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Mean structures form a basis for mean, covariance, and other forms of moment

structure analysis including structural equation modeling. It is shown how to

analyze mean structures using projections. These are used to derive a simple

general goodness of fit test statistic that is asymptotically chi-squared and robust

to departures from normality. Projections are also used to derive two goodness of

fit test statistics for mean structures that are substructures of a more general mean

structure. One of these uses the difference of two goodness of fit test statistics,

one for the general structure and one for the substructure. It is shown how to

use the mean structure results for covariance structure analysis. Best generalized

least squares, or ADF estimates are not required. Any asymptotically normal

estimates may be use. The primary methods used for testing mean and covariance

structures are orthogonal complement methods. A basic difficulty with using these

is identified. Specific examples show how the general results may be applied to

generalized nonlinear regression and to autoregression with measurement errors.

Simulation studies investigate the type one errors and power of the test statistics

involved. An appendix contains a review of the basic asymptotic and projection

methods used. It also gives conditions that lead to the commonly made assumption

that the asymptotic covariance matrix of a vectorized form of a sample covariance

matrix is positive definite and that this is a very mild assumption.

Key words: Projections, statistical software, goodness of fit testing, Browne’s

goodness of fit test, restricted models, difference tests, generalized least squares,

nonsingularity of Γ, matrix orthogonal complements, multivariate nonlinear re-

gression, autoregression, Monte Carlo,
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Introduction

Moment structure analysis is a popular form of multivariate analysis. Appli-

cations include mean structure analysis, confirmatory factor analysis, covari-

ance structure analysis, mean and covariance structure analysis, and struc-

tural equation modeling. Rather than deriving test statistics for these and

other moment structure analyses, we consider these as special cases of mean

structure analysis.

There is a good deal of software for moment structure analysis based on

normal sampling. In practice, however, one is seldom sampling from a nor-

mal distribution. One may proceed under the hope that the departures from

normality faced are mild enough to produce satisfactory analyses. Chau,

Bentler, and Satorra (1991) and others have shown, however, that for some

problems and some departures from normality, estimates and goodness of fit

test statistics can have distributions that differ markedly from distributions

derived under the assumption of normal sampling. This has motivated the

development of semi-parametric estimation and testing methods and moti-

vates the approach employed here.

A basic problem is given a sequence of asymptoticly normally distributed

random vectors tn with asymptotic mean µ0 find a test statistic for a mean

structure µ(θ), that is a statistic that may be used to test the goodness of

fit hypothesis µ(θ) = µ0 for some θ. It is shown how to derive such a test

statistic. The statistic is asymptotically chi-squared under the goodness of

fit hypothesis.
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It is also shown how to derive two goodness of fit test statistics for a mean

structure that is a substructure of a more general structure. One of these

uses the difference of two goodness of fit test statistics, one for the general

structure and one for the substructure.

These statistics are derived using projections. Projections are used be-

cause they can be expressed as continuous functions of basic parameters. Al-

ternative approaches are based on using orthogonal complements or Moore-

Penrose inverses. Neither of these are in general continuous functions of basic

parameters. One can work around this problem, but not without some diffi-

culty and in the past not always successfully. This difficulty is discussed in

the context of Browne’s (1984) fundamental goodness of fit test for covariance

structure analysis.

The mean structure results are used to derive results for covariance struc-

ture analysis. In covariance structure analysis tn = sn where sn is a vectored

form of the sample covariance matrix for a sample of size n. Let σ0 be the

asymptotic mean of sn. Using mean structure results we derive goodness of

fit tests for covariance structures σ(θ) and for substructures of σ(θ).

The starting point for our covariance structure analysis and that of oth-

ers is the asymptotic result
√
n(sn − σ0)

D→ N(0,Γ). It is common practice

to assume that Γ is positive definite. We prove that when the distribution

sampled has a nonsingular component, no matter how small, Γ is positive

definite and that it is probably positive definite even if the distribution sam-

pled is singular. This is comforting because the positive definitness of Γ it is

a frequently made assumption.

4



Specific examples show how our general results may be applied to mul-

tivariate nonlinear regression and autoregression with measurement errors.

Simulation studies investigate the type one errors and power of the test statis-

tics involved.

An appendix contains a review of the basic asymptotic and projection

methods used. Generalized projections are used, that is projections in metrics

that may differ from the standard euclidian metric. The basic result used is

‖Pz‖2
Σ−1 ∼ χ2

q where z ∼ Np(0,Σ) and P is a projection in the metric of Σ−1

of rank q.

Nowadays there is a good deal of literature and software that has imple-

mented semi-parametric methods for mean and covariance structure analysis.

With regard to software there is EQS (Bentler, 2008), LISREL (Jöreskog &

Sörbom 1994) and MPlus (Muthén & Muthén, 2007).

This work began with a goodness of fit test for covariance structure anal-

ysis first introduced by Browne (1984). This has been discussed and ex-

tended to more general moment structure analysis in Satorra (1989), Yuan

and Bentler (1997), Satorra and Nuedecker (2003), Boomsma and Hoogland

(2001) and Curran, West and Finch (1996). Chou, Bentler and Satorra (1991)

have investigated a number of these methods using Monte Carlo methods.

The above references often use somewhat informal arguements that leave

something to be desired in the form of mathematical rigor. For example

Browne’s proof that his basic goodness of fit statistic has an asymptotic

χ2 distribution fails because he assumes without proof that his orthogonal

complement function ∆c exists and is continuous. It turns out, however, that
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the computing formula he uses does have an an asymptotic χ2 distribution.

This follows from our Theorem 4.

Two methods are used to compute Browne’s basic statistic in the software

identified above. At present neither has been shown to have an asymptotic

distribution. We show that in fact they do using Theorem 1 and Lemma 6.

The difference of two Browne type goodness of fit statistics for testing a

restriction of a more general model is often used, but it has not been shown

that such a difference has an asymptotic χ2 distribution. This is proved in

Theorem 6. This difference method is easy to carry out by using any of the

software identified above for unrestricted testing twice. Taking the difference

of the goodness of fit statistics produced gives the required test statistic.

This is a timely result, because such differences are widely used in practice

but until now it has not been proved this difference has an asymptotic χ2

distribution.
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Mean structure analysis

Let t1, · · · , tn be a sequence of random vectors such that

√
n(tn − µ0)

D→ Np(0,Σ)

The sequence tn is said to be asymptotically normally distributed with asymp-

totic mean µ0 and asymptotic covariance matrix Σ.

We do not assume the tn are sample means because in applications they

may not be. They may for example be higher order sample moment vectors.

A function µ(θ) of a parameter vector θ with values in Rp will be called a

mean structure. We are interested in testing the hypothesis that µ0 = µ(θ)

for some θ. This is called the goodness of fit hypothesis for the mean structure

µ(θ).

A mean structure ν(β) is called a substructure of µ(θ) if there is a function

g(β) such that ν(β) = µ(g(β)). Or more compactly such that ν = µ ◦ g. We

are interested in testing the goodness of fit of ν(β) given that of µ(θ). Tests

of this form can be considerably more powerful than tests that don’t use

fitting superstructures.
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Goodness of fit testing

If f is a function that is differentiable at x, then ḟ(x) will denote the Jacobian

of f at x.

Theorem 1: If

1.
√
n(tn − µ0)

D→ Np(0,Σ) and Σn
p→ Σ.

2. Σ is positive definite.

3. µ is a continuously differentiable map from an open subset Θ of Rq into

Rp, µ(θ0) = µ0 for some θ0 ∈ Θ, and µ̇(θ0) has full column rank.

4.
√
n(θ̂n − θ0) converges in distribution.

Then

G(µ) = n‖(I − Pn)(tn − µ(θ̂n))‖2
Σ−1

n

D→ χ2
p−q

where Pn = Un(U ′nΣ−1
n Un)−1U ′nΣ−1

n and Un = µ̇(θ̂n).
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Proof: Let P = U(U ′Σ−1U)−1U ′Σ−1 where U = µ̇(θ0) and note that

Pn
p→ P . Note that (I − P )µ̇(θ0) = (I − P )U = U − U = 0. Using this and

the delta method

√
n(I − Pn)(µ(θ̂n)− µ(θ0))

a
= (I − P )µ̇(θ0)

√
n(θ̂n − θ0) = 0

Using this and the Slutzky theorem

√
n(I − Pn)(tn − µ(θ̂n))

=
√
n(I − Pn)(tn − µ0)−

√
n(I − Pn)(µ(θ̂n)− µ(θ0))

a
= (I − Pn)

√
n(tn − µ0)

D→ (I − P )z

where z ∼ N(0,Σ). Using the Slutzky theorem again

G(µ) = n‖(I − Pn)(tn − µ(θ̂n))‖2
Σ−1

n

D→ ‖(I − P )z‖2
Σ−1

Because I − P is a projection in the metric of Σ−1 of rank p − q it follows

from Lemma A2 of the Appendix that ‖(I −P )z‖2
Σ−1 ∼ χ2

p−q and hence that

G(µ)
D→ χ2

p−q.

Remark: The assumption that µ0 = µ(θ0) for some θ0 ∈ Θ is a goodness

of fit assumption for µ. Theorem 1 may be used to test this assumption.

Remark: Any estimator that satisfies assumption 4 may be used. In

particular any generalized least squares estimator may be used. This is shown

in Lemma A3 of the Appendix.

Remark: The tn in assumption 1 could be a variety of things. It for

example might be the mean ȳn of a sample of size n. It might be a vector of

sample proportions. It might be a vector of sample variances and covariances.

It might be a vector of arbitrary sample moments.
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Consistency of the goodness of fit test based on G(µ)

The goodness of fit hypothesis in Theorem 1 is the assumption that µ(θ0) =

µ0 for some θ0 ∈ Θ. What happens when this hypothesis doesn’t hold? One

might hope that G(µ)
p→∞ as n→∞. That is that the test based on G(µ)

is a consistent test. This is very nearly true.

Corollary 1: If the assumption µ(θ0) = µ0 in Theorem 1 is replaced by

the assumption (I −P )(µ0−µ(θ0)) 6= 0 where P = U(U ′Σ−1U)−1U ′Σ−1 and

U = µ̇(θ0), then G(µ)
p→∞ as n→∞.

Proof: Since Pn
p→ P and Σn

p→ Σ

n−1G(µ) = ‖(I − Pn)(tn − µ(θ̂n))‖2
Σ−1

n

p→ ‖(I − P )(µ0 − µ(θ0)‖2
Σ−1 6= 0

Thus G(µ)
p→∞.

Remark: If µ0 − µ(θ0) is not zero it seems unlikely that it is precisely

in the column space of µ̇(θ0). If it is not (I − P )(µ0 − µ(θ0)) 6= 0 and this

implies the test is consistent. Another way to say this is that if µ0 is chosen

at random the test will be consistent with probability one.
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Testing the goodness of fit of a substructure

Let µ be a mean structure and ν be a substructure of µ. More precisely let

ν = µ ◦ g for some function g. One often wants to test the goodness of fit of

ν given the goodness of fit of µ. Tests of this form can be considerably more

powerful than tests of the form discussed in the previous section.

Theorem 2: If

1.
√
n(tn − µ0)

D→ Np(0,Σ) and Σn
p→ Σ.

2. Σ is positive definite.

3. µ is a continuously differentiable map from an open subset Θ of Rq into

Rp, µ0 = µ(θ0) for some θ0 ∈ Θ, and µ̇(θ0) has full column rank.

4. g is a continuously differentiable map from an open subset B of Rk into

Rq, θ0 = g(β0) for some β0 ∈ B, and ġ(β0) has full column rank.

5. ν = µ ◦ g

6.
√
n(β̂n − β0) converges in distribution.

Then

G(ν|µ) = n‖(Pn − P̃n)(tn − ν(β̂n)‖2
Σ−1

n

D→ χ2
q−k

where Pn = Un(U ′nΣ−1
n Un)−1U ′nΣ−1

n , Un = µ̇(θ̂n), θ̂n = g(β̂n),

P̃n = Xn(X ′nΣ−1
n Xn)−1X ′nΣ−1

n , and Xn = ν̇(β̂n).
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Proof: Let P = U(U ′Σ−1U)−1U ′Σ−1 where U = µ̇(θ0) and θ0 = g(β0).

Let P̃ = X(X ′Σ−1X)X ′Σ−1 where X = ν̇(β0). Note that Pn
p→ P and

P̃n
p→ P̃ . Note also that Pµ̇(θ0) = µ̇(θ0) and P̃ ν̇(β0) = ν̇(β0). Since ν = µ◦g

ν̇(β0) = µ̇(g(β0))ġ(β0) = µ̇(θ0)ġ(β0)

Thus P ν̇(β0) = µ̇(θ0)ġ(β0) = ν̇(β0) and (P − P̃ )ν̇(β0) = 0. By the delta

method

√
n(Pn − P̃n)(ν(βn)− ν(β0))

a
= (P − P̃ )ν̇(β0)

√
n(βn − β0) = 0

Using this and the Slutzky theorem

√
n(Pn − P̃n)(tn − ν(β̂n)) =

√
n(Pn − P̃n)(tn − µ0)

−
√
n(Pn − P̃n)(ν(β̂n)− ν(β0))

a
= (Pn − P̃n)

√
n(tn − µ0)

D→ (P − P̃ )z

where z ∼ N(0,Σ). By the Slutzky theorem again

G(ν|µ) = n‖(Pn − P̃n)(tn − ν(β̂n)‖2
Σ−1

n

D→ ‖(P − P̃ )z‖2
Σ−1

Note that P − P̃ is a projection in the metric of Σ−1 of rank q − k. By

Lemma A2, ‖(P − P̃ )z‖2
Σ−1 ∼ χ2

q−k and G(ν|µ)
D→ χ2

q−k.

Remark: Note that ν(β0) = µ(θ0) = µ0. Thus G(ν|µ) may be viewed as

a statistic for testing the goodness of fit of ν given that of µ.

Remark: Since θ̂n = g(β̂n) there is no need to compute a separate θ̂n. It

is only the structure with the smaller number of parameters that needs to be

fitted. The statistic G(ν|µ) may be viewed as the semi-parametric version of

the Rao (1965, p350) statistic.
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Theorem 3: If

1.
√
n(tn − µ0)

D→ Np(0,Σ) and Σn
p→ Σ

2. Σ is positive definite.

3. µ is a continuously differentiable map from an open subset Θ of Rq into

Rp, µ0 = µ(θ0) for some θ0 ∈ Θ, and µ̇(θ0) has full column rank.

4. g is a continuously differentiable map from an open subset B of Rk into

Rq, θ0 = g(β0) for some β0 ∈ B, and ġ(β0) has full column rank.

5. ν = µ ◦ g.

6.
√
n(θ̂n − θ0) converges in distribution.

7.
√
n(β̂n − β0) converges in distribution.

Then

D(ν|µ) = n‖(I − P̃n)(tn − ν(β̂n)‖2
Σ−1

n
− n‖(I − Pn)(tn − µ(θ̂n)‖2

Σ−1
n

D→ χ2
q−k

where Pn = Un(U ′nΣ−1Un)−1U ′nΣ−1
n , Un = µ̇(θ̂n), P̃n = Xn(X ′nΣ−1

n Xn)−1X ′nΣ−1
n ,

and Xn = ν̇(β̂n).
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Proof: Let P = U(U ′Σ−1U)−1U ′Σ−1 where U = µ̇(θ0) and

P̃ = X(X ′Σ−1X)X ′Σ−1 where X = ν̇(β0). Note that Pn
p→ P and P̃n

p→ P̃ .

By the delta method

√
n(I − Pn)(µ(θ̂n)− µ(θ0))

a
= (I − P )µ̇(θ0)

√
n(θ̂n − θ0) = 0

and

√
n(I − Pn)(tn − µ(θ̂n)) =

√
n(I − Pn)(tn − µ0)−

√
n(I − Pn)(µ(θ̂n))− µ0)

a
= (I − P )

√
n(tn − µ0)

Using Lemma A1 of the appendix

n‖(I − Pn)(tn − µ(θ̂n))‖2
Σ−1

n

a
= n‖(I − P )(tn − µ0)‖2

Σ−1

Similarly

n‖(I − P̃n)(tn − ν(β̂n))‖2
Σ−1

n

a
= ‖(I − P̃ )(tn − µ0)‖2

Σ−1

Using these asymptotic equalities and equation (1) in the Appendix

D(ν|µ)
a
= n‖(I − P̃ )(tn − µ0)‖2

Σ−1
n
− n‖(I − P )(tn − µ0)‖2

Σ−1
n

= n‖(P − P̃ )(tn − µ0)‖2
Σ−1

Using the Slutsky theorem D(ν|µ)
D→ ‖(P − P̃ )z‖2

Σ−1 where z ∼ N(0,Σ).

Since P − P̃ is a projection of rank q − k in the metric of Σ−1, it follows

from Lemma A2 of the Appendix that ‖(P − P̃ )z‖2
Σ−1 ∼ χ2

q−k and hence

D(ν|µ)
D→ χ2

q−k
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Remark: It follows from assumptions 4 and 5 that ν(β0) = µ(θ0) = µ0.

Thus D(ν|µ) may be viewed as a statistic for testing the goodness of fit of ν

given that of µ.

Remark: This Theorem requires estimates θ̂n and β̂n for θ0 and β0.

Theorem 2 only required an estimate for β0.

Remark: The proof of this theorem is somewhat more difficult than

those of Theorems 1 and 2.

Remark: The first term of D(ν|µ) is a statistic for testing the goodness

of fit of ν without assuming that of µ and the second term is a statistic for

testing the goodness of fit of µ. Since there is fairly available software for

computing these goodness of fit statistics D(ν|µ) can be computed by using

the software twice and subtracting. This is a practical advantage because at

present there does not seem to be readily available software for computing the

statistic G(ν|µ) in Theorem 2. It is possible, however, that Theorem 2 will

motivate the creation of such software in part to avoid the need to estimate

θ0 and in part to provide an alternate method of testing.

Remark: A test based on this theorem may be viewed as a semi-parametric

version of the likelihood ratio test.
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Best generalized least squares estimators

In mean structure analysis an estimator θ̂n is called a generalized least squares

(GLS) estimator if θ̂n minimizes

Q(θ) = ‖tn − µ(θ)‖2
Wn

where Wn
p→ W and W is positive definite. When Wn = I a GLS estimator

is called an ordinary least squares (OLS) estimator.

A GLS estimator is called a best generalized least squares estimator

(BGLS) if Wn = Σ−1
n . There has been some reluctance to use BGLS es-

timators, but their use can simplify formulas. Assume θ̂n in Theorem 1 is a

BGLS estimator. Then

µ̇(θ̂n)′Σ−1
n (tn − µ(θ̂n) = 0

It follows that

Pn(tn − µ(θ̂n)) = 0

where Pn is defined as in Theorem 1. Thus

(I − Pn)(tn − µ(θ̂n)) = tn − µ(θ̂n)

and

G(µ) = n‖tn − µ(θ̂n)‖2
Σ−1

n

which is a bit simpler than the more general form for G(µ) given in Theo-

rem 1. Similarly if β̂n in Theorem 2 is a BGLS estimator

G(ν|µ) = n‖Pn(tn − ν(β̂n))‖2
Σ−1

n
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and if the estimators θ̂n and β̂n in Theorem 3 are BGLS estimators then

D(ν|µ) = n‖tn − ν(θ̂n)‖2
Σ−1

n
− n‖tn − µ(θ̂n)‖2

Σ−1
n

One can also show that

Tn = n‖µ(θ̂n)− ν(β̂n)‖2
Σ−1

n

D→ χ2
q−k

Proof: Let P = U(U ′Γ−1U)−1U ′Γ−1 where U = µ̇(θ0) and note that

√
n(I − Pn)(µ(θ̂n)− µ(θ0))

a
= (I − P )µ̇(θ0)

√
n(θ̂n − θ0) = 0

and

√
n(tn − µ(θ̂n)) =

√
n(I − Pn)(tn − µ(θ̂n))

=
√
n(I − Pn)(tn − µ0)−

√
n(I − Pn)(µ(θ̂n)− µ0)

a
=
√
n(I − Pn)(tn − µ0)

Simularly
√
n(tn − ν(β̂n))

a
=
√
n(I − P̃n)(tn − µ0)

Subtracting

√
n(µ(θ̂n)− ν(β̂n))

a
= (Pn − P̃n)

√
n(tn − µ0)

Let z ∼ N(0,Σ). Then

Tn = n‖µ(θ̂n)− ν(β̂n)‖2
Σ−1

n

a
= ‖(Pn − P̃n)

√
n(tn − µ0)‖2

Σ−1
n

D→ ‖(P − P̃ )z‖2
Σ−1 ∼ χ2

q−k
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Covariance structure analysis

There are many forms of moment structure analysis to which our previous

work might be applied. The most commonly used is covariance structure

analysis. This will be considered here.

Given a covariance matrix Σ let vech(Σ) be a listing of the diagonal and

lower diagonal elements of Σ as a column vector. The elements are read

column-wise. For example


σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

 −→



σ11

σ21

σ31

σ22

σ32

σ33


Let x1, · · · , xn be a sample from a distribution with covariance matrix Σ0.

Let Σ(θ) be a covariance structure for Σ0. While this is the natural way to

formulate a covariance structure it will be convenient to let σ(θ) = vech(Σ(θ))

and σ0 = vech(Σ0) and view σ(θ) as a covariance structure for σ0.

We are interested in testing the goodness of fit hypothesis σ0 = σ(θ) for

some θ. We are also interested in testing σ0 = τ(β) for some β when τ is a

substructure of σ.

For these purposes we will derive covariance structure analysis analogs

for the mean structure analysis Theorems 1, 2, and 3.
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We begin with a lemma that shows that under appropriate assumptions
√
n(sn − σ0)

D→ N(0,Γ). This suggests that mean structure methods with

tn = sn and µ0 = σ0 might be used for covariance structure analysis.

Lemma 3: If

1. x1, · · · , xn is a sample from an m dimensional distribution distribution

with finite fourth moments and covariance matrix Σ0.

2. Sn = 1
n

∑
(xi − x̄n)(xi − x̄n)′.

3. sn = vech(Sn) and σ0 = vech(Σ0)

4. ti = vech((xi − x̄)(xi − x̄)′)

Then
√
n(sn − σ0)

D→ N(0,Γ)

for some Γ.

Moreover

Γn =
1

n

n∑
i=1

(ti − t̄n)(ti − t̄n)′
p→ Γ

19



Proof: We may assume without loss of generality that the xi have mean

zero. By the Slutzky theorem
√
nx̄x̄′

p→ 0. Thus

√
nSn =

1√
n

∑
xix
′
i −
√
nx̄x̄′

a
=

1√
n

∑
xix
′
i

And
√
n(sn − σ0)

a
=

1√
n

∑
(vech(xix

′
i)− σ0)

Since σ0 = E(vech(xix
′
i)), by the central limit theorem

√
n(sn − σ0)

D→ N(0,Γ)

where Γ is the common covariance matrix for the vech(xix
′
i). This is the first

assertion.

Using Jennrich (2008, p585) ti is the i-th infinitesimal jackknife pseudo

value for sn and

Γn =
1

n

∑
(ti − t̄n)(ti − t̄n)′

p→ Γ

which is the second assertion.

Remark: The second assertion of this lemma is often used. The only

proof we know of for this is that in the reference given.
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The following is a corollary of Theorem 1.

Theorem 4: If

1. x1, · · · , xn is a sample from an m dimensional distribution distribution

with finite fourth moments and covariance matrix Σ0.

2. Sn = 1
n

∑
(xi − x̄n)(xi − x̄n)′.

3. sn = vech(Sn) and σ0 = vech(Σ0).

4.
√
n(sn − σ0)

D→ Np(0,Γ) where p = m(m+ 1)/2 and Γn
p→ Γ.

5. Γ is positive definite.

6. σ is a continuously differentiable map from an open subset Θ of Rq into

Rp, σ0 = σ(θ0) for some θ0 ∈ Θ and σ̇(θ0) has full column rank.

7.
√
n(θ̂n − θ0) converges in distribution.

Then

G(σ) = n‖(I − Pn)(sn − σ(θ̂n))‖2
Γ−1

n

D→ χ2
p−q

where Pn = Un(U ′nΓ−1
n Un)−1U ′nΓ−1

n and Un = σ̇(θ̂n).
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Proof: The assumptions of Theorem 1 are satisfied when p = m(m+1)/2,

tn = sn, µ0 = σ0, Σ = Γ, Σn = Γn, and µ = σ.

It follows from Theorem 1 that

G(σ) = n‖(I − Pn)(sn − σ(θ̂n))‖2
Γ−1

n

D→ χ2
p−q

where Pn = Un(U ′nΓ−1
n Un)−1U ′nΓ−1

n and Un = σ̇(θ̂n).

Remark: The assumption σ0 = σ(θ0) for some θ0 ∈ Θ is a goodness of

fit hypothesis for the covariance structure σ. Theorem 3 can be used to test

this hypothesis.

Remark: The assumptions of Lemma 3 are satisfied. Lemma 3 implies

assumption 4 and also provides a simple choice for Γn.

Remark: The assumption that Γ is positive definite is very mild. This

is shown in the Appendix. In-particular if the distribution from which the

xi are sampled has a continuous component no matter how small, then Γ

is positive definite. For example if the distribution has a density or is a

mixture of a distribution that has a density and a discrete distribution, then

Γ is positive definite.

Remark: It is shown in the appendix that if θ̂n is a generalized least

squares estimate of θ0, then
√
n(θ̂n − θ0) converges in distribution.
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The following is a corollary of Theorem 2.

Theorem 5: If

1. x1, · · · , xn is a sample from an m dimensional distribution distribution

with finite fourth moments and covariance matrix Σ0.

2. Sn = 1
n

∑
(xi − x̄n)(xi − x̄n)′.

3. sn = vech(Sn) and σ0 = vech(Σ0).

4.
√
n(sn − σ0)

D→ Np(0,Γ) where p = m(m+ 1)/2 and Γn
p→ Γ.

5. Γ is positive definite.

6. σ is a continuously differentiable map from an open subset Θ of Rq into

Rp, σ0 = σ(θ0) for some θ0 ∈ Θ, and σ̇(θ0) has full column rank.

7. g is a continuously differentiable map from an open subset B of Rk into

Rq, θ0 = g(β0) for some β0 ∈ B, and ġ(β0) has full column rank.

8. τ = σ ◦ g.

9.
√
n(β̂n − β0) converges in distribution.

Then

G(τ |σ) = n‖(Pn − P̃n)(sn − τ(β̂n))‖2
Γ−1

n

D→ χ2
p−q

where Pn = Un(U ′nΓ−1
n Un)−1U ′nΓ−1

n , Un = σ̇(θ̂n), θ̂n = g(β̂n),

P̃n = Xn(X ′nΓnXn)−1X ′nΓn, and Xn = τ̇(β̂n).
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Proof: The assumptions of Theorem 2 are satisfied when p = m(m+1)/2,

tn = sn, µ0 = σ0, Σ = Γ, Σn = Γn, µ = σ, and ν = τ .

It follows from Theorem 2 that

G(τ |σ) = n‖(Pn − P̃n)(sn − τ(β̂n))‖2
Γ−1

n

D→ χ2
p−q

where Pn = Un(U ′nΓ−1
n Un)−1U ′nΓ−1

n , Un = σ̇(θ̂n), θ̂n = g(β̂n), P̃ = Xn(X ′nΓnXn)−1X ′nΓn,

and Xn = τ̇(β̂n).

Remark: It follows from assumptions 6, 7, and 8 that τ(β0) = σ(θ0) =

σ0. Thus D(τ |σ) may be viewed as a statistic for testing the goodness of fit

of τ given that of σ.

Remark: The assumptions of Lemma 3 are satisfied. Lemma 3 implies

assumption 4 and also provides a simple choice for Γn.

Remark: As noted above the assumption that Γ is positive definite is

very mild.

Remark: It is shown in the Appendix that if β̂n is a GLS estimator of

β0, then
√
n(β̂n−β0) converges in distribution and assumption 9 is satisfied.
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The following is a corollary of Theorem 3.

Theorem 6: If

1. x1, · · · , xn is a sample from an m dimensional distribution distribution

with finite fourth moments and covariance matrix Σ0.

2. Sn = 1
n

∑
(xi − x̄n)(xi − x̄n)′.

3. sn = vech(Sn) and σ0 = vech(Σ0).

4.
√
n(sn − σ0)

D→ Np(0,Γ) where p = m(m+ 1)/2 and Γn
p→ Γ.

5. Γ is positive definite.

6. σ is a continuously differentiable map from an open subset Θ of Rq into

Rp, σ0 = σ(θ0) for some θ0 ∈ Θ, and σ̇(θ0) has full column rank.

7. g is a continuously differentiable map from an open subset B of Rk into

Rq, θ0 = g(β0) for some β0 ∈ B, and ġ(β0) has full column rank.

8. τ = σ ◦ g.

9.
√
n(θ̂n − θ0) converges in distribution.

10.
√
n(β̂n − β0) converges in distribution.

Then

D(τ |σ) = n‖(I − P̃n)(sn − τ(β̂n)‖2
Γ−1

n
− n‖(I − Pn)(sn − σ(θ̂n)‖2

Γ−1
n

D→ χ2
q−k

where Pn = Un(U ′nΣ−1Un)−1U ′nΣ−1
n , Un = σ̇(θ̂n), P̃n = Xn(X ′nΣ−1

n Xn)−1X ′nΣ−1
n ,

and Xn = τ̇(β̂n).
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Proof: The assumptions of Theorem 3 are satisfied when p = m(m+1)/2,

tn = sn, µ0 = σ0, Σ = Γ, Σn = Γn, µ = σ, ν = τ and µ = σ.

It follows from Theorem 3 that

D(τ |σ) = n‖(I − P̃n)(sn − τ(β̂n)‖2
Γ−1

n
− n‖(I − Pn)(sn − σ(θ̂n)‖2

Γ−1
n

D→ χ2
q−k

where Pn = Un(U ′nΣ−1Un)−1U ′nΣ−1
n , Un = σ̇(θ̂n), P̃n = Xn(X ′nΣ−1

n Xn)−1X ′nΣ−1
n ,

and Xn = τ̇(β̂n).

Remark: It follows from assumptions 6, 7, and 8 that τ(β0) = σ(θ0) =

σ0. Thus D(τ |σ) may be viewed as a statistic for testing the goodness of fit

of τ given that of σ.

Remark: This Theorem requires estimators θ̂n and β̂n for θ0 and β0.

Theorem 5 only required an estimator for β0.

Remark: The test statistic D(τ |σ) can be written in the form D(τ |σ) =

G(τ) − G(σ) that is as the difference of two basic goodness of fit statistics.

Since there is fairly readily available software for computing these basic good-

ness of fit statistics, D(τ |σ) can be computed by using the software twice and

subtracting.

Remark: A test based on this theorem may be viewed as a semi-parametric

version of the likelihood ratio test.
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Alternative expressions for G(µ) and G(σ)

Using orthogonal complements the goodness of fit test statistics G(µ) and

G(σ) can be expressed in an interesting alternative form.

If matrices X and Y have p rows, then they are matrix orthogonal com-

pliments if X ′Y = 0 and the columns of (X, Y ) are a basis for Rp.

Lemma 4: If U is a p× q matrix with full column rank, P projects onto

the column space of U in the metric of Σ−1, and H is a matrix orthogonal

complement of U , then

(I − P )′Σ−1(I − P ) = H(H ′ΣH)−1H ′

Proof: Let V be a matrix orthogonal complement of Σ−1U . Then the

column space of V is the orthogonal complement of the column space of U

in the metric of Σ−1 and Q = I −P is a projection onto the column space of

V in the metric of Σ−1.

Since both H and Σ−1V are matrix orthogonal complements of U there

columns are linearly independent and span the same space. Thus Σ−1V =

HM for some nonsingular matrixM . Using the fact thatQ = V (V ′Σ−1V )−1V ′Σ−1

(I − P )′Σ−1(I − P ) = Q′Σ−1Q = Σ−1QQ = Σ−1Q

= Σ−1V (V ′Σ−1V )−1V ′Σ−1 = HM(M ′H ′ΣHM)−1M ′H ′

= H(H ′ΣH)−1H ′
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The following is a corollary of Lemma 4.

Lemma 5: If Hn is a matrix orthogonal complement of the Un in Theo-

rem 1, then

G(µ) = n(tn − µ(θ̂n))′Hn(H ′nΣnHn)−1H ′n(tn − µ(θ̂n))

Proof: Using Lemma 4

G(µ) = n‖(I − Pn)(tn − µ(θ̂n))‖2
Σ−1

n

= (tn − µ(θ̂n))′(I − PUn)′Σ−1
n (I − PUn)(tn − µ(θ̂n))

= (tn − µ(θ̂n))′Hn(H ′nΣnHn)−1H ′n(tn − µ(θ̂n))

In the context of covariance structure analysis a similar argument gives

Lemma 6: If Hn is a matrix orthogonal complement of the Un of Theo-

rem 4

G(σ) = n(tn − σ(θ̂n))′Hn(H ′nΣnHn)−1H ′n(tn − σ(θ̂n))

Remark: Lemmas 5 and 6 provide alternate computing formulas for

G(µ) and G(σ). LISREL uses the formula in Lemma 6 to compute there

goodness of fit statistic for covariance structure analysis. With this exception

no statistical software we know of uses the formulas in Lemmas 5 and 6 or

the projection formulas in Theorems 1 and 4. The next section will identify

what is used.

28



Browne’s goodness of fit statistic

The formula for G(σ) given by Lemma 6, is similar to the goodness of fit test

statistic (2.20a) of Browne (1984) which has the form

B = n(sn − σ(θ̂n))′∆̂c(∆̂
′
cŶ ∆̂c)

−1∆̂′c(sn − σ(θ̂n))

where ∆̂c = ∆c(θ̂n), ∆c is a function such that ∆c(θ) is a matrix orthogonal

complement of ∆(θ) = σ̇(θ), and Ŷ is a consistent estimator of the asymptotic

covariance matrix of sn.

Browne fails to prove that B is asymptoticly χ2
p−q because he assumes

without proof that ∆c exists and is continuous. He also provides no way

to evaluate B in the form displayed above. He claims, however, that in the

notation of our Theorem 4 it can be expressed in the computable form

B = n(sn − σ(θ̂n))′(Γ−1
n − Γ−1

n Pn)(tn − σ(θ̂n))

This is his formula (2.20b). It is the formula used by EQS to evaluate

Browne’s statistic. Note that

B = n(sn−σ(θ̂n))′Γ−1
n (I−Pn)(sn−σ(θ̂n)) = n‖(I−Pn)(sn−σ(θ̂n))‖2

Σ−1
n

= G(µ)

This means that as implemented by EQS Browne’s statistic is equal to G(σ).

If the ∆̂c in the first expression for B were replaced by Hn from the

previous section and Ŷ were replaced by Γn, the resulting

B = n(sn − σ(θ̂n))′Hn(H ′nΓnHn)−1H ′n(sn − σ(θ̂n)) = G(σ)

This is the formula used by LISREL to compute Browne’s statistic and it

too is equal to G(σ).

29



Since what is computed by EQS and LISREL is equal to G(σ) it follows

from Theorem 4 that these statistics have an asymptotic χ2
p−q distribution.

This is something that has not been proved previously and is an important

result because EQS and LISREL are used extensively for goodness of fit

testing in covariance structure analysis. We don’t know what Mplus and

other statistical software use to compute Browne’s statistic, but it seems

likely that they use one of the two formulas given above.
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Best generalized least squares estimators

In covariance structure analysis an estimator θ̂n is called a BGLS estimator

if θ̂n minimizes

Q(θ) = ‖sn − σ(θ)‖2
Γ−1

n

If θ̂n and β̂n in Theorems 4, 5, and 6 are BGLS estimators

G(σ) = n‖sn − σ(θ̂n)‖2
Σ−1

n

G(τ |σ) = n‖Pn(sn − σ(θ̂n))‖2
Γ−1

n

D(τ |σ) = n‖sn − τ(θ̂n)‖2
Γ−1

n
− n‖sn − σ(θ̂n)‖2

Γ−1
n

Moreover

Tn = ‖σ(θ̂)− τ(β̂)‖2
Γ−1

n

D→ χ2
q−k

Because covariance structure analysis is a form of mean structure analysis

these results follow from those in the section on best generalized least squares

estimators for mean structure analysis.

Remark: While the use of BGLS estimators simplifies the formulas for

G(σ), G(τ |σ), and D(τ |σ) from a practical point BGLS estimators have

proved to be quite difficult to use with modest sample sizes and moderate

sized models. The main problem is that programs used to compute them fail

to converge and often give improper solutions. These problems are the main

reason we have developed our results in a way that does not require the use

of BGLS estimators.
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First and second moment structure analysis

Let x be a random vector. Let

y =

 x

vech(xx′)


a vector containing the first and second powers of the components of x. Let

ξ0 = E(y). And let ξ(θ) be a structure or model for ξ0. We are interested in

testing the goodness of fit of ξ(θ).

Let µ0 and Σ0 be the mean vector and covariance matrix for x. Then

ξ0 =

 µ0

vech(Σ0 + µ0µ
′
0)


For applications to mean and covariance structure analysis one defines ξ(θ)

in terms of structures µ(θ) and Σ(θ) for µ0 and Σ0 as

ξ(θ) =

 µ(θ)

vech(Σ(θ) + µ(θ)µ(θ)′)


Let x1, · · · , xn be a sample from the distribution of x and

yi =

 xi

vech(xix
′
i)


Then

√
n(ȳn − ξ0)

D→ N(0,Γ)

where Γ is the covariance matrix of y. One can use mean structure analysis

methods to construct tests for the goodness of fit of ξ(θ) and substructures

of ξ(θ). In a paper that is already too long we will not consider the details

of this.
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Corrected test statistics

It has been known for some time that in covariance structure analysis Browne’s

(1984, Proposition 4) goodness of fit test statistic can seriously over reject

when the goodness of fit hypothesis holds. Yuan and Bentler (1997) show

this problem can be ameliorated by using a corrected version of Browne’s

statistic B of the form

CB(σ) =
B(σ)

1 +B(σ)/n

We will use this for our G(σ) statistic. That is

CG(σ) =
G(σ)

1 +G(σ)/n

And for the difference statistic D(τ |σ) use

CD(τ |σ) = CG(τ)− CG(σ)

where CG(τ) = G(τ)/(1 +G(τ)/n).
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Examples

Multivariate nonlinear regression

Let f(θ) be a p-component continuously differentiable function of θ for all θ in

a compact subset of Θ of Rq and assume f(θ) is one to one. For i = 1, · · · , n

let

yi = f(θ0) + εi

where θ0 is an interior point of Θ and ε1, · · · , εn is a sample from a distri-

bution with mean zero and positive definite covariance matrix Σ. This is a

multivariate nonlinear regression model.

From the central limit theorem

√
n(ȳn − f(θ0))

D→ Np(0,Σ)

From the law of large numbers

Sn =
1

n

∑
(yi − ȳn)(yi − ȳn)′

p→ Σ

For θ ∈ Θ let

Qn(θ) = (ȳn − f(θ))′S−1
n (ȳn − f(θ))

and let θ̂n be any minimizer of Qn(θ). Assume ḟ(θ0) has full column rank.

The assumptions of Lemma A3 are satisfied when tn = ȳn and Wn = S−1
n . It

follows from Lemma A3 that θ̂n is an asymptotically normal estimator of θ0.

The assumptions of Theorem 1 are satisfied when tn = ȳn, Σn = S−1
n and

µ = f . It follows from Theorem 1 that

G(f) = n‖(I − Pn)(ȳ − f(θ̂n))‖S−1
n

D→ χ2
p−q
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where Pn = Un(U ′nS
−1
n Un)−1U ′nS

−1
n and Un = ḟ(θ̂n).

We will use simulation to investigate the performance the statistic G(f).

Remark: Here θ̂n is a BGLS estimator and the formula for G(f) can be

simplified. We will not do this because we also want to consider the use of

ordinary least squares estimators and for these the simplified formula is not

asymptotically χ2
p−q.
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Simulation study

Let

X =



1 0

1 0

0 1

0 1


This is a one-way analysis of variance design matrix. Let the i-th component

of f(θ) be exp(xiθ) where xi is the i-th row of X. Thus f(θ) is an exponential

model. Clearly f(θ) and ḟ(θ) are continuous functions of θ for all θ and it is

easy to show ḟ(θ) has full column rank for all θ.

Let Σ be the randomized block covariance matrix.

Σ =



1 .5 0 0

.5 1 0 0

0 0 1 .5

0 0 .5 1


Let zij, i = 1, · · · , n and j = 1, · · · , 4 be a sample from the affine transforma-

tion (χ2
3 − 3)/

√
6 of the chi-squared distribution with 3 degrees of freedom.

This distribution is decidedly non-normal. It is quite skewed and fairly long

tailed on the right. The zij, however, have mean zero, variance one, and are

independent. For i = 1, · · · , n let

ei = Σ1/2



zi1

zi2

zi3

zi4


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These are a sample from a distribution with mean zero and covariance matrix

Σ. For i = 1, · · · , n let yi = f(θ0)+ei where θ0 = (1, 2)′. From the discussion

above

G(f)
D→ χ2

p−q = χ2
2

In applications one would reject the hypothesis that the yi have the mean

structure f(θ) if

G(f) > cv

where cv is the 5% upper quantile of the chi-squared distribution with two

degrees of freedom. The nominal type-one error error for this test is 5%. We

will use simulation to estimate the actual type-one error for this test.

To this end for various values of n, N = 1000 independent samples

y1, · · · , yn were generated and the percentage of these whose G(f) values

exceeded cv were computed. These percentages are estimates of the type-

one errors of the tests based on G(f). The results are displayed in the first

column of Table 1.
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Table 1: Type-one error and power estimates for the goodness of fit tests

based on G(f) and CG(f) for samples of size n using 1000 replications of

the analysis for each sample size. The margin of error for these estimates is

.0138

n Type-one error Power

G(f) CG(f) G(f) CG(f)

25 .091 .042 .280 .184

50 .061 .039 .460 .390

100 .048 .038 .736 .707

The first column of Table 1 contains the the type-one error estimates when

using G(f). For n = 25 its type-one error estimate differs from its nominal

value .05 by much more the estimates margin of error .0138. This suggests

that samples of 25 are too small for the test using G(f) to be reliable. The

other type-one error estimates when using G(f) are within their margin of

error to .05.

The second column in Table 1 are the type one error estimates when using

CG(f) the corrected version of G(f). These are all within there margin of

error of to .05.

The last two columns of Table 1 display the estimated power of the tests

based on G(f) and CG(f) when the goodness of fit hypothesis fails. More

specifically a small interaction component γ0 = (.1,−.1,−.1, .1)′ was added

38



to f(θ0) and the data y1, · · · , yn generated using

yi = f(θ0) + γ0 + ei

The mean structure f(θ) no longer satisfies the goodness of fit hypothesis

and hopefully the goodness of fit tests based G(f) and CG(f) will reject this

hypothesis. Estimates of the power of these tests are given in the last two

columns of Table 1. As expected the estimated power increases as the sample

size increases and is fairly large when n = 100.

As noted above we have used BGLS estimators in the simulations that

produced Table 1. We have also run our simulations using ordinary least

squares estimators rather than BGLS estimators. To our surprise this had no

effect at all on the results in Table 1. The values of the parameter estimates

were a bit different, but the values of the test statistics were very similar for

the two types of estimators. So similar they had no effect on the simulation

estimates.
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Autoregression with measurement errors

We consider a covariance structure for an autoregression model with measure-

ment errors. Models of this form are used to analyze panel data in economics

and social sciences.

For our example consider the following model equations

xt = ηt + ut, t = 1, . . . , 5

ηt = α η(t−1) + vt, t = 2, . . . , 5

where the ut’s, vt’s and η1 are independent samples from densities with zero

means and finite fourth moments.

We assume the ut have a common variance ψ. Let φ1 = var(η1) and for

t = 2, · · · , 5 let φt = var(vt). Let θ = (ψ, α, φ1, . . . , φ5)′ be a vector containing

the parameters of the model. Let Θ be all θ such that ψ and φ1, · · · , φ5 are

positive and |α| < 1. This is an open subset of R7.

This model is a particular case of the state dependence model of Anderson

and Hsiao (1982), an autoregressive model with measurement error used to

analyze panel or longitudinal data. For a recent application of this model to

financial data, see Bou and Satorra (2007). In applications the xt’s are the

only observable variables. The ut’s are measurement errors, and the vt are

disturbance terms for the autoregression model.
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Let x = (x1, · · · , x5)′, v1 = η1, v = (v1, · · · , v5)′ and u = (u1, · · · , u5)′ .

Then

x = Lv + u

Where

L =



1 0 0 0 0

α 1 0 0 0

α2 α 1 0 0

α3 α2 α 1 0

α4 α3 α2 α 1


Because the components of u are independent and have densities, the distri-

bution of u has a density. Similarly v has a density. Because L is nonsingular

and u and v are independent, x has a density.

The covariance matrix for x is

Σ(θ) = LΦL′ + ψI5

where Φ is a diagonal matrix with diagonal elements φ1, · · · , φ5. Note that

Σ(θ) is continuously differentiable for all θ ∈ Θ and σ(θ) = vech(Σ(θ)) is

also.

Let vectors x1, . . . , xn be a sample from this autoregressive model with

a parameter vector θ0 ∈ Θ. Then the covariance matrix for the population

sampled is Σ0 = Σ(θ0). Let Sn = 1
n

∑
(xi− x̄n)(xi− x̄n)′, sn = vech(Sn), and

σ0 = vech(Σ0).

It follows from Lemma 3 that
√
n(sn − σ0)

D→ N(0,Γ) for some Γ and

that Γn
p→ Γ where Γn is defined in Lemma 3. We will use this Γn.
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Since x has a density it follows from Lemma A4 that Γ is positive definite.

Note that σ is a continuously differentiable map from Θ into Rp where

p = 15. Moreover σ0 = vech(Σ0) = σ(θ0).

We will use GLS to estimate θ0. It follows from Lemma A3 that
√
n(θ̂n−

θ0) converges in distribution.

Thus the assumptions of Theorem 4 will be satisfied if σ̇(θ0) has full

column rank. If so it follows from Theorem 4 that

G(σ) = n‖(I − Pn)(sn − σ(θ̂n))‖2
Γ−1

n

D→ χ2
p−q = χ2

8

where Pn = Un(U ′nΓ−1
n Un)−1U ′nΓ−1

n and Un = σ̇(θ̂n).

In specific applications one needs to show or assume σ̇(θ0) has full column

rank. For the simulations below this was shown by computing σ̇(θ0) and its

singular values.

For the simulations below NT-GLS was used for the estimation. This is

a form of GLS estimation. More specifically the estimator θ̂n of θ0 minimizes

Qn(θ) = (sn − σ(θ))′Wn(sn − σ(θ))

Wn = .5D′(S−1
n ⊗ S−1

n )D, and D is the duplication matrix for vech and vec.

See Magnus and Neudecker (1999). An alternate expression for Qn(θ) is

Qn(θ) = tr(S−1
n (Sn − Σ(θ)))2
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Consider next testing the goodness of fit of a substructure τ of σ where τ

is the restriction of σ obtained by assuming φ2, · · · , φ5 have a common value

φ. We would like to use Theorem 6 to test the goodness of fit of τ given that

of σ by showing that under this hypothesis D(τ |σ) is asymptotically χ2
3.

The first 5 assumptions of Theorem 6 are satisfied when m = 5 and

p = 15.

Let B be the set of all β = (β1, · · · , β4)′ such that β1, β3, and β4 are

positive and |β2| < 1. Then B is an open set. For all β ∈ B let

g(β) = (β1, β2, β3, β4, β4, β4, β4)′

Then g is a continuously differentiable map from B into R7. Note that ġ(θ)

has full column rank for all θ.

Given a β0 ∈ B let θ0 = g(β0) and use this θ0 to generate the data

x1, · · · , xn. Then g satisfies assumption 7 of Theorem 6 with k = 4 and

q = 7.

Let τ = σ ◦ g. Then assumption 8 of Theorem 6 is satisfied.

NT-GLS will be used to estimate θ0 and β0. Then by Lemm 3A of the

appendix assumptions 9 and 10 of Theorem 6 are satisfied,

Thus the assumptions of Theorem 6 are satisified and it follows from

Theorem 6 that

D(τ |σ)
D→ χ2

3

where D(τ |σ) is the statistic defined in Theorem 6.
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Results of the Monte Carlo simulation study

The data were generated using ψ = .2, α = .6, and φt = .2 for t = 1, · · · , 5.

This means

θ0 = (.2, .6, 1, .2, .2, .2, .2)

A Monte Carlo simulation was used to estimate the type-one errors when

using G(σ) and its corrected version CG(σ). These are asymptotically χ2
8

distributed. Also considered was the likelihood ratio goodness of fit statistic

LR(σ) derived under the assumption of normal sampling. Since the sampling

is not normal, one does not expect its asymptotic distribution to be χ2
8, but

this method is often used in the hope that its behavior will not depart too

seriously from that expected under normal sampling. LR(σ) is -2 times the

likelihood ratio statistic for testing σ0 = σ(θ) for some θ. This is computed

using the maximum likelihood estimate θ̂n of θ0. The results are given in

Table 2.
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Table 2: Rejection rate estimates in percent for nominal 5% tests using G(σ),

its corrected version CG(σ), and the corresponding likelihood ratio statistic

LR(σ) for samples of size n. The data were generated as described above.

The number of Monte-Carlo replications was N = 1000. The margin of error

for these estimates is 1.37%.

n G(σ) CG(σ) LR(σ)

50 15.8 2.7 12.3

100 9.2 3.7 12.6

500 5.8 4.6 11.1

1000 5.8 4.6 11.1

The type-one error estimate for the test based on G(σ) is within a margin

of error of 5% for samples of 500 or more. Its corrected version has this

property for samples of 100 or more.

The likelihood ratio statistic rejects much too often at all sample sizes.

This clearly indicates the need for a semi-parametric method for this problem

and for semi-parametric methods more generally.

The simulation was also used to estimate the type-one errors when using

the difference statistic D(τ |σ) and its corrected version CD(τ |σ). These are

asymptotically χ2
3 distributed. The corresponding likelihood ratio statistic

for testing the goodness of fit of τ given that of σ was also considered. The

results are given in Table 3.
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Table 3: Rejection rate estimates in percent for nominal 5% tests using the

difference statistic D(τ |σ), its corrected version CD(τ |σ), and the corre-

sponding likelihood ratio statistic LR(τ |σ) for samples of size n. The data

were generated as described above. The number of Monte-Carlo replications

was N = 1000. The margin of error for these estimates is 1.37%.

n D(τ |σ) CD(τ |σ) LR(τ |σ)

50 28.6 8.6 23.1

100 14.7 6.2 21.1

500 6.7 5.7 23.0

1000 6.5 6.2 22.1

The type-one error estimate for the test based on the difference statistic

D(τ |σ) seems to require a sample of over 1000 to be within a margin of

error of 5%. For samples of 500 or more, however, its type-one error doesn’t

seem to be a great deal over 5%, perhaps an acceptable value for model

building purposes at least. The type one error estimates for the test based

on the corrected statistic CD(τ |σ) are within a margin of error of 5% for

sample sizes of 100 or more. Clearly correction helps. The test based on the

likelihood ratio statistic LR(τ |σ) rejects much too often.
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To consider power we changed the θ0 for data generation to

θ0 = (.2, .6, 1, .2, .175, .225, .250)

With this choice τ(β0) 6= σ(θ0), the goodness of fit hypothesis for τ given σ

is not satisfied, and we expect to see tests of this hypothesis rejected. The

following table gives power estimates in percent for the goodness of fit of τ

using tests based on G(τ) and D(τ |σ) and their corrected versions.

Table 4: Power estimates in percent for nominal 5% tests using G(τ) and

D(τ |σ) and their corrected versions CG(τ) and CD(τ |σ) for samples of size

n. The data were generated as described above. The number of Monte-Carlo

replications was N = 1000.

n G(τ) CG(τ) D(τ |σ) CD(τ |σ)

50 30.9 4.7 31.3 9.2

100 18.9 7.4 20.6 10.5

500 16.3 14.4 28.3 26.0

1000 28.5 26.5 48.1 46.7

As expected power increases with n. The powers for the tests based onD(τ |σ)

and CD(τ |σ) can be considerable larger than those for the tests based on

G(τ) and CG(τ). This is what motivated the development of the difference

tests.
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Discussion

We have discussed semi-parametric χ2 methods for testing goodness of fit

hypotheses in moment structure analysis. These methods are of interest

because they do not require sampling from a normal distribution and because

the distributions sampled in practice are not normal.

Projection methods are used to derive new results and prove “known”

results. The strategy is to derive results for mean structure analysis and

extend them to other forms of moment structure analysis.

A basic theoretical result is that if y ∼ N(0,Σ) and P is a projection

in the metric of Σ−1 of rank q, then ‖Py‖2
Σ−1

D→ χ2
q. This result motivated

our use of generalized projections. This was also motivated by the fact that

the required projections can be expressed as continuous functions of model

parameters. This is not true for approaches based on orthogonal complements

and Moore-Penrose inverses.

For mean structure analysis we began with an asymptotically normal

sequence of statistics tn such that
√
n(tn − µ0)

D→ Np(0,Σ) with Σ positive

definite.

Given an assumed mean structure µ for µ0 we have shown how to test its

goodness of fit using the statistic G(µ) which under natural assumptions has

an asymptotic χ2 distribution.

We have shown that when the goodness of fit hypothesis fails, G(µ)
p→∞

as n→∞ except in some very special cases. Thus in general tests based on

G(µ) are consistent. We conjecture this is also true for the other goodness

48



of fit test statistics we have derived.

We have shown how to test the goodness of fit a sub-structure ν of µ. Two

test statistics for this were derived G(ν|µ) and D(ν|µ) and it was shown that

if µ0 is in the range of ν, under some fairly natural additional assumptions

these test statistics are asymptotically χ2. These statistics may be used to

test the goodness of fit of ν given that of µ.

The test statistic D(ν|µ) is the difference of two goodness of fit statistics.

This corresponds to a well known result when using normal sampling that

has been conjectured to hold in the semi-parametric case as well. We have

shown that it does.

We have shown how mean structure analysis can be extended to covari-

ance structure analysis. The latter can be viewed as an application of mean

structure analysis in which x1, · · · , xn is a sample from the population of

interest, Sn is its sample covariance matrix, sn = vech(Sn), and tn = sn.

Assuming the population sampled has finite fourth moments it follows that
√
n(sn−σ0)

D→ N(0,Γ) for some σ0 and Γ, but it is not necessarily true that

Γ is positive definite. We have shown, however, that this assumption is very

mild.

Our covariance structure analysis statisticG(σ) is closely related to Browne’s

(1984) goodness of fit statistic B. The important difference is that we have

proved G(σ) is asymptotically χ2, but Browne has failed to do this for B

because he has assumed, without proof, that his function ∆c exists and is

continuous.

It is sometimes difficult to deal with full column rank assumptions such as
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the assumption that µ̇(θ0) has full column rank. In the nonlinear regression

example this was easy because there it was easy to see that µ̇(θ) has full

column rank for all θ. In the auto regression example we showed σ̇(θ0)

had full column rank by computing its singular values which can be done

because in the simulation θ0 is known. In general, however, this cannot be

done. In our examples the Gauss-Newton algorithm was used to compute

θ̂n. For this algorithm to converge σ̇(θ̂n) must have full column rank. If

not the program will stop with an error message. Successful convergence

indicates that σ̇(θ̂n) has full column rank. This does not prove σ̇(θ0) has

full column rank, but it does motivate assuming this. Covariance structures

σ(θ) for which σ̇(θ0) fails to have full column rank are often called over

parameterized because they can be replaced by a covariance structure with

fewer parameters that has the same range and and has a full column rank

Jacobian at θ0. Over parameterized covariance structures are sometimes

encountered in early stages of an analysis.

Other assumptions that must be dealt with is that
√
n(θ̂n − θ0) and

√
n(βn−β0) converge in distribution. We have shown that these assumptions

are satisfied when θ0 and β0 are estimated using GLS.

We conclude with applications to multivariate nonlinear regression and

auto-regression with measurement errors. The former is a mean structure

analysis problem and the latter is a covariance structure analysis problem.

For covariance structure analysis satisfactory performance can require large

samples, but smaller samples can give satisfactory performance by using the

simple correction procedure introduced by Yuan and Bentler. It is probably
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the case that in general semi-parametric covariance structure analysis will

require large or at least moderately large samples. However, these days

large samples are often incountered. One of the authors is working with an

application that has a sample size of 30,000.
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Appendix

Delta method

The following is the form of the delta method used in this paper.

If
√
n(tn−µ0) converges in distribution and f is a function that is differ-

entiable at µ0, then

√
n(f(tn)− f(µ0))

a
= ḟ(µ0)

√
n(tn − µ0)

Slutzky method

The following is a general form of the Slutzky method for convergence in

distribution.

If xn
p→ x, yn

D→ y, and f is a continuous mapping, then

f(xn, yn)
D→ f(x, y)

We use this, immediate corollaries such as

xn + yn
D→ x+ y , ynxn

D→ yx , xnyn
a
= xyn

and

Lemma A1: If xn
a
= yn

D→ y and g is continuous, then g(xn)
a
= g(yn).

Proof: Let f(u, v) = g(u+ v)− g(v). Then f is continuous and

g(xn)− g(yn) = g(xn − yn + yn)− g(yn) = f(xn − yn, yn)

D→ f(0, y) = g(y)− g(y) = 0
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Projections

A discussion of projections may be found in books and courses on linear

algebra. See for example Halmos (1958). Properties we use are summarized

here.

Let W be a p× p positive definite matrix. For any x ∈ Rp let

‖x‖W = (x′Wx)1/2

This is the norm of x in the metric of W . Let X be any q dimensional

subspace of Rp, let y ∈ Rp, and let ŷ be the vector in X that is closest to

y in the metric of W . That is x = ŷ minimizes ‖y − x‖W over all x ∈ X .

The vector ŷ is the projection of y on X . Moreover ŷ is a linear function of

y. The p × p matrix P for this linear transformation is called a projection

matrix because Py is the projection of y onto X in the metric of W . We

need a computing formula for P . To this end let the columns of X be a basis

for X and

β = β̂ min ‖y −Xβ‖W

over all β ∈ Rq. Using GLS

β̂ = (X ′WX)−1X ′Wy

and

ŷ = Xβ̂ = X(X ′WX)−1X ′Wy

is the projection of y onto X in the metric of W . It follows that

P = X(X ′WX)−1X ′W
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If P projects onto X in the metric of W and P̃ projects onto a subspace

Y of X in the metric of W , then P − P̃ is a projection in the metric of W

that projects onto X ∩ Y⊥ where Y⊥ is the orthogonal complement of Y in

the metric of W . Moreover P − P̃ has rank q − k where q is the dimension

of X and k is the dimension of Y . Also

‖(P − P̃ )x‖2
W = ‖Px‖2

W − ‖P̃ x‖2
W

In particular Ip−P is a projection in the metric of W that projects onto the

orthogonal complement of X in the metric of W and has rank p− q. Also

‖(P − P̃ )x‖2
W = ‖(I − P̃ )x‖2

W − ‖(I − P )x‖2
W (1)

Vectors v1, · · · , vq are an ortho-normal basis in the metric ofW for a vector

space X if v1, · · · , vq are a basis for X , v′iWvi = 1 for all i, and v′iWvj = 0

for all i 6= j. If x ∈ X

‖x‖2
W =

∑
(v′iWx)2

Lemma A2: If

1. If y ∼ Np(0,Σ) and Σ is positive definite.

2. P is a projection in the metric of Σ−1 onto a q dimensional subspace

of Rp.

Then

‖Py‖2
Σ−1 ∼ χ2

q
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Proof: Let v1, · · · , vq be a basis for X that is ortho-normal in the metric

of Σ−1 and V = (v1, · · · , vq). Then P = V V ′Σ−1 and

‖Py‖2
Σ−1 = y′Σ−1V V ′Σ−1V V ′Σ−1y = y′Σ−1V V ′Σ−1y =

q∑
i=1

(v′iΣ
−1y)2

Let zi = v′iΣ
−1y. Then the zi are normally distribute, have variance 1, and

cov(zi, zj) = 0 when i 6= j. It follows that

‖Py‖2
Σ−1 =

q∑
i=1

z2
i ∼ χ2

q
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Asymptotic normality of generalized least squares esti-

mators

Generalized least squares estimators are frequently used for estimating pa-

rameter vectors. They are the estimators used in our examples. The following

lemma gives conditions under which generalized least squares estimators are

asymptotically normal.

Lemma A3: If

1.
√
n(tn − f0)→ N(0,Σ).

2. f is a continuously differentiable one to one mapping from a compact

subset Θ of Rq into Rp and ḟ(θ) has full column rank for all θ ∈ Θ.

3. θ0 is an interior point of Θ and f(θ0) = f0.

4. Qn(θ) = (tn−f(θ))′Wn(tn−f(θ)), Wn
p→ W , and W is positive definite.

5. θ̂n minimizes Qn(θ).

Then
√
n(θ̂n − θ0) is asymptotically normally distributed.
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Proof: We will show first that θ̂n
p→ θ0. Note that

‖f(θn)−f0‖ = ‖tn−f0−(tn−f(θn))‖ ≤ ‖tn−f0‖+‖tn−f(θ̂n)‖ ≤ 2‖tn−f0‖
p→ 0

Now Assume ‖θ̂n − θ0‖ 6
p→ 0. Then for some ε > 0, δ > 0, and N

P (‖θ̂n − θ0‖ > ε) > δ

for all n > N . By the mean value theorem for some θ̄n on the line between

θ0 and θn.

f(θn)− f(θ0) = ḟ(θ̄n)(θ̂n − θ0)

Let λmin(θ) be the minimum singular value of ḟ(θ) and γ be the mini-

mum of λmin over Θ. Because ḟ(θ) has full column rank for all θ ∈ Θ,

λmin(θ) > 0 for all θ ∈ Θ. Because λmin is continuous and Θ is compact,

γ = minθ∈Θ λmin(θ) > 0. Note that

‖f(θ̂n)− f(θ0)‖ = ‖ḟ(θ̄n)(θ̂n− θ0)‖ ≥ λmin(θ̄n)‖(θ̂n− θ0)‖ ≥ γ‖θ̂n− θ0‖ ≥ γε

with probability δ for n > N . This implies ‖f(θ̂n) − f(θ0)‖ 6 p→ 0 which

contradicts the the assumption above. Thus ‖θ̂n − θ0‖
p→ 0 and θ̂n

p→ θ0.
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Because θ̂n
p→ θ0 and θ0 is an interior point of Θ

√
nḟ(θ̂n)′Wn(tn − f(θ̂n))

a
= 0

and
√
nḟ(θ̂n)′Wn(tn − f0 − (f(θ̂n)− f0))

a
= 0

Sinse f(θ̂n)− f(θ0) = ḟ(θ̄n)(θ̂n − θ0)

√
nḟ(θ̂n)′Wnḟ(θ̄n)

√
n(θ̂n − θ0)

a
=
√
nḟ(θ̂n)′Wn

√
n(tn − f0)

Multiply both sides by (ḟ(θ0)′Wḟ(θ0))−1. The resulting left side is asymp-

totically equal to
√
n(θ̂n − θ0). Thus

√
n(θ̂n − θ0)

a
= (ḟ(θ0)′Wḟ(θ0))−1ḟ(θ0)′W

√
n(tn − f0)

Since by assumption 1,
√
n(tn − f0) is asymptotically normal

√
n(θ̂n − θ0) is

asymptotically normal.
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The non-singularity of Γ

If x is a p-component random vector, then cov(x) is singular if and only if x

lies in a proper linear sub-manifold of Rp with probability one. This is often

used to motivate the assumption that Σ is non-singular. We seek a similar

motivation for the assumption that Γ is nonsingular. A distribution is said

to be singular if all of its mass is on a set of Lebesgue measure zero.

Lemma A4: If

1. x1, · · · , xn is a sample from a m dimensional distribution D with finite

fourth moments and covariance matrix Σ0.

2. Sn = 1
n

∑
(xi − x̄n)(xi − x̄n)′.

3. sn = vech(Sn) and σ0 = vech(Σ0).

4.
√
n(sn − σ0)

D→ N(0,Γ) and Γ is singular.

Then D is singular.
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Proof: We may assume without loss of generality that D has mean zero.

Using the Slutzky theorem
√
nvech(x̄nx̄

′
n)

p→ 0 and

√
n(sn−σ0) =

1√
n

∑
(vech(xix

′
i)−σ0)−

√
nvech(x̄nx̄

′
n)

a
=

1√
n

∑
(vech(xix

′
i)−σ0)

Note that

1√
n

∑
(vech(xix

′
i)− σ0)

a
=
√
n(sn − σ0)

D→ N(0,Γ)

Note that σ0 = Evech(xx′) where x is a sample from D. It follows from the

central limit theorem that Γ is the covariance matrix for vech(xx′).

Since Γ is singular there is an ` 6= 0 such that `′Γ` = 0. Thus

cov(`′vech(xx′)) = `′Γ` = 0

and

Q(x) = `′vech(xx′) = 0

with probability one. Let Z be the zeros of Q. Viewed as a function of the

first component of x, Q(x) is a polynomial equation of degree at most two.

Thus given the last p − 1 components of x there are at most two values of

the first component for which Q(x) = 0.

Let v be any vector of length p − 1 and let Zv be all z in Z whose last

p− 1 components are equal to v. Then Zv has at most two points and hence

has Lesbegue measure zero for each value of v. From Fubini’s theorem (e.q.

Theorem A of Halmos, 1950, p. 147) Z has Lesbegue measure zero. Since x

is in Z with probability one, the distribution D is singular.
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Remark: We have shown that if the matrix Γ is singular, then the

distribution D is singular. Thus if D is nonsingular, Γ is nonsingular.

Remark: If D has a density or is a mixture of a distribution with a den-

sity and a discrete distribution it is nonsingular and hence Γ is nonsingular.

Remark: It should be pointed out that while the non-singularity of D

is a sufficient condition for the non-singularity of Γ, it is not a necessary

condition.

Remark: Can Γ be singular when the covariance matrix Σ0 of D is

nonsingular? We believe there are examples where this happens, but to our

knowledge no such example exists in the literature and we believe there are

few applications of interest for which Γ is singular when Σ0 is nonsingular.

Hence the non-singularity of Γ is a very mild assumption when Σ0 is non-

singular.
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