ m(2d+2)T (2.101)

Use the fact [57], if a > 0 and x < a log(x), then we have x < 2a log(a). Hence we have the

bounded function below,

m ≤ T (2d+ 2)(3 log(T (2d+ 2) + 2) (2.102)
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This concludes the fuzzy system with tree-based model is PAC-learnable, as long as we can

bound the total number of leaves T and total number of trees d.

2.5.5 Final prediction

The learning module and prediction module can be simplified as,

Figure 2.12: The learning and prediction modules for fuzzy system

The generalization version of valiant’s Probable Approximately Correct (PAC) learning

first answered the fundamental question about what is learning [57].

We assume the real relationship between the survey data and clinical outcome can be

described by the unknown function f , i.e. Yi = f(Xi) + Ψ, where Ψ is the unattainable

error between the survey response space and clinical outcomes. It indicates that the survey

questions can never replace a diagnosis procedure. There is always some distance that can

not be measured by surveys.

Assume the survey is from a certain type of distribution ~X ∼ D, the all possible algorithm

space is H. The true error of the learning from the training sample is h ∈ H is,

Definition 2.13. (True error). With respect some loss function L(h,D, f) is,

L(h,D, f) = P ~X∼D(h( ~X) 6= f( ~X)) (2.103)

As in most of the case, the distribution of the survey responses D and the true relationship

f are not known. The training error is used to estimate the true error, which is defined as,
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Definition 2.14. (Training error). With respect some loss function L(h,D, f) is,

L(h, { ~Xi, ~Yi}ntrain
i=1 ) =

#|{i ∈ [1, ntrain] : h(Xi) 6= Yi}|
ntrain

(2.104)

The training error is also called Empirical Risk Minimization (ERM) if we consider

P = PXn and D = DXn , where the two quantities are defined as,

PXn(Xn = x) =
1

ntrain

ntrain∑
i=1

~1{Xn=x} (2.105)

The distribution function is,

fXn(x) = Yi, if x = Xi; otherwise fXn(x) = 0 (2.106)

In this case, the training error is ERM,

L(h, { ~Xi, ~Yi}ntrain
i=1 ) = L(h,D, fXn) (2.107)

The algorithms developed based on ERM have perfect performance on the training set, but

very poor on the test set, i.e. overfitting [57]. One of the solution in the literature is to

searching the algorithms within a pre-determined hypothesis space H. This pre-determined

hypothesis space is restricting the learning system to find a good predictor, sometimes called

an inductive bias. It is always determined before collecting the data based on some previous

knowledge. This idea can be formulated in plain language as,

Data + Prior Knowledge = Generalization (2.108)

The fundamental questions in machine learning theory is that how to choose the hypoth-

esis space H in order that the resulting algorithm will not result overfitting.

In PAC learning, we have two level of uncertainty. One level is the accuracy parameter

ε and the other level is the confidence parameter δ. It has been proved by Haussler in 1990

[64] when the hypothesis space H is finite, then algorithm h from ERMH is generalizable

when sample size is sufficient large.
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CHAPTER 3

Data Application

In this chapter, our fuzzy system is applied to data collected from the Patient Reported

Outcome Measurement Information System (PROMIS) Oral Health project [65]. In pre-

vious publications, we described more details about the process of designing survey items

[66, 67], calibrating item banks [36], and developing short forms [19, 17]. We developed

two versions of short forms, a parents’ version and a children’s version. The short forms

consisted of a limited number of survey questions to measure oral health, but had infor-

mation (inverse of reliability) comparable to the long forms. In this project, we use two

short forms to collect information from children and their parents about the child. Dental

examinations were conducted independently from the survey by two dentists. We checked

the consistency and agreement between two dentists and recorders using both kappa and

prevalence-adjusted and bias-adjusted kappa (PABAK) [68]. The agreement between the

dentists was high (> 85%). We use the fuzzy system to predict clinical outcomes from

survey questions, using parents’ short form only, children’s short form only, combination of

two short forms, and with additional demographic information. The application part of this

dissertation has been submitted to Journal of Dental Research Clinical & Translational Re-

search. The statistical methodology was presented at the Joint Statistical Meetings in 2018.

The application was presented at International Association for Dental Research (IADR) at

London, United Kingdom in 2018.
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3.1 PROMIS Oral Health overview

In this example, we predict three clinical outcomes, referral for treatment needs (RFTN),

children’s oral health status index (COHSI) and COHSI percentile. These three outcomes

cover three common types of predictions in Machine Learning: the categorical outcomes for

classification; the continuous variable with a fixed range; and the rank variable or percentile.

3.1.1 Survey development

The process of reviewing existing items and developing new survey items was described in

previous publications. Before creating a PROMIS oral health survey item bank, we reviewed

all existing instruments that measure children’s oral health by both self-reported and parent-

reported methods. Our target population was children aged from two to seventeen. In

PROMIS, survey questions are only applicable to children of eight years old and above.

We organized focus group interview sessions to collect opinions on measuring oral health

from both parents and two children groups aged 8 to 12 and 13 to 17. Based on existing

survey instruments and focus group results, we drafted the first version of survey items. We

organized five cognitive interviews per age group of children and parents to ensure the survey

questions were understood by children and by parents. All questions were designed using

the PROMIS approach.

In PROMIS, health is measured by self-reported items from four components: global

health, physical, mental and social health domains. Each component has been further ex-

tended to the next level [65, 17], such as pain, symptoms, etc. The conceptual model of the

domains, sub-domains are illustrated in Figure 3.1. The conceptualized model expanded oral

health into three components: physical, mental and social health. Each component (orange

in Figure 3.1) was further extended to sub-components (green), domains (purple), and sub-

domains (blue). The colors of the block in Figure 3.1 indicated different levels of structure.

The gray colored domains did not directly measure oral health status and therefore were not

included in the item bank.
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3.1.2 Field testing

In field testing, we targeted to collect survey responses and dental examinations from at least

500 families [36]. The data were collected using a convenience sample from dental clinics

located in Los Angeles County from August 2015 to October 2018 as shown in Figure 3.2.

The location of the clinics ranged from Torrance (south) to Valencia (north) and from Agoura

Hills (west) to Whittier (east), to represent children and adolescents who had visited dental

clinics in Los Angeles County. Only one child was chosen from each family as a stratified

systematic convenient sample aimed at reflecting the race and ethnicity distribution of the

general California population with a very similar percentage representation. Those who did

not speak English and who were in orthodontic treatment were excluded from the study. The

survey responses were directly entered into the computer using an audio computer-assisted

self-interview software (ACASI). In this case, each survey question must be answered in

order to move to the next step. There is no missing input in the survey part. The only

possible missing values may happen because the younger kids do not cooperate with the

clinical exam. This was a rare situation and happened less than 2%. These observations

were excluded from the analysis because there was no clinical outcomes available.

A total of 545 surveys were collected from parents and 363 surveys were collected from

children aged eight or older. The target sample sizes were based on rules of thumb for

estimating IRT models, i.e. in most scenarios, a sample size of 500 could derive accurate

estimation for Graded Response Models (GRMs) parameters [69, 70]. One limitation of the

study is that the study participants were sampled from dental clinics selected conveniently

from Los Angeles County. The majority of families are considered as having a usual source

of preventive dental care. Therefore the overall oral health status of the sample is better

than the general population.

3.1.3 Clinical outcomes

There are two summary clinical oral health outcomes from the on-site dental exam, the

Children Oral Health Status Index (COHSI) score and referral for treatment needs (RFTN).
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COHSI is a weighted regression of facial profile, occlusion status, presence of active caries,

abnormal position, missing and filled teeth [31, 34], etc. The COHSI has a best possible score

of 100 and decrements from that are estimated by multiplying previously derived regression

coefficients by number of missing teeth (-2.27 for primary anterior teeth, -4.55 for primary

posterior teeth and permanent teeth), number of decayed teeth (-1.12 for primary anterior

teeth, -2.24 for primary posterior teeth and permanent teeth), occlusion status (-4.38), and

abnormal positions (-1.73) (see reference 32 for details). The worst possible COHSI score is

-27.4 for adolescents with all permanent teeth missing) and 18.16 for younger children with

all primary teeth missing. The observed range of the COHSI in the field test was 59.18 to

100.

RFTN is a treatment or dental clinic visit need with “1” denoted for having at least one

teeth with active caries, or at least 12 teeth bleeding upon probing. It is derived from the 4-

level guidelines used in the National Health and Nutrition Examination Survey (NHANES).

3.1.4 Short forms

The samples collected in field testing were used to develop two versions of short forms for

children [17] and for parents [18] separately using GRMs in Item Response Theory (IRT).

Through the model, the items are calibrated with slope (discrimination parameter) and

threshold (difficulty) parameters to quantify the item characteristics [71]. The short form

questions were selected based on the two above parameters (discrimination and difficulty),

domain coverage of oral health conceptual model, and the suggestions from dental experts.

The response space is defined from the input of both the child [17] and parent short form

[18] of short forms. Intuitively, we assume the combined information from both child and

parent can yield more accurate predictive results than using the information individually.

With additional demographic information, the predictive results should be improved. The

basic assumptions when developing short forms include: (1) monotone, that is, items have

a monotonic relationship with the latent variable; (2) local independence or the conditional

independence among the survey items given the latent variable; (3) Uni-dimension of latent
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variable, that is the selected items measure the same latent variable; (4) no differential item

functioning (DIF), that is, survey items do not function differently among different groups.

The properties of short forms link the survey responses of Xi to latent variables θ, which

should have high correlation with the clinical exam outcomes Yi. In GRM, each survey item

is parameterized by one discrimination parameter and several difficulty parameters. These

parameters determine the characteristic of the survey item and determine whether the survey

item is selected in short forms [17, 18].

The input to the fuzzy system includes the two outcomes RFTN and COHSI (score and

percentile), the developed short form questions including 12 self-reported survey questions,

8 proxy-reported questions, and 7 demographic questions. The demographic information

includes age, gender, race/ethnicity of the child, dental insurance, visit to emergency room

for a dental problem, number of children in the household, and relationship with parents.

In Table 3.1 and Table 3.2, the survey questions are listed by either the clinical outcomes

or both it endorsed. In children’s short form, there are four questions related with RFTN,

five questions related with COHSI, and three questions related to both outcomes. The two

clinical outcomes can still be separated for overall and long-term oral health status (COHSI)

versus the current need for treatment (RFTN). From the parents’ short form, there is one

question for each clinical outcome and all other six questions are for two outcomes together.

As expected, the two clinical outcomes are not obviously different from parent’s point of

view [18].

3.2 Methods

The original observations were the crisp set with sample size N = 545, labeled as Xi, i =

1, · · · , N . We generated 1000 bootstrap samples (total sample size 1000N). Each bootstrap

sample had N observations with independent and identically distributed noise added man-

ually to the sample. In inference layer, as outlined in the previous chapter, the sample was

divided into 70% for training the algorithm and 30% for testing. We called this test set

internal test because the test set was separated from the original sample and was repeatedly
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Table 3.1: Table of short form questions for children

Outcome Survey Questions

RFTN It was hard for me to eat because of the pain in my mouth.

RFTN It was hard for me to pay attention because of the pain.

RFTN How often do you use dental floss on your teeth?

RFTN Do other students make jokes about the way your teeth look?

COHSI It hurts my teeth to chew.

COHSI My teeth are straight.

COHSI How much are you afraid to go to a dentist?

COHSI How often do you brush your teeth?

COHSI Have you ever avoided laughing because of teeth look?

Both In general, would you say your overall oral health is:

Both In the last 4 weeks, how much of the time did you limit food?

Both How much of the time were you pleased with your teeth look?

used in training modules. Another set of observations (we called external test set) were

additionally collected using the same survey instruments and dental examination protocol.

This test set was only used to test the generalizability of the algorithms. We called this test

set externally because the prevalence of dental disease was higher than the original sample

though using the same protocols and methods. Most of the patients in this test set were

newly enrolled patients without evidence of preventive care. We reported the prediction

results of both two test set. The training algorithms were trained using observations from

original data, using bootstrap samples only, and using Fuzzy system.

When training the algorithms, the sensitivity was required to be at least 85%, with the

corresponding specificity recorded for purposes of comparison. When training the algorithms

based on comparing predicted outcomes with observed clinical outcomes, classification was

based on achieving a sensitivity that either exceed 85% or that was as high as possible with

specificity at least 20%. In the example, the resulting sensitivity could be either 82% or
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Table 3.2: Table of short form questions for parents

Outcome Survey Questions

RFTN School miss due to teeth problems in the last year

COHSI My child’s mouth hurts.

Both It was hard for my child to eat because of tooth pain.

Both In general, would you say your child’s oral health is:

Both In the last 4 weeks, pleased with teeth look

Both Worry about problems with his/her tongue, teeth, or gums?

Both It was hard for my child to pay attention because mouth pain.

Both In the last 4 weeks, oral health interfere with social activities?

86%, depending how many subjects that have predicted value the same as observed value by

choosing the cutoff probabilities in the algorithm. In this case, we always selected the cutoff

value with sensitivity as close to 85% as possible, i.e., 86% is sensitivity was selected.

3.2.1 ALgorithms

The categorical outcomes were predicted using the Naive Bayesian (NB) method. The results

were reported as sensitivity and specificity. The sensitivity was pre-determined as more than

85% to find the best cut-off value for high specificity.

There are a few parameters that need to be fine-tuned for XGBoost [52, 53]. For example,

we use greedy algorithm to search the best parameters (Friedman 2001). Eta controls the

weights of subsequent trees is searched from 0.05 to 0.4 (default is 0.3). The maximum depth

is searched from 2 to 8 (default is 6). The maximum number of trees is from 5 to 500 (default

is 10). Regulation parameter lambda is searched from 0 to 0.4 (default is 1, means to use

L2 regulations on weights), higher value means more conservative model.

60



3.2.2 Software

The algorithms are available in R packages. For NB, the package e1071 is used [72]. The

visualization of the algorithm is using for Nomogram [73] uses Orange (an open-source data

visualization, machine learning and data mining toolkit) [74]. For XGboost, we use xgboost

developed by Chen in 2015 [75] with some updates in 2018 [76].

3.3 Results

3.3.1 Characteristics of participants

Total number of survey responses (8 questions) from parents is 545, with an additional

363 responses (12 questions) from children eight and older. All 545 children had on site

dental examinations (we exclude those observation without exam data). Seven demographic

questions are included in addition to the short form questions. The mean score for COHSI

is 90 with range from 55 to 100 and median 92 (skewed to the left). Thirty-one percent

of children were identified as having a need for treatment or dental clinic visit. Table 3.3

presents the characteristics of the children, parents and the household information [19].

Table 3.3: Characteristics of the sample (children, parents and household)

Variables Mean (SD) or N (%)

COHSI 90.45 (8.5)

RFTN 169 (31.1%)

Survey items Mean (SD) or N (%)

Children’s age (in years) 9.7 (4.2)

Children’s age group

2 to 7 years old 182 (33.4%)

8 to 12 years old 214 (39.3%)

13 to 17 years old 149 (27.3%)

Children’s Gender
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Table 3.3 continued from previous page

Variables Mean (SD) or N (%)

Male 280 (51.4%)

Female 264 (48.4%)

Male to Female Transgender 1 (0.2%)

Children’s Race/Ethnicity

Caucasian/White 111 (20.4%)

Black/African American 50 (9.2%)

Hispanic/Latino 226 (41.5%)

Asian 59 (10.8%)

Other 99 (18.2%)

Parent’s Gender

Male 160 (29.4%)

Female 385 (70.6%)

Parent’s age group (in years)

Less than 30 years old 67 (12.3%)

30 to 44 years old 302 (55.4%)

45 to 59 years old 161 (29.5%)

60 years old and above 15 (2.8%)

Parent’s Primary Language

English 394 (72.3%)

Other 151 (27.7%)

Number of kids in the family

1 130 (35.8%)

2 129 (35.5%)

3 54 (14.9%)

≥ 4 50 (13.8%)

Child Dental Insurance
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Table 3.3 continued from previous page

Variables Mean (SD) or N (%)

No 111 (20.4%)

Yes 434 (79.6%)

Employment

Full-time job 429 (78.7%)

Part-time job 61 (11.2%)

Not working 55 (10.1%)

3.3.2 Prediction results

The performance of the algorithm is evaluated by accuracy (both sensitivity and specificity).

The best prediction (higher accuracy and more stable prediction parameters) is from the

algorithm using the most available information, i.e. using short forms responses from both

child and parent in addition to demographic information. Whenever there is new infor-

mation added, the prediction accuracy improved. In the table, we compared the prediction

performance of four potential algorithms, using only children’s responses; using only parents’

responses; using both short forms responses with and without demographic information. For

each algorithm, we compare the prediction accuracy by the training samples generated from

original sample, bootstrap samples, and Fuzzied samples. The results are shown in Table

3.4.

The product algorithm of NB is visualized in the nomogram as illustrated in Figure

3.3. The nomogram is a convenient output tool from NB prediction. It can be used to

predict the probability of treatment needs without using a computer or calculator but circle,

lines and rulers. The contribution of each item is directly printed out, which is summed

together to transfer to posterior probabilities [74]. The missing response from single item is

imputed by average information of peers in the field test sample. The bottom of Figure 3.3

maps the probability of RFTN and total points. The circle represents the prior probability
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Table 3.4: Result for categorical outcomes using original sample, bootstrap sample only and

fuzzy system

Algorithm Sample Internal test External test

Toolkits (N=545) Sensitivity Specificity Sensitivity Specificity

Children (C) Original 86% 20% 79% 19%

Bootstrap only 85% 18% 86% 48%

Fuzzy system 85% 24% 71% 29%

Parents (P) Original 86% 28% 100% 24%

Bootstrap only 85% 23% 86% 43%

Fuzzy system 85% 31% 79% 33%

Combine Original 86% 28% 93% 24%

Bootstrap only 85% 21% 86% 38%

Fuzzy system 85% 37% 93% 48%

Add demo Original 86% 26% 93% 24%

Bootstrap only 85% 23% 86% 52%

Fuzzy system 85% 35% 93% 49%

Sample size: Original (N), Bootstrap only (1000N), Fuzzy System (1000N)

from the field test sample (31%). The total points are the sum of the points from each

item in the figure. On top of the figure, it is the point for each item. For example, if the

parent responded always to the question ”it is hard for the child to pay attention due to

pain in his/her mouth”, then the point for this item is 2.0, corresponding to 78% in need of

treatment or dental visit. From the nomogram plot, the demographic items contribute little

information to RFTN prediction.

There are two types of continuous outcomes, the actual index score COHSI ranges from

55 to 100 as well as its percentile from 0% to 100%. The classical ways to evaluate the

agreement between two continuous variables are the Pearson correlation coefficient for linear

trend and root mean square error (RMSE) for absolute difference. We use both statistics to
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evaluate the results. Table 3.5 and Table 3.6 show the results.

Table 3.5: Result for COHSI from XGboost Algorithm

Pearson correlation RMSE

Internal test External test Internal test External test

Original

Children 0.39 0.29 8.21 9.16

Parent 0.32 0.34 8.37 8.71

Combine 0.49 0.21 7.78 11.28

Add demo 0.41 0.37 8.23 9.06

Bootstrap

Children 0.39 0.30 7.79 9.14

Parent 0.29 0.20 8.09 9.33

Combine 0.50 0.20 7.32 9.29

Add demo 0.92 0.17 3.27 9.8

Fuzzied sample

Children 0.59 0.58 7.03 7.31

Parent 0.28 0.29 8.39 8.61

Combine 0.65 0.66 6.65 6.74

Add demo 0.90 0.88 3.89 4.19

We compare the results from fuzzy system with the results using bootstrap procedure

without adding noise. The training model is not generalizable to test results as shown in the

middle of Table 3.5 and Table 3.6. The correlation and RMSE is smaller in the test set of

training module but blows up when applied to new data.

Table 3.5 and Table 3.6 report the four versions of algorithms derived by children’s short

form, parents’ short form, combined two versions with and without demographic informa-

tion. The training module developed algorithms using original sample, bootstrap sample,
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and Fuzzied sample. In this illustration, the algorithm from the fuzzy system performed

much better than original sample and the bootstrap sample only. To obtain pre-determined

sensitivity of RFTN, the algorithm from fuzzy system good level of specificity in external test

set. The Pearson product-moment correlations are high for all four versions of algorithms

when using fuzzy system. The correlation increased as more information was used. The

apparent interpretation for why the performance was better in the noise-added condition

is that the additional sample size beyond more than the original 545 compensated for the

added noise and because the training sample and test sample were similar. Also the repeated

use of demographic information generating more similar samples led to high correlation and

smaller RMSE. This is under the assumption that people with the same demographics answer

surveys similarly.

In Table 3.5 (Table 3.6), the correlation of predicted COHSI (percentile), with raw COHSI

(percentile) was 0.41 (0.43), but with fuzzy system output COHSI was 0.90 (0.92) in the

training results. In testing results, the correlation coefficient of predicted COHSI (percentile),

with raw COHSI was 0.37 (0.39), but with fuzzy output COHSI was 0.88 (0.91). The

performance in Table 3.6 was more stable and generalizable to new data because the test

results were comparable to the training results. The performance is more stable in the test

data. In the results from the fuzzy system, with information source added, the correlation

increased and the RMSE decreased. The best performance was achieved when all information

was used, i.e. both short forms and demographic information. The RMSE for predicted

COHSI score (percentile) was 3.89 (1.12) in fuzzy system training results, with 4.19 (1.26)

in testing data from additional source. These results indicated the generalizability of the

algorithm trained by Fuzzied sample.

3.4 Conclusion

In this example, we applied the PAC learnable fuzzy system developed from previous chapters

to predict categorical outcome RFTN and continuous outcome COHSI with its percentile.

The training algorithms are derived using NB method and XGboost method from samples
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generated using original sample, bootstrap samples, and bootstrap samples with manually

introduced noise (Fuzzied sample). We manually picked the algorithms that performed the

best in both training and in the additional collected data (external test set). The association

between the survey outcomes and clinical exam results are not related to previous exams.

We expected the algorithm can be generalized to this test data and performed better because

COHSI score of this additional site was lower and the prevalence of RFTN was higher than

training data. We selected the most generalizable algorithm to report in Table 3.5 (Table

3.6). Though we maintained the high level of similarity between the test set and training

set, the data in test set was collected independently. The clinical outcomes (COHSI and

RFTN) were directly collected from dental examinations performed by the same dentists.

We can treat the test set as an external test.
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Figure 3.1: Conceptual model of PROMIS items
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Figure 3.2: Field test samples collected from dental clinics in Los Angeles County
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Figure 3.3: Nomogram of Naive Bayesian Model
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Table 3.6: Result for rank (percentile) of COHSI from XGBoost Algorithm

Pearson correlation RMSE

Internal test External test Internal test External test

Original

Children 0.41 0.21 2.78 3.27

Parent 0.31 0.29 2.88 3.09

Combine 0.51 0.29 2.59 3.16

Add Demo 0.43 0.39 2.73 2.90

Bootstrap

Children 0.40 0.25 2.71 3.20

Parent 0.30 0.17 2.82 3.29

Combine 0.49 0.24 2.56 3.13

Add demo 0.91 0.26 1.24 3.53

Fuzzied sample

Children 0.58 0.60 2.38 2.41

Parent 0.26 0.27 2.85 2.91

Combine 0.66 0.67 2.21 2.22

Add Demo 0.92 0.91 1.12 1.26
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CHAPTER 4

Discussion

This dissertation presents the development of a fuzzy system based on the input value of

survey responses to predict clinical outcomes. The vagueness of the harsh options when

completing the survey motivated us to use fuzzy set membership functions to describe the

input values. The input observations from survey sampling are usually not large and complete

enough to cover all the possible combinations in the design space. In most models, e.g. IRT,

require each option endorsed by at least three observations to have a stable estimate of the

threshold value. The goal for the fuzzy system is to grow enough sample size to derive the

machine learning algorithms based on the available resources to predict the new input. The

main aim for the algorithm is to predict the outcome with some level of uncertainty from

new input from the survey, which is Probably Approximately Correct (PAC) learning. The

new input may or may not come from the same sample.

There are various bootstrap re-sampling methods developed to handle complex survey

structure, weighting, imputing and small area estimation [29]. In this dissertation, we only

focused on simple re-sampling methods that is, simple random sampling with replacement.

We do not consider the weighting schema when we grow our sample size, but some weighting

strategies or re-sampling methods (e.g. stratified simple random sample, stratified multi-

stage sampling, balanced repeated replications, and mirror match bootstrap) have great

potential in representing new population [77, 78].

The membership function is a step function that is in between the Trapezoid and standard

normal distribution, though it is generated by introducing the standard normal noise. The

distribution of the noise means we treat each response as normally distributed according to

its own observed values. The variance introduced to each option equals 1. In the first step of
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data-level defuzzification, the noisy observations are fuzzified at the grid level with grid point

determined by the survey. This step ensures the prediction is only from the response space.

Mathematically, this step changes the membership function from a Gaussian distribution to a

step function with pre-determined probabilities. The center has highest probability among all

noisy observations. In the future fuzzy process, we may consider the original observation with

raw noise (continuous over response space). This may generate more unique observations

that may smooth the prediction.

The combination of fuzzy set theory (FST) and the bootstrap method has grown signifi-

cantly during the last decade, for example, fuzzy regression (least square) based on bootstrap

[79], and fuzzy random variables with bootstrap used in decision making and neural network

[80].

In the inference layer, we used two types of very popular machine learning algorithms,

Naive Bayesian (NB) and Extreme Gradient Boost (XGBoost). We examined three types of

outcomes: binary outcome for classification, and continuous outcome for actual score, and

rank score for percentile. NB is selected due to its easy interpretation and by survey item

level prediction results. The explicit format of NB for classification based on probability and

0-1 loss function is PAC learnable. In the real example, we use sensitivity and specificity

to evaluate the prediction. We may estimate the required sample size based on this esti-

mation because the fuzzy learning process is PAC learnable. XGBoost is the most popular

machine algorithm recently because of its effectiveness and accurateness. The differentiable

loss function is required for the Taylor expansion at 2nd order. We use squared-error loss

for this function, where the 2nd derivative is a constant. The two algorithms (XGboost and

Naive Bayesian) are used to implement the inference layer. In this part, the algorithm is

developed, and parameters are trained. The other algorithms can be applied in fuzzy system

in prediction and classification too.

The independence of observations has been a curse for most statistical models. This

assumption is hard to verify and impossible to avoid for most of the models. In Item

Response Theory (IRT), the assumption is conditional independence, i.e. given the latent

variable, the survey responses are not related to one another. The IRT models and Naive
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Bayesian methods share the same conditional independence assumption.

In the final stage before output, we separated the predictions into four type of values.

Based on the closeness to the original sample, a different weighted function is added to the

related prediction components. Type I used most of the available information to predict.

Type IV used up to the most available resources due to the distance from the original sample.

The output values are evaluated using sensitivity and specificity for binary outcomes with

0-1 loss function and using mean square error and correlation for continuous variables and

rank percentiles.

A recent paper showed improvement in PAC learning into a new stage by releasing the

criteria of the difference with a probability, called Predictive-PAC (P-PAC) learning [81],

where the expectation is restricted on a σ–field of invariant events. The manually introduced

noise in the fuzzy system may also improve some other algorithms that could be P-PAC. In

this model, there is triple uncertainty in the estimation.

In the entire dissertation, the fundamental assumption is that the sample observed dis-

tribution D is not too different from the population distribution. However, this assumption

may not hold when working with convenience samples. Due to factors such as non-response,

diverse locations of clinics, differing availability of the patients, any sample is apt to have

sample unavoidable biases. In this case, during splitting the samples for training set, we

can introduce the stratified sample, instead of using a simple random sample. In this way,

each training sample may represent the distribution of the population with respect to the

stratified parameter, e.g. age, race and ethnicity, or access to care. Eventually, the sample

could be expanded to better represent the population and hence improve the performance

of the derived algorithms or models.

The toolkit using short forms and algorithms to predict clinical outcomes in Figure 4.1

could be used in oral health surveillance. While the screening by short forms can never

fully replicate the examination by dental professionals, it can provide a cost-effective way to

conduct oral health screening for large populations of children and adolescents. It can be

used in practices at local, state and even national level for tracking large child and adolescent
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populations with oral health needs and setting the priorities within populations with varying

urgency for dental and oral health care. This is especially true with school-aged children

and adolescents who may need immediate care, and therefore contribute to gaining more

timely access to needed care. The algorithms derived from PAC learnable fuzzy systems

offer potential to serve this purpose.

Figure 4.1: Process of developing oral health toolkit
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