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First-best Downtown Transportation Systems  

in the Medium Run 

 
This paper investigates first-best downtown transportation systems in the medium run for 

a broad range of demand densities.  A downtown transportation system is assumed to 

include a subway system that operates on its own network and a congestible street system 

that accommodates both buses and cars.  A “subway” is any mass transit mode that 

operates on an exclusive right of way; a “bus”  is any mass transit mode for which there 

congestion interaction with cars1.  The analysis is “medium run” in the sense that the 

subway and road networks are fixed, as are their link capacities, and “first-best” in the 

sense that the planner faces only technological constraints. The analysis is “downtown” 

only in the sense that it focuses on high levels of demand density that for most 

metropolitan areas occur only downtown. The analysis is static (stationary state), 

ignoring the intra-day dynamics of travel and congestion.   

 

The design of optimal transportation systems is a classic problem, and many facets of it 

have been considered in the literature.  Particularly noteworthy are Meyer, Kain, and 

Wohl (1965), Mohring (1972), and Kraus (1991), and a recent, state-of-the-art 

contribution is Tirachini and Hensher (2011).  Meyer, Kain, and Wohl investigated the 

relationship between per passenger operating cost and demand density for different 

transport modes, with an interest in determining the cost-minimizing mode by demand 

density.  Mohring (1972) made a seminal contribution in identifying economies of scale 

in mass transit that operate through waiting time and walking time.  A doubling of 

demand density can be accommodated by a doubling of service frequency, which reduces 

average waiting time, or by a doubling of network density, which reduces average 

walking time.  Kraus was the first to model explicitly loading/unloading and discomfort 

costs.  Tirachini and Hensher examine the cost-minimizing design of a designated bus 

corridor, adding to the usual set of decision variables vehicle capacity, fare payment 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1	
  According to this definition, a light rail transit system is a bus system if it contributes to 
auto congestion, while a designated bus corridor is a subway system since it does not 
contribute to auto congestion.  
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system, and running speed, and considering bus queues at high-demand stops.   

 

Our paper draws on our earlier work (Arnott and Rowse, 2006) to make several 

contributions to this line of literature.   It is the first paper, to our knowledge, to consider 

the optimal design of a downtown transportation system with the three generic modes.  

The properties of an optimal urban transportation system when two of the modes are 

subject to Mohring-type economies of scale are of special interest.  If bus and subway 

travel were characterized by decreasing costs over the entire range of demand intensities, 

it would be optimal to employ only one of the modes, depending on their technological 

parameters and on the level of demand intensity.  But, as modeled here, there are two 

reasons this may not occur: the first is congestion between buses, and between buses and 

cars; the second is that, in the medium run considered, the subway network may be 

subject to capacity constraints but the bus network is not.  The paper is also the first to 

model the congestion interaction between buses and cars using the sounder, traffic 

engineering approach in which speed depends on the density rather than the flow of 

traffic, and the first in this branch of the literature to treat curbside and garage parking 

explicitly. Finally, because of the nonconvexities introduced by Mohring-type economies 

of scale, there may be multiple local optima.  Many of the optimization programs that we 

experimented with identified either an inferior local optimum or even a corner minimum 

as the global optimum. The paper illustrates the application of a simple and intuitive but 

effective decomposition procedure to deal with the problem.   

 

Mohring-type economies of scale introduce essential non-convexities into the problem.  

When essential non-convexities are present, formal analysis with general functional 

forms is very difficult.  For that reason, we proceed by working with an extended 

numerical example.  Our results identify several qualitatively different optima, but not 

necessarily the entire set.  Our numerical work uncovered a number of interesting results. 

--------- 
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In the near future we plan to adapt the model developed in this paper to second-best 

policy analysis.  Distortions will be added as constraints to the planner’s optimization 

problem, along with the equilibrium constraints that a particular mode is active in the 

second-best optimum only if its full price is less than or equal to the full price of all 

inactive modes. In particular, we plan to investigate the effects of maximum downtown 

parking requirements, which have been introduced in many cities in recent years, 

including Boston, San Francisco, ---- .  Because auto congestion is underpriced, the auto 

modal share is excessive. By restricting the amount of private parking available 

downtown, maximum parking requirements aim to induce modal switching to mass 

transit.   The policy has the potential added benefit of exploiting economies of scale in 

mass transit.  Is the policy really as effective as it appears at first glance, or might its 

effectiveness be seriously undermined by an increase in cruising for parking or by mass 

transit capacity constraints? The model could be applied to a host of other second-best 

policy issues. One of particular interest would be to re-examine Parry and Small’s (200x) 

conclusion that, at least in the cities they consider, mass transit should be even more 

heavily subsidized than it is, from the somewhat different modeling perspective of this 

paper.   

 

Future work should also enrich the model in the direction of realism to include 

heterogeneity of travelers, intra-day traffic dynamics, locational differentiation, comfort, 

and travel time reliability, underpriced curbside parking, the behavior of parking garage 

operators, whether public or private, different transportation authorities with conflicting 

objectives, and the political economy of downtown transportation. 

 

Section 2 presents the model.  Section 3 provides a detailed numerical analysis of the 

base case optimum, focusing on how the optimum downtown transportation system 

changes with demand density. Section 4 presents some numerical comparative static 

results, investigating how the characteristics of the first-best downtown transportation 

system change with parameter values.  Section 5 discusses directions for future research, 

and concludes.        

 



	
   5	
  

 

2. The Model  
This section starts with a thumbnail sketch of the model, then displays the notation, then 

presents the model equations, then specifies the full constrained resource cost 

minimization, and concludes by listing the base-case parameter values and explaining 

how they were chosen. 

 

2.1 Thumbnail Sketch 

The model describes a self-contained isotropic downtown in stationary state with three 

generic transport modes: auto, bus, and subway.  There is an exogenous demand per unit 

area-time for fixed-length trips that varies neither over time nor over space.  All travel 

decisions are made by a benevolent planner, with the aim of minimizing resource costs 

per unit area time.  

 

There is a road system2 and a subway system.  The road system is shared by autos and 

buses and suffers from congestion.  Subway cars do not interact with buses or autos, and 

if they interact with each other do so only via headway or platform capacity constraints. 

The road and subway systems have already been constructed.  For the road system, this 

means that road capacity is fixed, for the subway system, that station spacing is fixed.    

Apart from deciding how to allocate trips over modes, the planner has eight decision 

variables: for the car, the density of curbside and garage parking spaces; for the bus, 

headway, passengers per bus, and bus-stop spacing; and for the subway, headway, 

passengers per subway car, and number of subway cars per train.  

• Auto travel 

 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
2	
  The paper considers a Manhattan grid road network of one-way streets, and a 
Manhattan grid subway network of one-way subway lines.   
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All individuals live downtown3 and have access to a car. At home an individual parks her 

car in her individual garage.  An auto trip entails travel for a fixed distance from home to 

the destination, either curbside or garage parking at the destination during the visit, which 

is fixed in duration, and a return journey home. Traffic congestion is modeled as classic 

(Lighthill-Whitham-Richards) flow congestion, with travel speed depending on the 

endogenous density of cars in transit and of buses, as well as the density of curbside 

parking spaces4.  Road capacity is fixed.  There are two components of the social cost of 

a trip, travel time cost and parking cost.  The value of travel time is taken as fixed.  

Garage parking is produced at constant cost per unit time.  The total social cost of auto 

travel per unit area-time equals auto throughput5 per unit-area time times average travel 

time plus parking cost per car.   

 The social planner decides on the density of curbside parking spaces and of 

garage spaces per unit area.  The density of cars in transit is endogenous.  

• Bus travel 

On a bus trip, an individual walks from her home to the nearest bus stop, waits for the 

bus, travels on the bus to the bus stop closest to her destination6, walks from there to her 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
3	
  An alternative interpretation of the model is that all individuals live in the suburbs and 
take trips to a downtown area, with the model describing their travel in the downtown 
area.   
4	
  This modeling of traffic congestion was first introduced in Arnott, Rave, and Schöb	
  
(2005), Chapter 2, and follows that employed in the transportation engineering literature.  
In that chapter, as well as in subsequent papers (Arnott and Inci, 2006; and Arnott and 
Rowse, 2010), traffic congestion depends as well on the stock of cars cruising for 
parking.  The current paper focuses on first-best planning optima in which there is no 
cruising for parking.   
5	
  In keeping with our previous work, we make a terminological distinction between 
throughput whose units are units of traffic (e.g. cars or bus travelers) per unit area-time, 
and flow whose units are units of traffic per unit time.  The Fundamental Identity of 
Traffic Flow is that flow equals density times velocity.   Flow equals density, measured 
in traffic units per unit time on a street, times velocity, and is hence measured in units of 
traffic per unit time.  In stationary state, the flow of trip originations per unit area-time 
equals the flow of trip terminations per unit area-time, and it is this that we refer to as 
throughput.   Throughput equals the density of traffic per unit area divided by mean trip 
distance times velocity.   
6	
  The model assumes that an individual walks to the closest bus stop and travels on a 
single bus from her origin to her destination, which implicitly assumes that her 
destination is in the same direction as the direction of the bus at that stop.  Footnote xxx 
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destination, and does the same on the return journey.  Her travel time cost includes 

walking time cost, waiting time cost, and in-bus travel time cost.  In-bus travel time 

includes the time traveling in the regular flow of traffic, time embarking and 

disembarking passengers, and time decelerating into and accelerating out of bus stops.   

The speed of a bus in the regular flow of traffic is the same as that for a car, and a bus 

contributes to congestion an exogenous number of passenger-car equivalents. (PCE’s). 

The values of walking time and waiting time differ from one another, and are exogenous.  

The value of in-bus travel time depends on the degree of crowding on the bus.   Bus 

passenger costs per unit area-time equal the throughput of bus passengers per unit area-

time times the travel time cost incurred by each passenger.   

 The costs of operating a bus per unit time equal the driver’s wage plus other costs, 

which include capital, fuel, and maintenance costs. Bus operating costs per unit area-time 

therefore equal bus density per unit area times bus operating costs per unit time.   

 The social planner decides on bus stop spacing, bus headway, and the number of 

passengers per bus.  The density of buses is endogenous.   

 Mohring-type economies of scale arise through both bus stop spacing and bus 

headway. Holding passengers per bus and bus stop spacing fixed, doubling passenger 

throughput is achieved by halving headway, and hence waiting time cost.  Alternatively, 

holding passengers per bus and bus headway fixed, doubling passenger throughput is 

achieved by halving bus stop spacing and hence walking time cost. Thus, higher bus 

passenger throughput reduces average passenger waiting and walking time costs, but also 

increases traffic congestion.      

• Subway travel 

Subway travel is similar to bus travel, but differs in three important respects.  First, the 

spacing between subway stations is taken as fixed, reflecting the very high costs of 

modifying the subway network; second, the social planner has an additional policy 

variable, the number of cars per subway train; third, there is no congestion interaction 

between subways and either buses or cars.  Subways also differ from buses in 

technological parameters.  In the base case, no constraint is put on subway headway or 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
sketches how this assumption could be relaxed this assumption, which would require 
treating transfers. 
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the number of cars per train.  A doubling of subway passenger throughout can therefore 

always be achieved with less than a doubling of resource cost.  Subsequently, 

consideration will be given to constraints on train length and headway, which bind at 

high subway passenger throughput , and result in a form of congestion interaction 

between subway cars.   

 

2.2 Notation 

INSERT THE NOTATION AS TABLE 1 WITH CAPITAL ROMAN LETTERS, 

FOLLOWED BY SMALL ROMAN LETTERS, THEN CAPITAL GREEK LETTERS, 

FOLLOWED BY SMALL GREEK LETTERS, WITH ALPHABETIZATION WITHIN 

EACH CATEGORY.  

 

2.3 Model Equations 

The planner faces the problem of minimizing the resource cost per unit area, RC, of 

satisfying the exogenous travel demand.  We start by presenting the constraints on the 

minimization problem, and then present the expression for cost. 

 

• constraints 

The stationary-state condition for cars is  

 Na = T/(δt(T,0,B,P).        (1) 

The left-hand side is the equilibrium inflow rate into the car in-transit pool per unit area-

time, Na.  The right-hand side is the steady-state outflow rate, which equals the density of 

cars in transit per unit area-time, T, divided the length of time each cars spends in transit, 

which is (return) trip distance, δ,  times travel time per unit distance, t.  Travel time per 

unit distance is a function of T, as well as the density of cars cruising for parking, C, the 

density of buses, B, and the density of curbside parking spaces, P: t = t(T,C,B,P).  In the 

social optimum, there is no cruising for parking so that C = 0. 

 

The analogous, stationary-state condition for buses is 

 Nb = B/(δt(T,0,B,P) + δr0
b/Δb +  4nbr1

b).     (2) 
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The denominator is the time spent on a bus trip. The first term is bus cruising time, the 

second the fixed time a passenger loses on a trip from her bus decelerating into bus stops 

and accelerating out of them, and the third term is the time lost due to passengers 

embarking and disembarking.  Bus cruising time is the same as in-transit car travel time, 

since buses and cars are assumed to travel at the same speed when in regular traffic. Bus 

stops are spaced Δb apart, so that a bus has (approximately) δ/Δb stops on a trip, and r0
b is 

the fixed component of the time a bus loses at each stop accelerating and decelerating.  nb 

is the number of passengers per bus, and on a one-way journey this number of passengers 

embark and the same number disembark, so that the total number of embarkations and 

disembarkations per round trip is 4nb and r1
b is the time a passenger takes to either 

embark or disembark7.   

 

The analogous, stationary-state condition for subways is 

 Ns = S/(1/vs + δr0
s/Δs + 4nsr1

s),      (3) 

where S is the density of subway trains per unit area-time. The only qualitative difference 

between this condition and the analogous condition for buses is that buses are slowed 

down by traffic congestion while subways cruise at the speed vs. 

 

There is also a conservation relationship between bus headway, bus stop spacing, trip 

distance, bus throughput per unit area time, and the number of passengers per bus, and an 

analogous condition for the subway.  If stations are spaced a distance Δ apart on a 

Manhattan grid, then there are 2/Δ lines traversing each unit area.  If travel on each line is 

one-way, which we assume, then the number of trains/buses entering each unit area-time 

is 2/(Δh) and the number of passengers entering each unit area-time is 2nz/(Δh), where n 

is the number of passengers per car and z the number of cars per train.  Throughput 

equals this quantity times the proportion of passengers who disembark per unit area.  

Thus, N = 2n/(δΔh).   

 

Since, by assumption, z = 1 for the bus, the bus passenger conservation condition is 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
7	
  This specification ignores congestion in the embarkation and disembarkation process, 
which will be considered in section 4.3. 
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  Nb = 2nb /(δΔbhb).       (4) 

The corresponding subway conservation condition is  

  Ns = 2ns /(δΔshs).       (5) 

 

There is also the obvious adding-up condition that 

  N – Na – Nb – Ns = 0.       (6) 

 

The decision variables in the minimization problem are Na, Nb, Ns, T, B, P, S, nb, ns, hb, 

hs, Δb, and z.  Δs is not a decision variable since the subway network is taken as fixed.  

There are non-negativity restrictions on all the decision variables.   

 

All the above constraints are equality constraints.  There are also inequality constraints.  

The first is that the bus headway must exceed the length of time it takes a bus to 

discharge and load passengers at a stop8.  The proportion of passengers that either gets on 

or off a bus at a particular stop approximately equals the stop spacing divided by journey 

distance (which gives the probability that a passenger gets off at a stop) multiplied by 2 

(which gives the probability that a passenger gets either on or off at a stop): Δ/δ. It would 

therefore be reasonable to specify the bus headway constraint as 

 hb ≥ nbΔbr1
b/δ,          (7) 

and the analogous subway headway constraint as 

 hs ≥ nsΔsr1
s/δ.         (8) 

For the subway, platform length must exceed the length of a train. In examining the base 

case, we shall ignore these constraints.  

 

There is a final constraint.  Let Nac be the throughput of car drivers who park curbside, 

Nag be the throughput of car drivers who garage park, P be curbside parking capacity, and 

G garage parking capacity.  Since in the model unutilized parking spaces impose a social 

cost but confer no benefit, Nacλ = P and Nagλ = G.  Furthermore, Na = Nac + Nag.  Finally, 

garage capacity cannot be negative.  We could treat driving and curbside parking as being 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
8	
  The constraint could easily be modified to allow for bus stops to accommodate more 
than one bus, or to  
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a different mode from driving and garage parking.  Instead, we have chosen to treat 

driving as a mode, and to treat garage parking capacity only implicitly, in which case the 

non-negativity constraint on G reduces to 

 Naλ ≥ P.         (9) 

 

• resource costs 

There are three direct resource costs associated with car travel: time costs, money costs, 

and garage parking costs.  Time costs per unit area-time may be measured as ρT.  Money 

costs per unit area-time, which include fuel costs and the variable component of 

depreciation and insurance, are assumed to be proportional to travel time rather than 

travel distance, and may therefore be measured as gaT.  The cost of a garage parking spot 

is c per unit time.  The cost of garage parking per unit area-time is therefore cG, with G≥ 

0.  With G substituted out, this cost and constraint are represented as (Naλ - P)c and (Naλ 

- P)c ≥ 0.  Curbside parking makes traffic congestion worse.  The cost associated with 

this is captured in the time costs of car drivers and bus passengers.  The total resource 

costs per unit area-time associated with auto travel are therefore 

 RCa = (ρ + ga)T + (Naλ - P)c    if Naλ - P > 0 (some garage parking) 

         = (ρ + ga)T     (no garage parking)  (10) 

 

There are four direct resource costs associated with bus travel are operating costs, 

walking time costs, waiting time costs, and travel time costs.  Operating costs are 

assumed to be proportional to bus density, are operating costs per bus per unit time are 

divided into the bus driver wage, Wb, and other operating cost, gb, which include the 

amortized capital costs, maintenance, and fuel.  Bus operating costs per unit area-time are 

therefore (Wb + gb)B.  Each bus passenger takes four walks, from home to the origin bus 

stop, from the destination bus stop to the destination, and the reverse when homebound. 

Since the average distance from home to a bus stop is Δb/4, on average a bus passenger 

walks a distance Δb , which takes Δb/w units of time with walking speed w, and entails a 

cost of ρwΔb/w with a value of walking time of ρw.   Walking time costs per unit area-

time are therefore NbρwΔb/w.  Waiting time costs per unit area-time are NbρWhb.  Buses 
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are assumed to arrive at equally spaced intervals so that each passenger expects to wait a 

period of time hb/2 for a bus9, and therefore a period hb for her return trip, at a constant of 

ρWhb, where ρW is the cost of waiting time10.   Crowding costs enter through travel time 

costs. In particular, the value of travel time is assumed to be proportional to the “volume-

capacity” ratio, the ratio of the number of passengers per bus to bus capacity,κb, with the 

form ρ0
b + ρ1

b(nb/κb)ηb, where ρ0
b ,ρ1

b, κb, and ηb are exogenous11 parameters.  Thus, 

travel time costs per unit area-time are Bnb[ρ0
b + ρ1

b(nb/κb)ηb], and total bus travel costs 

per unit are-time are 

 

 RCb = (Wb + gb)B + Nb(ρwΔb/w + ρWhb) + Bnb[ρ0
b + ρ1

b(nb/κb)ηb].  (11) 

 

Apart from possible differences in parameter values, the costs of subway travel per unit 

area-time differ in only two respects from those for bus travel.  First, the operating costs 

of a subway train per unit time are taken to include a fixed component, the driver’s wage, 

and a variable component that is linearly proportional to the number of cars in a train.  

Second, a subway passenger’s walking costs include the costs of walking between the 

street and the platform, which is Γ per one-way journey. Total subway travel costs per 

unit area time are therefore 

 

 RCs = (Ws + zgs)S + Ns[ρw(Δs/w + 2Γ) + ρWhs] + Sns[ρ0
s + ρ1

s(ns/κs)ηs]. (12) 

 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
9	
  One interpretation of this is passengers do not know the bus schedule.  Another is that 
passengers know the bus schedule and so do not actually wait for a bus but instead must 
travel at an inconvenient time, which generates a schedule delay cost.   
10	
  Footnote xx pointed out that the model assumes that an individual travels to the closest 
bus stop or station, and travels in the direction of the bus or train there THIS 
FOOTNOTE NEEDS TO BE MODIFIED FROM HERE, which is unrealistic. With 
complicating the model, it could alternatively be assumed that each passenger makes one 
transfer, which would double waiting time. A fully satisfactory treatment would optimize 
the route network, and solve for the resource-cost minimizing route for each traveler.  
11	
  In a fuller model, these, and many other, exogenous parameters could be treated as 
decision variables; for example, ρ0

b reflects the comfort of the bus, absent crowding, 
while the form of the value-of-travel-time function reflects the bus design, such as the 
ratio of seating capacity to capacity.  
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• form of the road congestion technology 

The road congestion technology combines Greenshields’ Relation with the assumption 

that a bus’ contribution to congestion can be represented in terms of passenger-car-

equivalents (PCE’s).  Greenshields’ Relation states that there is a negative linear 

relationship between velocity and density,V, v = v0(1 – V/Vj), where v0 is free-flow 

velocity and Vj density.  Since travel time per unit distance is inversely proportional to 

velocity, this may be rewritten as t = t0/(1 – V/Vj) or t = t0Vj/(Vj – V).  Finally, it is 

assumed that jam density equals maximum jam density, Ω – the jam density when no 

road space is devoted to parking – times the proportion of road space that is devoted to 

traffic flow rather than parking, 1 – P/Pmax, where Pmax is maximum density of curbside 

parking spaces per unit area-time. Thus,  

 t(T,C,B,P) = t0Ω(1 – P/Pmax)/[Ω(1 – P/Pmax) – T - θC - θbB].   (13) 

In the planning problem, there is no cruising for parking, so C = 0. 

 

2.4 The Planning Problem 

The planner’s problem is to minimize the resource costs per unit area-time subject to the 

constraints listed above.  The complete minimization problem is given below. 

 

COPY FROM JOHN’S LETTER TO GAMS, AND PERHAPS ADD THE HEADWAY 

CONSTRAINTS. 

           (14) 

The decision variables are Na, Nb, Ns, T, B, P, nb, ns, hb, hs, Δb, and z.    

 

The time horizon of the planning problem is the medium run, with the road and subway 

networks and link capacities taken as fixed12.  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
12	
  The analysis could be extended to treat the long-run planning problem by making Δs a 
decision variable, rather than a parameter, and by optimizing the proportion of land to 
allocate to road space. The latter would require the specification of a more complete 
model in which downtown land is allocated between road space and other uses. 
Allocating more land to road space would require constructing taller buildings and/or 
allocating less workspace to each worker. 
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Before proceeding, it will be useful to highlight some features of the model.   

1. Note that the problem can be decomposed into three sub-problems.  The first is 

the minimization of subway resource costs, subject to a fixed throughput of subway 

travelers; the second is the minimization of road resource costs, which includes the 

resource costs associated with both bus and car travel, subject to a fixed throughput of 

road travelers; the third is to allocate the population between subway travel and road 

travel so as to minimize total resource costs, subject to an overall population constraint.  

This decomposition is possible because there is congestion interaction between car 

drivers and bus passengers, but not between road and subway users13.  

2. There are decreasing costs to subway travel if neither the subway headway or 

subway platform capacity constraint bind.  A doubling of subway passengers can be 

accommodated via a doubling of the number of cars per train, holding ns and hs fixed,  

which leaves the user cost unchanged and distributes the driver’s wage over a large 

number of train passengers.  A doubling of subway passengers can also be 

accommodated via halving the train headway, holding ns and z fixed, which lowers 

average passenger waiting time cost while leaving operating costs per passenger 

unchanged. For populations of subway passengers where the subway headway capacity 

constraint binds, but not the platform capacity constraint, decreasing costs should prevail 

since an increase in subway passengers can still be accommodated via an increase in train 

length.  For even higher levels of population, where both constraints bind, an increasing 

number of subway travelers can be accommodated only through an increase in passengers 

per car and hence increased per passenger crowding costs, and above some threshold 

level increasing costs set in.   

 Intuition suggests that as the number of road travelers from zero, average road 

user resource costs first rise, then fall, then rise again.  When the number of road travelers 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
13	
  An extension of the model would be to incorporate pedestrians.  This would be 
important if there were a distribution of trip lengths, so that some individuals would 
choose to walk on shorter trips. There would also be the walking involved on bus and 
subway trips.  When trip density is high, pedestrian congestion becomes important.  
Pedestrians impose congestion costs not only on one another but also on road users. In 
such a model, pedestrians would introduce a form of congestion interdependence between 
subway and road travel.  
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is small, with reasonable parameter values, all should travel by car, and car travel suffers 

from congestion.  At a threshold level of road travelers, it should become profitable to 

start operating a bus system at a non-zero scale.  As the number of road travelers is 

increased above this level, there are two offsetting effects.  On one hand, there are 

decreasing waiting and walking costs for bus travel, while, on the other, road congestion 

increases.  The former may dominate for smaller number of road travelers, the latter 

should dominate for larger numbers.  

3. The model abstracts from a number of potentially important considerations, 

including heterogeneity of users, pedestrian traffic, time-of-day variation, locational 

differentiation, and comfort.   

  

      

2.5 Parameter Values 

The base-case parameter values are given in Table 2. 

DISCUSSION OF PARAMETER VALUES ON THE BASIS OF THE VALUES USED 

BY JOHN AND THE NOTES OF JULY 12, 2010.  

 

 

3. Base-Case Optimum 
This section examines how the first-best downtown transportation system changes as 

demand density increases for the base case set of parameters values given in Table 2.  We 

could just present our results, but to facilitate both exposition and comprehension have 

decomposed the problem.  Section 3.1 presents results when all travel is by auto, section 

3.2 when all travel is by bus, section 3.3 when all travel is by subway, section 3.4 when 

all travel is by either bus or subway, and section 3.5 when all three modes are present.   

 

3.1 All Travel is by Auto 

Table 3 presents results for four different levels of demand density, N = 3708, 7416, and 

14828, which correspond to 25%, 37.5% 50%, and 100% of the base-case demand 

intensity of 14828.   
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variable N = 3707 N = 5560.5 N = 7117.44 N = 7414 N = 14828 

t 0.07061 0.07061 0.0833 0.10 * 

T 1047 1571 2372 2966 * 

P 4403 1037 0 0 * 

APCa
+ 5.437 8.441 9.0 9.0 * 

ATCa
+ 7.768 7.768 9.163 11 * 

ARCa
+ 13.20 16.20 18.17 20 * 

MRCa
+ 22.22 22.22 36.46 ∞ * 

Table 3: Auto-only Optima 
Notes: * indicates that this the road system has insufficient capacity to support this level 
of demand intensity with only auto travel. 
+ ARC denotes average resource cost per capita with auto only, and MRC marginal 
resource cost.  Subscript a denotes auto only. 
 
DISCUSSION 
 
 
3.2 All Travel is by Bus 
 
Table 4 presents the bus-only optima for the same levels of demand density as did Table 

3, as well as for a level of demand intensity equal to twice that of the base case value.  

Here, and throughout this section, we take θb – the passenger-car equivalents of a bus -- 

to be 2.0.  This is the standard value assumed (e.g., Parry and Small, 20xx) though we 

believe it to be unrealistically low and in the next section compare the results obtained 

with our preferred estimate of θb = 7.5. 

variable N = 3707 N = 5560.5 N = 741 N = 14832 N = 29664 

t 0.0515 0.0522 0.0527 0.0558 0.0615 

B 83.86 122.6 154.6 305.5 556.59 

Δb 0.2235 0.2212 0.2205 0.2215 0.2293 

hb 0.01974 0.00752 0.006033 0.003133 0.001740 

nb 17.80 18.50 18.94 20.58 23.67 

AOCb
+ 2.715 2.645 2.606 2.472 2.252 

AwCb
+

 6.704 6.637 6.616 6.646 6.880 

AWCb
+ 0.5370 0.3760 0.3017 0.1566 0.08702 
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ATCb
+ 10.95 11.17 11.31 11.85 12.84 

ARCb 20.91 20.83 20.83 21.12 22.06 

MRCb 20.58 20.76 20.93 21.89 24.18 

Table 4: Bus-only Optima 
Notes: +  AwC denotes average walking cost, AWC average waiting cost, and ATT 
average travel time cost.  Subscript b denotes bus only 
 
DISCUSSION 
 
 
3.3 All Travel is by Subway 

 

Table 4 presents the subway-only optima for the same levels of demand density as did 

Table 3.  In this base case, we ignore both the subway headway constraint and the train 

length constraint.  As a result, there are decreasing costs through the entire range of 

demand density. 

variable N = 3707 N = 5560.5 N = 7416 N = 14832 N = 29664 

 

t      

S 21.19 25.96 29.37 42.40 59.97 

z 1.067 1.302 1.470 2.112 2.978 

hs 0.006859 0.005601 0.004952 0.003431 0.002427 

ns 23.83 23.92 23.97 24.09 24.16 

ATOs
+ 1.014 0.9486 0.9148 0.8360 0.7838 

AwCs
+ 21 21 21 21 21 

AWCs
+ 0.3429 0.2801 0.2476 0.1716 0.1213 

ATCs
+ 3.750 3.753 3.754 3.757 3.758 

ARCs 26.22 25.98 25.92 25.76 25.66 

MRCs 25.76 25.70 25.67 25.59 25.54 

Table 4: Subway-only Optima 
Notes: +  AwC denotes average walking cost, AWC average waiting cost, and ATT 
average travel time cost.  Subscript s denotes subway only 
 
DISCUSSION 
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Figure 1, Panel A shows ARC for each of the three modes when only that mode is 

employed, as a function of demand density. Panel B displays the same diagram but for 

MRC.   

 

DISCUSSION 

 

3.4 All Travel is by Road (Auto or Bus) 

Figure 3 shows minimum total resource cost per unit area time , RC, as a function of the 

modal split between auto and bus when all travel is by auto or bus and demand density 

equals the base-case demand density of 14828.  The density of auto travelers is measured 

right from 0a and the density of bus travelers left from 0b such that Na + Nb = Nr. With the 

assumed parameter values and demand density, it is efficient for almost all road users to 

travel by bus, with only a small proportion traveling by auto.   

 

It will be insightful to digress briefly to consider the intuition for the result. Total 

resource costs per unit area-time equal the sum of total auto resource costs per unit area 

time, given by (10), and total bus resource costs per unit area time, given by (11).   Now, 

by the Envelope Theorem, we may suppose that the planner adjusts bus policy only by 

increasing bus headway.  Thus, the net social benefit from the passenger transfer when 

the marginal car traveler parks in a parking garage14 is 

 

 dRCC/dNa = (ρ + ga)dT/dNa + λc + (Wb+ gb)dB/dNa - ρw∆b/w +  

  nb [ρ0b  +ρ1b(nb/κb)ηb]dB/dNa ,      (15) 

 

where dT/dNa and dB/dNa  are obtained from total differentiation of (1) and (2) with 

dP/dNa = 0.  And the net social benefit from the passenger transfer when the marginal car 

traveler parks curbside is  

 

 dRC/dNa = (ρ + ga)dT/dNa + (Wb+ gb)dB/dNa - ρw∆b/w +  

  nb [ρ0b  +ρ1b(nb/κb)ηb]dB/dNa ,      (16) 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
14	
  The full derivation is given in the Appendix. 
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 where dT/dNa and dB/dNa  are obtained from total differentiation of (1) and (2) with 

dP/dNa = λ. At an interior minimum, dRCC/dNa = 0 and d2RCC/dNa
2 > 0. 

 

When Na = 0 and when, at Na = 0, it is efficient for the marginal auto traveler to park 

curbside, as is the case in the current example, (16) reduces to  

 

 [dRC/dNa]Na = 0 = (ρ + ga)δt(0,0,B,P) + λc - ρw∆b/w    (17) 

- (Wb+ gb + nb [ρ0b + ρ1b(nb/κb)ηb]){-NbδθbtT + nb}-1[δr0b/∆b + 4nbr1b + δt(,0,B,P)(1 - 

NbδtT)]). 

THIS IS THE EXPRESSION WHEN THE MARGINAL AUTO TRAVELER PARKS 

IN A GARAGE AND THEREFORE NEEDS TO BE MODIFIED.   

Thus, when all travel is by bus, the effect on resource cost of having a single traveler 

switch from bus to car can be decomposed ---- 

 

Performing the above exercise for different levels of N, we may obtain resource costs and 

other variables of interest, as a function of demand density,  with only road travel, 

RCr(N), from which ARCr(N) and MRCr(N) may be derived. Table 5 displays the results 

for the same levels of demand density as Tables 3 and 4.  

 DISCUSSION 

 

3.5 All Three Modes 

 When we initially solved the three-mode problem numerically, we did so as the 

constrained optimization problem (14). Recognizing that the non-convexities caused the 

Mohring-type economies of scale in bus and subway transportation would likely cause 

numerical problems, we solved the problem with a variety of different solvers.  

Disconcertingly, the solvers came up with different solutions.  Some identified corner 

minima, others identified a local minimum that was not the global minimum.  Only one 

obtained the correct solution!  
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variable N = 3708 N = 5560.5 N = 7416 N = 14832 N = 29664 

t      

T      

P      

B      

Δb      

hb      

nb      

Na      

Nb      

APCr      

AwCr      

AWCr      

ATCb      

ARCr      

MRCr      

Table 4: Road-only Optima 
Notes: 1. APC gives total parking cost divided by total population. Subscript r denotes 
road only   
 

 

To deal with this problem, we decomposed the problem using the components that have 

been developed in the previous subsections.  Since the resource cost of subway travel is 

independent of the number of road users, and vice versa, reflecting the congestion 

independence of road and subway travel, we solved for first-best subway travel as a 

function of the number of subway travelers, as described in section 3.3, RCs(Ns), and then 

for first-best road travel as a function of the number of road users, RCr(Nr), as described 

in section 3.4 above.  The full optimum may then be obtained simply as the solution to  

 

 Min RC(N) = RCs(Ns) + RCr(Nr)   s.t.   Ns + Nr = N.    (18) 
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We used this procedure to obtain an approximate solution, and then used the approximate 

solution as the starting point of the numerical solution of (14).   

 

Figure 4 displays RCs(Ns) and  RCr(Nr), with the constraint Ns + Nr = N imposed.  RC(N; 

Na, N – Na) is obtained as the vertical summation of the two curves in this space.  RC(N) 

is the minimum of this curve15.  The global resource cost minimum in the base case 

example entails only auto and bus travel, and so is the same as the road-only resource 

cost minimum with N = 14832, which is shown in the second rightmost column in Table 

4. 

 

4. Sensitivity Analysis 
This section perform sensitivity analysis.  The analysis is not exhaustive but rather 

illustrates the logic of how the first-best downtown transportation system changes as 

selected parameter values are altered, and in the process makes some policy-relevant 

points.   We consider three changes: i) an increase in θb from 2.0 to 7.5; ii) introducing 

headway and platform capacity constraints; and iii) increasing the crowding-cost 

parameters. 

 

4.1 Increasing θb from 2.0 to 7.5 

On the basis of industry practice, Parry and Small (20xx) assume that a bus generates 2.0 

PCE’s of congestion.  Our guess is that the actual figure is considerably higher, and 

around 7.5 in heavily congested traffic16. A bus that is loading or unloading passengers or 

decelerating into or accelerating out of a stop blocks an entire lane of traffic for most of a 

city block, and a bus that is making a turn reduces intersection capacity for several 

seconds.  Figure 5, Panel A reproduces Figure 3, indicating how resource cost as a 

function of the modal split between auto and bus change with the increase in θb, at a 

demand density of 14832.  Figure 5, Panel B, reproduces Figure 4, indicating how 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
15	
  A similar construction using the corresponding marginal social cost curves would 
identify interior minima, but identifying the global minimum would require comparing 
areas.  
16	
  Daganzo (xxxx) states that the PCE of a bus increases with the degree of congestion.   
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resource cost as a function of the split between road and subway travel changes with the 

increase in θb.  

 

In Panel A, the increase in θb causes the resource cost curve to shift up and to tilt so that 

the optimal modal split between auto and bus, holding fixed road passenger density, 

shifts towards auto travel.    Panel B is similar, showing how optimal modal split between 

subway and road shifts towards the subway, holding overall passenger density fixed.  The 

optimal downtown transportation system shifts from one with only bus and auto to one 

with only subway and auto.  Overall resource costs increase substantially, from $20.92 

per trip to $24.42 per trip.   

 

This numerical example illustrates the sensitivity of the optimal downtown transportation 

system to bus PCE’s and points to the potential value of obtaining better estimates of the 

congestion function relating auto travel speed to bus density and other relevant variables.   

 

 

4.2  Headway and Platform Capacity Constraints 

As explained in section 2.5, the base-case demand density was chosen to represent the 

downtown of a metropolitan area with a population of 1 to 2 million in developed, 

western countries.  Most cities with such moderate demand densities do not have a 

subway system, and, whether or not they do, headway and platform capacity constraints 

are unlikely to bind.  But with substantially higher demand densities, they can be 

expected to.  If they are ignored, the per capita resource cost of the optimal metropolitan 

transportation system asymptotically approaches a modest upper bound as population 

increases without any change in the road or subway system.   The reason is that the 

subway system exhibits decreasing cost over the full range of demand densities, since 

increases in subway passenger density are accommodated by increases in train length and 

decreases in headway.   

 

We provide only a crude treatment of headway and platform length constraints, assuming 

that platform length equals the length of 4 cars and that subway headway cannot fall 
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below 90 seconds.  With these constraints, a maximum of (4)κs(40) = 4(133)(40) = 21280 

passengers may pass through a subway station in a particular direction per hour. With the 

assumed Δs = 0.5, there are two subway lines in each of the north, south, east, and west 

directions, so that a maximum of 170240 passengers may travel through a square mile of  

subway system per hour.  Since trip length is 4, the maximum throughput is 47560 

passengers per ml2-hr 

 

Figure 6 displays per passenger subway resource cost as a function of subway demand 

density for densities ranging from 0 to 59312 – four times the maximum level of demand 

density considered in the previous section.   An obvious but important point is that, at 

high levels of demand density, subway travel exhibits increasing costs.  When the 

headway and platform capacity constraints bind, with fixed spacing between subway 

stations, the only way increased passenger density can be accommodated is through an 

increase in passengers per car, which raises crowding costs.  When subway travel 

exhibits increasing costs, the optimal downtown transportation system may include all 

three modes. Another obvious point is that a transportation system has a maximum 

capacity.   

 

The current wisdom is that Mohring-type economies of scale support the heavy 

subsidization of mass transit travel.  This may not be the case in large metropolitan areas 

where the subway system is so capacity constrained that crowding costs become 

substantial, as is currently the case in Paris, London, and Tokyo.   

 

 

4.3 Raising Crowding Cost Parameters 

There are two important form of crowding costs – the discomfort associated with 

traveling in a crowded subway car, and the congestion associated with embarking and 

disembarking.  The base-case parameters that characterize crowding costs are 

conservative -- the value of time associated with traveling in a completely full subway car 

or train are only twice those of traveling in an empty train. And, at capacity, the time it 

takes to for 20% of the passengers to disembark and for 20% to embark is only 21.6 
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seconds for the bus and 27 seconds for the subway.  The elasticity of the value of travel 

time with respect to the volume-capacity ratio was assumed to be equal to 2.0, and the 

variable time associated with loading and unloading passengers at a stop or station was 

assumed to be proportional to the number of passengers getting on or off and independent 

of volume-capacity ratio.   

 

In this subsection, we assume that the value of time associated with traveling in a 

completely full subway car or train is four times that of traveling in an empty train, while 

retaining the assumption that the elasticity of the variable component of the value of 

travel time with respect to the volume-capacity ratio equals 2.0 (the parameters ρ1
b and 

ρ1
s increase from $25.00 to $75.00).  Also, we replace the base case’s assumptions that 

the time it takes to load or unload n passengers at a bus stop is 0.00025nb (0.9 seconds per 

passenger) and 0.00014ns for a subway car (0.5 seconds per passenger), with the 

assumptions that the corresponding times are 0.0005nb + 0.0015nb
2/κb (1.8 seconds per 

passenger on an empty bus and 7.2 seconds on a full bus) for the bus and 0.00028ns + 

0.0015ns/κs (1 second per passenger on an empty subway car and 4 seconds on a full 

subway car) for the subway.  

 

Table 5 augments Table 4, showing how the increase in crowding cost parameters alters 

the optimal road-only allocation for the various levels of demand intensity considered in 

Table 4. 

Variable* N = 3708 N = 5560.5 N = 7416 N = 14832 N = 29664 

t      

T      

P      

B      

Δb      

hb      

nb      

Na      
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Nb      

APCr      

AwCr      

AWCr      

ATCb      

ARCr      

MRCr      

Table 5: The Effects of Raising Crowding Costs 
 Notes: * The regular number in a cell gives the current value. The number in brackets 
gives the percentage change ((current value – base value) X 100) in the corresponding 
value from the base case.   
 
 

 

 

DISCUSSION 

 

5. Directions for Future Research and Conclusion 

 
5.1 Directions for Future Research 

 

 

5.2 Conclusions 
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