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ABSTRACT

An explicit time-stepping finite-difference scheme is pre-
sented for solving Biot’s equations of poroelasticity across
the entire band of frequencies. In the general case for which
viscous boundary layers in the pores must be accounted for,
the time-domain version of Darcy’s law contains a convolu-
tion integral. It is shown how to efficiently and directly per-
form the convolution so that the Darcy velocity can be prop-
erly updated at each time step. At frequencies that are low
enough compared to the onset of viscous boundary layers, no
memory terms are required. At higher frequencies, the num-
ber of memory terms required is the same as the number of
time points it takes to sample accurately the wavelet being
used. In practice, we never use more than 20 memory terms
and often considerably fewer. Allowing for the convolution
makes the scheme even more stable �even larger time steps
might be used� than it is when the convolution is entirely ne-
glected. The accuracy of the scheme is confirmed by compar-
ing numerical examples to exact analytic results.

INTRODUCTION

In a recent work, Masson et al. �2006� present a simple time-step-
ing staggered-grid finite-difference scheme for solving Biot’s
1956� equations of wave propagation in porous materials. They re-
trict their analysis to seismic frequencies that are low enough so that
he generation of viscous boundary layers in the pores of the rocks
an be neglected. For consolidated earth materials such as sand-
tones, the transition frequency at which viscous boundary layers
rst develop is typically greater than 100 kHz, so schemes that ne-
lect this physics are valid for most seismic applications.According-
y, most studies that present finite-difference approaches for solving
iot’s equations �e.g., Zhu and McMechan, 1991; Carcione and
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uiroga-Goode, 1995; Özdenvar and McMechan, 1997; Carcione
nd Helle, 1999; and Zhang, 1999� focus on the low-frequency form
f the equations.

However, in unconsolidated sediments, the transition frequency
t which viscous boundary layers must be accounted for can be as
mall as 1 kHz �or even less�. Therefore, for many seismological ap-
lications to unconsolidated �or high-permeability� sediments, it is
seful to have a finite-difference scheme for solving Biot’s equations
cross the entire band of frequencies. Furthermore, many laboratory
xperiments on porous materials are conducted at ultrasonic fre-
uencies, in which case it is always necessary to account for the de-
elopment of viscous boundary layers. In poroelastic theory, such
ore-scale dynamics is allowed for in the time domain by using a
dynamic-permeability” convolution operator in a generalized Dar-
y’s law. In the frequency domain, the dynamic permeability corre-
ponds to a complex frequency-dependent permeability coefficient.

Carcione �1996� presents a finite-differencing approach that al-
ows for the dynamic permeability by approximating it as a sum of
ener relaxation functions. It is of interest to more directly treat the
xplicit time-domain form of the dynamic-permeability convolution
perator using finite differences. To this end, Hanyga and Lu �2005�
rst convert the convolution integral to an integral over an infinite

ime domain and then implement a somewhat complicated applica-
ion of the Gauss-Jacobi and Laguerre quadrature formulas. The
resent study presents a more direct evaluation of the dynamic-per-
eability convolution and requires no more memory terms to per-

orm the convolution than it takes to cover the waveform with dis-
retization points in time. Its advantage thus is being both efficient
nd relatively simple to implement.

Using the classic work of Levander �1988� on the elastodynamic
quations as our guide, we present our poroelastic finite-differenc-
ng scheme in two dimensions instead of three for reasons of com-
actness and clarity. Taking the algorithm to three dimensions in-
olves adding another spatial loop within the time loop and writing
own the update equations for all of the tensorial components.

ugust 2009; published online 12 March 2010.
, Berkeley, California, U.S.A. E-mail: yder_masson@berkeley.edu.
ifornia, U.S.A. E-mail: srpride@lbl.gov.
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N34 Masson and Pride
POROELASTIC RESPONSE

Poroelasticity not only accounts for the displacements and stress-
s acting on each voxel of a porous body, but allows for the fluid-
ressure changes and fluid flow as well. Implicit in the theory is that
he wavelength of a mechanical disturbance moving through a po-
ous material is far greater than the size of the grains making up the
aterial so that a porous-continuum description is justified.
The fluid flow is well modeled using a generalized Darcy’s law

hat allows for flow due to induced pressure gradients and for flow
reated by the acceleration of the framework of grains, which is the
rame of reference for the relative fluid motion. Assuming an e�i�t

ime dependence, the generalized Darcy’s law is written in the fre-
uency domain as

q�
k���

�
���p� i�� fv� . �1�

ere, p is the fluid pressure, q the Darcy filtration velocity, v the ve-
ocity of the solid framework of grains, � the fluid viscosity, � f the
uid density, and k��� the complex �or “dynamic”� permeability.
The frequency dependence in k��� results from the appearance of

iscous boundary layers in the pores at sufficiently high frequencies.
t low frequencies, the flow in each pore is controlled by viscous

hearing and is entirely laminar. At high frequencies, inertial effects
egin to dominate the shear forces, resulting in an ideal “plug flow”
n each pore except near the fluid/solid interface where shear forces
gain must dominate because the relative motion is zero on the grain
urfaces. Thus, there are created viscous boundary layers near the
rain surfaces whose thickness decrease with increasing frequency
s 1 /��.

Johnson et al. �1987� derive a complex permeability function that
onnects these two frequency limits while obeying causality con-
traints. Their model for the frequency dependence of k��� is

k���
k0

���1� i
�

�
� i

�

�J
��1

, �2�

here the two relaxation frequencies �J and � are defined as

�J�
�

� fFk0
�3�

� �
nJ�J

4
, �4�

ith nJ a dimensionless parameter given by

nJ�
�2

Fk0
. �5�

ere, k0 is the steady-flow �zero frequency� limit of the permeability,
is the electrical formation factor, and � is a weighted pore-volume

o grain-surface ratio with the weight emphasizing constricted
ortions of the pore space �see Johnson et al., 1987, for the precise
athematical definition of �� that is also an important length para-
eter in modeling the surface electrical conductivity in rocks �Pride,

994�. For clean sands, nJ�8 is consistent with both numerical and
aboratory experiments. For shaly sands, one can have nJ�8. Physi-
ally, � is the circular frequency at which viscous boundary layers
rst develop.
We perform the finite-difference modeling in the time domain.
lyushchenkov and Turchaninov �2000� analytically obtain the in-
erse Fourier transfom of the k��� given by equation 2. Using this
esult, the time-domain version of the generalized Darcy’s law in
quation 1 is exactly equivalent to

��p�� f

�v

�t
��fF

�q

�t
�

�

k0
�
0

t

e���t�s�

�	��t�s�


��q„s�

�s
��q„s��ds, �6�

here s is the past time variable. This result is easily confirmed by
aking the Fourier transform of equation 6 and using the convolution
heorem to obtain equations 1 and 2 �going the other direction is

ore involved�. Upon taking the leading order in �i� low-frequen-
y limit in equation 2 and then returning to the time domain, one ob-
ains the low-frequency variant of equation 6:

��p�� f
�v

� t
�	1�

2

nJ

� fF

�q

� t
�

�

k0
q . �7�

ur earlier work on how to perform finite-difference modeling of the
iot equations �Masson et al., 2006� was based on the low-frequency

aw of equation 7. The present work deals with the entire frequency
ange and specifically addresses how to introduce the convolution of
quation 6 into the scheme.

The remaining equations of Biot’s theory include the total conser-
ation of linear momentum

�
�v

�t
� � ·��� f

�q

�t
, �8�

here � is the bulk density of the porous material and � �� ijîĵ is the
otal stress tensor, as well as the stress-strain constitutive laws for an
sotropic porous material

��

�t
���u� ·v�M� ·q…I�µ��v�„�v…T

‡ �9�

�
�p

�t
�M�� ·v� � ·q…, �10�

ith I�� ijîĵ the identity tensor. The poroelastic constants used here
re the undrained Lamé modulus �u, the shear modulus � �the same
or drained and undrained conditions�, the so-called Biot-Willis
1957� constant , and the fluid-storage coefficient M. Modeling
uggestions and further discussion of these poroelastic constants are
iven in many places, including Pride �2005� and Masson et al.
2006�.

FINITE-DIFFERENCING SCHEME

The time-stepping finite-difference scheme of Masson et al.
2006� for solving the low-frequency Biot �1956� equations is quite
imilar to Levander’s �1988� 2D fourth-order velocity-stress stag-
ered-grid method for the elastodynamic equations. Levander’s
1988� scheme built on the velocity-stress staggered-grid modeling
f Madariaga �1976� and Virieux �1986�.
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Biot finite-difference modeling N35
The present work adopts the 2D velocity-stress staggered grid de-
ned in Figure 1. The stress components � xx, � zz, and p are assigned

o the grid points x�m�x, z�n�z, where m and n are integers; the
orizontal velocities vx and qx to the points x� �m�1 /2��x, z

n�z; the vertical velocities vz and qz to the points x�m�x, z� �n
1 /2��z; and the shear stress � xz to the points x� �m�1 /2��x, z
�n�1 /2��z. Further, all the velocities are temporally discretized

t the time points t� l�t, whereas all the stresses are discretized at
he time points t� �l�1 /2��t.

Any order of differencing approximation could be used for the
rst-space derivative operators Dx and Dz and the first-time deriva-

ive Dt in what follows. However, the stability analysis and numeri-
al implementation of the present study use the second-order time
erivative and fourth-order space operator given by

�Dxvx�m,n�
1

�x
�c1�vx�m�1/2,n��vx�m�1/2,n��

�c2�vx�m�3/2,n��vx�m�3/2,n��,

�11�

ith c1�9 /8 and c2�1 /24 the fourth-order differencing weights.

pdate equations for stresses and pressure

Knowing qi, vi at time t� l�t and � ij, p at time t� �l�1 /2��t,
he discrete form of the constitutive laws 9 and 10 are used to update
ij and p at time t� �l�1 /2��t:

Dt� xx� ��u�2��Dxvx��uDzvz�M��Dxqx�Dzqz��m,n,l

�12�

Dt� zz��uDxvx� ��u�2��Dzvz�M��Dxqx�Dzqz��m,n,l

�13�

Dt� xz����Dxvz�Dzvx��m�
1
2

,n�
1
2

,l �14�

Dtp��M�Dxvx�Dzvz��M��Dxqx�Dzqz��m,n,l,

�15�

(m + 1/2, n)

(m + 1/2, n + 1/2)

Normal stresses, fluid pressure

Horizontal fluid and solid velocities

Vertical fluid and solid velocities

Shear stress

x

z

(m, n)

m, n + 1/2)

igure 1. Convention used for the spatial position of the stresses,
ressure, and fluid and solid velocities on the staggered grid.
here Dt, Dx, and Dz denote finite-difference derivatives and where
he vertical line at the right of each equation denotes the space and
ime position at which all of the terms in the equations are centered.

pdate equations for the Darcy velocity

To treat the convolution in equation 6, the integration domain is
roken into a finite number N�1 of past time intervals. The number
can be chosen so that e��N�t � � or

N��
ln �

��t
, �16�

here � is a small number like 10�3 that determines the accuracy.
To perform the integrations, we assume that within each of the

ast finite-difference time intervals �t, the Darcy velocity is continu-
usly varying as a linear function. As Figure 2 indicates, the first
ime interval is half �t, whereas each of the remaining j�1,N inter-
als are of duration �t. We have

I�t���
0

t

ds
e�� �t�s�

�	��t�s�
� �q�s�

�s
��q�s�� �17�

t

∆ t

s

s

∆

s = t

igure 2. Schematic of the kernel of the convolution integral
dashed-line curves, normalized to be unitless� and Darcy flow �sol-
d curves, normalized to be unitless� as a function of the convolution
ime variable s. The upper part corresponds to seismic frequencies
hat are smaller than the viscous-boundary-layer transition ���t

1�. The lower part corresponds to seismic frequencies that are
arger than the viscous-boundary-layer transition ���t � 1�.
resent time corresponds to s� t where the kernel has an integrable
ingularity.
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N36 Masson and Pride
� �
t��t/2

t

ds
e�� �t�s�

�	��t�s�
� �q

�t
���q�t���s�t�

�q

�t
��

�∑
j�1

N �
t�j∆t�∆t/2

t�j∆t�∆t/2

ds
e���t�s�

�	��t�s����q

�s
�

t�j∆t

����q�t�j∆t
���s�t�j∆t�

�q

�s
�

t�j∆t

��. �18�

n the final line of equation 18, both q�s� and its time derivative
q(s)/�s are being evaluated at the time s� t� j�t in the center of
ach interval j and are therefore constants in each interval that can be
aken outside the integrals. For N sufficiently large, the only approx-
mation in passing from equation 17 to 18 is taking the Darcy veloci-
y as linearly varying in each time interval �t.

If the current finite-difference time index for the Darcy velocity is
, the current time in the convolution integral of equation 18 is t� �l

1 /2��t. Upon making the substitution of variables u���t�s�
n the above integrals, the discrete form of equation 18 can be written
s

I	l�
1

2

�

�Go�Ho�
�

Dtq�Go�q�

� �
j�1

N �� ��1� j��t�Gj�Hj�
�

Dtq

�Gj�q���
l�

1
2

�j
�19�

here the coefficients Go, Ho, Gj, and Hj are defined as

Go� �
0

��t/2

e�u

�	u
du �20�

Gj� �
�j�1/2���t

�j�1/2���t

e�u

�	u
du �21�

Ho� �
0

��t/2

e�u� u

	
du �22�

Hj� �
�j�1/2���t

�j�1/2���t

e�u� u

	
du, �23�

nd where the second-order discrete time derivative Dtq and the av-
rage �q� when centered at l�1 /2 are defined as

Dtq�
q�l�1��q�l�

�
�24�
t

�q��
q�l�1��q�l�

2
. �25�

he coefficients Go, Ho, Gj, and Hj in equations 20–23 depend on
nly the material property � and the time interval �t. They can be
omputed ahead of time using any favorite integral solver. For finite
imits on the integrals, they cannot be computed analytically. How-
ver, in the limit that ��t�1, which would correspond to the low-
requency seismic limit for wave propagation applications, we have
he analytic results that Go�1, Ho�1 /2, and Gj�Hj�0.

Using these results for the convolution, and inserting the discrete
orm of equation 8 into the discrete form of equation 6, gives the up-
ate equations for determining qi�l�1�:

�� �
�

k0

�Go�Ho�
�

�Dtqx�
�

k0
Go�qx���

�

k0
Sx�Dxp

��� f

�
�Dx� xx�Dz� xz��

m�
1
2

,n,l� 1
2

�26�

�� �
�

k0

�Go�Ho�
�

�Dtqz�
�

k0
Go�qz���

�

k0
Sz�Dzp

��� f

�
�Dz� zz�Dx� xz��

m,n�
1
2

,l� 1
2

. �27�

ere, the parameter � is defined as

� �� fF�
� f

2

�
, �28�

nd Sx and Sz are defined as

Sx� �
j�1

N �� ��1� j�t��Gj�Hj�
�

Dtqx

�Gj�qx���
m�

1
2

,n,l� 1
2

�j
�29�

Sz� �
j�1

N �� ��1� j�t��Gj�Hj�
�

Dtqz

�Gj�qz���
m�

1
2

,n,l� 1
2

�j
�30�

nd are the contributions to the convolution that come from the N
ime steps that precede the first half time step. The dominant contri-
ution to the convolution comes from the first half time step and is al-
owed for on the left-hand side of equations 26 and 27 by the terms
nvolving Go and Ho.

In the limit of low seismic frequencies, or more specifically when
�t /2�1, we have Sx�Sz�0, Go�1, and Ho�1 /2; and it is

asily verified that equations 26 and 27 exactly reduce to the low-fre-
uency form of equation 7. In this limit, the kernel of the convolution
s concentrated in the first half time interval of past time and effec-
ively acts as a Dirac delta function so that no memory terms need to
e kept �i.e., N�0�.
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As seismic frequencies increase, ��t decreases and more memo-
y terms must be stored to compute the convolution accurately as the
imple rule N��ln � / ���t� suggests. However, once ��t � 1, it
s not necessary to keep increasing the number of memory terms in-
efinitely. In such a high-frequency limit, the lower part of Figure 2
llustrates how the seismic wavelet becomes more concentrated in
ime relative to the extent of the kernel. The convolution is important
n this limit only when the wavelet is close to the present time, so one
eeds to keep only enough memory terms to cover the temporal ex-
ent of the wavelet. Accordingly, for central wave frequencies � that
atisfy � � � �the “high-frequency” domain�, one needs to keep
nly N��ln � / ���t� past time points to obtain accurate results for
he convolution. In practice, we never need to keep more than rough-
y 20 terms in memory.

pdate equations for the particle velocity

Finally, knowing � ij, p, and Dtqi at time t� �l�1 /2��t and vi at
ime t� l�t, vi is updated at time t� �l�1��t by inserting equation
into equation 8 to obtain

�Dtvx�Dx� xx�Dz� xz� �� fDtqx�m�
1
2

,n,l� 1
2

�31�

�Dtvz�Dx� xz�Dz� zz� �� fDtqz�m,n�
1
2

,l� 1
2

. �32�

quations 12–32 provide our finite-difference modeling algorithm.

STABILITY

To investigate the stability of the numerical scheme, we first per-
orm a von Neumann stability analysis in the case for which the con-
olution product in equations 26 and 27 is entirely neglected, i.e., an
nalysis assuming � /k0�0. Then the effects of the remaining pa-
ameters on the stability �� /k0�0 and N�0� are tested numerically.
t is demonstrated that stability always is achieved using the criterion
n which � /k0 is neglected. In passing, we note that in our earlier
tudy �Masson et al., 2006�, we performed a more complicated ver-
ion of the analysis assuming that � /k0�0.

To keep the analytic treatment tractable, we consider a plane lon-
itudinal disturbance advancing in the x-direction through a homo-
eneous material �i.e., qz, vz, � zz, and � xz are set to zero along with all
patial derivatives with respect to z�. To investigate stability in high-
r dimensions, we perform purely numerical tests to establish a crite-
ion �see the discussion at the end of this section�. Displacements ux

nd wx are introduced through the defining relations

vx�Dtux �33�

qx�Dtwx. �34�

n this case, the set of difference equations 12–32 can be combined
nto the matrix system

Qu�0, �35�

here the 2
2 matrix operator Q is given by

Q����u�2��Dxx��Dtt MDxx�� fDtt

MDxx�� fDtt MDxx�� fFDtt
� �36�

nd
u� �ux,wx�T. �37�

ere, Dxx and Dtt are the finite second-derivative operators in space
fourth order� and time �second order�, respectively.

The von Neumann stability analysis assumes that the independent
olutions of equation 35 are of the form

�ux�m,l�
wx�m,l� ��eikm�x�i��t�uo

wo
�, �38�

here k is a real spatial wavenumber. In this context, testing the sta-
ility of the numerical scheme is equivalent to testing the hypothesis

Im���0∀k . �39�

f equation 39 is true, then the scheme is stable.
An expression for the stability criterion is obtained by requiring

he determinant of the linear system to vanish; i.e.,

det�Qeikm�x�i��t��0. �40�

he two roots of equation 40 are

Dxxe
ikm�x�i��t�

	2��	2
2�4	3	1

2	3
Dtte

ikm�x�i��t,

�41�

here the 	 i coefficients are defined as

	1�� f��F�� f /�� �42�

	2�� fF��u�2����M �2M� f �43�

	3�M��u�2��2M� . �44�

t is easily established that the second-order finite-difference time
erivatives yield

Dtte
ikm�x�i��t��

4

�t
2 sin2	��t

2

eikm�x�i��t, �45�

hereas the fourth-order finite-difference space derivatives give

Dxxe
ikm�x�i��t��

4�k

�x
2 eikm�x�i��t, �46�

ith the periodic function �k given by

�k��c1
2�2c1c2�1�4 cos2	 k�x

2

��sin2	 k�x

2



�c2
2 sin2	3k�x

2

 . �47�

gain, c1�9 /8 and c2�1 /24 are the fourth-order differencing
eights.
The stability criterion is established by inserting equations 45 and

6 into equation 41, and requiring that � be real �i.e., Im���0�.
aking the more restrictive solution that is associated with the minus
ign in equation 41, and using the maximum of the function �k with
espect to k �i.e., max��k� �c1�c2�2� so that the restriction on �t

iven �x is as strong as possible, defines the domain in which the nu-
erical scheme is stable when � /k �0:
0
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N38 Masson and Pride
�t��x�	2��	2
2�4	3	1

2�c1�c2�2	3
. �48�

or all values of F�� f /�, the algorithm is unconditionally unstable.
nother way to see �and say� the same thing is to note that the coeffi-

ient � �F�� f /� present in equations 26 and 27 must be positive
or the response to be stable.

Finally, an asymptotic analysis of the right-hand side of equation
8 as the parameter F becomes large results in the linear relation be-
ween �x and �t asymptoting to the classic Courant condition that, in
ne dimension, is given by

�t�
�x

�c1�c2�VP
. �49�

ere, VP is the velocity associated with the undrained fast P-wave

VP���u�2�

�
. �50�

or typical values of F in rocks, the stability requirement of equation
9 always applies.

We now test the effect of having a nonzero value for � /k0 and ac-
ount for any number N of memory terms in equations 26 and 27.
his true stability criterion is obtained by numerically implementing

he full scheme for different values of �t and verifying stability for
ach �t. In Figure 3, we show the effect of adding more memory
erms to equations 26 and 27 for a given value of � /k0. When no
emory terms are used, the stability citerion is the one in equation

8.Adding more memory terms tends to improve the stability until it
eaches a plateau value somewhere between the analytic criterion in
quation 48 and the classic Courant condition in equation 49. Note
hat the plateau is reached when N is given by equation 16 and the
onvolution is being computed properly.

To see why allowing for the convolution makes the scheme even
ore stable �i.e., allows a larger time step to be used� compared to
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igure 3. Evolution of the numerical stability of the scheme as a
unction of the number N of memory variables used in equations 26
nd 27. Top part: Percentage of the integral in equation 19 contained
n the first N terms of the sum. Bottom part: Stability criterion plotted
s a function of the number of memory variables N with � /k0

const. When N equals zero, the stability criterion is equal to the
nalytic criterion in equation 48. When adding more memory vari-
bles, the stability criterion converges toward a plateau somewhere
etween the analytic criterion and the classic Courant value. Note
hat using an odd number of memory variables tends to stabilize the
umerical scheme.
he most restrictive condition of equation 48, one needs to consider
nly the coefficient multiplying the time derivative of the Darcy ve-
ocity in equations 26 and 27 that we might call the “effective fluid
nertia” and is given by � � �Go�Ho�� /k0. The convolution coef-
cients Go and Ho �note that Go � Ho� are adding to � to make the ef-
ective inertia even larger than it was when the convolution and � /k0

ere neglected. Indeed, the more general condition for the scheme to
e stable is that

� ��
�

k0

�Go�Ho�
�

, �51�

hich is more strongly satisfied than the condition � � 0 associated
ith equation 48. Earth materials always have � � 0, so this condi-

ion is always met.
In Figure 4, we present the behavior of the stability criterion as a

unction of � /k0. The most important result is that the stability crite-
ion is strictly increasing with � /k0 �for the same reason that the ef-
ective fluid inertia is increasing with increasing � /k0�, which means
hat the criterion of equation 48 holds true for any value of � /k0. The
rue stability limit for �t is seen to lie somewhere between the criteria
iven by equations 48 and 49.
Last, we have performed numerical tests of stability in 2D and 3D

ersions of the scheme and have determined empirically that divid-
ng the right-hand side of equation 48 by �d, where d is the Euclidian
imension of the modeling domain, gives an appropriate criterion.
his is also the result for staggered-grid implementation of the elas-

odynamic equations �Virieux and Madariaga, 1982�.

NUMERICAL EXAMPLES

In this section, we first present some numerical snapshots of the
elds to demonstrate that the scheme produces qualitatively reason-
ble �expected� results. We then go on to demonstrate the accuracy
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igure 4. Numerical determination of the stability criterion plotted
s a function of � /k0 with the number of memory points N�20. The
stimate is made by varying �t for a given value of � /k0 and keeping
he other parameters fixed. Below the black dots, the scheme is sta-
le; above the black dots, it is unstable. The key result is that the sta-
ility criterion is bounded between the classic Courant condition of
quation 49 as � /k0→0 and the analytic criterion of equation 48 as
/k0→�. The specific shape of the black dotted curve can vary

omewhat depending on the values of the other parameters; howev-
r, it always stays between the upper and lower limits just men-
ioned.
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f the scheme by comparing numerical results for the velocity dis-
ersion and attenuation to exact analytic results.

napshots

We now consider a modeling example that requires the complete
onvolution form of the dynamic-permeability operator.

Consider the situation depicted in Figure 5 involving a compres-
ional point source that sends out both fast and slow compressional
aves. The center frequency of the compressional pulse is 50 kHz.
he dimensions of the numerical modeling domain �roughly 1 m to
ach side� and the frequency of the source are typical of some labora-
ory experiments on ocean sediments performed by Hefner and Will-
ams �2006� and of the underwater field experiments on ocean sedi-

ents performed by Williams et al. �2002�.
To obtain nontrivial results involving the reflection and transmis-

ion of both fast and slow waves, we introduce a permeability inter-
ace below the source point �denoted with a horizontal dashed line in
he figure� while keeping all other material properties uniform
hroughout the modeled region.Above the interface, the permeabili-
y is k0�20 darcy; below, it is 0.2 darcy. This results in the Biot re-
axation frequency being 1.1 kHz above the interface and 110 kHz
elow. Thus, for waves above the interface, the 50-kHz pulse is in
he high-frequency domain where the slow wave is propagatory,
hereas below the interface, the pulse is in the low-frequency do-
ain where the slow wave is purely diffusive. The two columns on

he left in Figure 5 are plotted using the full scale of the pressure
ulses, and the columns on the right are plotted using a saturated
cale that allows the smaller amplitude details of the slow waves to
e observed.

Fluid pressure Bulk pressure Fluid pressure Bulk pressure

= 0.19 (ms)

= 0.12 (ms)

= 0.15 (ms)

Pressure (Pa) Pressure (Pa)

93
cm

–10–3 0 10–3 2×10–3 –5×10–6 0 5×10–6

igure 5. Snapshots of the fluid pressure �first and third columns� and
ulk pressure �second and fourth columns� for a point source at the
enter generating a 50-kHz central-frequency compressional pulse.
he two columns on the left are plotted at full scale, and the columns
n the right are plotted with a saturated scale that allows the fine de-
ails of the slow waves to be observed. In this example, all material
roperties except permeability are uniform throughout. Above the
ashed line, k0�2
10�11 m2 �20 darcy�, the relaxation frequency
s 1.1 kHz, and the wave propagation is thus in the high-frequency
egime where the slow wave is propagatory. Below the dashed line,
0�2
10�13 m2 �0.2 darcy�, the relaxation frequency is 110 kHz,
nd the wave propagation is in the low-frequency regime where the
low wave is purely diffusive. The various waves are the primary or
eflected/transmitted fast and slow waves. The stars indicate the po-
itions where waveforms are recorded �see Figure 6�.
When the direct, fast P-wave arrives at the permeability interface,
ost of its energy is transmitted downward; however, a very weak

eflected P-wave and a somewhat stronger reflected slow wave are
bserved as well. When the direct slow wave arrives at the interface,
here are generated weakly transmitted and reflected fast P-waves as
ell as a strongly reflected slow wave. The slow wave that is trans-
itted is a pure diffusion. No shear waves are generated at the

ource. The shear waves generated by compressional pulses at a con-
rast in permeability are much smaller in energetic amplitude than
he various compressional pulses and are not observed in the present
lots because a shear wave propagates with no change in either fluid
r bulk pressure.

Because the interface separates wave propagation in the low- and
igh-frequency regimes, proper modeling of the slow-wave ampli-
udes in this example requires the inclusion of the convolution inte-
ral involving the Darcy flow. If only the low-frequency form of the
eneralized Darcy’s law �equation 7� is used as opposed to the com-
lete convolution of the present example, the amplitudes of the slow
aves are far too large, as is seen in the traces of Figure 6. In this fig-
re, the column to the left corresponds to a receiver located just
bove the interface �denoted with a star in Figure 5�, and the column
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igure 6. Waveforms recorded at the starred positions in Figure 5.
he solid lines are the result of the present study’s modeling that in-
ludes the dynamic-permeability convolution, whereas the dashed
ines are the result of the low-frequency modeling in which the per-

eability coefficient is taken as a simple multiplicative constant.
he main difference is that the low-frequency equations grossly un-
erestimate the attenuation and dispersion of the slow waves.
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o the right corresponds to a receiver just below the interface. The
eason the low-frequency equations predict a slow wave recorded at
he lower receiver with such large amplitude is because, as the slow
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igure 7. Demonstration of the accuracy of the scheme for Biot fast
aves. The fast-wave velocity and attenuation is determined by per-

orming a transmission experiment at the various center frequencies,
s denoted with crosses. The number of memory points used in the
onvolution is given in the top part. The solid lines in the two lower
arts are the analytically exact results.
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igure 8. Demonstration of the accuracy of the scheme for Biot slow
aves. The slow-wave velocity and attenuation is determined by
erforming a transmission experiment at the various center frequen-
ies, as denoted with crosses. The number of memory points used in
he convolution is given in the top part. The solid lines in the two
ower parts are the analytically exact results.
ave passed from the source to the interface, the attenuation was be-
ng greatly underestimated. This example demonstrates the impor-
ance of using the complete theory involving the dynamic-perme-
bility convolution.

ispersion and attenuation in a homogeneous material

To quantify the accuracy of the present finite-difference model-
ng, the velocity dispersion and attenuation of both fast and slow
aves is determined as a function of frequency and compared to the

xact analytic results in Figures 7 and 8.
The numerical experiments are performed by sending a plane

ave across a uniform region �properties are given in Table 1�. Each
ata point given in Figures 7 and 8 corresponds to a different experi-
ent involving a pulse with a different center frequency. A Morlet
avelet is used having a narrow band of support around a center fre-
uency. By recording the solid particle velocity at two points in the
irection of propagation, and time integrating the recording to obtain
he maximum displacement amplitude and associated traveltime for
ach recording, the velocity and attenuation are determined at each
requency. Upon comparing the crosses �finite-difference results� to
he solid line �analytic results� in Figures 7 and 8, the scheme is seen
o produce accurate results. If only the low-frequency form of the
eneralized Darcy’s law �equation 7� is used, the attenuation falls off
ar too rapidly as ��1 instead of as ��1/2, as seen in the figure.

CONCLUSION

A time-domain finite-difference scheme was presented for solv-
ng Biot’s equations across all frequencies while allowing for the
ossible development of viscous boundary layers in the pores at suf-
ciently high frequencies. In this case, the generalized Darcy law
ontrolling the movement of fluid relative to solid contains a time
onvolution between a kernel that exponentially decays into the past
nd the past time values of the Darcy flow. It was shown how to mod-
l this convolution in an efficient and accurate manner that typically
oes not require more than 20 past time values to be stored �and often
onsiderably fewer�. Snapshots generated by the scheme show how
low waves above the viscous-boundary-layer transition frequency
ave a propagatory nature to them, whereas slow waves below the

able 1. Material properties of a lightly consolidated sand.

Solid grain material

Bulk modulus �Ks� 36.0 GPa

Density ��� 2650 kg /m3

Skeletal framework of grains

Bulk modulus �Kd� 621 MPa

Shear modulus ��� 455 MPa

Porosity ��� 0.3

Permeability �k� 10�12 m2

Fluid

Bulk modulus �Kf� 2.25 GPa

Density �� f� 1000 kg /m3

Viscosity ��� 10�3 N s m�2
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Biot finite-difference modeling N41
ransition frequency are pure diffusions. Getting the amplitudes of
hese slow waves correct requires the use of the complete theory in-
olving the dynamic-permeability convolution. The accuracy of the
cheme was determined by comparing the attenuation and velocity
f numerically modeled plane waves at different frequencies to the
nalytic results. The accuracy was excellent over a broad range of
requencies that included the transition frequency.
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