
UC Irvine
ICS Technical Reports

Title
An optimal slack minimization method

Permalink
https://escholarship.org/uc/item/6mz2z88c

Author
Chang, En-Shou

Publication Date
1995-09-11

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6mz2z88c
https://escholarship.org
http://www.cdlib.org/

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.G.)

An optimal

slack minimization method

En-Shou Chang

September 11, 1995

Technical Report #95-34

Department of Information and Computer Science
University of California, Irvine

Irvine, CA 92717-3425
(714) 856-7063

echang@ics.uci.edu

Abstract

When synthesizing a hardware implementation from behavioral descriptions, an im
portant decision is the selection of a clock cycle to schedule the datapath operation into
control steps. Prior to scheduling, most existing behavioral synthesis systems either
require the designer to specify the clock cycle explicitly or require that the delays of
the operators used in the design be specified in multiples of a clock cycle. A bad choice
of the clock cycle could adversely affect the performance of the synthesized design. We
present mathematical proofs of setting clock cycle length with zero clock slack and an
algorithm for estimating the system clock based on a clock slack minimization criteria.
This algorithm guarantee the minimum average clock slack.

Tvqou vd
TraffiTs

1 Introduction

In these years, logic synthesis has come to be recognized as an integral part of the design

process, and this recognition has led to an evolutionary change in design methodology into

a describe-and-synthesize[l, 2] way. The advantage of this new methodology is that

it allow us to describe a design in a purely behavioral form, void of any implementation

details, e.g. we can describe the design via Boolean equations, finite-state machines.. .etc.

Then, the design structure is generated by automatic synthesis using CAD tools, instead of

manually designing detail, since manual design is usually tedious.

The describe-and-synthesize methodology can be applied on several levels[2]: (1) On

the circuit level, we describe the system in transfer functions and timing diagrams, then

transform them into transistor circuit via circuit synthesis techniques. (2) On the logic level,

we use Boolean expressions and state diagrams, then transform them into interconnected

logic gates and flip-fiop's via logic synthesis techniques. (3) On the Register-Transfer(RT)

level, register-transfer descriptions which specify the data transfer from some registers to

other registers, usually through some functional units, are used to specify the system, then

microchips are synthesized using behavioral synthesis techniques.(4) On the system level,

we use variables and language operators to express functionality of system components, then

synthesis them into printed circuit(PC) boards or multi-chip modules(MCM's) via system

synthesis techniques.

On the RT level, the microchips, which represent processors, memories and ASIC's, can

be synthesized using behavioral synthesis techniques. The structure of these microchips

consist functional units, storage units, and control units that are pre-designed and stored in

RT-level libraries. The behavior of these microchips are described by means of programs,

algorithms, flowcharts, dataflow graphs, instruction sets or generalized finite-state machines

in which each state can perform arbitrarily complex computations.

Behavioral synthesis involves the transformation of a specification or design description

into a set of interconnected micro-architectural component which satisfy the behavior and

any specified constraints. Among the several tasks performed during synthesis, scheduling

determines the appropriate control step for each operation in the behavioral description.

Operators
in description

Functional unitdelay

• Functional unit delay
• Slack

Clock cycle

150 [time{ns)

cik(MOD)

Figure 1. Functional unit slack associated with clock cycle of 163 ns

The scheduler tries to execute as many operations as possible in each control step to extract
as much parallelism as possible. The overall performance (or execution time)of the design
depends on the duration of each control step, i.e. the clock cycle.

In most synthesis tools[3, 4, 5, 6, 7], the clock cycle must be specified by the designer
before synthesis. Either the clock cycle is specified explicitly or the delays of components
are expressed mmultiples of a clock cycle. Designer-specified clock cycles are applicable
when the design which is developed is part of alarger system. In this case, the clock cycle
used for some of the standard components in the system is known and can be used for the
remainder of the design. In the other case, the clock is not specified by the designer, we
need to estimate a good one.

Some synthesis tools[8, 9, 10] equate the clock cycle with the delay of the slowest oper
ation in the design. However, the maximum operator delay clock leads to under-utiUzation
of the faster functional units. In order to improve the performance of the design, we need to
minimize the idle time of functional units. The clock slack[l] associated with a functional
unit represents the portion of the clock cycle for which this functional unit is idle. Smaller
slack associated with a functional unit wiU result in a higher utihzation of the functional
unit, and in shorter execution time for the same number of resources. Definition of slack
will be given in Section 2

In Section 2, we will quote definitions about the slack minimization method from[l].

Previous works and their flaws will also be discussed in Section 2. In Section 3, we will

show how to achieve 100% clock cycle utilization with setting clock cycle as long as possible

and prove it mathematically. In Section 4, an optimal slack minimization method which

can find the clock cycle length within any given range with minimum average clock slack

is provided. Experimental results is shown in Section 5. Then, we will summarize our

achievements in Section 6.

2 Problem definition and previous work

In order to improve the performance of the design, we need to minimize the idle time of the

functional units. In the following sections, we wiU quantify the idle, then minimize it via

mathematical analysis or algorithm approaches.

The idle time slack[l], associated with a functional unit, is defined as the difference be

tween the functional unit delay and the next higher multiple of clock cycle. The delay{operi)

represents the delay associated with a functional unit implementing an operation of type

operi. For a given clock cycle elk and operation type operi, the slack slack{clk,operi)

associated with corresponding functional unit is computed by the following equation:

slack{clk,operi) = {\delay{operi) -i- elk] x elk) —delay{operi) (1)

For a given clock cycle elk, the average slack, denoted by ave^laek{elk), is defined as

the portion of the clock cycle during which each unit in the design is idle in average. Let

oeeur(operi) represents the number of occurrences of operation type i in a behavior, then

the average slack would be:

, ,/ YliOceuT{operi)x slaek{elk,operi)aveslaek{elk) =
Ylioeeur{operi)

Figure 2 graphically depicts the slack associated with the different operations for a

second-order diflFerential equation example [4]. The occurrences of each operation and delays

of the functional units that wiU be used to implement them are shown in Table 1. Following

the same design model in[ll], we put the summation of the delay of the operator associated

with two levels of tristate drivers and register setup time and propagation delay as the

functional unit delay, since a typical register-to-register transfer involves operands being

number of
operations

occur(x)=6

occur(-)=2

occur(+)=2

time (ns)

Functional unitdelay Slack Clock = 65 ns

2x9 2x17

ave_slack(65 ns) =
6+2+2

= 24.4 ns

utlllzatlon(65 ns) = 1 - (24.4 / 65.0) = 62 %

Figure 2: (a) Computing slack, (b) Average slack for a clock cycle of65

operation occurrences delay
add 2 48 ns

subtract 2 56 ns
multiply 6 163 ns

Table 1. Occurrences and delays of operations in the differential equation example.

read from registers, an operation performed on the operands, and-the results stored in

another register. The components used are from the VDPlOO datapath library[12].

In Figure 2(a), the delays of the functional units are represented graphically as the

length of the lightly shaded regions along the X-axis. The number of occurrences of the

operations in the behavior is represented by height of the shaded region along the Y-axis.

The dark shaded regions represent the slack for each operation type. The average slack

for a clock cycle of 65 ns is 24.4 ns, graphically shown in Figure 2(b). It is calculated via

Eq. (2).

The main motivation behind the slack minimization method[13] is to minimize the

slack in each clock cycle under the assumption that a smaller slack wiU increase the func

tional unit utilization, and in turn decrease the execution time for the behavior. This slack

minimization method[13] examines the clock cycle of grid points from clkmin to clkmax,

computing clock utilization which is defined in Eq. (3) on each grid points. The clock cycle

that maximizes the utilization is selected as the best slack-minimal clock. Design libraries

usually specify the maximum clock frequency at which the clock input of a bistate circuit

may be driven such that stable transitions of logic levels are maintained. This frequency is

used to determine the value of clkmin. The longest delay among aU of the functional unit

is chosen as clkmax.

utilization{clk) = 1 —
ave^lack{clk)

There are two flaws in the slack minimization method mentioned above. First, the best

length of clock cycle is not necessary on a grid point, e.g. it might be 26.2422 ns or 26^ ns.

We can't guarantee the highest utilization which is found via examining all of the grid points

is the best utilization.

Second, the definition of clock utilization in[13] is incorrect. Since ave^lack{clk) means

the average slack in each operation, not in each clock, the utilization can't be derived from

dividing ave.^lack{clk) with clock length, a.s in Eq.3. It might happen performance associ

ated with clock cycles that have the same utilization value calculated via Eq.(3) is different

and performance associated with clock cycles that have the different utilization value cal

culated via Eq.(3) is the same. Thus, it is not suitable to search the best performance via

clock calculated average execution time under execution time under
cycle utilization slack

length value
56 ns 91.8% 4.6 ns

28 ns 83.7% 4.6 ns

14 ns 67.2% 4.6 ns

ASAP scheduling
scheduling

448 ns

448 ns

448 ns

resource-constrained

scheduling
560 ns

560 ns
560 ns

Xable 2. different calculated utilization values but totally the same performance

As an example, we take the same benchmark in[l], HAL Second Order Differential

Equation[4] associated with VDPlOO datapath library shown in Table 1. Two schedulers,
as-soon-as-possible(ASAP) and resource-constrained, areinvolved in Table 2. The resource-

constrained scheduler limits two functional units for each operation type, as in[13]. We can
see different calculated utilization values but totally the same scheduling and performance.

3 Longest clock cycle with no slack

One nature lower bound of slack minimization method is obviously "zero slack". When

will the nature lower bound be reached? Before we go further reasoning, let's introduce

two extended definitions of Common Divisor and Greatest Common Divisor (GCD):

Definition 1: An extended definition of Common Divisor over real number space:

A real number r is a Common Divisor of a set of real numbers

{<1, t2, •••,tn} = 3 positive integer A;,- 9 rki = t,-, Vi

Definition 2: An extended definition of GCD over real number space:

GCD : set of i? i?

•••?^n} = the greatest CommonDivisor associated with

•• •,tn}

Whenever we select a Common Divisor of delay time of those functional units being

used cLS the length of the system clock cycle, it is directly induced from Definition 1 that

the delay time of those functional units can be exactly fitted into one or several clock cycles

without any slack. We prove this property formally below:

Theorem 1: A given clock cycle length causes no clock slack associated a number of

given functional units if and only if the clock cycle is a common divisor of the delay time

of those functional units.

Proof: <=) Let the delay of the functional units be .. -ttn} and the given

clock cycle be a Common Divisor r. According to Definition 1, there are

corresponded positive integers {fci,A:2,..., A:,} such that rki = U for aU i.

i.e. the delay time ti of functional unit i can be exactly fitted into A:, clock

cycles with no slack.

=^) Assume the delay of the functional units is ..., tn} and there are

corresponded positive integers {A:i, k2,--., A:,} such that the delay time U of

functional unit i can be exactly fitted into A;,- clock cycles with no slack, then

the clock cycle r satisfies Definition 1: 3 positive integer A:,- 3 rki = ||

Since a clock cycle length which causes no clock slack should be a common divisor of

the delay time of the functional units used, it is trivial to infer the next theorem:

Theorem 2: The longest clock cycle which causes no clock slack associated a number

of given functional units is GCD of the delay of these functional units.

4 Optimal slack minimization method

Although putting GCD of delay of the functional units as the system clock cycle can induce

100% utilization of each clock cycle, it is too small to be practically implemented in most

cases. Thus, we need a method to find a feasible clock cycle length with highest utilization

d = delay(operj)

Figure 3: f{clk) —A:,- x {{\delay[operi) "r c/A:] x elk) —delay^operj))

of each clock cycle, i.e. with lowest average slack.

Following definitions in[13], a slack minimization method, which works on finding the
minimum average slack, can be defined in mathematical style below:

Minimize occur(oper^) x (([delay(operj) -j- elk] x elk) - delay(operi)) ^ ,
Eioeeur(operi) '^ (4)

Since we are minimizing Eq. (4) along various elk, those terms that are unchanged
associated with various elk can be viewed as constants. Thus, the problem is simpHfied into

Minimize Y^kiX{{ |'de/ay(oper,) ^ elk] xelk) - delay(operi)), Velk (5)
t

What does the function above (Eq. (5)) look like? Let's see the function f{elk), shown
in Eq. (6), ofone single term of Eq. (5) first.

/(elk) = ki X((\delay{operi) -r elk] x elk) - delay{operi)) (6)

When delay(operi) ^ elk, we have f{elk) = ki Xelk —delay[operi), S'lid
when ^delay{operi) <elk <^delay(operi), we have f{elk) =kixmx elk - delay{operi)

Figure 4: f{clk) = J2i x ((|"de/ai/(oper,) -r c/A;] x elk) - delay{operi))

for all positive integer greater than 1. i.e.

when \delay{operi) < elk < delay{operi), f{clk) = A:,- x 2x elk - delay{operi)-,

when \delay{operi) < elk < \delay{operi), f{clk) = ki x 3x elk - delay{operi)\

when \delay{operi) < elk < \delay{operi), f{elk) = ki x 4 x elk - delay{operi);

.. .etc. The function diagram of f{elk) in Eq. (6) is shown in Figure 3.

There are three useful properties on Eq. (6). (1) Ajump-point of this function happens

ifand only it is on rnxdelayiopen) where mis a positive integer. (2) The gradient between

any two adjacent jump-point is fixed. (3) A minimal value happens if and only if there is a

jump-point.

Since Eq. (5) is a summation ofEq. (6), it inherits these properties from Eq. (6). Thus,

we can derive the minimum average slack via searching all of the jump-points. And, the

number of points been searched is

delayjoperj)
. elkmin ' ^

t

The function diagram of Eq. (5) is shown in Figure 4.

5 Experimental result

To demonstrate that the method given in Section 4 results smcdler average slack than

the previous slack minimization method[13], we take four well known benchmarks, the

HAL second order diflferential equation[4], a fifth order elliptical filter[14], the AR lattice

filter[10], and a linear phase B-spline interpolated filter[15], the same benchmarks in[13],

with VDPlOO datapath library[12], shown in Table 1, as examples.

Following[13], the lower bound elkminofsearched space is determined by the maximum

operating frequency for clocking registers of VDPlOO library. Result of maximum operator

delay method, the previous slack minimization method[13], and the method we proposed

are shown in Table 3. It can be seen the method we proposed in Section 4 achieves much

less average clock slack than the previous[13] one.

clock clock average

example estimation length slack

method estimated

differential max. operator delay 163.0 ns 44.40 ns

equation[4] slack minimization[13] 56.0 ns 4.60 ns

opt. slack minimization 16.3 ns 2.02 ns

fifth order max. operator delay 163.0 ns 87.94 ns

digital elliptic slack minimization[13] 24.0 ns 1.18 ns

filter[14] opt. slack minimization 16.3 ns 0.69 ns

AR max. operator delay 163.0 ns 49.29 ns

lattice slack minimization[13] 55.0 ns 4.40 ns

filter[10] opt. slack minimization 16.3 ns 0.39 ns

linear phase max. operator delay 163.0 ns 70.77 ns

B-spline inter. slack minimization[13] 24.0 ns 1.92 ns

filter[15] opt. slack minimization 16.3 ns 0.55 ns

Table 3: Result of two slack minimization methods

6 Conclusion

In this paper, an optimal method for clock estimation, based on clock slack minimization,

is presented. It can provide both designers and synthesis tools with a useful estimating of

the clock cycle that can be used to implement a design.

We proved that longest system clock cycle with 100% clock cycle utilization is extended

GCD, which is defined in Section 3. In some cases, the extended GCD might be too small

to be practically implemented. When it is not applicable, a method to find the clock cycle

length with smallest average slack in a given range is also provided.

References

[1] D. Gajski, F. Vahid, S. Narayan, and J. Gong, Specification and design of embedded

systems. New Jersey: Prentice Hall, 1994.

[2] D. Gajski, N. Dutt, C. Wu, and Y. Lin, High-level Synthesis: Introduction to Chip

and System Design. Boston, Massachusetts: Kluwer Academic Publishers, 1991.

[3] M. Balakrishnan and P. Marwedel, "A synthesis approach for design space exploration,"
in Proceedings of the Design Automation Conference, pp. 68-74, 1989.

[4] P. Paulin, J. Knight, and E. Girzyc, "HAL: Amulti-paradigm approach to datapath
synthesis," in Proceedings of the Design Automation Conference, 1986.

[5] P. Paulin and J. Knight, "Algorithms for high-level synthesis," in IEEE Design &Test
of Computers, Dec. 1989.

[6] R. Walker and R. Camposano, ASurvey of High-level Synthesis Systems. Kluwer
Academic Publishers, 1991.

[7] M. McFarland and T. Kowalski, "Incorporating bottom-up design into hardware syn
thesis," IEEE Transactions on Computer-Aided Design, September 1990.

[8] A. Parker, T. Pizzaro, and M. Mlinar, "MAHA: Aprogram for datapath synthesis,"
in Proceedings of the Design Automation Conference, 1986.

[9] N. Park and A. Parker, "Synthesis of optimal clocking schemes," in Proceedings of the
Design Automation Conference, 1985.

[10] R. Jain, M. Mlinar, and A. Parker, "Area-time model for synthesis of non-pipelined
designs," in Proceedings of the International Conference on Computer-Aided Design,
1988.

[11] S. Narayan and D. Gajski, "System clock estimation based on clock wastage minimiza
tion." UC Irvine, Dept. of ICS, Technical Report 91-49,1991.

[12] VDPlOO 1.5 Micron CMOS Datapath Cell Library, 1988.

[13] S. Narayan and D. Gajski, "System clock estimation based on clock slack minimiza
tion, in Proceedings of the European Design Automation Conference (EuroDAC), 1992.

[14] S. Kung, H. Whitehouse, and T. Kailath, VLSI and Modern Signal Processing.
Prentice-Hall, 1985.

[15] D. Pang and L. Ferrari, "Unified approach to general IFIR filter design using the B-

spline function," in Proceedings of Asilomar Conference on Signals, Systems & Com

puters, 1989.

