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Abstract

Differences in the neural representation of concapt
categories (such as buildings, tools, animals,tplarehicles)
are suggested by studies on brain-injury patiemisky those
using imaging techniques. Evidence that such cdnoeép
distinctions are encoded spatially has been higtei by
fMRI techniques (Haxby et al, 2001), whereas ERRlist
have identified differences in the temporal domgfiefer,
2001; Paz-Caballero et al., 2006). The study desdrihere
uses a machine learning technique (Dalponte et28Dy),
previously applied to Brain-Computer InteractiorC{Btasks,
to show that conceptual categories can be idedtifiem
single-trial spectral EEG responses to visually anditorily
presented stimuli in single participants. We fouhdt using
features extracted from frequency spectra, thegoats
membership of a single stimulus presentation in afdaree
classes (animals, plants, tools) can be predictéd an
average accuracy of 80%.

Keywords: Conceptual Semantic

Machine Learning, EEG.

Categories, Spaces,

Introduction

Data about brain activity are providing excitingwiasights

on conceptual knowledge. Studies such as Martiralet
(1996) provided evidence of topographical encodofg
conceptual information through fMRI; machine leami
techniques have been successfully used to clagséin

activity recorded with such techniques into conaapt
categories (Haxby et al 2001, Hanson et al 200#hk&heva

et al 2008).

All such studies rely on spatial information aboetural
patterns collected through fMRI. However, theoriek
conceptual memory based on the hypothesis thaepbtnal
knowledge is distributed, taking the form of a ‘ceptual
map’ (Spitzer, 1999) or ‘word web’ (Pulvermuller G&),

would predict a temporal or frequency encoding for

conceptual information as well, involving some fowh
synchronization between the distinct brain aredisated in
response to a concept. And indeed, several ERHestud
reported by Pulvermdiller (2002) found evidence #or
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temporal encoding of conceptual knowledge—e.g., for
distinctions in the temporal domain between actignbs
and nouns. To our knowledge, however, no previdudys
has attempted to identify regularities in conceptua
knowledge activation on the basis of frequency rimiation
gathered through EEG. Yet if this is the case, iis@milar
categorical distinctions can be made with theshriegies,
our investigations of conceptual knowledge will aghe
benefit, as the much lower overhead of EEG studiesld
make larger-scale investigations possible, padityl
explorations of conceptual knowledge not directly
concerned with issues of topography. The temporal
resolution of EEG, relative to fMRI, also makegdssible

to disentangle the effects of different stageshef process

of perception and categorization.

In this paper we report the results of just sucstualy.
Spectral EEG data collected from healthy participan
presented with visual and audio representationson€epts
belonging to three categories—animals, tools, dadtp—
were classified using supervised machine learniethods
developed for BCI applications (which are typicadiyplied
to lower level cognitive states such as imagined
movements). To examine the “steady-state” concéptua
representations that we assume are the end result o
perceptual processes, only the peraftér stimulus offset
was considered. We found that these methods aree tabl
classify neural patterns with excellent accurace-ithat
enough information is encoded in frequency speotidiow
discrimination between conceptual categories.

This paper is organized into six sections. Aftersth
introduction a background section presents the-sththe-
art and theoretical motivations. In the third semtithe
experimental methodology is presented, and aftat the
main concepts of the data analysis are explained.
Experimental results are presented in the fiftitisac The
last section is devoted to the discussion of thalte.



Background

The earliest evidence for category-specific braitivation
was provided by studies on patients with brain rieg
(Warrington & Shallice, 1984; Caramazza & Shelton,
1998). Subsequent evidence was provided by furmition
brain imaging (Martin et al., 1996). For examplexHy et

al (2001) demonstrated with an fMRI study that the
associated with semantic categories wa

activation
distributed in the brain, and that areas outside thef
principal foci of activity that are examined in
neuropsychological studies could be used to sufidbss
predict category membership in single participants.

Such studies also provided evidence that the locatf
these activations is consistent across individaal$ across
tasks, and that multiple areas of the brain arevated for
each conceptual category (Martin & Chao,
Pulvermdller, 2002). These results led to theoaktic
proposals such as Pulvermiiller's ‘word web’ ide@0@2),
according to which concepts are represented inrareu
webs’ with distinct cortical topographies. This gegts the
need for some form of synchronization between ittiregf of
these neurons, either in the form of time synctraton or
of frequency synchronizations. ERP studies sucKiafer
(2001), and later Paz-Caballero and colleaguesg2f@dind
category specific differences in event-related piddés
across groups of stimuli and participahts.

Experimental Design

Participants

The data were collected at the University of E8€x Lab.
Four monolingual native speakers of English payéited in
the study. All four were male, with a college ediaa and
reported that they did not suffer from any psychalal or
neurological condition. Their mean age was 26 yeane
participant was left-handed. Participants were paid
compensation of £6 per hour.

Procedure

Participants were presented with both a word vizatibn
task @uditory stimulus task) and a silent image naming
task isual stimulustask). The auditory and visual stimuli
were presented in two separate blocks, the ordevha¢h
was alternated across participants. In each taskame full
set of concepts was used, and their order was naizéd on
every run.

In the visual stimulus task participants sat inetaxed
upright position 1m from a computer monitor. Imagese
presented on a medium grey background and fellinvat9°
viewing angle. Each image was preceded by 0.5didixa

1 The only electrophysiological study known to thehars to
find single participant category effects is Tanjaké (2005), which
used intracranial electrodes.
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cross, and followed by 2s of fixation and 2s of lank
screen. Participants were instructed to silentlyaathe
object represented, and to press the keyboard dy@acsith
the left-hand to indicate they had found an appater
word. The image disappeared from the screen on this
response, or on a time-out of four seconds.

In the audio stimulus task the same pattern oftifixa

nd blanks was used while participants listenedvoods

rough a pair of earphones. In this case they were
instructed to visualize an image that representedword
heard. Again, a keyboard response was used byiparits
to indicate that an image had been found.

After both tasks had been completed, each setirofikt
were again presented to verify that they had beerectly
interpreted by participants.

2001,

Figure 1: Examples of visual stimuli.

Stimuli

The same set of 127 concepts were used as stimbbth
the visual and the auditory task. The stimuli flee tvisual
task (Figure 1) were colourised line drawings fram
replication of the Snodgrass object image set (iBos&
Pourtois, 2004). The audio stimuli were spoken wprd
recorded in-house by the experimenters. Stimulugeots
came from three categoriesanimals (50), small
manipulable functional artefactstqbls’; 50) and plants
(27). Concepts were chosen to range from typieahilfar
and frequent members of their category (eay, hammer,
flower) to more obscure exemplars (esea horse, thimble,
artichoke). The set of stimulus concepts was not
manipulated to result in equal group averagesyficality,
familiarity and similar norms, since group analysdésthe
categories were not planned (such group analyses ar
vulnerable to the effects of such confounding fesjto

Recor ding

Variations in scalp voltages were measured at édtrelde
positions on a standard 10-20 montage, using a eéBmS
ActiveTwo active electrode systemAn additional six
electrodes measured voltages at the ear lobesarmohd
the eyes, for signal referencing and artifact ideation
purposes. Electrode activity was recorded on acaéeiil PC
at 512Hz.

2 http://www.biosemi.com/products.htm



Data analysis The search strategy adopted is based on a hiezafchi
search approach. Several combinations of time and
frequency filter parameters are iteratively testelthnging

Data Preprocessing the width Af andAt) and position ty, andf,y) of the time
Before analysis all data was referenced to theameeof the 5,4 frequency intervals considered.

ear lobe electrodes, was resampled to 15OH230_a”d WaSThe range of frequencies tested in this work is 5a Hz,
filtered with pass band of 1-60Hz. The EEGLAB sUit@s  and the time ranges from the stimulus offset tceoads
used to perform an independent component analysiseo  afier that point.

data, and components due to eye movements and 0o each combination of filter parameters the inpaia
electrical mains-noise were manually identified andyere filtered in frequency and in time. From filer data
removed. No removal of epochs due to muscle or -headeatures were extracted and separability amonggosites
movement artefacts was necessary. computed according to the Jeffries-MatusilMY distance

. o (Bruzzone et al., 1995). This is a widely used rasasn
Automatic Categorization Procedure pattern recognition problems to estimate sepatgbili
The scheme of the automatic procedure adopted fdsetween classes, given a set of featufdwe JM distance
categorizing the EEG signals is shown in Figureitds  between the categories andw; is defined as follows:

made up of different blocks: i) an automatic sysfemthe , "

selection of optimal time and frequency intervail}; a JM..("F{I[\/D(X/M)—\/p(x/wj)] dX} (1)

feature extraction module; and iii) a categorizatinodule. "

In the following some details of each block areegiv where P(/@) and POX/®) are the conditional probability

density functions for the feature vector given the

T categoriess; andw;. For a complete description of the time

Training Set EEG Data and frequency intervals selection method the reader
referred to Dalponte et al. (2007).
v y Once the most informative time and frequency irdérv
{Tmiw A% | Frequency Filter have been identified, these optimal parametersised for
Time — " { fis AT} all further analysis. In the predictive analysis flarameters
Frequency v are derived from a combination of parameters frogifald
é’::;;ii (o 28 [ Time Fiter cross-validation.
{ trins A8}
¢ Feature Extraction
The feature extraction phase is performed on teaipord
) Foature Extraction frequency filtered data. The algorithm adopted dseal on
( ) the Common Spatial Subspace Decomposition (CSSD)
v algorithm (Wang et al.,, 1999). CSSD is a supervised
> Categ‘\’/f:aaﬁm transformation that decomposes the original EEGobis
VM) into a new time series which shows optimal varianfoe
v the discrimination of two populations of EEG sighaln
Estimated Categories particular a spatial filter is designed, and apmplie the
original data:
Figure 2: General architecture of the system used f X=SFE (2)
categorization. whereE is the matrixNxT of the original EEG data (where
N is the number of channels afmdthe number of samples
Time and Frequency Interval Selection per channel),SF is the spatial filter anK is the set of

The preprocessed EEG signal is given as inputdgseem  derived signal components. The spatial fils&r is obtained
for the automatic identification of the most infative time by the simultaneous diagonalization of two covar@n
and frequency intervals, which was developed forl BCmatrices, derived from the training data of the two
applications (Dalponte et al., 2007), achievingestd-the-  categories considered.
art performance on a competition task involving gmad From the new time series we extract as featureshier
hand and foot movements. categorization module the normalized variance ef first
The goal of this technique is to define the bestand last component of the transformed mafjxvhich are
combination of time and frequency intervals for thethe more representative components of the two densil
separation of the analyzed categories. This mettamdbe categories. Thus the two features for each epoehtrae
divided into two parts: i) a search strategy, aijda level of signal activity in each component. Thisnche
separability measure computation. viewed as comparing the event-related spectraligcfi.e.
the relative event-related desynchronisation) ofo tw
synchronous neural structures which have been fdond

® http://ww.scen.ucsd.edu/eeglab/
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have an optimal differential response to the stimul In all 24 analyses (4 participants x 2 modalities3 x

categories of interest. category pairs) the optimal components yielded rilesd a
semantic space in which conceptual categories firme
Categorization largely separable clusters (see Figure 3 for ampig). The

The categorization step is based on a Support Yectgpower of categorization of the support vector maehivas
Machines (SVM) classifier (Vapnik, 1998). This ddier is  correspondingly high, achieving between 97% and%d00
an advanced pattern recognition technique thatbdee accuracy across all tests (see Table 1 for the kxienp
adopted in many different fields in recent yeartweE results).

reasons for its success are: i) its high classifinaaccuracy
and very good generalization capability with respe®ther
classifiers; ii) the limited effort required in &itecture
design (i.e., it involves few control parametersid dow X X
processing time overhead in the learning phase acedpto W%
other algorithms; and iii) its effectiveness inl-flosed’
classification problems (those which have a lowiorat
between number of training samples and number of
features).

The rationale of this classifier is to transforne triginal
feature space into a space with a higher dimenkipna
where a separation between the two categories laysnef
an optimal hyperplane is searched for, defined as:

f(x)=w [(x)+b’ 3

1.0

0.5
g
3
w

Tool Component
0.0
\

-0.5

- animals %
a
u]

. ) =
where w is a vector orthogonal to the separating <
hyperplaneb’ is a scalar value such that the ratidf|w|| ‘ |
represents the distance of the hyperplane fromotign, 10 05 0.0 05 10
and the functiond represents a non-linear transformation, o e ' ' :
called a ‘kernel function’. The optimal hyperplasehe one Animal Component
that minimizes a cost function which combines twitecia; ) _ _ )
maximization of the inter-class margin, and miniatian of Figure 3: Semantic Space from Exploratory Analysis
classification errors. (Participant D, Auditory Stimulus, Animals vs. Tepl
The model selection of the parameters of the dlassi Animal concepts are represented by squares and byol
was carried out according to the following stratedy crosses.
randomly subdivide available data into two foldsn@ining .
respectively 20% and 80% samples; ii) train thessifer Table 1: Performance of Exploratory Analysis.
using the 20% fold, and test it with the 80% fali;iterate
steps i) and ii) 100 times; and iv) compute finatwracy as Participant
the mean accuracy over the 100 trials. A B c D
Results A?Td?t'irvysfgé’f's 98.6% 99.4% 97.6% 97.2%
Exploratory Analysis i
ploratory Analy _ _ Animals vs. TOOIS g9 10 9599 98.8% 98.8%
In this first analysis we trained of the featurerastion Visual Task
algorithm with the complete set qf patterns av_ehiaﬁms Animals vs. Plants . . ; .
means that the results obtained in this experiragatthe Auditory Task 100%  100%  100%  99.8%
optimal ones obtainable on this data set. We perfeuch
an analy5|s in order to define an upper bom_md imgeof Anlmals vs. Plants 100% 992% 98.9%  100%
accuracies on these data sets, and to verify wiggory Visual Task
specific patterns are present in the recorded Eii@ity. Tools vs. Plants
The analysis was carried out separately for each L 100%  100%  100%  100%
L . . Auditory Task
combination of participant and task modality. Incleaof
the_se, three pal.rW|se categonza.tlons were cgrned Tools vs. Plants 100%  100% 99.8%  100%
animals vs. tools; tools vs. plants; and plantsarsmals. Visual Task

The optimization procedure discovered optimal time-
frequency windows that varied, but they lay predmanily

in the 15-35Hz bands, and at 1.5 to 3 seconds stftetlus
offset.
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Predictive Analysis

The second analysis aims to understand the preglicti
capability of the system. In this context we catraut a 3-
fold cross validation in the categorization stemmPles
were divided into 3 arbitrary partitions or ‘foldstwo of
which are iteratively used to train the featureraction
algorithm, while the remaining fold is used to cargpclass
separability. Thus, we obtain three distances fache
combination, that are averaged in order to havengles
distance value. This procedure allows a predictinalysis,
as the epochs used to train the feature extraetigorithm
do not overlap with those used to compute the wigta
measure.

This analysis was carried out for all participaats! both
modalities on the category pair of Animals vs. Bdam this

Discussion

To our knowledge, this is the first study reportitigt
conceptual categories are distinguishable on thes baf
neural activation data collected using EEG techesqur
results suggest that it may be possible to invattig
conceptual representations in the brain using igcles
with much lower overhead than fMRI, which would ae
great advantage for researchers—e.g., psycholitsguis
computational linguists—who are primarily concerneith
the organization of conceptual knowledge, rathanthith
its neural correlates. Of course, further work éeaed to
verify that information collected with such methddsalso
consistent across individuals as demonstratedM&l fdata
e.g., by Shinkareva et al (2008). While differencesre
found, it is not yet clear if this is due to differces across

task the optimization procedure discovered somewhagsarticipants in the timing or frequency encoding of

broader time-frequency windows, ranging from 10-25H
and from 1 to 4 seconds after stimulus offset.

cognitive states, or rather that these parametbestify
parts of the time course and frequency spectruinattealess

The resulting semantic spaces show clear categorubject to task-related noise. Our results sugdkat

clusters, with a more extensive overlap than inptevious
analysis (see e.g. Figure 4). Categorization acgura
remained high, averaging 80% (see Table 2).

S o o
O og
animals
-
S o
5 %
% X
o
§ S
= a
£
c [¥o)
< S plants
X
0_7 X
\ \
1.0 -0.5 0.0 0.5 1.0

Plant Component

Figure 4: Semantic Space from Predictive Experiment
(Participant C, Visual Stimulus, Animals vs. Plants
Animal concepts are represented by squares antsRign

crosses.

Table 2: Predictive Accuracy of Animals vs. Plants

Visual Task Auditory Task
Participant A 74.6% 88.2%
Participant B 72.4% 65.4%
Participant C 82.6% 92.7%
Participant D 81.9% 77.7%
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although optimal windows vary, good classificati@sults
can also be achieved with uniform windows. Furtherile
parts of frequency spectra found have been linkeabject
perception and representation (see e.g. Tallon-Badd
Bertrand, 1999), activity in these bands has beand to be
modulated by a wide variety of cognitive tasks ®rbal,
visual and spatial processing (see Kahana 2006 afor
review).

Results concerning the scalp localization of thegary-
specific components provide further evidence for a
distributed representation of conceptual knowledge,
consistent with theories such as that of Barsak03), as
parietal, temporal and ventral areas of both heneisgs
were seen to contribute to concept identificatidowever,
it would be premature to interpret our results esvidling
evidence concerning localization of conceptual kieolye.

While BCI methodologies have been successfullyiagpl
to the decoding of task related cognitive stateshsas
imagined motor movements), this work is the fiststudy
conceptual organization; and our results demorstthe
considerable power of the techniques describedaipdnte
et al (2007).

Further work will also be required to investigatee t
correlation between the evidence of conceptual espac
obtained with our methods and the evidence provioed
fMRI studies; spaces derived from corpus data (@agoni
& Lenci, 2008); and other informant supplied datialsas
typicality judgements, semantic similarity judgernsrand
feature norms (McRae et al, 2005). We also contittue
investigate the extent to which the predictive powkthe
system can generalize across participants and scros
modalities.
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