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Abstract: 

Organellar genome sequences provide numerous phylogenetic markers and yield insight 

into organellar function and molecular evolution.  These genomes are much smaller in 

size than their nuclear counterparts; thus, their complete sequencing is much less 

expensive than total nuclear genome sequencing, making broader phylogenetic sampling 

feasible. However, for some organisms it is challenging to isolate plastid DNA for 

sequencing using standard methods.  To overcome these difficulties, we constructed 

partial genomic libraries from total DNA preparations of two heterotrophic and two 

autotrophic angiosperm species using fosmid vectors.  We then used macroarray 

screening to isolate clones containing large fragments of plastid DNA.  A minimum tiling 

path of clones comprising the entire genome sequence of each plastid was selected, and 

these clones were shotgun-sequenced and assembled into complete genomes.  Although 

this method worked well for both heterotrophic and autotrophic plants, nuclear genome 

size had a dramatic effect on the proportion of screened clones containing plastid DNA 

and, consequently, the overall number of clones that must be screened to ensure full 

plastid genome coverage. This technique makes it possible to determine complete plastid 

genome sequences for organisms that defy other available organellar genome sequencing 

methods, especially those for which limited amounts of tissue are available. 
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INTRODUCTION 

Unlike eukaryotic nuclear genomes, organellar genomes occur in high copy-

number per cell and are of a size more amenable for complete sequencing.  Gene 

orthology is typically clear even across a wide taxonomic range; thus, organellar genes 

provide a disproportionately large fraction of genes currently used for phylogeny (1).  

Furthermore, the comparisons of organellar genomes can provide insights into the 

evolutionary transformations from cyanobacteria and proteobacteria into plastids and 

mitochondria, respectively, into the functions of these organelles, and into the patterns of 

co-evolution that have occurred with the many nuclear genes whose products function 

inside of these organelles. 

The earliest organelle genome sequences were generated by digesting, cloning, 

and mapping purified organellar DNA, followed by sequencing small fragments 

individually from the clone bank (2).  With the advent of cost-effective, high-throughput 

sequencing, genome sequences are being generated more efficiently by shotgun-cloning 

directly from organellar DNA isolations, performing a single sequencing read from each 

end of a large number of randomly selected clones, then assembling these into a complete 

genome sequence computationally. There are several possibilities for preparing a 

template that is acceptable for this process and, for some taxa, these have become simple 

and reliable protocols 

(http://megasun.bch.umontreal.ca/People/lang/FMGP/methods/mtDNA.html). Intact 

organelles can be isolated, most often by sucrose or percoll gradient centrifugations (3) 

and, in some cases, the differences in base composition and topology (i.e. circular versus 

linear DNA) between organellar and nuclear DNAs can be exploited using bis-benzimide 
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or cesium chloride gradients to isolate organellar DNA for sequencing(4). Large 

quantities of fresh tissue are typically necessary to produce small amounts of organellar 

DNA (although it is often possible to amplify these small amounts using Rolling Circle 

Amplification, “RCA”).  Even after enrichment, the low proportion of organellar to 

nuclear DNA can lead to significant nuclear contamination (greater than 50% of the total 

DNA) in many species, including those with large nuclear genomes or interfering 

polyphenolics. Another method is to amplify large sections of organellar DNA by long-

PCR between regions for which primers exist, which has been used effectively for many 

animal mtDNAs and occasionally for plastid DNAs as well (5). Jansen et al. (3) review 

current land plant ptDNA isolation and sequencing methods. 

Although these procedures have succeeded for a variety of plastid genomes, many 

organisms exist for which they are not feasible.  It is difficult or impossible to produce 

significantly enriched organellar DNA from many plants, even with large quantities of 

fresh tissue.  The PCR method (5) eliminates the need for enriched ptDNA, but is only 

practical if the genome is not highly rearranged or if gene order is known via prior 

mapping.  A set of PCR primers spaced around the entire plastid genome is necessary, 

and amplification-induced artifacts may occur.  Heterotrophic plants often exhibit both 

rapid sequence divergence and unusual plastid ultrastructure that make these procedures 

infeasible; accordingly, the complete sequence of only one heterotrophic angiosperm has 

been published (6).  The method we present enables plastid genome sequencing from 

both parasitic and nonparasitic plants using small amounts of fresh, frozen, or desiccated 

tissue, and should be equally applicable for sequencing mitochondrial genomes. 
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MATERIALS AND METHODS 

DNA Isolation and Partial Genomic Library Construction 

Fresh material from Cuscuta exaltata, Cuscuta obtusiflora (parasitic), and 

Ipomoea purpurea (autotrophic) was grown from seed.  Tissue from Yucca schidigera 

(autotrophic) was collected and snap frozen in liquid nitrogen.  Nuclear genome sizes of 

all species were determined by flow cytometry following the protocol in ref. (7).  1 g of 

tissue from each plant was pulverized to powder via mortar and pestle after being frozen 

in liquid nitrogen for 20 seconds.  DNA was extracted in 10 ml buffer using a 2X CTAB 

procedure (8) with 1% Polyethylene Glycol (PEG8000) in the buffer.  After isopropanol 

precipitation, DNA was spooled out, rinsed with 70% ethanol, and resuspended in 500 μl 

H2O.  To clean and concentrate the DNA, it was reprecipitated by adding 125 μl of 4 M 

NaCl plus 625 μl of 13% PEG8000 and incubated on ice for 20 minutes before 

centrifugation at 4°C for 15 minutes.  DNA pellets were resuspended in 75 μl H2O. DNA 

fragments ranging from 40-45 Kb were excised from a 0.8% agarose gel using field 

inversion gel electrophoresis (FIGE). 

The CopyControl™ Fosmid Library Production Kit from Epicentre® was used to 

construct partial genomic DNA libraries.  Concentration of size-selected, end-repaired 

DNA was determined using Amersham® PicoGreen™ dye and flourimetry.  Appropriate 

quantities of DNA were ligated and packaged according to the manufacturer's protocol. 

 

Identifying Plastid Clones 

Fosmid clones were plated as infected E. coli on LB-agar + 12.5 μg/ml 

chloramphenicol.  A Genetix® Q-PixII™ robot was used to organize clones into 384-
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well plates and to grid colonies onto nylon membranes (Genetix® Q-Performa™) soaked 

in LB + 12.5 μg/ml chloramphenicol.  Gridding patterns that allowed rapid identification 

of specific clones after hybridization were used (Fig. 1), and each clone was replicated at 

least six times per filter.  Colonies were grown on the filters for 16 hours.  Afterwards, 

filters were allowed to soak up denaturing solution (0.5 N NaOH, 1.5 M NaCl) from 

saturated blotter paper for 4 minutes.  This process was repeated with fresh denaturing 

solution using bottom-heat from a glass plate placed over a boiling water bath.  The 

filters were then placed on blotter paper soaked in 1.5 M NaCl, 1 M Tris solution for 4 

minutes at room temperature and dried for 10 minutes.  Colonies were immersed in a 

Proteinase K solution (0.1 M NaCl, 50 mM Tris, 50 mM EDTA, 1 X Sarkosyl, 100 mg/L 

Proteinase K) for 50 minutes at 37°C, dried, baked for 2 hours at 80°C, and cross-linked 

under ultraviolet light for 2 minutes. 

PCR products ranging from 200 to 700 nucleotides were generated from the 

plastid genes rps2, rps4, rpl16, rps7, rbcL, and psaC for all species; psbA and a PCR 

product from psbE to psbJ were also amplified for Yucca.  These products were pooled at 

equal molar concentration, diluted to ~5 ng/μl, and radioactively labeled with [ -

32P]dATP according to the Ambion® Strip-EZ™ DNA protocol.  Excess radionucleotide 

was removed with Centri-Spin™ columns (Princeton Separations®). 

Filters were prehybridized in 5X NaCl/NaH2PO4/EDTA (SSPE), 5X Denhardt's 

Solution (9), 0.5% sodium dodecyl sulfate (SDS), and 0.1 mg/ml fragmented salmon 

sperm DNA for 1 hour at 68°C.  Radioactive probes were diluted to 250 μl in 10 mM 

EDTA, denatured at 90°C for 10 minutes, and hybridized to the filters at 68°C overnight. 

Filters were first washed in 2X SSPE and 0.5% SDS at room temperature, followed by a 
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wash in 2X SSPE / 0.5% SDS, a wash of 0.3 X SSPE / 0.5% SDS, a wash in 2X SSPE / 

0.5% SDS at 55°C, and a wash of 0.3 X SSPE at room temperature.  Wash durations 

were 15 minutes.  The filters were enclosed in plastic wrap and exposed on 

phosphorimaging screens overnight.  Screen images were captured and plastid clones 

were identified by positive hybridizations. 

 

Selecting Clones for Sequencing 

Randomly selected positive clones were grown for 15 hours in 5 ml of Terrific 

Broth + 12.5 μg/ml chloramphenicol.  0.5 ml of this culture was added to 4.5 ml of LB 

broth + 12.5 μg/ml chloramphenicol and induced to high plasmid copy number following 

the CopyControl™ protocol. Minipreps were performed using mini alkaline-lysis (9) 

followed by precipitation with 1/4 volume 4M NaCl and equal volume PEG8000 at 4°C 

for 20 minutes.  Pellets were resuspended in 20 μl of H2O, and DNA concentrations were 

determined on an Eppendorf® Biophotometer™.  

T7 forward primer and pCC1/pEpiFOS reverse primer (sequence in CopyControl™ 

protocol) were used to sequence the ends of each fosmid insert on a Beckman Coulter 

CEQ8000™ system.  2.5 μg of DNA template and 5 μmoles of primer were used, with 

other parameters following those provided by Beckman Coulter for Bacterial Artificial 

Chromosome (BAC) end sequencing.  Sequences were used in BLASTN (10) searches to 

verify the position of fosmid inserts within plastid genomes.  Directionality of the end 

sequences was checked relative to the plastid genome of Nicotiana tabacum (2) to 

identify major genomic inversions. PCR tests were conducted with the genes used as 

probes to confirm that the clones spanned the regions indicated by end sequences.  A 
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minimally overlapping set of clones covering the plastid genome was chosen for each 

species.  Those fosmid clone preparations were sheared by repeatedly driving the DNA 

through a narrow aperture using a Hydroshear™ device (Gene Machines).  After 

enzymatic end repair, gel purification of fragments approximately 3 Kb, and cloning into 

pUC18, 384 clones were picked from each fosmid preparation.  These clones were 

robotically processed through rolling circle amplification and sequenced from each end 

(3).  Vector sequences were screened out and reads were assembled into complete 

circular maps.  Detailed protocols are available at the JGI website 

<http://www.jgi.doe.gov>.  Two gaps in coverage of less than 4 and 6 Kb for Cuscuta 

exaltata and Yucca schidigera, respectively, were PCR amplified and sequenced on the 

Beckman Coulter CEQ8000™ following standard manufacturer's procedures rather than 

sequencing additional clones. 

 

RESULTS AND DISCUSSION 

This method successfully produced plastid genome sequences for all species.  

Five fosmid clones were necessary for coverage of Ipomoea and Yucca, four for Cuscuta 

exaltata, and three for Cuscuta obtusiflora. Average fosmid insert size was 38 Kb (range 

from 32-47 Kb), and clone locations are shown in Figure 2.  The full plastid genome 

inverted repeat (IR) was only sequenced once in Cuscuta exaltata; no polymorphisms 

between the two IRs were detected in the other species. 

Drastic differences in percentage of positively hybridizing clones were observed 

across species (Table 1).  This percentage is expected to be proportional to the amount of 

plastid DNA relative to other DNA (nuclear plus mitochondrial) in the tissue, assuming 
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DNA from all compartments shears equally during the isolation process. Base 

composition was similar for all species examined (37.4-38.1% GC) and did not 

significantly impair fosmid cloning, but could affect cloning efficiency in other extreme 

cases.  A number of other factors, including nuclear genome size, amount of 

mitochondrial DNA, number of plastids per cell, and number of ptDNAs per plastid, 

could affect this ratio.  Tissue age may also influence relative abundance of plastid DNA 

(11). Estimates of nuclear genome size for Ipomoea and Cuscuta obtusiflora were 

similar, yet the percentage of plastid clones in Ipomoea was over three times higher than 

in C. obtusiflora.  However, because the plastid genome size of C. obtusiflora is only 

about half of that in Ipomoea, the observed results deviate only slightly from the number 

of plastid clones expected if ptDNAs of both species were in equal copy number per cell.  

Although Cuscuta exaltata is more chlorophyllous than C. obtusiflora, over ten times as 

many clones positively hybridized for C. obtusiflora (Table 1).  Nuclear DNA content of 

C. exaltata was estimated to be over 25 times that of C. obtusiflora, indicating nuclear 

genome size is more crucial in determining percentage of plastid clones than tissue type 

or photosynthetic ability.  

Although this method worked well for these plants, there are some caveats. 

Ability to detect small organellar genomes is limited by the minimum insert size of the 

library.  Small plastid genomes probably occur in concatenated forms that would be 

clonable via this method (12), but any organellar genomes existing as fragments less than 

40 kilobases would not be included in a fosmid library and would require building 

libraries with smaller insert sizes. This method also requires plastid probes less than 80 

kilobases apart that can be hybridized against the library.  Genomes for which insufficient 
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PCR primers exist could be heterologously probed with sequences from related taxa 

using less stringent hybridization conditions. Once one plastid clone is identified, its end 

sequences can be used to reprobe the library and reveal adjacent clones in both directions.  

Highly rearranged genomes could confound identifying a proper set of plastid clones.  

Although interpretation is complicated by presence of fosmid vector ligated to insert 

DNA, restriction mapping of clones could be used to confirm complete genome coverage.  

However, end sequencing and an increased number of internal PCR tests on each clone 

should nearly always suffice. 

A final caveat is the possibility of false positive hybridizations from laterally 

transferred ptDNA to either the mitochondrial or nuclear genome.  Although lateral 

transfer of ptDNA to the nucleus occurs at high frequency (13,14), such transfers are 

typically much smaller in size than a 40 Kb fosmid insert (15), and any transfer to the 

nuclear genome that exists in low copy is less likely to be detected than true plastid 

clones.  Transfer of ptDNA to the mitochondrial genome is much more detectable 

because, like the plastid genome, it exists in high copy number per cell (16).  We detected 

two clones with inserts suspected to be of mitochondrial origin.  End sequences of a 

strongly hybridizing clone for Ipomoea gave BLASTN results similar to regions of the 

Beta vulgaris mitochondrial genome (NC 002511).  One Cuscuta exaltata clone 

possessed plastid sequences as best BLAST hits on both ends, and PCR tests showed it 

contained all expected plastid probes.  However, most genes in this clone were obvious 

pseudogenes with early stop codons or large truncations.  Some pseudogenes were 

present in multiple copies, and many internal rearrangements existed, although 

pseudogene sequences were not extremely diverged from true plastid sequences.  Rapid 
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structural change but slow mutation rates are characteristic of plant mitochondrial 

genomes (16), indicating this clone was probably a large fragment of ptDNA transferred 

to the mitochondrial genome, where it has become nonfunctional.  Transfers from the 

plastid to the mitochondrion of genetic material this large have never been documented, 

but large intergenomic transfers are not unexpected given that in one ecotype of 

Arabidopsis thaliana, a nearly full copy of the mitochondrial genome is present on a 

nuclear chromosome (17). 

Despite these caveats, this method is an effective way of obtaining complete 

plastid genomes from as little as 1 gram of tissue, even from plants for which extracting 

purified ptDNA is impossible or which have extensive genome rearrangements.  Small 

quantities of frozen or silica gel dried plant material generally produce sufficient DNA 

quantity with high molecular weight fragments falling within the size range necessary for 

fosmid cloning.  Even though the fosmid vector is proportionally 15 to 20 percent of the 

DNA that is shotgun sequenced, practically no finishing sequencing was necessary for 

the plastid genomes generated with this method, whereas other land plant ptDNA shotgun 

sequencing methods rarely approach 80% efficiency (3).  

Although we used plant plastid genomes as an example, this method could easily 

be extended to large mitochondrial genomes.  For both mitochondrial and plastid 

genomes, BAC libraries could be used instead of fosmid libraries assuming the insert 

sizes were less than the overall size of the in vivo organellar genome fragments.  It would 

take fewer BAC clones than fosmid clones to cover an organellar genome, but BAC 

libraries are more difficult to generate and require sizable amounts of fresh material for 

DNA extraction (18).  Finally, this method could be employed to separate organellar 
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DNA of organisms in close association, such as endophytes and endosymbiotic 

organisms and their hosts.  As long as species-specific probes could be generated, 

organellar genomes could be readily attainable without contamination. 
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Figure 1. Macroarray screen of fosmid clones using pooled plastid probes.  Eight 

plates, each containing 384 clone cultures from a partial genomic fosmid library of 

Cuscuta obtusiflora, were spotted onto the filter in a known pattern.  Squares on the grid 

are labeled along the outer edge corresponding to the 384 wells of the plates.  Each grid 

square contains clones corresponding to that well from all 8 plates, and each clone is 

replicated twice within the square in a particular pattern unique to each of the eight plates 

(shown below the grid).  In total, 6144 spots representing 3072 unique clones were 

screened in this particular image, of which approximately 66 positively hybridized to the 

plastid probes.  Six clones from plate 3 (wells C8, D14, F4, F5, and N5, shown with bold 

borders) were randomly chosen for end sequencing and internal PCR testing to determine 

what portion of the plastid genome they contained.   

 

Figure 2. Map of end-sequenced clone coverage on plastid genomes.  Both ends of 

selected clones were sequenced to determine relative coverage of the plastid genome.  

Sequence strand-directionality and internal PCR assays for a variety of plastid genes were 

also used to identify any genome rearrangements that may have occurred and could 

possibly confuse mapping.  Minimal subsets of clones necessary for optimum coverage 

were used for shotgun sequencing and are shown as solid arcs.  Relative locations of the 

gene probes used for hybridization are marked on the circular genome map, with 

underlined gene labels for each probe inside the circles.  Genome maps are drawn to scale 

relative to one another.   
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Table 1. Number of clones screened and identified for each species 

 

 # clones 

screened 

# 

Positives 

% 

Positives 

Est. 2C nuclear 

genome size (pg) 

Ipomoea purpurea 1536 120 7.81 1.52 

Cuscuta exaltata 6144 10 0.16 41.86 

C. obtusiflora 6144 140 2.28 1.59 

Yucca schidigera 4608 56 1.21 4.90 

 




