
UCLA
UCLA Previously Published Works

Title
A bedr way of genomic interval processing

Permalink
https://escholarship.org/uc/item/6n31x67w

Journal
Source Code for Biology and Medicine, 11(1)

ISSN
1751-0473

Authors
Haider, Syed
Waggott, Daryl
Lalonde, Emilie
et al.

Publication Date
2016-12-01

DOI
10.1186/s13029-016-0059-5

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6n31x67w
https://escholarship.org/uc/item/6n31x67w#author
https://escholarship.org
http://www.cdlib.org/

Haider et al. Source Code for Biology and Medicine (2016) 11:14
DOI 10.1186/s13029-016-0059-5
SOFTWARE Open Access
A bedr way of genomic interval processing

Syed Haider1†, Daryl Waggott1†, Emilie Lalonde1,2, Clement Fung1, Fei-Fei Liu2,3 and Paul C. Boutros1,2*
Abstract

Background: Next-generation sequencing is making it critical to robustly and rapidly handle genomic ranges
within standard pipelines. Standard use-cases include annotating sequence ranges with gene or other genomic
annotation, merging multiple experiments together and subsequently quantifying and visualizing the overlap. The
most widely-used tools for these tasks work at the command-line (e.g. BEDTools) and the small number of available
R packages are either slow or have distinct semantics and features from command-line interfaces.

Results: To provide a robust R-based interface to standard command-line tools for genomic coordinate manipulation,
we created bedr. This open-source R package can use either BEDTools or BEDOPS as a back-end and performs data-
manipulation extremely quickly, creating R data structures that can be readily interfaced with existing computational
pipelines. It includes data-visualization capabilities and a number of data-access functions that interface with standard
databases like UCSC and COSMIC.

Conclusions: bedr package provides an open source solution to enable genomic interval data manipulation and
restructuring in R programming language which is commonly used in bioinformatics, and therefore would be useful to
bioinformaticians and genomic researchers.

Keywords: Genomic intervals, BED format, Sequence algebra, Data integration
Background
With the advent of high-throughput sequencing tech-
nologies, data scientists are facing immense challenges
in large-scale sequence analysis and in integrating gen-
omic annotations. For instance, comparing new experi-
ments with previously published datasets, translating
genomic coordinates between different assemblies of an
organism as well as finding cross-species orthologues
are some of the common use-cases in basic science
experiments. To assist these tasks genomic features are
routinely represented and shared using Browser
Extensible Display (BED; [1]), Distributed Annotation
System (DAS; [2]), General Feature Format (GFF), Gene
Transfer Format (GTF) and Variant Call Format (VCF).
These all enable cross-sectional analysis of genomic
studies across multiple programming languages, thereby
enabling seamless data-integration.
* Correspondence: Paul.Boutros@oicr.on.ca
†Equal contributors
1Informatics and Biocomputing Platform, Ontario Institute for Cancer
Research, Toronto M5G 0A3, Canada
2Departments of Radiation Oncology, Pharmacology & Toxicology, and
Medical Biophysics, University of Toronto, Toronto M5G 2M9, Canada
Full list of author information is available at the end of the article

© The Author(s). 2016 Open Access This artic
International License (http://creativecommons
reproduction in any medium, provided you g
the Creative Commons license, and indicate if
(http://creativecommons.org/publicdomain/ze
R is the de facto standard for statistical analysis and
visualization in computational biology [3] for both ex-
ploratory prototyping and rigorous production pipelines.
To this end R has adopted several packages, such as
GenomicRanges and IRanges that expressly deal with
genomic intervals [4]. Albeit powerful, these existing
tools require understanding of bespoke data structures
and classes/objects. To address these issues we imple-
mented a formal BED-operations framework called bedr,
which is an R API offering utility functions implement-
ing commonly used genomic operations as well as offer-
ing a formal R interface to interact with BEDTools and
BEDOPS. bedr is fully compatible with the ubiquitous
BED tools [5, 6] paradigm and integrates seamlessly with
R-based work-flows.
Implementation
bedr is implemented in R and supports the two main
BED engines: BEDTools and BEDOPS [5, 6]. It works on
Unix-like operating systems including Mac OSX. A
high-level conceptual overview of the package usage is
shown in Fig. 1. bedr functions run on any computing
platform (commodity computer, cluster or cloud), and
facilitates integration of multiple data sources (e.g. gene
le is distributed under the terms of the Creative Commons Attribution 4.0
.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
ive appropriate credit to the original author(s) and the source, provide a link to
changes were made. The Creative Commons Public Domain Dedication waiver
ro/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13029-016-0059-5&domain=pdf
mailto:Paul.Boutros@oicr.on.ca
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Fig. 1 Overview of bedr package. bedr can run on a commodity linux based computer or a cloud/cluster. Users can interface with the underlying
driver engines such as BEDTools/BEDOPS/tabix/GenomicRanges through bedr methods in R. This enables integration of user-specified multiple
genomic intervals with reference data sources such as gene annotations (e.g. UCSC) and disease specific features (e.g. COSMIC). Such integration
spans general-purpose genomic interval operations of intersection (*), union (sum) and joins. Output is returned in R friendly data structures for
convenience in subsequent downstream analyses. These data structures are readily convertible to standard data exchange formats such as BED
and GRanges using bedr utility methods

Haider et al. Source Code for Biology and Medicine (2016) 11:14 Page 2 of 7
annotations) and tools (e.g. BEDTools) with user-
specified genomic coordinates, yielding fast results in R
data structures such as data.frame and list. All API calls
are written in R, which internally calls BEDTools and/or
BEDOPS utilities in the native format using system
commands. Further, bedr data can be readily con-
verted to BED [1] and GRanges [4] objects for wider
interoperability.

Results and discussion
The primary input to most bedr methods is a regions
object, which is represented as either an R vector of mul-
tiple region strings as illustrated below or a data.frame of
regions with three columns: chr, start, and end. The re-
gions object returned by various bedr methods matches
the input format; vector or data.frame. Here we briefly
summarize a subset of key bedr functionalities. For further
details on a range of bedr utilities, please see package’s
help and vignettes for detailed examples and workflows.

Sort & merge
This functionality enables sorting of genomic regions in
both natural and lexographical order using R, unix,
BEDTools and BEDOPS engines. Following examples
demonstrate the usage of these engines:

regions <- get.example.regions()
region <- regions[[1]]
bedr.sort.region(
x = region,
engine = "unix",
method = "natural"
)

bedr.sort.region(
x = region,
engine = "R",
method = "lexicographical"
)

bedr.sort.region(
x = region,
engine = "bedtools"
)

bedr.sort.region(
x = region,
engine = "bedops"
)

index V4 V5 V6

1
2
3
4
5
6

chr1:10-100
chr1:101-210
chr1:211-212
chr10:50-100

chr2:10-60
chr20:1-5

.
chr1
chr1

.
chr2

.

-1
111
111
-1
40
-1

-1
250
250
-1
60
-1

Haider et al. Source Code for Biology and Medicine (2016) 11:14 Page 3 of 7
The above code will generate the following outputs of
sorted regions:

natural sort (unix)
"chr1:10-100" "chr1:101-200"
"chr1:200-210" "chr1:211-212"
"chr2:10-50" "chr2:40-60"
"chr10:50-100" "chr20:1-5"

lexicographical sort (R)
"chr1:10-100" "chr1:101-200"
"chr1:200-210" "chr1:211-212"
"chr10:50-100" "chr2:10-50"
"chr2:40-60" "chr20:1-5"

lexicographical sort (bedtools)
"chr1:10-100" "chr1:101-200"
"chr1:200-210" "chr1:211-212"
"chr10:50-100" "chr2:10-50"
"chr2:40-60" "chr20:1-5"

lexicographical sort (bedops)
"chr1:10-100" "chr1:101-200"
"chr1:200-210" "chr1:211-212"
"chr10:50-100" "chr2:10-50"
"chr2:40-60" "chr20:1-5"

As shown above, various types of sorting results are
presented in a similar R data structures regardless of
which sorting engine is used (unix, R, bedtools or bed-
ops) and their respective output style. Also, BEDTools
and BEDOPS do not support natural sorting, and if
method = “natural” is requested with these two engines,
bedr automatically defaults to using engine = “unix” of
“R” to perform sorting. Note, sorting of large number of
regions through R will be slow and may also result in
high memory overhead.
Much of the command-line interaction with BEDTools

and BEDOPS is performed through temporary files
followed by efficient piping/parsing of the output
straight into R data structures. This ensures that mem-
ory intensive sorting tasks (or any other genomic opera-
tions discussed below) are managed by the optimized
engines such as (BEDTools or BEDOPS), and therefore
memory operations in R are limited to subsequent pars-
ing of output.
In addition to sort operations, bedr also supports iden-

tification of overlapping regions which can be collapsed
to avoid downstream analytical challenges such as man-
y:many join results (Fig. 2), e.g.

bedr.merge.region(x = region)
The above code will generate the following output of
merged regions:

"chr1:10-100" "chr1:101-210"
"chr1:211-212" "chr10:50-100"
"chr2:10-60" "chr20:1-5"

Sort and merge can be combined into one step
given they are generally run as a tandem preprocess-
ing step:

bedr.snm.region(x = region)

The above code will generate the following vector out-
put of sorted and merged regions:

"chr1:10-100" "chr1:101-210"
"chr1:211-212" "chr10:50-100"
"chr2:10-60" "chr20:1-5"
Join
This functionality enables joining two region-based data-
sets using intervals as an index or primary key. The out-
put is left outer join with respect to the first regions
object (Fig. 2), e.g.

regions.a <- bedr.merge.region(
x = regions[[1]]
)

regions.b <- bedr.merge.region(
x = regions[[2]]
)

regions.c <- bedr.merge.region(
x = regions[[4]]
)

bedr.join.region(
x = regions.a,
y = regions.b
)

The above code will generate the following output,
containing regions of regions.a in the first column, while
any overlapping regions from regions.b are listed in col-
umns 2 to 4 (chr, start, end). Regions in regions.a with
no overlap are encoded as: . and -1

Fig. 2 Illustration of key bedr operations. bedr regions objects represent a collection of sub-regions specified as R vector or data.frame. Three partially
overlapping example regions (a, b and c) located at the beginning of human chromosome 1 (red mark on ideogram, 1-250 bp) are shown here.
Vertical gray separators between sub-regions indicate regions that are 1 base pair apart. Overlapping regions can be merged, joined, subtracted
resulting in new regions objects as shown here. Associated source code snippets are documented in the Results section. Regions object flank (b, 5 bp)
exemplifies bedr utility flank.regions creating flanking (up and/or downstream) regions of a specified length; +/-5 bp in the example shown here

Haider et al. Source Code for Biology and Medicine (2016) 11:14 Page 4 of 7

Haider et al. Source Code for Biology and Medicine (2016) 11:14 Page 5 of 7
Similarly, another bedr function bedr.join.multiple.re-
gion() supports merging of multiple sets of regions
(Fig. 2), e.g.

bedr.join.multiple.region(
x = list(

a = regions.a,
b = regions.b,
c = regions.c
)

)

The above code will generate the output data.frame
shown below. The table lists all the sub-regions and
their presence across the three sets of region objects
(regions.a, regions.b, and regions.c) passed to the func-
tion. For instance, sub-region chr1:1-10 (column: index)
overlaps with 2 region objects (b and c). This presence is
shown as comma separated list in ‘names’ column as
well as a truth table in the subsequent columns. The
number of columns representing the truth table will
match the number of region objects passed to the func-
tion bedr.join.multiple.region().
index n.overlaps names a b c

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

chr1:1-10
chr1:10-20

chr1:20-100
chr1:100-101
chr1:101-111
chr1:111-210
chr1:210-211
chr1:211-212
chr1:212-240
chr1:240-250

chr1:2000-2010
chr10:50-100

chr10:100-110
chr10:110-150

chr2:1-5
chr2:5-10

chr2:10-20
chr2:20-30
chr2:30-40
chr2:40-60
chr20:1-5
chr20:6-7

chr20:7-10
chr20:10-12

2
1
2
1
2
3
2
3
2
1
1
1
1
2
2
1
2
1
2
3
1
1
2
1

b,c 0 1 1
a 1 0 0

a,c 1 0 1
c 0 0 1

a,c 1 0 1
a,b,c 1 1 1

b,c 0 1 1
a,b,c 1 1 1

b,c 0 1 1
b 0 1 0
b 0 1 0
a 1 0 0
b 0 1 0

b,c 0 1 1
b,c 0 1 1

c 0 0 1
a,c 1 0 1

a 1 0 0
a,c 1 0 1

a,b,c 1 1 1
a 1 0 0
b 0 1 0

b,c 0 1 1
c 0 0 1

CHROM POS ID REF ALT QUAL FILTER

1
2
3
4
5
6

1
1
1
1
1
1

69345
69523
69538
69539
69540
69569

COSM911918
COSM426644
COSM75742

COSM1343690
COSM1560546
COSM1599955

C
G
G
T
G
T

A
T
A
C
T
C

NA
NA
NA
NA
NA
NA

<NA>
<NA>
<NA>
<NA>
<NA>
<NA>
Subtract and intersect
The subtract utility identifies regions exclusive to first
set of regions, and intersect function identifies sub-
regions of first set which overlap with the second set of
regions (Fig. 2), e.g.

bedr.subtract.region(
x = regions.a,
y = regions.b
)

The above code will generate the following output
which lists the sub-regions exclusive to regions.a:

"chr1:10-100" "chr10:50-100"
"chr20:1-5"

Intersect utility makes use of bed.join.region() and finds
regions in the second set which overlap with the regions
in the first set. An example is shown in the Results section
“Join”. Similarly in.region(x = regions.a, y = regions.b) and
its R style convenience operator %in.region% can be used
to test (logical) presence of overlapping regions, e.g.

in.region(
x = regions.a,
y = regions.b
)

FALSE TRUE TRUE FALSE TRUE FALSE

bedr also provides an interface to find overlapping re-
gions using Tabix [7]. This can be done using the follow-
ing bedr call:

regions.d <- c(
"1:1000-100000",
"1:1000000-1100000"
)

cosmic.vcf.example <- system.file(
"extdata/CosmicCodingMuts_v66_
20130725_ex.vcf.gz",
package = "bedr"
)

head(
tabix(

region = regions.d,
file.name = cosmic.vcf.example,
check.chr = FALSE
)

)

which identifies regions overlapping with COSMIC
coding mutations file resulting in the following data.-
frame (only first six rows are shown below):

INFO

1
2
3
4
5
6

GENE=OR4F5;STRAND=+;CDS=c.255C>A;AA=p.I85I;CNT=1
GENE=OR4F5;STRAND=+;CDS=c.433G>T;AA=p.G145C;CNT=1
GENE=OR4F5;STRAND=+;CDS=c.448G>A;AA=p.V150M;CNT=1
GENE=OR4F5;STRAND=+;CDS=c.449T>C;AA=p.V150A;CNT=1
GENE=OR4F5;STRAND=+;CDS=c.450G>T;AA=p.V150V;CNT=1
GENE=OR4F5;STRAND=+;CDS=c.479T>C;AA=p.L160P;CNT=2

Haider et al. Source Code for Biology and Medicine (2016) 11:14 Page 6 of 7
Third-party compatibility
Given that bedr can process regions data as R’s vector as
well as data.frame data structure, it is easily transform-
able to other third-party sequence and region objects.
For instance, bedr provides a utility adaptor to convert
regions into BED data.frame as shown below:

regions.a.bed <- convert2bed(
x = regions.a
)

which can be further converted to a widely compatible
GRanges [4] object, as shown below:

library("GenomicRanges")
makeGRangesFromDataFrame(
df = regions.a.bed
)

The above code will create a GRanges object shown in
the output below, which can be further customized/ex-
tended with additional annotations such as strand and
genomic feature names.
GRanges object with 6 ranges
and 0 metadata columns:

seqnames ranges strand

<Rle> <IRanges> <Rle>

[1]
[2]
[3]
[4]
[5]
[6]

chr1
chr1
chr1

chr10
chr2

chr20

[10, 100]
[101, 210]
[211, 212]
[50, 100]
[10, 60]
[1, 5]

*
*
*
*
*
*

- - - - - - -
seqinfo: 4 sequences from an
unspecified genome;no seqlengths
To perform feature meta-analysis and annotation re-
trieval/conversion (see example workflow in Additional file
1), bedr facilitates downloads from UCSC [8], COSMIC [9]
and HUGO [10] including reference genome annotations,
repeat sequences, black lists and disease candidate features.
Also, bedr has a fully integrated unit-testing framework
allowing users to verify integrity of bedr functions when
using customized development or installations.
Visualization
For results of common operations such as intersect,
Venn diagrams of overlapping features between 2 to 5
sets of regions (2- to 5-way Venn diagrams) can be gen-
erated automatically [11]. The overlap criterion can be
defined in a number of ways including unique intervals,
gene length or user-specified size as a fraction of sub-
region’s length, e.g.

bedr.plot.region(
input = list(

a = regions.a,
b = regions.b
),

feature = "bp",
fraction.overlap = 0.1
)

The above code will generate a base pair level overlap
of sequence objects regions.a and regions.b, and show
the results as a Venn diagram highlighting lengths of
exclusive and overlapping regions as shown below:

Further, bedr output is ideally suited for alternative
complex set visualization tools such as UpSetR [12] and
Gviz [13].

Conclusions
We created bedr; an R package to support genomic op-
erations using the BEDTools [6] and BEDOPS [5] en-
gines. bedr implements an API in R which offers a
number of utility functions such as intersect, merge, sort
and plotting of genomic intervals as well as provides a
unified interface to BEDTools and BEDOPS. These func-
tions are efficient, powerful and perform complex
feature annotations and cross-sectional operations on
genomic regions. Given that bedr supports two well-
established genomic engines, its output is comparable to
the native output of these tools, however in R data struc-
tures. These features of bedr are urgently needed by bio-
informatics research community and will be a timely
addition to the catalogue of sequence analysis tools. Fur-
ther, the interoperability of bedr data structures with
BED and GRanges data.frame/objects makes it an easy-

Haider et al. Source Code for Biology and Medicine (2016) 11:14 Page 7 of 7
to-fit component in existing genomic pipelines. bedr is
freely available as an open-source package through
CRAN and lends itself for customized extensions needed
for in-house sequencing-analysis pipelines as well as fu-
ture bioinformatics protocols.

Availability and requirements
Project name: bedr
Project home page: http://cran.r-project.org/web/pack-
ages/bedr
Operating system(s): OSX, Linux/Unix
Programming language: R
Other requirements: BEDTools, BEDOPS
License: e.g. GNU GPL-2
Any restrictions to use by non-academics: None

Additional file

Additional file 1: Example workflow. (DOCX 30 kb)

Abbreviations
API: Application programming interface; BED: Browser extensible display;
chr: Chromosome; COSMIC: Catalogue of somatic mutations in cancer;
CRAN: The comprehensive R archive network; DAS: Distributed annotation
system; GFF: General feature format; GTF: Gene transfer format;
HUGO: Human Genome Organisation; VCF: Variant call format

Acknowledgements
We thank the Boutros lab for support and software testing.

Funding
This study was supported by the Ontario Institute for Cancer Research (PCB),
the Ontario Ministry of Health and Long Term Care (OMOHLTC; FFL), the Dr.
Mariano Elia Chair in Head & Neck Cancer Research, and philanthropic
support from the Wharton family, Joe’s Team, and Gordon Tozer. Views
expressed do not necessarily reflect those of the OMOHLTC. PCB was
supported by TFRI New Investigator and CIHR New Investigator Awards. This
work was supported by Prostate Cancer Canada and is proudly funded by
the Movember Foundation - Grant #RS2014-01. EL was supported by an
Ontario Graduate Scholarship.

Availability of data and material
Software is available through CRAN: http://cran.r-project.org/web/packages/
bedr. Data sharing not applicable to this article as no datasets were
generated during the current study.

Authors’ contributions
DW and PCB conceived the project. DW wrote the package with contributions
and extensions from SH. SH, EL and CF performed testing and contributed to
documentation and use-cases. PCB and FFL supervised the development. SH
and PCB wrote the manuscript, which all authors read and approved.

Competing interests
The authors declare that they have no competing interests.

Consent for publication
No applicable.

Ethics approval and consent to participate
No applicable.

Author details
1Informatics and Biocomputing Platform, Ontario Institute for Cancer
Research, Toronto M5G 0A3, Canada. 2Departments of Radiation Oncology,
Pharmacology & Toxicology, and Medical Biophysics, University of Toronto,
Toronto M5G 2M9, Canada. 3Ontario Cancer Institute and Campbell Family
Institute for Cancer Research, Princess Margaret Hospital, University Health
Network, Toronto M5G 2M9, Canada.

Received: 23 December 2015 Accepted: 30 September 2016

References
1. Karolchik D, Hinrichs AS, Furey TS, Roskin KM, Sugnet CW, Haussler D,

Kent WJ. The UCSC Table Browser data retrieval tool. Nucleic Acids Res.
2004;32:D493–96.

2. Dowell RD, Jokerst RM, Day A, Eddy SR, Stein L. The distributed annotation
system. BMC Bioinformatics. 2001;2:7.

3. Huber W, Carey VJ, Gentleman R, Anders S, Carlson M, Carvalho BS, Bravo HC,
Davis S, Gatto L, Girke T, et al. Orchestrating high-throughput genomic analysis
with Bioconductor. Nat Methods. 2015;12:115–21.

4. Lawrence M, Huber W, Pages H, Aboyoun P, Carlson M, Gentleman R,
Morgan MT, Carey VJ. Software for computing and annotating genomic
ranges. PLoS Comput Biol. 2013;9:e1003118.

5. Neph S, Kuehn MS, Reynolds AP, Haugen E, Thurman RE, Johnson AK, Rynes E,
Maurano MT, Vierstra J, Thomas S, et al. BEDOPS: high-performance genomic
feature operations. Bioinformatics. 2012;28:1919–20.

6. Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing
genomic features. Bioinformatics. 2010;26:841–2.

7. Li H. Tabix: fast retrieval of sequence features from generic TAB-delimited
files. Bioinformatics. 2011;27:718–9.

8. Rosenbloom KR, Armstrong J, Barber GP, Casper J, Clawson H, Diekhans M,
Dreszer TR, Fujita PA, Guruvadoo L, Haeussler M, et al. The UCSC Genome
Browser database: 2015 update. Nucleic Acids Res. 2015;2015(43):D670–81.

9. Forbes SA, Beare D, Gunasekaran P, Leung K, Bindal N, Boutselakis H,
Ding M, Bamford S, Cole C, Ward S, et al. COSMIC: exploring the
world’s knowledge of somatic mutations in human cancer. Nucleic
Acids Res. 2015;43:D805–11.

10. Gray KA, Yates B, Seal RL, Wright MW, Bruford EA. Genenames.org: the
HGNC resources in 2015. Nucleic Acids Res. 2015;43:D1079–85.

11. Chen H, Boutros PC. VennDiagram: a package for the generation of highly-
customizable Venn and Euler diagrams in R. BMC Bioinformatics. 2011;12:35.

12. Lex A, Gehlenborg N. Points of view: Sets and intersections. Nat Methods.
2014;11:779.

13. Hahne F, Ivanek R. Visualizing genomic data using Gviz and Bioconductor.
Methods Mol Biol. 2016;1418:335–51.
• We accept pre-submission inquiries

• Our selector tool helps you to find the most relevant journal

• We provide round the clock customer support

• Convenient online submission

• Thorough peer review

• Inclusion in PubMed and all major indexing services

• Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central
and we will help you at every step:

http://cran.r-project.org/web/packages/bedr
http://cran.r-project.org/web/packages/bedr
dx.doi.org/10.1186/s13029-016-0059-5
http://cran.r-project.org/web/packages/bedr
http://cran.r-project.org/web/packages/bedr

	Abstract
	Background
	Results
	Conclusions

	Background
	Implementation
	Results and discussion
	Sort & merge
	Join
	Subtract and intersect
	Third-party compatibility
	Visualization

	Conclusions
	Availability and requirements
	Additional file
	Abbreviations
	Acknowledgements
	Funding
	Availability of data and material
	Authors’ contributions
	Competing interests
	Consent for publication
	Ethics approval and consent to participate
	Author details
	References

