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RESEARCH Open Access

Illuminating uveitis: metagenomic deep
sequencing identifies common and rare
pathogens
Thuy Doan1,2†, Michael R. Wilson3,4†, Emily D. Crawford3,5, Eric D. Chow3, Lillian M. Khan3, Kristeene A. Knopp3,
Brian D. O’Donovan3, Dongxiang Xia6, Jill K. Hacker6, Jay M. Stewart2, John A. Gonzales1,2, Nisha R. Acharya1,2

and Joseph L. DeRisi3*

Abstract

Background: Ocular infections remain a major cause of blindness and morbidity worldwide. While prognosis is
dependent on the timing and accuracy of diagnosis, the etiology remains elusive in ~50 % of presumed infectious
uveitis cases. The objective of this study is to determine if unbiased metagenomic deep sequencing (MDS) can
accurately detect pathogens in intraocular fluid samples of patients with uveitis.

Methods: This is a proof-of-concept study, in which intraocular fluid samples were obtained from five subjects with
known diagnoses, and one subject with bilateral chronic uveitis without a known etiology. Samples were subjected
to MDS, and results were compared with those from conventional diagnostic tests. Pathogens were identified using
a rapid computational pipeline to analyze the non-host sequences obtained from MDS.

Results: Unbiased MDS of intraocular fluid produced results concordant with known diagnoses in subjects with
(n = 4) and without (n = 1) uveitis. Samples positive for Cryptococcus neoformans, Toxoplasma gondii, and herpes
simplex virus 1 as tested by a Clinical Laboratory Improvement Amendments-certified laboratory were correctly
identified with MDS. Rubella virus was identified in one case of chronic bilateral idiopathic uveitis. The subject’s
strain was most closely related to a German rubella virus strain isolated in 1992, one year before he developed a
fever and rash while living in Germany. The pattern and the number of viral identified mutations present in the
patient’s strain were consistent with long-term viral replication in the eye.

Conclusions: MDS can identify fungi, parasites, and DNA and RNA viruses in minute volumes of intraocular fluid
samples. The identification of chronic intraocular rubella virus infection highlights the eye’s role as a long-term
pathogen reservoir, which has implications for virus eradication and emerging global epidemics.
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Background
Ocular infection is an important cause of ocular morbidity
and blindness worldwide. However, diagnosis is challenging
due to the multitude of possible pathogens. The sensitivity
of culture-based assays ranges from 40 to 70 %, and available
molecular diagnostic tests target only a fraction of pathogens
known to cause ocular disease [1–3]. These limitations are
exacerbated by (1) the inability to collect large intraocular
fluid volumes given the eye’s small and delicate anatomy,
and (2) the difficulty in distinguishing clinically between in-
fectious and non-infectious causes of ocular inflammation.
The urgency to develop better diagnostics for uveitis has

been compounded by the recent cases of persistent infec-
tion with Ebola virus [4], and possibly Zika virus [5]. These
cases highlight the eye’s role as a potential reservoir for in-
fectious agents, with important public health consequences.
It is essential that more sensitive, unbiased, and compre-
hensive approaches are developed to efficiently diagnose
ocular infections.
Rapid advances in sequencing technology and bioinfor-

matics have made metagenomics a fertile area for develop-
ing clinical diagnostics [6–8]. This prompted us to evaluate
a hypothesis-free approach to identify ocular infections by
performing unbiased metagenomic deep sequencing (MDS)
on clinical intraocular samples from patients with uveitis.

Methods
Study design
Six subjects were recruited for a research study using un-
biased MDS to identify potential pathogens in intraocular

fluid (aqueous or vitreous) (Table 1). This study was
conducted according to the guidelines laid down in the
Declaration of Helsinki and approved by the Institu-
tional Review Board of the University of California, San
Francisco (UCSF). Five of the six subjects served as con-
trols to benchmark the ability of MDS to identify a var-
iety of pathogens; subjects 1–3 had ocular infections
with herpes simplex virus 1 (HSV-1), Cryptococcus neo-
formans, and Toxoplasma gondii, respectively. HSV-1
and T. gondii-directed qualitative PCRs and cultures
were performed at the Proctor Foundation, a Clinical
Laboratory Improvement Amendments (CLIA)-certified
laboratory for ocular testing. Subject 4 had non-infec-
tious uveitis clinically demonstrated by the resolution of
intraocular inflammation followed by intraocular injec-
tion of a dexamethasone intravitreal implant and the
initiation of systemic immunosuppression with antime-
tabolites. Subject 5 had no ocular inflammation but had
intraocular fluid obtained at the time of a retinal mem-
brane peel. MDS was also used to investigate subject 6,
who had bilateral uveitis that had defied a 16-year diag-
nostic work-up at multiple academic centers across two
continents (Table 1).

Sequencing library preparation
Samples were prepared for MDS as previously described
[6]. RNA was extracted from 20–50 μL of intraocular
fluid using TRIzol LS reagent (ThermoFisher Scientific,
PA, USA) and the RNA Clean & Concentrator Kit
(Zymo Research, CA, USA) per the manufacturers'

Table 1 Results of unbiased metagenomic deep sequencing and conventional diagnostic tests on intraocular fluid samples

Subject Clinical diagnosis Sample type MDS PCR RT- PCR Culture

Total
culture
read pairs

Percentage
unique
non-host
read pairs

Organism
(number of
unique read pairs)

HSV-1 HSV-2 VZV CMV T. gondii RV

1 Anterior uveitis Aqueous fluid 16,919,211 0.003 HSV-1 (423) Pos Neg Neg Neg Neg NA NA

2 Panuveitis Vitreous fluid 4,551,967 0.10 C. neoformans
(8469)

Neg Neg Neg Neg Neg NA C. neoformans

3 Panuveitis Vitreous fluid 10,759,511 0.02 T. gondii (1853) Neg Neg Neg Neg Pos NA NA

4 Panuveitis
(noninfectious)

Aqueous fluid 9,548,748 0.01 Neg Neg Neg Neg Neg Neg NA NA

5 Epiretinal
membrane
(noninflammatory)

Vitreous fluid 7,167,502 0.04 Neg NA NA NA NA NA NA NA

6 Anterior and
intermediate
uveitis

Aqueous fluid,
right eye

1,684,220 0.41 RV (585) NA NA NA NA NA Pos NA

Vitreous fluid,
left eye

12,111,540 0.01 RV (10) Neg Neg Neg Neg Neg NA NA

Control H20 983,525 4.13 – NA NA NA NA NA NA NA

MDS correctly identified known infections in subjects 1–3. Subjects 4 and 5 had non-infectious ocular disease and had negative MDS testing for pathogens. RV
was identified via MDS in subject 6 and confirmed by the California Department of Public Health’s RT-PCR assay. Abbreviations: Pos, positive; Neg, negative; NA,
not applicable; RT-PCR, reverse transcription polymerase chain reaction; HSV-1, herpes simplex virus-1; HSV-2, herpes simplex virus-2; VZV, varicella zoster virus;
CMV, cytomegalovirus; T. gondii, Toxoplasma gondii; RV, rubella virus; C. neoformans, Cryptococcus neoformans
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protocols. Samples were eluted in 20 μL nuclease-free
water. Samples were not subjected to DNase treatment.
The NuGEN Ovation v.2 Kit (NuGEN, CA, USA) was
used to randomly amplify 5 μL of the total extracted
RNA to double-stranded complementary DNA (cDNA).
cDNA was tagmented with the Nextera DNA Library
Prep Kit (Illumina, CA, USA). Depletion of Abundant
Sequences by Hybridization (DASH), a novel molecular
technique using the clustered regularly interspaced short
palindromic repeats (CRISPR)-associated nuclease Cas9
in vitro, selectively depleted human mitochondrial
cDNAs from the tagmented library, thus enriching the
MDS library for non-human (i.e., microbial) sequences
[9]. All samples were subjected to DASH using the same
set of single guide RNAs (sgRNAs) as referenced in Gu
et al. (2015) [9]. One library was prepared with New
England Biolabs’ (NEB) NEBNext RNA First Strand Syn-
thesis Module (E7525) and NEBNext Ultra Directional
RNA Second Strand Synthesis Module (E7550) to gener-
ate double-stranded cDNA. The cDNA was converted to
Illumina libraries using the NEBNext Ultra II DNA Li-
brary Prep Kit (E7645) according to the manufacturer’s
recommendation and then amplified with 11 PCR cycles.
Library size and concentration were determined using
the Blue Pippin (Sage Science, MA, USA) and KAPA
Universal Quantitative PCR Kit (Kapa Biosystems, Wo-
burn, MA, USA), respectively. Samples were sequenced
on an Illumina HiSeq 2500 instrument using 135 nu-
cleotide paired-end sequencing [6, 7]. A water (“no-tem-
plate”) control was included in each library
preparation. Microbial sequences from each sample
are located in the National Center for Biotechnology
Information (NCBI) Sequence Read Archive [acces-
sion ID SRP078679].

Bioinformatics
Sequencing data were analyzed using a rapid computa-
tional pipeline developed by the DeRisi Laboratory to
classify MDS reads and identify potential pathogens by
comparison to the entire NCBI nucleotide reference
database [6]. The pipeline consists of the following steps.
First, an initial human-sequence removal step is accom-
plished by alignment of all paired-end reads to the hu-
man reference genome 38 (hg38) and the Pan
troglodytes genome (panTro4, 2011, UCSC), using the
Spliced Transcripts Alignment to a Reference (STAR)
aligner (v2.5.1b) [10]. Unaligned reads were quality fil-
tered using PriceSeqFilter [11] with the “-rnf 90” and
“-rqf 85 0.98” settings. Reads passing quality control
were then subjected to duplicate removal. The remaining
reads that were at least 95 % identical were compressed
by cd-hit-dup (v4.6.1) [12]. Paired reads were then
assessed for complexity by compression with the
Lempel-Ziv-Welch algorithm [13]. Read pairs with a

compression score <0.45 were subsequently removed.
Next, a second phase of human removal was conducted
using the very-sensitive-local mode of Bowtie2 (v2.2.4)
with the same hg38 and panTro4 references as described
above [14]. Read pairs in which both members remained
unmapped were then passed on to GSNAPL (v2015-12-
31) [15]. At this step, read pairs were aligned to the
NCBI nucleotide database (downloaded July 2015,
indexed with k = 16mers), and preprocessed to remove
known repetitive sequences with RepeatMasker (vOpen-
4.0) (www.repeatmasker.org). Finally, reads were aligned
to the NCBI non-redundant database (July 2015) using
the Rapsearch2 algorithm [16]. On a single 24-core ser-
ver, processing time varied between 6 and 20 min, de-
pending on the number of non-host reads.
Given the small sample size, we implemented a conser-

vative and simple approach to avoid over-interpretation of
the sequencing data. First, the water control was used to
identify environmental and laboratory contaminants. The
list of organisms detected in the water control was then
used to background subtract from the list of organisms
detected in the tested patient samples. The remaining or-
ganisms were considered to be credible “hits” warranting
further confirmatory testing if the following criteria were
met: (1) the organism had >20 non-redundant, mapped
read pairs per million read pairs (rM) at the species level
based on nucleotide alignment, and (2) the organism was
known to be potentially pathogenic in the given clinical
context of the particular patient.

Results
MDS detects pathogens in uveitis
MDS accurately detected viral (HSV-1), fungal (C. neo-
formans), and protozoan (T. gondii) infections in sub-
jects 1–3, respectively, and did not detect microbes
other than known laboratory and environmental con-
taminants in subjects 4 and 5 (Table 1). Figure 1 demon-
strates that a pre-specified filter of 20 non-redundant
rM at the species level effectively eliminated background
and reduced the number of potential causative candi-
dates. For subjects 1–3, only the known causative agents
passed this filter. Not only did these subjects have con-
firmatory testing performed in a CLIA-certified clinical
laboratory, all three subjects’ clinical courses improved
with the appropriate treatment directed at the causative
agents. Of note, it is expected that a small fraction of se-
quences originating from T. gondii in the sample from
subject 3 will align to other closely related organisms
such as Hammondia hammondi. The genome coverage
for HSV-1 was 9.8 % (14,956 out of 152,222 bases)
whereas the total coverage for T. gondii was 0.0098 %
(62,082 bases out of 62,999,296 bases). Forty-two per-
cent of the C. neoformans sequences and 66 % of the T.
gondii sequences aligned to non-coding regions of their
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respective genomes, indicating that some genomic DNA
was likely sequenced in addition to RNA. Subject 4 was
a patient with autoimmune-related panuveitis. His in-
flammation was controlled with a dexamethasone in-
travitreal implant, systemic prednisone, and systemic
anti-metabolites. The MDS dataset generated from
subject 4 contained no pathogen passing our filter
(Fig. 1). Subject 5 was a healthy patient who underwent
an epiretinal membrane peel and volunteered to do-
nate discarded intraocular fluid for testing. While Pre-
votella melaninogenica had >20 rM in his sample, an
infection with this organism was not consistent with
this patient’s benign clinical syndrome. Hence, it was
considered to be background.
In subject 6, MDS detected a single candidate patho-

gen: rubella virus (RV) in an aqueous fluid specimen col-
lected in 2014. A total of 585 non-redundant sequence
pairs mapped to both the non-structural and structural
open reading frames (ORFs) of the RV genome. No se-
quences aligning to RV were present in the water con-
trol or the 18 other cerebrospinal fluid or intraocular
fluid samples sequenced on the same run. No RV reads
have ever been detected previously in this laboratory.
Subject 6 was a 40-year-old man with a 16-year history

of inflammation in both eyes, whose extensive diagnostic
work-up in Germany and the US had not revealed the
etiology (Table 1 and Fig. 2a). In 1993 he had a 3-day fe-
brile illness accompanied by a rash that spread from his
back to his extremities. He was diagnosed with anterior

uveitis of the left eye in 1999, and in 2001 he developed
anterior uveitis of the contralateral eye. Topical steroid
and non-steroidal anti-inflammatory drops were ineffect-
ive. Oral steroids were added in 2009 followed by
methotrexate. His inflammation did not improve after
1 year of combined immunotherapy, and his medications
were discontinued.
He presented to the Francis I. Proctor Foundation and

UCSF in 2012 with moderate anterior and intermediate
uveitis associated with ocular hypertension and diffuse
stellate keratic precipitates in both eyes (Fig. 2c) and
asymmetrical iris atrophy leading to heterochromia
(Fig. 2b). These findings were suggestive of viral-related
uveitis, and the subject underwent an anterior chamber
paracentesis of the left eye. At that time, 100 μL of aque-
ous fluid was sent for polymerase chain reaction (PCR)
testing for cytomegalovirus (CMV), varicella-zoster virus
(VZV), and HSV-1/2. Despite negative results, suspicion
for viral infection remained high. Antiviral therapy was
initiated and continued for 3 years (Fig. 2a), but failed to
curb the inflammation. In 2014 he had a paracentesis of
the right eye and a therapeutic vitrectomy of the left eye.
Repeat infectious disease diagnostics were unrevealing
(Fig. 2a).

Confirmatory testing for RV infection
A 185-nucleotide RNA fragment was reverse transcribed
and amplified from subject 6’s aqueous fluid collected
from the right eye in 2014, using a published reverse
transcription PCR (RT-PCR) assay for detecting the RV
E1 gene [17]. Sanger sequencing confirmed that the
amplicon was the RV E1 gene (Elim Bio, CA, Hayward,
USA). This result was corroborated by the Viral and
Rickettsial Disease Laboratory of the California Depart-
ment of Public Health (CDPH), who performed RT-PCR
and Sanger sequenced the 739-nucleotide RV sequence
required for genotype assignment (Sequetech Corp.,
Mountain View, CA, USA) [18, 19]. While the RT-PCR
was not quantitative, the level of RV appeared to be low
as it was detected at cycle 38. RV was not detected via
RT-PCR in nasopharyngeal swab, urine, or tear samples
collected in February 2016, indicating that subject 6 was
not actively shedding virus. Serologic testing for RV IgG
was positive.
An archived sample from the subject’s 2014 left eye vi-

trectomy subsequently underwent MDS using the same
protocol. Although the sample was not flash-frozen and
was not stored to optimally preserve RNA integrity, 10
unique sequence pairs aligned to the RV non-structural
ORF. While this low number of sequences aligning to
RV in the left eye sample did not meet our criteria to be
considered a hit, the presence of RV sequences in this
sample was considered significant given the known iden-
tification of RV in the contralateral eye. The detection of

Fig. 1 Pathogen identification based on abundance and background
subtraction. Organisms in each sample are plotted as a function of
matched read pairs per million read pairs (rM) at the species level
based on nucleotide (nt) alignment. For an organism to be considered
a potential pathogen, it must have known pathogenic potential and
have >20 rM (above dashed line). For subject 3, H. hammondi is a
eukaryotic organism closely related to T. gondii. It is expected that a
small fraction of sequences originating from T. gondii will align to other
closely related organisms. Abbreviations: sp, species; H. hammondi,
Hammondia hammondi; T. gondii, Toxoplasma gondii; HSV-1, herpes
simplex virus-1; C. neoformans, Cryptococcus neoformans; P.
melaninogenica, Prevotella melaninogenica; V. dahliae, Verticillium
dahliae; S. erythraea, Saccharopolyspora erythraea; S. saprophyticus,
Staphylococcus saprophyticus
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RV in both eyes corroborated the clinical suspicion of
bilateral viral infection and demonstrated the robustness
of MDS to detect pathogens.

Characterization of RV sequences
Subject 6’s original MDS data were combined with se-
quencing data obtained from four replicate sequencing
runs. These reads were aligned using bowtie2 v2.2.8 to
the complete RV genome (GenBank DQ388280.1) [14].
In total, 9688 base pairs (bp) mapped to the genome,
covering 99.3 % of the reference genome (Fig. 3a;
GenBank KX291007). This represents the most exten-
sive coverage of an RV genome detected from any in-
traocular sample and suggests that the RV genomes are
full length [20].

Phylogenetic analysis of the subject’s RV genome
There exists a limited number of complete RV genomes
[21] to evaluate the temporal and geographic origins of

the RV from this patient. Nevertheless, using the World
Health Organization (WHO) classification system for
phylogenetic analysis, we found that the patient’s RV
strain segregated with the 1G genotype (Fig. 3b). In this
analysis, the 739-nucleotide segment of the RV E1 gene
isolated from subject 6 with MDS was compared against
the 32 WHO RV reference strains using multiple se-
quence comparison by log-expectation (MUSCLE)
[22–24]. Of the three groups seen in the 1G genotype,
the group containing the Stuttgart strain circulated in
Germany, Italy, and the UK in the early 1990s. Thus,
this subject’s RV strain is temporally and geographic-
ally most proximate to the RV strain that was known to
be circulating when he developed a rash and fever in
1993 in Germany.
The RV sequence (9688 nucleotides) obtained from our

subject includes 149 nucleotide substitutions relative to
the 1992 Stuttgart strain (GenBank DQ388280.1). This
substitution rate of 7.69 × 10−4 substitutions/site/year over

Fig. 2 Clinical course and ocular findings of a 40-year-old man with bilateral, idiopathic chronic anterior and intermediate uveitis. a Subject 6’s
clinical course spanning 22 years. b Shows different colored irises (heterochromia) between the right and left eyes (top panels) and transillumination
defects that are prominent in the left eye because of iris atrophy (lower panels). c Shows diffused aggregates of inflammatory cells (keratic precipitates;
red arrows) on the endothelium of the cornea. Abbreviations: HSV, herpes simplex virus; VZV, varicella zoster virus; CMV, cytomegalovirus; PCR, polymer-
ase chain reaction; RE, right eye; LE, left eye; MMR, measles/mumps/rubella vaccine; MTX, methotrexate; Rx, treatment
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the 20-year period is within two-fold of the RV evolu-
tionary rate calculated as part of epidemiologic studies
evaluating person-to-person transmission (1.19 × 10−3

to 1.94 × 10−3 substitutions/site/year) [25]. Of the 149
substitutions, 107 were synonymous (Fig. 3a, Additional
file 1: Table S1). Of the 42 non-synonymous mutations,
25 occurred within the coding region for the E1 and E2
glycoproteins. Per unit length, the number of non-

synonymous mutations in the E1 and E2 structural pro-
teins was 6.3-fold higher than in the non-structural
proteins. Considering all mutations in this region, the
substitution rate in E1 and E2 was 1.16 × 10−3 substitu-
tions/site/year. We note that this mutational imbalance
associated with E1 and E2 compared to the non-
structural proteins is consistent with persistent viral
replication under immunological pressure [21].
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RVi/Toyama.JPN/67_1a
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GUZ_GER92 (Stuttgart Germany)
RVi/UGA/20.01_1G
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Fig. 3 Identification of rubella virus (RV) by metagenomic deep sequencing (MDS). a Illustrates how the 9688 nucleotide paired-end sequence
reads obtained from sequencing the RNA extracted from subject 6’s aqueous fluid aligned to the most closely matched RV genome (GenBank
DQ388280.1): 99.3 % of the total RV genome is represented. Positions of synonymous (black vertical lines) and non-synonymous (red vertical lines)
variants are shown. Of the 149 substitutions, 107 were synonymous and 42 were non-synonymous. Of the 42 non-synonymous mutations, 25
occurred within the coding region for the E1 and E2 glycoproteins. Per unit length, the number of non-synonymous mutations in the E1 and E2
proteins was 6.3-fold higher than in the non-structural proteins. The cyan marker above the E1 gene represents the 739-nucleotide sequence
window recommended by the World Health Organization (WHO) for RV genotyping. b Phylogenetic analysis of subject 6’s RV strain obtained from
MDS with 32 WHO reference strains, GUZ_GER92 (Stuttgart strain), and the RV27/3 vaccine strain, demonstrating that the subject’s RV sequence
was most closely related to the genotype 1G viruses and not the vaccine strain
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Discussion
MDS correctly identified the causative agent in three in-
fected positive control subjects (1–3). Only environmen-
tal contaminants and sequences associated with non-
pathogenic organisms were detected in one uninfected
subject (patient 5) and one patient with idiopathic uve-
itis that was likely autoimmune in nature (patient 4).
Furthermore, MDS revealed RV in subject 6 who had a
16-year history of idiopathic bilateral uveitis that defied
treatment with multiple modalities, including prolonged,
systemic immunosuppression. Our results demonstrate
that a single unbiased MDS assay can detect fungi, para-
sites, DNA viruses, and RNA viruses in minute volumes
of intraocular fluid from patients with uveitis. The un-
biased nature of MDS has potential pitfalls as well. It
can be difficult to discriminate between microbes that
are present as a result of laboratory or reagent contam-
ination and those that are actually causing disease [26].
For this reason, we have incorporated a simple but use-
ful addition to our analytical pipeline described above
that attempts to limit over-interpretation of low abun-
dance microbes identified via MDS that are also present
in control samples. Lastly, orthogonal assays like culture,
PCR, and serology are still critical for confirmation, as
we have highlighted in our cases above.
RV is a positive-sense single-stranded RNA virus in

the genus Rubivirus of the Togaviridae family that
causes transient body rash and fever in healthy adults
but can also cause devastating birth defects [27]. RV has
also been associated with Fuchs uveitis syndrome (FUS),
a rare form of chronic intraocular inflammation most
often characterized by mild anterior chamber reaction,
iris atrophy with or without heterochromia, late-onset
ocular hypertension, and minimal associated visual com-
plaints [20, 28–30]. In a subset of patients with FUS, ei-
ther RV IgG or small fragments of RV RNA have been
detected in ocular fluid by Goldmann-Witmer coeffi-
cient analysis or RT-PCR, respectively [20, 28, 31]. These
tests are only validated for ocular fluid at a few centers
in Europe and are not available as clinical diagnostics in
the USA.
The protracted diagnostic challenge in our subject was

three-fold: (1) diagnostic tests are lacking for ocular in-
flammation, (2) the subject’s clinical findings were not
consistent with FUS until many years after disease onset,
and (3) the subject’s relevant infectious exposure oc-
curred 6 years prior to the onset of his ocular symptoms.
This case highlights the advantage of a hypothesis-free
approach in which a single MDS assay can detect a
multitude of pathogens that may or may not have been
previously associated with a particular clinical syndrome.
The identification of RV RNA in our subject’s eyes un-

derscores current challenges in infectious disease sur-
veillance and for eradication and elimination programs

[32]. The WHO declared RV eliminated in the USA in
2005 as a result of effective and long-standing vaccin-
ation policies, but RV remains a threat throughout much
of the world [33, 34]. Our subject’s ocular inflammation
pre-dated his measles, mumps, and rubella (MMR) vac-
cination by 7 years, and his RV strain most closely
matched the strain circulating in his home country of
Germany at the time of his rash and fever in 1993, and
not the vaccine strain (Fig. 3b). This is consistent with
the notion that RV likely seeded his eyes during this pri-
mary infection. Although his immune system cleared the
infection peripherally, RV sequestered in the ocular com-
partment and persisted presumably due to relative im-
mune privilege. Indeed, our analysis of the RV genome
provides the first molecular evidence for active RV repli-
cation in FUS. Ocular RNA virus sequestration is not a
phenomenon relating solely to RV, as Ebola virus was re-
cently detected in the ocular fluid of a patient 9 weeks
after resolution of his viremia [4]. Using RT-PCR for RV
on our subject’s tears, we were not able to detect shed-
ding of RV, although longitudinal studies are required to
determine whether intermittent shedding through tears
can occur. As we devise strategies to rapidly identify and
control emerging and re-emerging infectious diseases,
expanding the scope of pathogen detection to the eyes
and other immune privileged sites may be of critical
importance.

Conclusions
Diagnostic tests for intraocular infection fundamentally
differ from those for systemic infections because of the
small sample volume that can be safely obtained from
the eye. Unbiased MDS may circumvent this limitation,
as it detects many infectious organisms with a single
assay requiring as little as 20 μL of intraocular fluid. Not
only does MDS have the potential to alter the paradigm
for infectious disease diagnostics in ophthalmology, but
it may also provide another valuable public health tool
to surveil for re-emerging and emerging infectious dis-
eases in immune privileged body sites.

Additional file

Additional file 1: Table S1. List of nucleotide substitutions identified
in subject 6’s RV genome. The patient’s RV genome was aligned with the
Stuttgart strain (GenBank DQ388280.1). A nucleotide change was
considered a substitution only if the change was present in ≥4 reads or
in 80 % of the total reads at that nucleotide position. (PDF 120 kb)
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