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ABSTRACT OF THE DISSERTATION

Using Monte Carlo Normal Distributions

to Evaluate Structural Models with Nonnormal Data

by

Siavash Jalal

Doctor of Philosophy in Statistics

University of California, Los Angeles, 2017

Professor Peter M Bentler, Chair

One of the main problems of statistical inference in Structural Equation Modeling (SEM)

is the overall goodness of fit test. Many statistical theories have been developed based

on asymptotic distributions of test statistics. When the model includes a large number of

variables or the population is not from the multivariate normal distribution, the rates of

convergence of these asymptotic distributions are very slow, and thus in these situations

the asymptotic distributions do not approximate the distribution of the test statistics very

well. Modifications to theoretical models and also bootstrap methods have been developed

by researchers to improve the accuracy of hypothesis testing, mainly accuracy of Type I

error, but when the sample size is small or the number of variables is large those methods

have their limitations. Here we propose a Monte Carlo test that is able to control Type I

error with more accuracy and it overcomes some of the limitations in the bootstrapping and

theoretical approaches. Our simulation study shows that the suggested Monte Carlo test

has more accurate observed significance level, as compared to other tests. Problems that

occur in the bootstrapping are highlighted and it is shown that the new Monte Carlo test

can overcome those problems. A power analysis shows that the new test has a reasonable

power.
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INTRODUCTION

Structural Equation Modeling (SEM) has been used in the analysis of multivariate data

with latent variables. Since the measurement of latent variables often arises in social and

behavioral studies, SEM is very popular in those areas of research and in those studies, it

is very common to have a situation that data is from a nonnormal population. A goodness

of fit test in statistics is used to describe how well a statistical model fits the observed data.

Finding an accurate evaluation of goodness of fit is one of the most challenging problems in

SEM specially when the population is not multivariate normal and when access to a large

sample size is not possible.

To evaluate the goodness of fit of a model, often the discrepancy between observations

and their expected values under the model is measured. In SEM, an overall goodness of

fit test describes whether a hypothesized structured model is appropriate to represent the

relationships among observed and latent variables. More precisely, a goodness of fit test

statistic is defined as a functional of the discrepancy between the sample covariance matrix

and the covariance matrix estimated under the model.

Statistical theories for the goodness of fit test can be divided into two categories, when

observed variables follow a multivariate normal distribution, and when they are from an

unknown distribution. In both cases the appropriate test statistics mostly can be approx-

imated accurately by a χ2 distribution when the number of observations is very large and

the number of observed variables is small. However, in practice the number of observations

might not be sufficiently large enough and thus the theoretical approximation to the distri-

bution of test statistics would not be accurate. To date, there has not been a test which

adequately performs in all distributional conditions at small sample sizes. Specially, when

the number of variables in the models gets larger almost all existing tests break down. In

practice there are many studies which use small sample sizes and often the p-values that are

reported for the goodness of fit test in those studies are doubtful. In this study we propose
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a new Monte Carlo test that we expect to improve an asymptotic based test statistics. In a

simulation study with a wide range of distributional conditions and sample sizes, we show

that the proposed Monte Carlo method performs well in controlling Type I error. We discuss

the existing bootstrap method in SEM and we shed some light on the problems that occur

with the bootstrap test.

This dissertation is organized as follows: Chapter 1 provides an overview on some of the

more important developments in goodness of fit test statistics. Chapter 2 contains a review

on the bootstrap method in SEM, and the new Monte Carlo approach is introduced as an

alternative resampling method. In Chapter 3 we examine the performance of the proposed

Monte Carlo method and we compare it with the performance of existing tests. Chapter 5

concludes the dissertation and gives some suggestions for future studies on this topic.
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CHAPTER 1

Goodness of Fit Test in SEM

If we skip early ideas of SEM in the form of factor analysis (e.g. Spearman, 1904; Thurstone,

1944) and move fast-forward, developments of statistical theories for goodness of fit test in

SEM started with development of Confirmatory Factor Analysis (CFA) by Jöreskog, (1969).

Since then, researchers developed various theoretical methods to evaluate overall model fit in

more general situations. When the sample size is small and the number of observed variables

are large, existing test statistics often fail to give a reliable evaluation of overall model fit.

This becomes more problematic when the assumption of normality of observed variables is

not valid. Specifically, most of the test statistics are not able to control Type I error and

they either over or under reject a true model at small sample sizes. To date, researchers

have tried to develop new test statistics and methods to overcome this problem. Often, by

ad hoc approaches they have improved performance of some of the classical tests, yet, there

does not exist a method to perform well in all conditions. In this chapter we give a review

on some of the existing test statistics in SEM.

Sections of this chapter are organized as follows: Section 1.1 covers Maximum Likelihood

test based on a normality assumption of the population. In section 1.2, in brief, we talk

about distribution free tests and Generalized Least Square (GLS) method even though, GLS

in a special format can also seen as a normal theory based test. In section 1.3 we discuss

some corrections to the ML test. The core of our implementation of the Monte Carlo test

is based on the Satorra-Bentler scaled test statistics; therefore, separately, in section 1.4 we

describe Satorra-Bentler scaled test statistics. Other theoretical methods such as elliptical

based tests, Heterogeneous kurtosis tests, and residual based tests are skipped since they are
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not relevant to our main argument.

1.1 Maximum Likelihood test

Let x1,x2, · · · ,xn be a multivariate random sample of size n from a p-variate population

with E(xi) = µ and cov(xi) = Σ for i = 1, . . . , n. A covariance structure model Σ(θ) with a

q-dimensional vector of unknown parameter θ is proposed to fit the data. We are interested

to test the null hypothesis

H0 : Σ(θ) = Σ, (1.1)

against alternative hypothesis that the population covariance matrix can be any arbitrary

positive definitive matrix. If the model is true, we wish to estimate θ by an estimator θ̂ such

that Σ(θ̂) gets as close as possible to Σ. Since Σ is unknown, in practice Σ is replaced with

the sample covariance matrix, as an unbiased estimator of Σ, which is

S =
1

n− 1

n∑
i=1

(xi − x̄) (xi − x̄)T ,

where x̄ = 1
n

∑n
i=1 xi is the sample mean. In covariance structure analysis, a discrepancy

function F [Σ(θ),S] measures the discrepancy between Σ(θ) and S, (see e.g., Browne 1974,

1984; Jöreskog 1967, 1969). The most common and reliable approach to problems of param-

eter estimation and testing for the covariance structure model is the normal theory approach,

in which it is assumed that observed variables have a multivariate normal distribution. When

xi is from a multivariate normal distribution, i.e. N(µ,Σ), the Maximum Likelihood (ML)

discrepancy function is

FML(θ) = ln |Σ(θ)| − ln |S|+ tr(SΣ−1(θ))− p, (1.2)

(see e.g., Jöreskog, 1969). Thus, the maximum likelihood estimate θ̂ML obtained by mini-

mizing FML and

TML = (n− 1)FML(θ̂) (1.3)
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is called the Maximum Likelihood test statistic. Moreover, the asymptotic distribution of

TML is central χ2 with df = p∗−q degrees of freedom, where p∗ = p(p+1)/2. Thus, for large

sample size we can test the null hypothesis (1.1) and reject it if TML exceeds the critical

value of χ2 at significance level α.

1.2 Distribution free test statistic

An alternative approach to the normal theory model is the generalized least squares (GLS)

method studied by Browne (1974). The GLS discrepancy function is defined as

FGLS(θ) =
1

2
[vec(S −Σ(θ))T (V ⊗ V )vec(S −Σ(θ))] =

1

2
tr[(S −Σ(θ))V ]2, (1.4)

where V is a p × p constant positive definite matrix or a stochastic matrix that converges

in probability to a constant positive definitive matrix V ∗, vec() is vectorization operator

that transforms a matrix to a vector by staking rows of the matrix, and ⊗ is the Kronecker

product. Browne (1974) showed that if V converges in probability to Σ−1, then the GLS

estimator θ̂GLS that minimizes FGLS(θ) is asymptotically equivalent to θ̂ML and TGLS =

(n− 1)FGLS(θ̂GLS) has a χ2 distribution with df = p∗ − q degrees of freedom.

To deal with the situation in which the distribution of observed variables is not multi-

variate normal, the asymptotically distribution free (ADF) covariance structure method was

introduced by Browne(1984). Let s and σ(θ) be p∗ × 1 column vectors formed by stacking

elements of the lower triangle of the sample covariance, S, and true population covariance,

Σ(θ), matrices by their rows, respectively. By multivariate central limit theorem,

n
1
2 (s− σ(θ))

L−→ N(0,Γ), (1.5)

where Γ is the asymptotic covariance matrix of
√
n(s − σ(θ)) with its elements defined by

Γ[ij, kl] = σijkl − σijσkl, given σijkl = E[(xi − µi)(xj − µj)(xk − µk)(xl − µl)] and σij and

σkl being elements of population covariance matrix. The limit notation “
L−→” stated for

convergence in distribution. The asymptotic distribution given by (1.5) is crucial to justify
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asymptotic properties of ADF.

The ADF discrepancy function also known as arbitrarily distribution generalized least

square (AGLS) function is defined by

FADF (θ) = (s− σ(θ))TW−1(s− σ(θ)), (1.6)

where W is a p∗ × p∗ positive definite weighted matrix. The optimal weight matrix is the

one in which FADF (θ) reaches to its minimum value. For instance, a W that converges

in probability to Γ is optimal. In practice, one can use the weight matrix as a consistent

estimator of Γ with its typical element obtained by

Γ̂[ij, kl] = sijkl − sijskl,

where sijkl = 1/n
∑n

t=1(xti − x̄i)(xtj − x̄j)(xtk − x̄k)(xtl − x̄l) is the multivariate sample

fourth moment and sijs are elements of sample covariance matrix. The ADF estimator

θ̂ADF minimizes FADF (θ) and

(n− 1)FADF (θ̂ADF )
L−→ χ2

p∗−q.

The ADF test statistics, TADF involves the sample fourth moments and requires a very

large sample size to estimate the model. Due to the need for large sample sizes, and compu-

tational problems of the ADF method in smaller to moderate sample size, further discussions

about this type of test statistic are omitted here.

1.3 Correction to ML test

It is known that the asymptotic distribution of the likelihood ratio test statistic for higher

dimensional data is only valid for very large sample sizes. For smaller sample sizes, even

when the data are from normal distribution, it overestimates nominal Type I errors (see e.g.,

Bentler & Chou, 1987; Boomsma, 1982; Moshagen, 2012). It is also known that the normal

model is very sensitive to violation of normality of observed variables (see e.g., Bentler &
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Yuan, 1999; Browne, 1987; Chou, Bentler, & Satorra, 1991; Hu, Bentler, & Kano, 1992;

Muthén & Kaplan, 1992; Yuan & Bentler, 1998).

To improve the performance of the likelihood ratio test statistics under the normality

assumption in order to get better control of Type I errors, various corrections to TML have

been proposed. The basic idea of these correction methods is to take account of the dimension

of the model and modify the test statistics by multiplying them by a scale factor that depends

on sample size and number of observed and latent variables. This modification adjusts the

mean of the test statistics for small sample size and, in most situations, decreases the rejection

rate and therefore controls the Type I error. Bartlett (1950), as part of a series of corrections

to likelihood test statistics in multivariate data analysis problems, introduced a correction

for the likelihood test statistics in factor analysis by replacing (n− 1) in equation (1.3) with

B = n− (2p+ 11)/6− 2nf/3, which is equivalent with multiplication of TML by

cb = 1− 2p+ 4nf + 5

6(n− 1)
, (1.7)

where p is number of indicators, n is sample size and nf is the number of latent factors.

A Study by Fouladi (2000) showed that the Bartlett correction as TMLb = cbTML can be

approximated more closely than TML by χ2 with p∗ − q degrees of freedom, thus it can

improve the performance of TML in SEM for small sample sizes. However, Monte Carlo

simulation suggested that the Bartlett correction over-corrects the mean of TML in general

SEM with higher model dimension, and it reduces the rejection rate below the nominal

Type I error (see e.g., Herzog, Boomsma, & Reinecke, 2007; Nevitt & Hancock, 2004). Yuan

(2005) suggested to approximate the test statistics with a linear transformation to chi-square

in the form of bχ(df) + a and he also proposed an ad-hoc correction by replacing (n− 1) in

equation (1.3) with n − (2p + 13)/6 − nf/3. Herzog and Boomsma (2009) found that the

Yuan correction also rejects the correct models with a type one error less than the nominal

level.
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Another approach to adjust likelihood test statistics in the normal model was developed

by Swain (1975). Swain’s multiplication factor to TML is

cs = 1− p(2p2 + 3p− 1)− h(2h2 + 3h− 1)

12d(n− 1)
, (1.8)

where,

h = (
√

1 + 4p(p+ 1)− 8d− 1)/2,

and d is the degrees of freedom of the model. Swain’s corrected test statistic is defined

as TMLs = csTML ∼ χ2
(df) (for comparisons of Swain’s corrected test statistic to Bartlett’s

correction see for example, Fouladi, 2000; Herzog et al., 2007; Nevitt & Hancock, 2004).

Herzog et al. (2007) suggested that TMLs should be applied when large structural equation

models are analyzed and the observed variables have a multivariate normal distribution. A

recent paper by Yuan, Tian, and Yanagihara (2015) followed up the idea of Yuan (2005),

proposing a method to approximate a correction to TML empirically, so that the mean of the

resulting statistic get approximately equal the degrees of freedom of the nominal chi-square

distribution. They called their corrected test statistics TMLe = ĉeTML which they claimed

can be approximated very accurately by χ2
(df). In their prediction method they estimate ĉe

using empirical and simulated results.

1.4 Satorra-Bentler scaled test statistics

Satorra & Bentler (1986, 1988, and 1994) developed test statistics for distribution free models

to overcome the computational problems with the ADF methods at small sample sizes and to

achieve more reliable test statistics. When the distribution of data is not from a multivariate

normal, the asymptotic distribution of TML from equation (1.3) is not χ2
(p∗−q). Instead,

Satorra and Bentler (1988) described the asymptotic distribution of TML and its variants

such as TGLS as weighted sum of p∗ − q independent χ2 with 1 degree of freedom.

When we use the normality assumption to determine a discrepancy function, the optimal

weight matrix is the one which converges to a simplified form of Γ. For instance, in practice
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in the normal theory ML we can set weight matrix as W = 2KT
p (Σ̂ ⊗ Σ̂)Kp, where Σ̂ is

a consistent estimate of Σ and Kp is p2 × p∗ duplication matrix. Let σ̇(θ) = ∂σ(θ)/∂θT

be the Jacobian matrix in numerator layout notation evaluated at true parameters of the

model. If for simplicity we set σ̇ = σ̇(θ), the residual weight matrix under the model is

given by

U = W−1 −W−1σ̇(σ̇TW−1σ̇)−1σ̇TW−1,

where W is the weight matrix which is used to estimate parameters (see e.g. Bentler &

Dudgeon, 1996). The asymptotic distribution of TML without a normality assumption was

obtained by Satorra and Bentler (1988) as

TML
L−→

p∗−q∑
i=1

αiτi (1.9)

where τis are independent and have χ2 distribution with 1 degree of freedom and αis are

non zero eigenvalues of the matrix UΓ, where Γ is the the asymptotic covariance matrix of

√
n(s− σ(θ)) defined in (1.5).

Since the distribution in the right hand side of (1.9) is not known, Satorra and Bentler

(1988) first introduced a correction factor to TML that re-scales its mean to the degrees of

freedom of the asymptotic χ2 distribution. It is easy to see that the mean of the asymptotic

distribution of (1.9) is
∑p∗−q

i=1 αi = tr(UΓ). The SB scaled test statistic is defined as

TSB =
TML

c
, (1.10)

where c = tr(ÛΓ̂)/d, and where U and Γ being replaced by their consistent estimators Û

and Γ̂, respectively. Satorra and Bentler showed that if observations are from an elliptical

distribution then TSB asymptotically distributed as χ2 with d = p∗−q degrees of freedom and

even in non elliptical distributions the empirical distribution of TSB can be approximated

fairly well by χ2
(d) distribution (see e.g. Satorra & Bentler, 1988, 1994; Yuan & Bentler,

1998).

Secondly, inspired by the Satterthwaite (1941) variance correction to a linear combination

of chi-square variates, Satorra and Bentler (1988) proposed a correction factor that adjusts

9



both mean and variance of the test statistic. The variance of asymptotic distribution of TML,

driven from (1.9), is 2tr[(UΓ)2]. Suppose a correction of the form aTML can be approximated

by a χ2 distribution with a given degrees of freedom, by setting its mean and variance equal

to mean and variance of the χ2 distribution, the Satorra-Bentler mean and variance adjusted

test statistic is obtained by

TMVA =
d′

tr(ÛΓ̂)
TML, (1.11)

where

d′ =
[tr(ÛΓ̂)]2

tr[(ÛΓ̂)2]

and TMVA, asymptotically, has a χ2 distribution with adjusted d′ degrees of freedom. Note

that the degrees of freedom, d′, is not integer and to find the cutoff value, a χ2 with noninteger

degrees of freedom needs to be evaluated.

Asparouhov and Muthén (2010) introduced another implementation to the mean and

variance adjusted test statistic that uses the usual degrees of freedom d. They assumed a

correction of the form aTML+b that is assumed to have a χ2 distribution with usual d = p∗−q

degrees of freedom. The expected value and variance of the corrected test statistic is given

by

E(aTML + b) = aE(TML) + b = atr(UΓ) + b = d

and

Var(aTML + b) = a2Var(TML) = 2a2tr[(UΓ)2] = 2d.

From the second equation we can obtain a =
√
d/tr[(UΓ)2] and with replacing it to the first

equation b = d−
√
d× [tr(UΓ)]2/tr[(UΓ)2]. Thus, the Asparouhov-Muthén test statistic is

given by

TAM = TML

√
d

tr[(ÛΓ̂)2]
+ d−

√
d× tr(ÛΓ̂)]2

tr[(ÛΓ̂)2]
, (1.12)

which asymptotically has a χ2 distribution with d degrees of freedom. The simulation study

by Asparouhov and Muthén (2010) and our simulation study here in chapter 3 shows TMVA

and TAM perform similarly.
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Even thought TSB and TMVA can give a promising results when the observed variables

are not from a multivariate normal distribution, simulation studies have shown in covariance

models with small sample size TSB test also over-rejects the null hypothesis when it is

true, and TMVA seems to over-correct the test statistics and rejects the null hypothesis less

than nominal Type I error (see e.g., Fouladi, 2000; Herzog et al. 2007; Nevitt & Hancock

2004). Despite the lack of statistical justification Bartlett and Swain corrections has been

applied to TSB and TMVA by researchers. Results from simulation studies showed some

improvement to TSB but since those correction factors are often less than one, TMVA rejected

the null hypothesis way less than the nominal Type I error (see e.g., Fouladi, 2000; Herzog

et al. 2007; Nevitt & Hancock 2004). Lin and Bentler (2012) proposed a third moment

adjusted test based on scaling the mean and adjusting for the skewness of the test statistic

and they showed their new test performs better than previous corrections by Satorra and

Bentler in some condition for very small sample size. However, expanded evaluation of

their test suggested that the mean scaled and skewness adjusted test performs well only

under normal distributions and the Satorra-Bentler scaled test performs overall better than

other competitors (see e.g., Tong & Bentler, 2013). Wu and Lin (2016) also proposed a

new scaled F distribution approximation to the test statistics which they found to perform

similar to Satorra-Bentler mean and variance adjusted test in controlling type one errors.

Recently, Jiang and Yuan (2017) introduced four new corrected statistics and they showed

their proposed test statistics control Type I error more accurately than existing tests at small

sample sizes in nonnormal data. Their first three tests involve the rank of matrix ÛΓ̂ in

situations that the rank of ÛΓ̂ is not equal to p∗ − q. Bentler and Yuan (1999) previously

noted that in order to use TSB legitimately, the rank of ÛΓ̂ needs to be equal to p∗−q which

in practice is not always the case.
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CHAPTER 2

Resampling Methods

In this section we describe use of bootstrapping in SEM and propose a new Monte Carlo

approach that we expect to improve evaluation of overall model fit. Monte Carlo tests ex-

isted before introduction of bootstrapping however, the generality of bootstrap applications

in statistics overshadowed the use of ‘Monte Carlo test’. Specially in parametric problems,

despite the differences between two methods, the term ‘parametric bootstrap’ is often used

instead. According to Hall and Titterington (1989), “However, there are important differ-

ences between bootstrap methods and Monte Carlo tests; the latter are specifically designed

to exploit the advantages of ’blurring’ in a simulation study (Marriott, 1979)” (p. 460).

In statistical inference, bootstrap methods have been introduced to estimate a test statistic

which either does not have a known asymptotic distribution or the sample sizes are not large

enough that the statistic converges to its asymptotic distribution. In SEM bootstrapping

also have been used and implemented in almost all SEM software such as LISREL (Jöreskog

& Sörbom, 1996) and EQS (Bentler, 2006). The Monte Carlo approach is general in the

sense that it can be implemented to any pivotal test to improve its level of accuracy at small

sample sizes. In section 2.1 we describe bootstrap methods in SEM. Section 2.2 contains the

proposed Monte Carlo method.

2.1 Bootstrap method in SEM

When the asymptotic distribution of the test statistics is not available or when the assump-

tions for the asymptotic theories are not valid, the bootstrap method as an alternative to
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the theoretical statistical testing methods is useful. The bootstrap method introduced by

Efron (1979) is a resampling procedure. The basic idea of bootstrapping is simple. First we

compute the observed test statistics based on the observations. Then, we draw B samples

of the same size as the original observations with replacement from the original observations

and compute the test statistics for each new sample to create the empirical distribution of

the test statistic. From this empirical distribution we can find the rejection cut-off point

or p-value. Despite the huge impact of the bootstrap method in many areas of statistics,

the usefulness of the bootstrap method in SEM was considered cautiously by researchers.

Most focus of using bootstrap in SEM has been in parameter standard error estimation and

the overall goodness of fit test did not get the same attention among structural equation

modelers. However, in some cases due to the lack of existence of an appropriate theoretical

method, bootstrapping might be the only way to attack the problem (see e.g., Sharma &

Kim, 2013). Bollen and Stine (1992) showed that the naive bootstrap, when bootstrap sam-

ples are drawn directly from the original data, will be inaccurate. This is simply because the

bootstrap samples are not generated from a population that supports the null hypothesis.

They introduced a modified parametric bootstrap method by adjusting the original data in

a way that the resampling are taken from a set of data that ensure the null hypothesis. They

adjusted the original data matrix X by

Z = XS−1/2Σ1/2(θ̂), (2.1)

where the power
1

2
represents the matrix square root. Since the covariance matrix of Z is

Σ(θ̂) they suggest to draw bootstrap samples from Z and not the original sample. Applica-

tion of bootstrapping in factor analysis was studied by Ichikawa and Konishi (1995). Later,

Yung and Bentler (1996) studied applications and usefulness of the bootstrap method in

SEM. Those studies suggest that the bootstrap is effective in moderate to large sample size

and when the number of observations is less than 150 the bootstrap results are not accurate.

Yung and Bentler (1994) used the bootstrap method to correct ADF test statistics and their
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results suggested the improvement of corrected ADF test statistics for sample size as low

as 500. Nevitt and Hancoock (2001) in a Monte Carlo study evaluated the performance

of bootstrap in different scenarios and they also concluded that in order to use bootstrap

effectively, sample size needs to be moderate or large and for very small sample size the

bootstrap cannot be trusted.

Although bootstrapping is a very effective method in statistics, there have been many

doubts about using the bootstrap method in higher dimensional data (see e.g., El Karoui

& Purdom 2015). However, researchers still trying to develop new varieties of bootstrap

methods in special situations (see e.g., Cornea-Madeira & Davidson 2014).

Inspired by the fact that the correction factors by Bartlett and Swain do not depend on

unknown parameters of the model, in the next section a Monte Carlo approximation to TML is

suggested to approximate the distribution of the test statistic empirically when the sample

size is very small. The proposed method is very similar to the parametric bootstrapping

procedure but instead of resampling from the original data, the Monte Carlo approach uses

artificially generated random samples from a multivariate normal distribution. This approach

contrasts to finding an empirical correction factor as proposed by Yuan et al. (2015). The

Monte Carlo approximation also extends to TSB for problems in which the distribution of

observations is not multivariate normal.

2.2 Monte Carlo test

Monte Carlo simulation has been used for years to evaluate adequacy of a test statistic. In

the Monte Carlo study of a test statistic T , a known structured model is assumed to be

true in the population. Many, e.g k = 1, . . . , 1, 000, random samples based on a specific

distribution are replicated by computer under the true model and for each replication T(k)

statistic is computed. Then the empirical distribution of those k test statistics is compared

to the theoretical distribution (for example, χ2). While Monte Carlo simulation has been
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practiced for years in SEM, the use of Monte Carlo simulation to estimate the distribution

of the test statistic when evaluating a given structured model in a specific sample has not

been studied in the literature.

The use of Monte Carlo tests dates before the bootstrap methods introduced by Efron

(1979). In a discussion on the spectral analysis of point processes (Bartlett, 1963), Bernard

proposed a Monte Carlo method for the first time in a parametric context. Later, in a

more theoretical approach, the power of Monte Carlo tests was studied by Hope (1968)

and compared with uniformly most powerful tests. However, after more attraction and

applicability of Efron’s resampling methods (1979), in both parametric and nonparametric

forms, Monte Carlo tests have been dominated by bootstrapping and did not get enough

attention by practitioners. Hall and Titterington (1989) discussed the level accuracy and the

power of Monte Carlo tests and showed if a Monte Carlo test is based on an asymptotically

pivotal statistic, then it is more accurate than the corresponding asymptotic test in terms

of Type I error (for more technical detail in the context of bootstrapping see also, Beran,

1988; Hall, 1992). A test statistic is asymptotically pivotal if the asymptotic distribution of

the test statistic does not depend on any unknown quantity.

Let π denote the unknown population which generated the original data matrix X with

sample size n. In the parametric Monte Carlo tests the population π depends on the pa-

rameters of interest and also on some nuisance parameters which are accounted for through

the analysis. Suppose T (X) is an asymptotically pivotal test statistic which is used for

our judgment about the null hypothesis. Let π̂ be the estimated population by replacing

parameters of population by their estimated values. We draw M samples X∗1 ,X
∗
2 , . . . ,X

∗
M

of size n from π̂ and compute T ∗1 , T
∗
2 , . . . , T

∗
M from X∗1 ,X

∗
2 , . . . ,X

∗
M in the same manner as

we computed T from X. We rank T ∗1 , T
∗
2 , . . . , T

∗
M as T ∗(1) ≤ T ∗(2) ≤ . . . ≤ T ∗(M). Based on the

level of the test we determine m as integer part of αM and we reject the null hypothesis if

T > T ∗(m).

Test statistics in SEM are mostly based on asymptotic distributions that do not in-
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volve parameters (i.e. θ and other unknown characteristics of the population), therefore the

pivotalness condition of the test statistic is met. Then, we can claim that the desired distri-

bution of those test statistics can be obtained under the null hypothesis using different sets

of data that agree with the null hypothesis. This assumes, of course, that we do not violate

the regularity conditions for that specific test statistic (i.e. conditions of the asymptotics are

valid).

For example in ML test statistics, let us assume that there exist a “best” correction factor

c∗ for a specific model with specific number of observed and latent variables that depends

on sample size n. By the best correction factor we mean that when the null hypothesis (1.1)

is true then the distribution of c∗TML(θ̂) is closest to χ2
(d) than it would be by applying

any other correction factors, e.g. cb, cs, or ĉe. Since the degrees of freedom of chi-square

distribution and also c∗ do not depend on the true population parameter θ ∈ Ω0; where Ω0

is the parameter space under the null hypothesis, then the distribution of χ2
(d)/c

∗ does not

change for any other choice of parameter θ∗ ∈ Ω0 and can be approximated by TML(θ̂∗).

Therefore, to approximate the null distribution of TML we can generate many independent

multivariate normal random data sets with the same size and dimension as the original

sample under the same structured model in the null hypothesis and use any arbitrarily

parameters, e.g. θ̂ML to evaluate T
(k)
ML for each kth simulated data set. We call this approach

a Monte Carlo approximation method. It is clear that the asymptotic distribution of each

T
(k)
ML is also χ2 with the same degrees of freedom as the observed test statistics. However,

when the sample size is small, the empirical distribution obtained from T
(k)
ML is expected to

be a better approximation than any correction method that involves a correction factor such

as cb, cs, and ĉe. Moreover, the Monte Carlo approximation method can carry on any other

correction to TML that might be approximated by a distribution different than the form of

χ2
(d)/c

∗ that is obtained from a specific structured model.

If the distribution of observation is unknown and cannot assumed to be normal, we can

use the same Monte Carlo algorithm with a distribution free test statistic, e.g TSB. Let xi,
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for i = 1, . . . , n be a multivariate random sample of size n from a p-variate population with

unknown distribution and the population structured covariance model with model parameter

θ ∈ Ω0. Satorra & Bentler (1988) showed that if xi is from an elliptical distribution then

TSB(θ̂,X), where X is the matrix of observation with rows of x′i, asymptotically has a

χ2
(df) with df = p∗ − q. They also indicated that even if the data are not elliptical, χ2

can give a valid approximation to TSB. Also let yi, for i = 1, . . . , n be a Monte Carlo

multivariate random sample of size n from a p-variate normal population with the same

structured covariance model with parameter θ∗ ∈ Ω0. Similarly TSB(θ̂
∗
,Y), where Y is

the matrix with rows of y′i, can be approximated by the same χ2 distribution. With the

similar analogy as the normal model we can argue that the approximation for TSB(θ̂,X)

with TSB(θ̂∗,Y) should be better than any kind of Bartlett correction factor method in term

of controlling Type I error. Note that any specific form of correction factor for TSB does not

exist in the literature, and researchers often use the same correction factors as those used to

correct TML. In the next section, the effect of the model parameter θ on the distribution of

test statistics, i.e. TSB(θ̂) and TML(θ̂) for small sample size is evaluated.

The Monte Carlo algorithm to test hypothesis (1.1) can be described with the following

steps:

1. Assuming that the null hypothesis model is true, estimate θ̂ML and, if normality of

observation can be assumed, evaluate observed TML; Otherwise evaluate TSB.

2. Using parameters estimated in step one, draw M independent multivariate normal

random samples of size n with dimension p and structured covariance matrix Σ(θ̂ML).

3. For all m = 1, . . . ,M , random samples in step two, if the normality assumption is

valid for observations compute a new S(m) and fit the model to get a new Σ(m)(θ̂) then

compute T
(m)
ML or compute T

(m)
SB if normality cannot be assumed.

4. At the significance level α if the observed test statistics in part one is greater than

100(1− α)% of simulated test statistics in step three, reject the null hypothesis (1.1).
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Or alternatively, find the p-value of the hypothesis test from the number of simulated

test statistics in step three that are greater than the observed test statistics in step

one, divided by M .

Monte Carlo tests do not give a well defined rejection region compared to conventional

test statistics. Since the rejection region of the Monte Carlo tests is based on a random

sample it cause varying probabilities of rejection. This is called blurring of the rejection

region in Monte Carlo tests (see e.g. Marriott, 1979). We can reduce the blurring by taking

the number of Monte Carlo samples sufficiently large. Marriott (1979) suggested 99 Monte

Carlo samples as an appropriate number of samples in a Monte Carlo test. However, to get

more accurate results, in the simulation study in the next chapter we used 1000 samples for

our Monte Carlo test.
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CHAPTER 3

Simulation Study

In this chapter we study the behavior of the proposed Monte Carlo method in comparison

to other goodness of fit tests in populations with different distribution conditions. Since the

aim of our study is to introduce a test that can evaluate higher dimensional models at small

sample sizes, in our simulation study we are considering data with larger number of variables

and smaller samples compared to previous Monte Carlo studies. Although, in the concept

of hypothesis testing the tail behavior of the distribution of a test statistic is crucial, we also

measure and report the overall difference between empirical distribution of a test statistic

and its reference distribution.

Simulation studies in this chapter show that the newly proposed Monte Carlo approach

generally outperforms its existing competitors in terms of Type I error rejection rates. Also,

a power study of the proposed test indicates satisfying power. Moreover, we found that

the Bollen–Stine bootstrap has critical problems when the dimension of data gets larger.

Previous Monte Carlo studies of bootstrapping were limited to the tail distribution of the test

statistic. Our study shows that the bootstrap method does not perform well to evaluate the

overall distribution of the test statistic. Errors associated with sampling methods, that are

either caused by limited number of bootstrap samples or the test statistic not being pivotal,

were also demonstrated. It is shown that the variation of p-values of the Monte Carlo test is

exceptionally less than that of the Bollen–Stine bootstrap. We will also shed some light on

the effect of estimated parameters on the distribution of test statistics. Materials covered in

this chapter are organized as follows:
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In section 3.1 we describe the conditions of the simulation study including model and

distributions used to generate data and methods. In section 3.2 we study the behavior of

test statistics in controlling level of Type I error. In section 3.3 we take a closer look at

traditional bootstrap test in SEM and we discuss problems that arise using the Bollen-Stine

bootstrap approach. In section 3.4 we study the effect of values of estimated parameters in

test statistics in small sample sizes. Since the pivotalness of the test statistic is an essential

assumption in our Monte Carlo approach, in section 3.5 we demonstrate the convergence of

Satorra-Bentler scaled statistic. Finally, power is discussed in section 3.6.

3.1 Models and data generation designs

In this study two data generation schema are considered to draw the data from a population

with specific structured covariance model (For similar data generation designs see e.g. Hu

et al. 1992 and Yuan & Bentler 1998). Consider a confirmatory factor model defined by

x = Λf + e (3.1)

with 3 common factors and 5 indicators per factor. The covariance matrix between factors

is given by

Φ =


1 0.3 0.4

0.3 1 0.5

0.4 0.5 1

 .

The factor loading matrix is defined as a 15 by 3 matrix

Λ =


λ 0 0

0 λ 0

0 0 λ


where λ = (0.70, 0.70, 0.75, 0.80, 0.80)T and 0 is a vector of zeros. Unique factors e are

assumed to be uncorrelated with diagonal covariance matrix Ψ set to make variances of x
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equal to 1. Thus, the population structured covariance matrix is

Σ(θ) = ΛΦΛT + Ψ. (3.2)

This model has 33 free parameters with degrees of freedom of 87. In the first data generation

schema we generate common factors, f , and unique factors, e, and we use equation (3.1) to

draw our samples. Four different distribution conditions have been applied as follow:

• Condition A1: Common factors f are drawn from multivariate normal distribution with

zero mean and covariance Φ. Unique factors e are drawn from a multivariate normal

distribution with zero mean and covariance Ψ. Condition A1 generates multivariate

normal observations with zero mean and covariance Σ(θ).

• Condition A2: First we draw f1 from N(0,Φ) and e1 from N(0,Ψ) and a single variable

R from
√
χ2
5/3. Then Common factors f and unique factors e are calculated by f1/R

and e1/R respectively.

• Condition A3: This condition is similar to A2 but e1 is drawn from a multivariate

log-normal distribution with mean vector 0 and covariance matrix Ψ.

• Condition A4: This condition is also similar to A2 with the difference that f1 ∼

Lognormal(0,Φ) and e1 ∼ Lognormal(0,Ψ).

To generate data from a multivariate log-normal, first we draw independent random

variables from a standard normal distribution and after using an exponential transformation

we standardize them according to their mean and variance. With multiplying the resulting

multivariate random variable by the square root of the covariance matrix, we achieve a

multivariate random variable with the given covariance matrix. Readers should notice that

the marginal distribution of the result will not have log-normal distribution but here for

convenience we call it multivariate log-normal.
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For the second data generation method, we use the structured covariance matrix defined

in the equation (3.2). First we generate a 15 dimensional multivariate sample, ξ, with an

identity covariance matrix. Then we set

x = Σ(θ)1/2ξ. (3.3)

Therefore, the confirmatory factor model (3.1) should fit the data that is drawn from equation

(3.3). Following two distribution conditions are considered for the data generation schema

in the equation (3.3).

• Condition A5: ξ is drawn from a multivariate log-normal distribution with the mean

vector 0 and identity covariance matrix I.

• Condition A6: ξ = ξ1/R where ξ1 is drawn from a multivariate log-normal distribution

with mean vector 0 and identity covariance matrix I and R is a single variable from√
χ2
5/3.

The difference between conditions 5 and 6 to conditions 1 to 4 is that the fourth order

moment matrices of the observed variables are different (see e.g. Yuan & Bentler 1998). To

study the change in the behavior of the goodness of fit test statistics in higher dimensional

models, we also expand the above 6 conditions to a 30 dimensional model that have 3 factors

and 10 dependent variables for each factor. The factor covariance matrix is similar to the

model in (3.1). The factor loading matrix is a 30 by 3 matrix with loading for each factor

defined as λ = (0.70, 0.70, 0.75, 0.80, 0.80, 0.70, 0.70, 0.75, 0.80, 0.80)T . The factor covariance

matrix Φ remains the same. The diagonal covariance matrix Ψ will be a 30 by 30 matrix

that sets to make the variance of observed variables equal to 1. This model has 63 free

parameters and the degrees of freedom is 402.

We draw data from 6 conditions similar to conditions A1, A2, A3, A4, A5, and A6 that

previously discussed and we call them B1, B2, B3, B4, B5, and B6 respectively. Here, the
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letter A means that the model is 15 dimensional and letter B means that the model is a

30 dimensional model. For example, B1 is the same data generation schema as A1 with

30 observations instead of 15 observations. For each of those 12 models and conditions, 7

different sample sizes included in this study indicating 50, 100, and 150 as small, 300 and

500 as moderate, and 2000 and 5000 as large samples. This makes 12×7 = 84 cases in total.

The simulation study in this chapter has been done with an R program. Estimation

of parameters and test statistics were computed using the package lavaan, (Rosseel, 2012)

with the “EQS” option for optimization. The results from parameter estimation and test

statistics has been also verified by commercial EQS software version 6.2, Bentler (2006).

For each case we generated a sample based on the true hypothesized model (in the power

analysis in section 3.6 from a misspecified model) and for each sample we fit the the data

using maximum likelihood estimation. We compute related test statistics for each sample (

i.e., TML, TSB, TMVA). The process is replicated 1,000 times. For each replication we draw

1,000 bootstrap samples to obtain the bootstrap test and 1,000 artificial normal samples for

the proposed Monte Carlo method.

This process computationally is very time consuming. For each one of 84 cases we need

to solve 2,001,000 factor models. In some cases the optimization does not converge or we will

get negative variances that makes the number of computations even larger (those cases were

omitted until the necessarily number of samples with a converged solution is reached). To

expedite the computation process a cluster computation from the Hoffman2 shared cluster1

has been used. 1,000 replications were distributed within 100 to 200 computing nodes, and

each computing node ran 5 to 10 replications independently.

1The Hoffman2 cluster is a campus computing resource at UCLA, maintain by the Institute for Digital
Research and Education (IDRE).
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3.2 Type I error analysis

This section reports on a comprehensive simulation study that examines the performance

of the proposed Monte Carlo approach in controlling the Type I error compare to some of

theoretical test statistics as well as bootstrapping. The empirical rejection rate is evaluated

from k = 1, . . . , 1, 000 replicated random samples from the true model. Theoretical test

statistics covered in this simulation study are maximum likelihood, TML, Satorra-Bentler

mean correction, TSB, Satorra-Bentler mean correction and variance adjusted, TMAV , and

Asparouhov-Muthén implementation of mean and variance adjusted test, TAM . The effect

of Bartlett’s correction factor and Swain’s correction to the maximum likelihood and to the

Satorra-Bentler scaled test statistics are also studied. TMLb = cbTML and TSBb = cbTSB

represent Bartlett corrections to the ML and SB tests respectively. Similarly TMLs and TSBs

represent modified TML and TSB with the Swain’s correction factor cs.

To draw a Bollen–Stine bootstrap sample, first we use the transformation (2.1) to make

the covariance structure consistent with the hypothesized model. We then draw a sample

with replacement with the same size as the original data and fit the true hypothesized

model in the bootstrap sample and compute TML. Here, B = 1, 000 bootstrap samples are

drawn from each original data and thus we have 1,000 bootstrap test statistics to estimate

the empirical distribution of the ML test statistic under the true model. Since not every

bootstrap sample results in a converged solution we eliminate those non-converged samples

and keep drawing bootstrap samples to achieve 1,000 samples. This bootstrap empirical

distribution is used to determine p-value of each original TML statistics. This is accomplished

by computing the proportion of the 1,000 bootstrap test statistics values that exceeded that

of the original sample. TMLB is the notation used for the bootstrap test.

For the Monte Carlo approximation of the test statistics for each sample we generate M =

1, 000 independent samples Zm, m = 1, 2, · · · ,M from a multivariate normal distribution

with the same size and dimension as the original data and with the mean equal to zero
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and identity covariance matrix. Then we set Ym = ZmΣ
1
2 (θ̂), where θ̂ is the maximum

likelihood estimator of parameters from the original sample. Therefore Ym has covariance

structure that is consistent with the hypothesized model (i.e., the null is true). Now we fit

the hypothesized model to each of the Monte Carlo samples Ym and compute the desired test

statistic. By computing the proportion of the 1,000 Monte Carlo test statistics values that is

greater than the original test statistic we determine the p-value of the test. In this simulation

study we implement the proposed Monte Carlo method to estimate distribution of TML, TSB,

and TMVA. TMLMC is the notation used for the Monte Carlo approximation of the ML test,

and TSBMC is used for the Monte Carlo approximation of the SB test. Implementation of the

Monte Carlo method to approximate the mean and variance adjusted test statistic, TMVA, is

not as straightforward as other test statistics. The asymptotic distribution of TML and TSB

when the null hypothesis is true under some regularity conditions (e.g. normality for TML or

elliptical distributions assumption for TSB) is a central χ2 with the degrees of freedom that

depends on the model and not the data. The asymptotic distribution of TMVA is not constant

from sample to sample. In this case we used the Asparouhov-Muthén version of scaled

mean and variance adjusted test statistic, TAM , since the degrees of freedom of asymptotic

distribution is a constant value that depends only on sample size and the hypothesized model.

Another way to overcome this problem is to use the cumulative distribution of each Monte

Carlo test statistic based on its asymptotic χ2 distribution with the degrees of freedom that is

computed from the Monte Carlo sample. Let T
(m)
MVA be the scaled mean and variance adjusted

test statistic from m-th Monte Carlo normal sample that is computed from the equation (1.8)

and d′m is the adjusted degrees of freedom. The Distribution of F
(m)
MVA = P (T

(m)
MVA > χ2

d′m
)

does not depend on the sample and if the null is true, it is from a uniform (0, 1) distribution.

For the original sample, similarly we compute FMVA = P (TMVA > χ
2
d′), where TMVA and d′

are the test statistic and the adjusted degrees of freedom of the sample. The p-value of the

Monte Carlo test is determine by computing the proportion of the 1,000 Monte Carlo value

F
(m)
MVA values that is smaller than FMVA of the original sample. Basically FMVA and F

(m)
MVA
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are theoretical p-values of the original and the Monte Carlo samples. Since the p-value of

a test statistic is the probability of observing data that are more extreme against the null

hypothesis, the proportion of Monte Carlo samples that have p-values (i.e. F
(m)
MVA) smaller

than of the original sample is an empirical estimation of p-value of the test statistic. Table

3.1 summarizes test statistics that are covered in simulations of this chapter.

Similar to bootstrapping, in Monte Carlo normal samples we also get some non-converged

samples that we eliminate to get 1,000 Monte Carlo samples. In our simulations non-

convergence cases occurred mostly in small samples. The number of non-convergences to

obtain 1,000 converged bootstrap samples got larger in the model B which has higher di-

mension. For example the average number of non-converged bootstrap samples in 1,000

replications of model A1 with sample size equal to 50 was 0.524 compare to 0.366 for Monte

Carlo samples. For model B1 the average number of non-converged cases was 247.811 for

bootstrap and 0.870 for Monte Carlo samples. When sample size increased to 100, the av-

erage number of non-converged cases at most was 1.518 for bootstrap and 0.830 for Monte

Carlo for condition B4. For sample size more than 100 the number of non-converged cases

was almost zero for both bootstrap and Monte Carlo samples.
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Table 3.1: List of test statistics used in the simulation study

TML Maximum likelihood test statistic

TMLb Bartlett’s corrected test

TMLs Swain’s corrected test

TSB Satorra-Bentler scaled test

TSBb Satorra-Bentler scaled test with Bartlett’s correction

TSBs Satorra-Bentler scaled test with Swain’s correction

TMVA Satorra-Bentler mean and variance adjusted test

TAM Asparouhov-Muthen implementation of mean

and variance adjusted test

TMLB Maximum likelihood bootstrap (Bollen-Stine)

TMLMC Monte Carlo re-sampling method for TML

TSBMC Monte Carlo re-sampling method for TSB

TMVAMC Monte Carlo re-sampling method for TMVA

TAMMC Monte Carlo re-sampling method for TAM
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Table 3.2 consists observed rejection percentages, R, for nominal Type I error α = 0.05

for condition A1. It also includes one sample Kolmogorov-Smirnov test statistics noted as

DKS. For those theoretical test statistics, we calculate DKS as the supremum of the absolute

difference between empirical distribution functions of the test statistic and cumulative dis-

tribution function of χ2
df . In the model A1 the degrees of freedom is 87. Since for the scaled

mean and variance adjusted test statistic, TMVA, degrees of freedom varies from sample to

sample to determine DKS statistic we use the p-values of the test, instead of empirical dis-

tribution function, and compare it with a uniform distribution. This is because the p-value

of a test statistic and the value of the test statistic can be determined from each other and

DKS will be equivalent using either the statistic or the p-value. Here, the p-value of the test

is 1−F (TMVA) where F is the cumulative distribution function of χ2
d′ . In the bootstrap and

Monte Carlo estimations, their empirical distributions from re-sampling also change for each

replicated sample, therefore we use p-values to determine DKS. The Kolmogorov-Smirnov

test statistic is a number between 0 and 1 where 0 means the empirical distribution is exactly

identical to the theoretical CDF, with the 95 percentile about 0.043 and the 99 percentile

0.051 for sample size equal to 1000 (i.e. number of replicated samples in here).

The distribution of data in condition A1 is normal. When the sample size is small, TML

performs poorly and over rejects the correct model. TSB performs even worse when sample

size is as small as 50. TMVA and the Asparouhov-Muthén version of it perform very similar

to each other for every condition and sample sizes and we only mention results of one of

them throughout this chapter. TMVA performs better than TML and TSB on the tail but its

performance of the overall distribution function for small samples is as bad as the other two

tests. Rejection rates for those three test statistics are acceptable for moderate and large

sample sizes. They eventually converge for sample size as large as 2000 and KS distance also

gets within the acceptable range.

The Bartlett correction to the ML test improves on TML for small samples. For example

the rejection rate for TML for sample size 50 is 29.8% and the KS test statistic is 0.376. The
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Table 3.2: Performance of different test statistics for model A, condition 1

Sample size

n = 50 n = 100 n = 150 n = 300 n = 500 n = 2000 n = 5000

TML R 29.8 12.3 8.1 6.9 5.9 4.6 5.2

DKS 0.376 0.173 0.137 0.06 0.043 0.021 0.029

TMLb R 3.9 3.2 3.6 4.4 5.2 4.3 5.0

DKS 0.08 0.059 0.036 0.036 0.02 0.021 0.025

TMLs R 7.2 4.6 4.6 4.6 5.4 4.3 5.1

DKS 0.068 0.013 0.028 0.021 0.017 0.019 0.026

TSB R 43.7 16.7 11.9 7.6 6.6 4.8 5.0

DKS 0.507 0.249 0.196 0.085 0.055 0.025 0.032

TSBb R 9.3 5.0 5.2 5.3 5.2 4.6 4.8

DKS 0.11 0.037 0.057 0.024 0.023 0.017 0.028

TSBs R 16.3 7.0 5.9 5.8 5.3 4.7 4.9

DKS 0.203 0.085 0.089 0.036 0.029 0.017 0.029

TMVA R 8.3 2.8 3.7 3.9 4.8 4.3 4.8

DKS 0.436 0.262 0.203 0.117 0.073 0.027 0.034

TAM R 9.9 3.4 4.0 4.0 4.8 4.3 4.8

DKS 0.418 0.253 0.196 0.114 0.071 0.026 0.033

TMLB R 0.0 1.0 1.4 2.9 4.3 4.5 4.7

DKS 0.19 0.092 0.08 0.057 0.038 0.018 0.029

TMLMC R 5.6 4.5 4.3 4.9 5.3 4.5 4.7

DKS 0.027 0.027 0.018 0.032 0.019 0.02 0.028

TSBMC R 6.3 3.8 4.4 4.5 5.3 4.8 4.6

DKS 0.031 0.029 0.026 0.031 0.017 0.02 0.026

TMVAMC R 6.1 3.8 4.6 4.6 5.2 4.8 4.6

DKS 0.032 0.031 0.026 0.03 0.017 0.02 0.026

TAMMC R 6.1 3.8 4.6 4.6 5.2 4.8 4.6

DKS 0.033 0.031 0.026 0.03 0.017 0.02 0.026

R is observed rejection percentages for α = 5%

DKS is Kolmogorov-Smirnov distance statistic
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Table 3.3: Performance of different test statistics for model B, condition 1

Sample size

n = 50 n = 100 n = 150 n = 300 n = 500 n = 2000 n = 5000

TML R 99.5 56.7 36.1 14.6 10.6 5.5 6.0

DKS 0.972 0.642 0.443 0.255 0.158 0.06 0.043

TMLb R 5.2 2.9 4.4 5.1 5.5 4.8 5.6

DKS 0.032 0.078 0.049 0.046 0.019 0.034 0.029

TMLs R 17.6 6.2 6.8 5.7 6.2 5.2 5.6

DKS 0.254 0.054 0.059 0.043 0.035 0.032 0.03

TSB R 100.0 73.7 46.0 17.0 12.3 6.0 6.0

DKS 0.992 0.742 0.528 0.306 0.189 0.063 0.045

TSBb R 23.7 7.3 8.0 6.6 6.6 5.2 5.5

DKS 0.334 0.113 0.095 0.062 0.053 0.032 0.031

TSBs R 46.8 13.0 11.5 7.9 6.9 5.3 5.5

DKS 0.539 0.215 0.164 0.094 0.07 0.036 0.033

TMVA R 57.9 4.8 3.9 3.4 2.9 4.0 5.0

DKS 0.835 0.572 0.441 0.286 0.216 0.056 0.045

TAM R 65.4 5.9 4.8 3.5 3.1 4.0 5.0

DKS 0.836 0.561 0.431 0.281 0.212 0.056 0.044

TMLB R 0.0 0.0 0.0 0.8 1.4 3.3 4.6

DKS 0.764 0.321 0.179 0.118 0.104 0.037 0.035

TMLMC R 4.6 4.1 5.7 5.6 6.0 4.7 5.5

DKS 0.032 0.034 0.031 0.027 0.029 0.037 0.028

TSBMC R 4.1 3.9 5.3 5.4 5.9 4.9 5.6

DKS 0.031 0.029 0.03 0.025 0.033 0.034 0.029

TMVAMC R 4.8 3.6 4.9 5.4 5.9 4.9 5.6

DKS 0.028 0.029 0.031 0.024 0.034 0.033 0.028

TAMMC R 4.7 3.6 4.9 5.4 5.9 4.9 5.6

DKS 0.029 0.029 0.031 0.024 0.033 0.033 0.028

R is observed rejection percentages for α = 5%

DKS is Kolmogorov-Smirnov distance statistic
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Bartlett correction adjusts the rejection rate to 3.9% and the KS distance drops to 0.08.

The rejection rate for Swain’s correction test in this case is 7.2% and its whole distribution

performance, which is evaluated by KS test, is equal to 0.068. Applying Bartlett and Swain’s

correction to TSB also improves its performance, and the rejection rate for sample size 50

decreases from 43.7% to 9.3% for Bartlett’s correction and to 16.3% for Swain’s correction.

We did not apply those type of corrections to TMVA because as we discuss later this test under

rejects the correct model when the data are not from a multivariate normal distribution and

using those corrections makes it even worse.

The bootstrap method in condition A1 tends to under-reject the correct model until the

sample size exceeds 300 cases. The overall performance of the bootstrap previously has not

been studied in literature and, as we noted earlier, we measure it by the KS distance test

statistic for p-values and uniform (0, 1). In condition A1, the KS distance statistics for

bootstrap are getting to reasonable values for the sample size equal or greater than 500.

All four Monte Carlo tests have equivalently good performance among other test statistics

in this condition. This is expected because condition A1 has exactly multivariate normal

distribution and the Monte Carlo method uses sampling from a normal distribution. The

only difference is that each Monte Carlo sample uses the estimated parameters and not the

true population parameters. In section 3.4 we will study the effect of values of parameters

to goodness of fit test statistics and we will see that the value of parameters has negligible

effect on the test statistic.

Table 3.3 reports on the performance of test statistics for condition B1 which has a similar

distribution condition for a model with the dimension equal to 30 and degrees of freedom

equal to 402. We observe that the larger model condition has a big effect on the theoretical

test statistics for small samples. When the sample size is small (i.e. 50, 100, 150), TML

totally breaks down and also TSB does not show any better results. The rejection rate for

TMVA interestingly recovers when sample size is 100 and jumps down from 57.9% to 4.8%.

This might be misleading but when we look at the overall distribution of the test we observe
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that the KS distance does not recover until the sample size reaches 2000. The Bartlett and

Swain’s corrections in this case give a big improvement to the results in both rejection rate

and KS distance. TMLb has reasonable results in all sample sizes. Similarly, the result of

Bartlett’s correction is better than Swain’s correction. Note that the model studied here

is based on the model defined in the equation (3.1) and in more general SEM, there might

be situations that Swain’s correction out performs Bartlett’s corrected test. However, an

extended comparison of those two correction methods is not of interest in this study.

The most interesting finding in the Table 3.3 is that the bootstrap method for small

samples when the dimension of the model is large fails even when the data is from a normal

distribution. For sample size equal to 50 we do not reject any of the replicated data and

the KS distance is 0.764. Even when sample size is 500 the rejection rate is 1.4 and the

KS distance is 0.104. For sample size 2000 and 5000 the bootstrap method gives acceptable

results in this condition. The results of Monte Carlo tests stay acceptable for all sample

sizes and a higher model dimension does not seems to have any effect in the normal case.

Tables 3.4 and 3.5 contains the results of the condition of elliptically distributed data

(i.e. condition A2 and B2). In this condition, the asymptotically robustness of TML is not

valid and we expect that TML will fail even for large sample sizes. On the other hand TSB

gives promising results for moderate to large sample sizes. For condition A2, TSB recovers

completely for sample size equal and greater than 500 as both rejection rates and KS distance

statistic are acceptable. For smaller sample sizes, Bartlett and Swain’s correction improve

the performance of TSB. For sample size equal to 50, the rejection rate for TSBb is 6.6% and

the KS distance is 0.152. TMVA in this condition also under-rejects the correct model and it

does not converge for sample size as large as 5000. The bootstrap method shows some good

results at the tail. The rejection percentage for bootstrap is acceptable in A2 for sample

size equal to 50, 2000, and 5000 but it over rejects for sample sizes 100 to 500 and it gets

worse for higher dimension model B. The overall distribution of p-values for the bootstrap

does not perform well. The minimum KS distance for bootstrap in condition A2 among all
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sample sizes is 0.194 for sample size equal to 2000, and for model B2 is 0.374. This results

puts a flag on using the bootstrap for higher dimensional models.

As can be seen in Table 3.4, because of problems with the asymptotic robustness of

TML, applying the Monte Carlo method for the ML test statistic does not work in this

condition. But the results of TSBMC are acceptable for model and condition A2 for all

sample sizes. Using the Monte Carlo approach we get the rejection rate equal to 3.8 and

KS distance reduces to 0.06. For model and condition B2, shown in Table 3.5, the Monte

Carlo approach gives a better result for very small sample sizes but the Bartlett corrected test

outperforms the Monte Carlo method. This is in fact the only situation that the Monte Carlo

method is outperformed by any other test we have covered in this study. An explanation

is that the Monte Carlo method uses a normal distribution to estimate TSB. In higher

dimensional models, when the data are from an elliptical distribution, the distribution of

TSB does not converge fast enough to its counterpart when the data is from a multivariate

normal distribution. Eventually, in both cases, the SB scaled test statistic converges to a χ2

distribution but the sample size needs to be very large. This has not mentioned in previous

studies (e.g. Yuan & Bentler 1998) since their study was limited to dimension as largest as

15 and as we see here, this problem is not detectable for in model A2. The Monte Carlo

approach to TMVA improves the performance of TMVA test for small samples but it still

suffers from the over-rejection of the true model.

The rest of the results are included in Tables 3.6 to 3.13 as follows: Tables 3.6 and 3.7

report on results of condition 3 for model A and B. Tables 3.8 and 3.9 are results for condition

4. Tables 3.10 and 3.11 are results for condition 5 that uses the second data generation

method. Finally, Tables 3.12 and 3.13 contain results for condition 6. In conditions 3 to 6

data are from variables with nonzero skewness and kurtosis. The result in these tables are

very similar to condition A2 and B2 respectively. The only noticeable difference is that the

Bartlett corrected test statistic, TSBb, perform worse and TSBMC performs better than those

in condition 2 in both 15 and 30 dimensional data and for all sample sizes. In fact TSBMC
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Table 3.4: Performance of different test statistics for model A, condition 2

Sample size

n = 50 n = 100 n = 150 n = 300 n = 500 n = 2000 n = 5000

TML R 95.3 96.0 96.7 98.2 98.7 99.8 100.0

DKS 0.91 0.917 0.924 0.958 0.964 0.988 0.997

TMLb R 78.2 90.9 94.2 98.1 98.7 99.8 100.0

DKS 0.75 0.865 0.895 0.95 0.96 0.987 0.997

TMLs R 83.2 92.6 94.5 98.1 98.7 99.8 100.0

DKS 0.802 0.879 0.902 0.952 0.961 0.987 0.997

TSB R 45.0 13.3 9.8 5.8 4.0 3.4 4.4

DKS 0.567 0.241 0.174 0.083 0.046 0.055 0.031

TSBb R 6.6 4.6 3.7 3.5 3.3 3.0 4.4

DKS 0.152 0.049 0.049 0.027 0.062 0.065 0.028

TSBs R 13.0 5.3 4.8 4.1 3.4 3.0 4.4

DKS 0.259 0.082 0.075 0.037 0.054 0.062 0.029

TMVA R 1.0 0.4 0.0 0.4 0.0 1.0 0.7

DKS 0.515 0.384 0.337 0.275 0.23 0.143 0.163

TAM R 1.1 0.6 0.1 0.6 0.0 1.0 0.7

DKS 0.471 0.351 0.305 0.255 0.218 0.149 0.153

TMLB R 2.9 10.3 12.5 12.1 10.2 4.8 2.7

DKS 0.292 0.365 0.378 0.354 0.334 0.194 0.218

TMLMC R 80.8 92.1 94.4 98.1 98.7 99.7 100

DKS 0.78 0.875 0.899 0.95 0.961 0.986 0.996

TSBMC R 3.8 3.2 3.3 3.0 2.9 3.1 4.2

DKS 0.06 0.061 0.045 0.034 0.072 0.066 0.03

TMVAMC R 0.4 0.5 0.2 0.5 0.0 1.0 0.7

DKS 0.225 0.228 0.194 0.169 0.187 0.14 0.15

TAMMC R 0.4 0.6 0.3 0.6 0.0 1.0 0.9

DKS 0.241 0.254 0.21 0.178 0.206 0.15 0.143

R is observed rejection percentages for α = 5%

DKS is Kolmogorov-Smirnov distance statistic
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Table 3.5: Performance of different test statistics for model B, condition 2

Sample size

n = 50 n = 100 n = 150 n = 300 n = 500 n = 2000 n = 5000

TML R 100 100 100 100 100 100 100

DKS 1 1 1 1 1 1 1

TMLb R 98.9 100 100 100 100 100 100

DKS 0.955 0.988 0.997 1 1 1 1

TMLs R 99.7 100 100 100 100 100 100

DKS 0.979 0.991 0.998 1 1 1 1

TSB R 96.1 39.3 14.5 3.9 1.7 2.6 2.5

DKS 0.922 0.461 0.227 0.077 0.141 0.153 0.11

TSBb R 4.7 0.7 0.6 0.7 0.9 2.4 2.3

DKS 0.097 0.248 0.279 0.297 0.286 0.185 0.125

TSBs R 14.6 1.8 0.8 0.9 1.0 2.5 2.4

DKS 0.183 0.153 0.216 0.266 0.268 0.181 0.123

TMVA R 1.1 0.0 0.0 0.0 0.0 0.1 0.0

DKS 0.617 0.487 0.442 0.375 0.323 0.261 0.221

TAM R 2.0 0.0 0.0 0.0 0.0 0.1 0.0

DKS 0.549 0.413 0.386 0.345 0.304 0.262 0.229

TMLB R 0.0 11.9 24.3 31.3 26.3 8.2 2.6

DKS 0.433 0.513 0.601 0.618 0.578 0.456 0.374

TMLMC R 98.7 100.0 100.0 100.0 100.0 100.0 100.0

DKS 0.95 0.989 0.998 1.0 1.0 1.0 1.0

TSBMC R 1.0 0.1 0.5 0.5 1.1 2.2 2.4

DKS 0.397 0.355 0.354 0.329 0.305 0.192 0.126

TMVAMC R 0.0 0.0 0.0 0.0 0.0 0.1 0.1

DKS 0.804 0.651 0.562 0.441 0.384 0.27 0.232

TAMMC R 0.0 0.0 0.0 0.0 0.0 0.1 0.1

DKS 0.799 0.674 0.593 0.471 0.406 0.291 0.243

R is observed rejection percentages for α = 5%

DKS is Kolmogorov-Smirnov distance statistic
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has the best performance for all other conditions and in most cases it gives very reasonable

results for sample sizes as small as 50.

In summary, TSBMC has the best performance among all conditions and models and gives

promising results at small sample sizes. The minimum rejection rate for model A among all

conditions is 2.9 and the maximum is 11.2. The largest KS distance is 0.257 which is for

condition 6. The minimum rejection rate for model B among all condition is 0.1 and the

maximum is 9.4. The largest KS distance is 0.397 which is in condition 2 and if we exclude

this condition, the maximum KS distance is 0.207 and the rejection rates range between 1.5

and 9.4. Our results of those theoretical methods and bootstrapping agree with results in

previous studies (see e.g. Moshagen 2012, Nevitt & Hancoock 2001 and 2004, Ichikawa &

Konishi 1995, Jiang & Yuan 2017). It should also be noted that we study the performance

of these test statistics in higher dimensional models that make the problems with Type I

rejection rate more noticeable. For example, from this simulation study, we observe that the

bootstrap method cannot be trusted for models with many variables even for large sample

sizes. In the next section we take a closer look at the bootstrap method and we try to study

the root of the problem with bootstrapping in SEM.
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Table 3.6: Performance of different test statistics for model A, condition 3

Sample size

n = 50 n = 100 n = 150 n = 300 n = 500 n = 2000 n = 5000

TML R 83.1 79.5 81.0 89.8 91.3 98.1 99.7

DKS 0.793 0.758 0.779 0.849 0.867 0.947 0.979

TMLb R 58.2 68.8 75.9 87.3 90.4 98.1 99.7

DKS 0.574 0.661 0.716 0.827 0.858 0.945 0.978

TMLs R 64.8 71.3 77.3 87.8 90.4 98.1 99.7

DKS 0.634 0.685 0.728 0.833 0.86 0.946 0.978

TSB R 56.5 18.8 10.4 7.0 5.5 3.8 4.2

DKS 0.664 0.353 0.244 0.14 0.084 0.033 0.038

TSBb R 11.8 6.5 4.8 4.8 4.6 3.7 3.9

DKS 0.266 0.139 0.109 0.07 0.05 0.028 0.034

TSBs R 18.6 8.3 5.9 5.2 4.9 3.7 3.9

DKS 0.374 0.188 0.138 0.086 0.056 0.027 0.035

TMVA R 0.5 0.1 0.0 0.1 0.1 0.0 0.6

DKS 0.552 0.421 0.386 0.319 0.286 0.224 0.202

TAM R 0.9 0.1 0.1 0.1 0.2 0.0 0.6

DKS 0.499 0.385 0.358 0.299 0.267 0.213 0.193

TMLB R 0.7 2.8 4.0 4.9 6.5 3.7 2.1

DKS 0.227 0.289 0.317 0.335 0.313 0.275 0.24

TMLMC R 62.6 70.2 76.7 87.4 90.3 97.8 99.7

DKS 0.609 0.676 0.726 0.828 0.855 0.944 0.977

TSBMC R 6.4 5.0 4.0 4.5 4.1 3.6 3.9

DKS 0.172 0.094 0.083 0.059 0.042 0.029 0.033

TMVAMC R 0.3 0.1 0.2 0.1 0.1 0.1 0.4

DKS 0.214 0.219 0.213 0.216 0.22 0.204 0.194

TAMMC R 0.3 0.1 0.2 0.1 0.2 0.1 0.5

DKS 0.228 0.244 0.24 0.207 0.206 0.19 0.186

R is observed rejection percentages for α = 5%

DKS is Kolmogorov-Smirnov distance statistic
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Table 3.7: Performance of different test statistics for model B, condition 3

Sample size

n = 50 n = 100 n = 150 n = 300 n = 500 n = 2000 n = 5000

TML R 100.0 99.8 99.7 99.8 99.9 100.0 100.0

DKS 1 0.987 0.985 0.992 0.998 1 1

TMLb R 91.0 96.2 98.3 99.6 99.9 100 100

DKS 0.861 0.921 0.954 0.985 0.996 1 1

TMLs R 96.1 97.9 98.4 99.6 99.9 100.0 100.0

DKS 0.921 0.938 0.962 0.987 0.997 1 1

TSB R 98.9 70.3 38.3 11.0 4.8 3.3 2.9

DKS 0.976 0.721 0.522 0.224 0.118 0.054 0.053

TSBb R 20.5 6.5 3.9 3.1 1.7 2.6 2.7

DKS 0.305 0.086 0.052 0.095 0.097 0.087 0.066

TSBs R 41.4 10.9 6.2 3.5 2.0 2.6 2.7

DKS 0.53 0.19 0.117 0.066 0.08 0.083 0.064

TMVA R 2.5 0.0 0.0 0.0 0.0 0.0 0.0

DKS 0.681 0.547 0.496 0.43 0.392 0.314 0.265

TAM R 4.2 0.0 0.0 0.0 0.0 0.0 0.0

DKS 0.63 0.481 0.435 0.387 0.358 0.298 0.256

TMLB R 0.0 2.4 6.5 13.3 11.5 5.2 2.1

DKS 0.505 0.368 0.465 0.546 0.551 0.47 0.413

TMLMC R 89.4 97 98.4 99.7 99.9 100 100

DKS 0.852 0.927 0.96 0.987 0.996 1 1

TSBMC R 4.0 2.7 2.5 2.6 1.5 2.4 2.4

DKS 0.065 0.072 0.072 0.129 0.113 0.094 0.071

TMVAMC R 0.0 0.0 0.0 0.0 0.0 0.0 0.0

DKS 0.709 0.544 0.48 0.377 0.342 0.263 0.247

TAMMC R 0.0 0.0 0.1 0.0 0.0 0.0 0.0

DKS 0.698 0.57 0.514 0.414 0.37 0.279 0.26

R is observed rejection percentages for α = 5%

DKS is Kolmogorov-Smirnov distance statistic

38



Table 3.8: Performance of different test statistics for model A, condition 4

Sample size

n = 50 n = 100 n = 150 n = 300 n = 500 n = 2000 n = 5000

TML R 81.0 79.8 82.0 86.6 89.1 97.1 99.2

DKS 0.767 0.756 0.778 0.819 0.843 0.933 0.969

TMLb R 55.6 70.2 75.9 84.1 88.0 97.1 99.2

DKS 0.546 0.672 0.721 0.797 0.831 0.931 0.969

TMLs R 62.1 72.6 77.2 84.5 88.2 97.1 99.2

DKS 0.605 0.693 0.736 0.802 0.834 0.932 0.969

TSB R 55.6 19.3 12.0 5.8 3.9 4.9 4.9

DKS 0.635 0.372 0.278 0.158 0.096 0.05 0.051

TSBb R 11.4 6.9 5.9 4.1 2.9 4.7 4.9

DKS 0.239 0.158 0.137 0.09 0.056 0.041 0.048

TSBs R 19.1 9.4 7.1 4.5 3.0 4.7 4.9

DKS 0.341 0.207 0.169 0.105 0.065 0.043 0.049

TMVA R 0.5 0.1 0.1 0.1 0.1 0.2 0.3

DKS 0.554 0.431 0.391 0.333 0.294 0.234 0.209

TAM R 0.8 0.1 0.1 0.2 0.2 0.2 0.3

DKS 0.5 0.389 0.358 0.309 0.269 0.216 0.195

TMLB R 0.9 3.0 5.0 5.3 5.3 3.8 2.1

DKS 0.229 0.31 0.344 0.352 0.339 0.303 0.267

TMLMC R 59.6 72.0 77.0 84.6 88.4 97.1 99.2

DKS 0.58 0.684 0.731 0.801 0.835 0.932 0.967

TSBMC R 7.2 5.3 5.1 3.9 2.4 4.4 4.7

DKS 0.147 0.119 0.106 0.082 0.051 0.038 0.047

TMVAMC R 0.4 0.1 0.1 0.2 0.2 0.3 0.2

DKS 0.219 0.212 0.205 0.235 0.228 0.216 0.203

TAMMC R 0.5 0.1 0.1 0.3 0.2 0.3 0.2

DKS 0.238 0.233 0.216 0.22 0.224 0.199 0.192

R is observed rejection percentages for α = 5%

DKS is Kolmogorov-Smirnov distance statistic
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Table 3.9: Performance of different test statistics for model B, condition 4

Sample size

n = 50 n = 100 n = 150 n = 300 n = 500 n = 2000 n = 5000

TML R 100.0 100.0 99.9 100.0 99.9 100.0 100.0

DKS 0.997 0.992 0.987 0.993 0.993 1 1

TMLb R 90.9 96.2 98.6 99.9 99.9 100.0 100.0

DKS 0.862 0.918 0.954 0.985 0.99 1 1

TMLs R 94.9 96.9 98.8 99.9 99.9 100.0 100.0

DKS 0.912 0.937 0.963 0.986 0.991 1 1

TSB R 99.2 69.9 35.8 12.0 4.6 4.0 2.5

DKS 0.975 0.715 0.504 0.236 0.062 0.05 0.068

TSBb R 22.1 5.5 3.8 2.6 2.1 3.2 2.1

DKS 0.333 0.099 0.03 0.064 0.112 0.085 0.081

TSBs R 44.7 9.6 5.7 3.4 2.4 3.2 2.1

DKS 0.534 0.204 0.09 0.038 0.092 0.081 0.079

TMVA R 2.2 0.0 0.0 0.0 0.0 0.0 0.0

DKS 0.678 0.546 0.506 0.433 0.379 0.312 0.277

TAM R 5.0 0.0 0.0 0.0 0.0 0.0 0.0

DKS 0.632 0.484 0.441 0.388 0.35 0.298 0.264

TMLB R 0.0 2.8 8.5 11.4 13.4 7 2.7

DKS 0.515 0.362 0.466 0.53 0.537 0.49 0.417

TMLMC R 89.4 96.5 98.5 99.9 99.9 100 100

DKS 0.852 0.928 0.959 0.984 0.991 1 1

TSBMC R 3.9 3.1 2.4 2.4 1.5 3.3 2.3

DKS 0.037 0.058 0.094 0.09 0.13 0.09 0.078

TMVAMC R 0.0 0.0 0.0 0.0 0.0 0.0 0.0

DKS 0.7 0.564 0.478 0.376 0.344 0.263 0.254

TAMMC R 0.0 0.0 0.0 0.0 0.0 0.0 0.0

DKS 0.686 0.584 0.51 0.407 0.374 0.284 0.269

R is observed rejection percentages for α = 5%

DKS is Kolmogorov-Smirnov distance statistic
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Table 3.10: Performance of different test statistics for model A, condition 5

Sample size

n = 50 n = 100 n = 150 n = 300 n = 500 n = 2000 n = 5000

TML R 38.1 22.4 21.6 16.4 14.3 12.3 9.0

DKS 0.395 0.213 0.194 0.147 0.095 0.096 0.09

TMLb R 12.7 13.2 14.6 13.1 12.7 12.0 8.8

DKS 0.091 0.104 0.119 0.105 0.082 0.087 0.087

TMLs R 17.5 14.9 16.5 13.6 13.1 12.1 8.9

DKS 0.153 0.114 0.132 0.114 0.085 0.089 0.088

TSB R 57.1 19.4 16.5 9.4 5.0 6.3 5.0

DKS 0.644 0.348 0.287 0.149 0.105 0.056 0.019

TSBb R 15.3 8.2 8.1 6.3 3.8 5.5 5.0

DKS 0.249 0.138 0.146 0.086 0.065 0.046 0.02

TSBs R 22.2 9.9 9.5 7.2 4.0 5.7 5.0

DKS 0.347 0.188 0.178 0.099 0.074 0.049 0.019

TMVA R 1.3 0.4 0.2 0.1 0.4 1.6 2.4

DKS 0.541 0.385 0.346 0.265 0.217 0.13 0.09

TAM R 2.0 0.7 0.3 0.3 0.5 2.1 2.4

DKS 0.51 0.36 0.326 0.249 0.207 0.126 0.087

TMLB R 0.0 0.1 0.3 1.0 1.7 2.9 3.0

DKS 0.223 0.172 0.202 0.196 0.173 0.133 0.09

TMLMC R 15.3 14.4 15.8 13.8 13.5 11.8 8.8

DKS 0.119 0.104 0.129 0.113 0.086 0.09 0.088

TSBMC R 8.6 6.9 7.0 5.8 3.7 5.3 5.0

DKS 0.156 0.095 0.114 0.073 0.052 0.042 0.018

TMVAMC R 0.6 0.5 0.3 0.3 0.5 1.6 2.2

DKS 0.11 0.142 0.155 0.165 0.152 0.115 0.079

TAMMC R 0.6 0.6 0.4 0.3 0.5 1.8 2.2

DKS 0.114 0.152 0.141 0.15 0.144 0.109 0.077

R is observed rejection percentages for α = 5%

DKS is Kolmogorov-Smirnov distance statistic
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Table 3.11: Performance of different test statistics for model B, condition 5

Sample size

n = 50 n = 100 n = 150 n = 300 n = 500 n = 2000 n = 5000

TML R 99.3 67.3 45.2 24.6 22.5 12.4 10.8

DKS 0.965 0.671 0.471 0.25 0.201 0.082 0.108

TMLb R 20.5 15.2 15.8 13.5 15.4 11.3 10.3

DKS 0.212 0.159 0.121 0.099 0.122 0.066 0.099

TMLs R 36.9 22.0 18.0 14.4 16.1 11.5 10.3

DKS 0.389 0.224 0.161 0.113 0.131 0.068 0.1

TSB R 100.0 88.3 55.1 18.3 10.6 5.7 4.9

DKS 0.999 0.844 0.637 0.333 0.22 0.063 0.033

TSBb R 41.7 16.1 9.4 5.9 6.3 5.1 4.9

DKS 0.536 0.296 0.203 0.09 0.074 0.029 0.019

TSBs R 67.1 23.3 13.4 6.8 6.7 5.2 4.9

DKS 0.713 0.402 0.271 0.122 0.093 0.033 0.021

TMVA R 28.2 0.1 0.2 0 0.1 0.1 0.5

DKS 0.811 0.611 0.502 0.373 0.32 0.186 0.122

TAM R 37.8 0.2 0.2 0.0 0.1 0.1 0.7

DKS 0.808 0.589 0.476 0.357 0.305 0.182 0.121

TMLB R 0.0 0.0 0.0 0.3 0.7 1.1 1.7

DKS 0.737 0.278 0.218 0.247 0.263 0.191 0.135

TMLMC R 18.7 17.9 17.1 13.4 16.6 11.3 10.3

DKS 0.195 0.184 0.142 0.107 0.133 0.068 0.102

TSBMC R 9.3 9.4 6.5 4.9 5.6 4.8 4.9

DKS 0.207 0.174 0.127 0.054 0.054 0.027 0.014

TMVAMC R 0.2 0.1 0.2 0.1 0.1 0.4 0.7

DKS 0.334 0.26 0.244 0.229 0.205 0.129 0.1

TAMMC R 0.4 0.1 0.2 0.1 0.1 0.4 0.7

DKS 0.298 0.266 0.251 0.239 0.218 0.134 0.098

R is observed rejection percentages for α = 5%

DKS is Kolmogorov-Smirnov distance statistic
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Table 3.12: Performance of different test statistics for model A, condition 6

Sample size

n = 50 n = 100 n = 150 n = 300 n = 500 n = 2000 n = 5000

TML R 84.0 78.2 85.0 86.4 90.1 98.0 99.2

DKS 0.797 0.744 0.802 0.827 0.856 0.95 0.971

TMLb R 60.0 67.0 79.0 84.2 89.4 97.8 99.2

DKS 0.575 0.642 0.752 0.8 0.846 0.948 0.97

TMLs R 65.9 70.0 81.0 85.1 89.4 97.8 99.2

DKS 0.634 0.667 0.762 0.807 0.848 0.949 0.97

TSB R 67.5 26.6 18.8 9.9 6.2 5.9 5.2

DKS 0.716 0.433 0.357 0.229 0.132 0.098 0.057

TSBb R 17.5 10.2 9.2 6.3 4.8 5.6 4.9

DKS 0.349 0.223 0.216 0.161 0.092 0.088 0.053

TSBs R 26.7 12.7 10.5 6.9 5.0 5.6 4.9

DKS 0.453 0.273 0.248 0.176 0.101 0.091 0.054

TMVA R 1.3 0.2 0.1 0.1 0.0 0.1 0.6

DKS 0.583 0.451 0.404 0.358 0.293 0.254 0.204

TAM R 2.0 0.4 0.1 0.1 0.1 0.2 0.6

DKS 0.541 0.412 0.372 0.329 0.276 0.239 0.191

TMLB R 0.7 1.9 4.6 5.0 4.6 3.4 2.4

DKS 0.212 0.28 0.32 0.35 0.311 0.299 0.262

TMLMC R 63.5 69.0 80.6 84.9 89.4 97.8 99.3

DKS 0.612 0.657 0.759 0.802 0.848 0.949 0.97

TSBMC R 11.2 8.7 7.9 6.0 4.2 5.5 5.1

DKS 0.257 0.178 0.187 0.148 0.083 0.086 0.053

TMVAMC R 0.7 0.3 0.1 0.2 0.1 0.1 0.5

DKS 0.16 0.188 0.229 0.256 0.232 0.232 0.197

TAMMC R 1.0 0.3 0.2 0.3 0.1 0.1 0.7

DKS 0.164 0.174 0.195 0.23 0.212 0.218 0.184

R is observed rejection percentages for α = 5%

DKS is Kolmogorov-Smirnov distance statistic

43



Table 3.13: Performance of different test statistics for model B, condition 6

Sample size

n = 50 n = 100 n = 150 n = 300 n = 500 n = 2000 n = 5000

TML R 100.0 99.7 99.7 99.7 100.0 100.0 100.0

DKS 1 0.983 0.987 0.986 0.998 1 1

TMLb R 89.4 96.3 98.3 99.3 100.0 100.0 100.0

DKS 0.846 0.921 0.958 0.978 0.996 1 1

TMLs R 95.1 97 98.6 99.4 100.0 100.0 100.0

DKS 0.904 0.938 0.963 0.979 0.997 1 1

TSB R 99.5 80.7 48.6 18.8 8.0 4.0 3.4

DKS 0.987 0.787 0.598 0.322 0.15 0.027 0.026

TSBb R 32.9 12.7 6.5 5.3 3.3 3.1 3.3

DKS 0.439 0.221 0.141 0.079 0.034 0.059 0.039

TSBs R 57.7 18.6 9.9 6.7 3.6 3.2 3.3

DKS 0.638 0.324 0.209 0.112 0.035 0.055 0.038

TMVA R 5.1 0.1 0.0 0.0 0.0 0.0 0.0

DKS 0.71 0.565 0.51 0.435 0.393 0.313 0.27

TAM R 9.0 0.1 0.0 0.0 0.0 0.0 0.0

DKS 0.673 0.509 0.454 0.398 0.368 0.296 0.258

TMLB R 0.0 2.1 7.0 11.5 10.8 6.8 3.3

DKS 0.551 0.334 0.438 0.504 0.517 0.472 0.42

TMLMC R 88.5 96.8 98.5 99.3 100.0 100.0 100.0

DKS 0.837 0.928 0.962 0.979 0.995 1 1

TSBMC R 7.8 7.3 5.0 4.8 2.8 3.0 3.6

DKS 0.117 0.1 0.065 0.043 0.041 0.06 0.046

TMVAMC R 0.0 0.1 0.0 0.0 0.0 0.0 0.0

DKS 0.636 0.491 0.428 0.334 0.315 0.276 0.248

TAMMC R 0.0 0.1 0.0 0.0 0.0 0.0 0.0

DKS 0.614 0.512 0.456 0.367 0.344 0.301 0.25

R is observed rejection percentages for α = 5%

DKS is Kolmogorov-Smirnov distance statistic
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3.3 On the problems with the bootstrap in SEM

As mentioned previously, more caution is necessary when applying the bootstrap method

in higher dimensional models. Previous Monte Carlo studies in the literature evaluating

the performance of the bootstrap in SEM was limited to models with at most 9 indicator

variables (see e.g., Enders, 2005; Ichikawa, & Konishi, 1995; Nevitt & Hancoock, 2001;

Sharma & Kim, 2013). Except for a few cases, those studies do not consider very small

sample sizes relative to the number of variables. From those studies it is not clear how

the bootstrap method performs when the ratio of p/n is not small. In the last section we

observed that when the dimension of models is large, the bootstrap method breaks down.

In this section we investigate the performance of the Bollen–Stine bootstrap method in

more detail and we try to understand the root of the problem with bootstrapping in higher

dimension models.

In any inferential statistics problem, if it were possible to access to the true popula-

tion distribution that the data are from, and we could generate many samples from that

population under the hypothesized model, by keeping all other aspects of the population

constant, we could reproduce the exact empirical distribution of the subject test statistic.

Bootstrapping is basically an imitation of this process. The difference is that in bootstrap-

ping we are limited to the data and therefore, bootstrap samples contain repeated cases.

We suspect these repeated cases in bootstrap samples can damage the distribution of the

ML test statistic in SEM when we deal with a large model with a small sample. Since each

sample has its own estimated empirical bootstrap distribution of the test statistic, it is not

possible to compare the bootstrap distribution to the actual empirical distribution of the

test statistic directly. Here, to investigate the effect of repetition of data in test statistics we

use independent samples with repeated cases. First a sample based on the true hypothesized

model is generated and the transformation (2.1) is applied to the sample based on the true

model parameters (in bootstrapping we use estimated parameters). Then a sample with
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Figure 3.1: Kernel density graphs of empirical distribution of TML vs. empirical bootstrap

distribution of TML for model A1
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replacement is drawn from the transformed data. This way we achieve a random sample

that is drawn from the correct model but with repeated cases. The desired test statistics

can be calculated from this sample. We replicate this process 1,000 times and the empirical

distribution of this test statistic (for simplicity we call it a bootstrap distribution) is com-

pared with the empirical distribution of the test statistic that is computed based on samples

without repeated cases.

Figure 3.1 shows the kernel density graphs of the empirical distribution of bootstrap TML

versus the empirical distribution of TML for model A1 (when the distribution of the data

is normal) and for different sample sizes. Due to repeated cases that occur in the sample,

when the sample size is small, the bootstrap distribution appears to have larger variance.

The effect of repeated cases in the sample disappears as sample size gets larger. In a normal

model, repeated cases have almost no effect when the sample size is 500 or larger. Figure 3.2

shows the kernel density graphs of empirical distribution of TML with and without repeated

cases for model A4 where the distribution of the data is not normal. We can observe that

in this case also the variance of the bootstrap distribution at small sample sizes is larger

than the empirical distribution of the test statistic. As sample size increases the variance

of the bootstrap distribution is getting closer to the variance of the empirical distribution

but the mean of the bootstrap distribution does not converge to the mean of the empirical

distribution even for sample sizes as large as 5000.

The over-estimation of the empirical variance of the test statistic due to repeated cases

gets worse when the dimension of the data increases. In Figure 3.3 this is shown by comparing

the bootstrap distribution to the empirical distribution of the ML test statistics for the

model B1 which has 30 indicator variables. In this case the bootstrap distribution has larger

variance than the empirical distribution of TML even for data with sample size equal to 500.

In Figure 3.4 we observe the smaller mean in the bootstrap distribution for model B4 which

has a non-normal distribution. Since for large sample sizes the mean of the bootstrap is

smaller than the mean of empirical distribution of TML it is suspected that this change of
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Figure 3.2: Kernel density graphs of empirical distribution of TML vs. empirical bootstrap

distribution of TML for model A4

50 100 150 200 250 300 350

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8
0.

01
0

0.
01

2

n = 50

TML

P
ro

ba
bi

lit
y 

D
en

si
ty

 F
un

ct
io

n

50 100 150 200 250 300 350 400

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8
0.

01
0

0.
01

2

n = 150

TML

P
ro

ba
bi

lit
y 

D
en

si
ty

 F
un

ct
io

n

50 100 150 200 250 300 350 400

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8
0.

01
0

0.
01

2

n = 500

TML

P
ro

ba
bi

lit
y 

D
en

si
ty

 F
un

ct
io

n

50 100 150 200 250 300 350 400

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8

n = 5000

TML

P
ro

ba
bi

lit
y 

D
en

si
ty

 F
un

ct
io

n

Empirical Distribution
Bootstrap Distribution

48



Figure 3.3: Kernel density graphs of empirical distribution of TML vs. empirical bootstrap

distribution of TML for model B1
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Figure 3.4: Kernel density graphs of empirical distribution of TML vs. empirical bootstrap

distribution of TML for model B4
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the mean cannot be caused only by repeated cases.

One problem with the Bollen–Stine transformation is that if the data is not normally

distributed then the transformed data does not necessarily have the same distribution as

the original data. In fact the marginal distribution of variables in the transformed data

driven by a linear combination of variables in the original data and this combination does

not necessarily hold the marginal distributions of the original data. We do not have this

problem when the original data is distributed normally. This has been mostly ignored

in bootstrapping procedures in SEM as we hope the transformation does not change the

overall distribution dramatically. In an unsuccessful attempt to eliminate the effect of this

distributional change, instead of TML we have used TSB as a robust test statistic in the

bootstrap procedure. Using TSB is as straight forward as TML. We simply compute TSB

for each bootstrap sample to estimate empirical distribution of SB test statistic and then

we used it to determine the p-value of the original TSB statistic. Figure 3.5 shows kernel

density graphs of the empirical distribution of bootstrap TSB (i.e. samples with repeated

cases) verses the empirical distribution of TSB for model A4. As we see, even if we may

overcome the problem with mean differences due to the change of distribution of the data in

the transformed sample, the variance of empirical bootstrap distribution gets larger because

of repeated cases in bootstrap samples and it is worse compare to TML.

Since the distribution of TML is very sensitive to the normality assumption of the data,

the empirical distribution of the test statistic generated by Bollen–Stine bootstrap samples

very much depends on the distribution of the original sample. This raises another problem

with using bootstrapping in SEM. We may have data with TML greater than the test statistic

from another sample but the p-value of the bootstrap test is smaller. This can be seen in

Figure 3.6. We generated 1,000 replicated samples from the true model and we plot p-values

of the bootstrap test against TML. The dispersion of points in the plot shows that we have

cases with the greater test statistic and larger p-value. On the other hand the Monte Carlo

test does not have this problem and the p-value is a strictly decreasing function of the test
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Figure 3.5: Kernel density graphs of empirical distribution of TSB vs. empirical bootstrap

distribution of TSB for model A4
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Figure 3.6: The p-value of the bootstrap test vs. the value of TML in Comparison to the

p-value of Monte Carlo method vs. the value of TSB
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statistic. The dispersion of points in the bootstrap test is greater when the data is not from

a multivariate normal distribution.

3.4 Illustration of the effect of model parameters on test statistics

In general, goodness of fit test statistics in SEM are a function of estimated parameter θ̂ and

therefore they depend on the true values of population parameters. When the asymptotic

theories exist the distribution of those test statistics asymptotically do not depend on the

values of model parameters however, in small samples the exact distribution of test statistics

(e.g. TML) depends on the true population parameters. In Monte Carlo estimation of TSB

we use the estimated parameters of the model to generate Monte Carlo samples under the

hypothesized model. In this section we study the effect of changes in model parameters to

distribution of TSB and we show that even for a very small samples the effect of parameters

is negligible.
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Figure 3.7: Q-Q plots of observed null distributions of TSB with two model parameters θ1

and θ2 when data are from normal distributions, condition A1
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Figure 3.8: Q-Q plots of observed null distributions of TSB with two model parameters θ1

and θ2 when data are from non-normal distributions, condition A4
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We consider conditions A1 for multivariate normal and A4 to represent non-normal dis-

tributions. For each condition the observed distribution of TSB is compared between two

different parameter sets, θ1 and θ2 ∈ Ω0. For parameter set θ1 we use the parameters de-

fined in section 3.1. For parameters in θ2 factor covariances have been changed to 0.1, all

factor loadings set to 0.5, and uncorrelated covariance matrix of unique factors computed

accordingly to make variances of x equal to 1.

Figure 3.7 shows quantile plots of observed distribution of TSB(θ̂1) verses that of TSB(θ̂2)

for 1,000 replicated samples of size 50, 150, 300, and 5000 from two normally distributed

population, one with structured covariance of Σ(θ1) and the other one with Σ(θ2). In all

sample sizes, quantiles of two empirical distributions are fairly aligned to the line y = x. This

means that changing parameters does not make a significant difference in the distribution of

TSB with sample size as low as 50. In Figure 3.8 samples have been drawn from a multivariate

population with a non-normal distribution and the results are similar to those of the normal.

In section 2.2 it has been suggested to use θ̂ estimated from the original observation to

generate Monte Carlo samples. The ideal situation is to actually use the true population

parameters but in practice this is impossible. Another suggestion is to draw parameters

randomly for each Monte Carlo random sample to reduce the effect of values of parameters,

for example a uniform random number from θ̂∓ 2SD(θ̂). However, values of parameters do

not have significant impact on the performance of the Monte Carlo test and one can even

choose those parameters arbitrarily as long as they are in the null space, Ω0.

3.5 On convergence of the Satorra-Bentler scaled statistic

In section 3.2 we see that Type I error rates of the Monte Carlo method for the SB scaled

statistic, TSBMC , are close to the nominal level across all sample sizes and all conditions. The

performance of TSBMC very much depends on how TSB converges for different distributions.

Particularly, how TSB adjusts for violation of normality and whether its distribution is stable

at small sample sizes. In this section we study the behavior of TSB for different underlying
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distributional conditions.

Figure 3.9 shows kernel density graphs of empirical null distributions of TSB for different

distribution conditions and sample sizes for factor model A. Conditions are distinguished

by different colors, for example red is used for multivariate normal. In the last section we

saw that values of estimated parameters do not have a noticeable effect on the distribution

of TSB thus it is proper to assume the normal condition, red curve, represents the Monte

Carlo test. The vertical dashed line shows the 95-th percentile of TSB for condition A1,

which is the normal condition. Roughly speaking, it can be considered as the critical value

of the Monte Carlo test for nominal level of α = 0.05. We can see that lines are close to

each other and are getting closer as sample size increases and for sample size equal to 5000

the difference of distribution of TSB between different conditions almost disappears. Lines

related to conditions A5 and A6, shown by brown and purple, stay close consistently for all

sample sizes and are over the red curve. It is noticeable that the condition A2, green curve, is

lower than the normal condition for small sample size and get closer as sample size increases.

The dotted curve shows the probability density function of the asymptotic χ2 distribution

with 87 degrees of freedom. When sample size is 50 the empirical distribution of TSB has

considerably greater mean than asymptotic χ2 distribution in all conditions. Up to sample

size equal to 300 the Monte Carlo normal curve shows better approximation to TSB than the

asymptotic χ2 distribution.

Figure 3.10 shows kernel density graphs for model B, which has 30 random variables.

Here, when the dimension of model gets larger, it is more recognizable that the condition

2, shown by green, has a smaller mean than other conditions at small samples sizes. The

asymptotic χ2 distribution in this model has 402 degrees of freedom and for small sample

sizes the mean of TSB in all conditions is greater than 402. By coincidence the dotted curve

gets very close to the green curve of condition 2. This is because the specific distribution of

data in condition 2 in this specific dimension of the model recovers the over-rejection of TSB

at small samples.
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Figure 3.9: kernel density graphs of empirical null distributions of TSB for model A, p = 15
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Figure 3.10: kernel density graphs of empirical null distributions of TSB for model B, p = 30
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3.6 Power analysis

The emphasis of this study was to introduce a method to control Type I error. If a test

statistic over-rejects the correct hypothesized model then the power of that test is meaning-

less. However, in this section a small power analysis is reported to give us confidence that the

proposed method is able to reject a misspecified model with acceptable power. The power

study is done only on the model A and for all 6 distribution conditions defined in section

3.2. For each condition 1,000 replicated samples are drawn from population with structural

covariance in equation (3.2) but this time with factor loading matrix as defined below:

ΛT =


0.70 0.70 0.75 0.80 0.80 0 0 0 0 0 0 0 0 0 0

0.30 0 0 0 0 0.70 0.70 0.75 0.80 0.80 0 0 0 0 0

0 0 0 0 0 0.35 0 0 0 0 0.70 0.70 0.75 0.80 0.80

 .

The difference between this model and the previous model defined in section 3.1 is that

we added two extra paths to the model. One path from factor 2 to the first variable that

before had only one direct path from factor 1, and other path is from third factor to variable

6, which had only one direct path from second factor. The misspecified hypothesized model

is the one that we defined in section 3.1. Since the hypothesized model is not correct we

expect to reject it and the proportion of rejections gives an estimate to power of the test

under this model misspecification. The p-value for each replicated sample is computed and

percentage of p-values that are less than nominal level of alpha = 0.05 are reported in Table

3.14. The cases where observed Type I error is exceptionally greater than nominal level

are not reported in Table 3.14. For sample size greater than 300 for all conditions all test

statistics reject the null hypothesis almost 100%. For condition 1 Monte Carlo method has

competitive power compared to Bartlett correction to TML and TSB at small sample sizes.

The bootstrap test gives a very small rejection percentage when sample size is equal to

50. Overall TSBMC gives reasonable rejection rates in all conditions. The lowest rejection

percentage for TSBMC is 19% for condition 2 at sample size equal to 50.
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Table 3.14: Power of different test statistics for model A

Sample size

Test Statistics n = 50 n = 100 n = 150 n = 300 n = 500 n = 2000 n = 5000

co
n
d
it
io
n
1

TML 72.7 86.7 98.5 100 100 100 100

TMLb 27.0 72.9 96.1 100 100 100 100

TMLs 36.6 77.3 97.0 100 100 100 100

TSB 84.8 90.4 99.0 100 100 100 100

TSBb 41.5 79.2 97.2 100 100 100 100

TSBs 52.8 82.0 97.6 100 100 100 100

TMLB 1.4 52.1 90.6 100 100 100 100

TMLMC 32.1 75.0 96.6 100 100 100 100

TSBMC 32.0 75.1 96.5 100 100 100 100

TMV AMC 31.4 74.8 96.4 100 100 100 100

TAMMC 31.6 74.8 96.4 100 100 100 100

co
n
d
it
io
n
2

TSB 76.8 71.4 79.3 95.7 98.9 99.9 100

TSBb 27.7 48.8 68.8 94.4 98.6 99.9 100

TSBs 37.7 53.6 71.6 94.7 98.7 99.9 100

TMLB 11.6 54.7 78.4 97.4 100 100 100

TSBMC 19.0 43.8 66.0 94.0 98.6 99.9 100

co
n
d
it
io
n
3

TSB 91.1 89.2 94.2 98.1 99.7 100 100

TSBb 57.3 77.1 90.7 97.9 99.7 100 100

TSBs 68.9 80.2 91.3 98.0 99.7 100 100

TMLB 6.5 48.2 76.0 96.0 99.7 100 100

TSBMC 46.6 73.2 89.2 97.8 99.7 100 100

co
n
d
it
io
n
4

TSB 83.0 74.6 83.2 94.7 98.9 100 100

TSBb 38.6 55.1 73.6 93.6 98.9 100 100

TSBs 49.2 61.3 76.2 93.8 98.9 100 100

TMLB 4.5 33.8 59.0 91.2 98.4 100 100

TSBMC 29.3 51.6 70.9 93.2 98.7 100 100

co
n
d
it
io
n
5

TSB 92.1 95.9 99.0 100 100 100 100

TSBb 57.0 85.6 97.5 100 100 100 100

TSBs 68.0 89.1 98.1 100 100 100 100

TMLB 1.3 40.0 83.0 100 100 100 100

TSBMC 44.4 82.8 96.8 100 100 100 100

co
n
d
it
io
n
6

TSB 90.7 89.5 90.9 99.7 100 100 100

TSBb 51.1 72.5 84.8 99.4 99.8 100 100

TSBs 63.9 77.2 86.8 99.5 99.8 100 100

TMLB 2.9 33.5 64.8 98.1 99.8 100 100

TSBMC 41.1 67.0 82.5 99.4 99.9 100 100
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CHAPTER 4

Conclusions

Assessing an accurate goodness of fit test has always been a challenging concept among

SEM practitioners. When the distribution of observations is not from a multivariate normal,

typical ADF test statistics are not appropriate in the case of limited access to very large

sample sizes. We introduced a new model based Monte Carlo test to evaluate overall goodness

of fit in SEM. In a comprehensive simulation study we showed that the proposed method

performs well in controlling Type I error when observations are not from a population with

a multivariate normal distribution at small sample sizes. We also compared the new Monte

Carlo method to those of existing statistics. In a variety of distributional conditions and

sample sizes the proposed method is shown to outperform its competitors. A simulation

study on the power of the Monte Carlo test also shows that the new test has an acceptable

power in rejection of misspecified models.

We also discussed the classical bootstrap test in SEM introduced by Bollen and Stine

(1992) in contrast to our Monte Carlo test. It was shown that the bootstrap method has

critical problems when the dimension of the model gets larger. It appears that repeated cases

as well as lack of robustness of TML in the Bollen-Stine bootstrap method is problematic at

small samples in models with a larger number of variables. When the normality assumption

of observations is not met, even for larger sample sizes, the bootstrap method performs

poorly in a model with large number of observed variables. Those problems do not exist in

our proposed Monte Carlo test.

In a new study by Jiang and Yuan (2017) four new test statistics were proposed to improve
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the performance of the goodness of fit test. Their conditions 1 and 3 are similar to conditions

A1 and A2 in our study and results for similar test statistics reported in both studies such as

TML, TSB, and TMVA statistics agree with one another. For their fourth corrected statistic,

noted as Pcor4, they used the average of p-values from TSB and TMVA. In condition A2,

the Pcor4 performs best among all other tests at small sample sizes. The rejection rate for

the true model at sample sizes equal to 50, 100, 500, and 5000 is 6.4%, 1.4%, 0.6%, and

3.8%, respectfully in comparison our TSBMC rejection rates in similar situations in the same

order are 3.8%, 3.2%, 2.9%, and 4.2% which all are within the accepted criteria of rejection

rate used in Jiang and Yuan (2017). In addition our test performs well in estimation of the

overall distribution of the target test statistic. Jiang and Yuan (2017) did not report on the

performance of their test in approximating the overall empirical distribution of the statistic

and only reported the mean and variances of test statistics; therefore, we are not able to

comment in this regard. They also did not study the performance of their proposed tests in

models with a larger number of variables and it is not clear how those new tests perform in

higher dimensional models.

Despite the fact that the proposed Monte Carlo test performs better compared to existed

test statistics, it can be easily implemented to other asymptotic test statistics as long as

those statistics are pivotal. For example, it will be interesting to see how the Monte Carlo

approach performs in those statistics described in Jiang and Yuan (2017).

Another improvement to the proposed Monte Carlo test can be done by using an ap-

proximation to the distribution of the population based on the observations, instead of use

of a normal distribution. For example, one can estimate skewness or kurtosis or both of

marginals, and use them to generate Monte Carlo samples from a population with the esti-

mated marginal skewness or kurtosis or both.

The Monte Carlo test can alternatively be implemented to situations in which the boot-

strap method traditionally has been used. For example, in testing models with missing data,

the Monte Carlo test can be used as an alternative to the bootstrap (s.g. Enders, 2005).
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The aim of this study was to show the usefulness of the Monte Carlo method to improve

performance of existing goodness of fit test statistics in SEM. The results of this study can

open a debate on using the Monte Carlo test in situations where the existing asymptotic

test is not reliable with small samples or a closed form for the asymptotic statistic does not

exist but the test statistic still is asymptotically pivotal.

As noted previously, the term Monte Carlo test is often confused with the bootstrap

test, specifically, in the parametric form. Here, we emphasized using the term ‘Monte Carlo

test’ for two reasons: First, in the Monte Carlo test we did not resample from observations

and instead we artificially generated Monte Carlo samples. Secondly, we wanted to make a

distinction between the Monte Carlo test to the existing bootstrap test in the SEM literature.

After all, although estimated parameters were used in the Monte Carlo samples, we have

shown the effect of parameters in the test statistics are negligible, and the Monte Carlo test

is rather more model-based than parametric.
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